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SMALL AMPLITUDE HOMOGENIZATION APPLIED TO MODELS
OF NON-PERIODIC FIBROUS MATERIALS

DAVID MANCEAU!

Abstract. In this paper, we compare a biomechanics empirical model of the heart fibrous structure
to two models obtained by a non-periodic homogenization process. To this end, the two homogenized
models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction
and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic
elastic materials is also derived and allows us to obtain a third simplified model.
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INTRODUCTION

The left ventricle of the heart is composed of oriented fibers. Anatomic studies show that the cardiac fibers
have an orientation that varies continuously from an angle o at the endocardium to —v at the epicardium.
Several biomechanics empirical models were derived (see e.g. Arts [3], Chadwick [10], Feit [11], Peskin [17] and
Streeter [20]) considering the fibers as an oriented elastic material embedded in a homogeneous medium. In
particular, Peskin [17] deduced this fiber architecture of the heart from the starting assumption that the stress
matrix reads as

o:=0m+oy, with op:=T(ef)(r®71), (0.1)
where o, is the isotropic medium stress matrix, oy is the stress matrix in the fiber direction, 7 is the fiber

direction, T'(ey) the fiber tension and ey the strain coefficients in the fiber direction. Then, in linear elasticity
this general biomechanics model leads us to a stress matrix of the type

o= Mr(e)Is +2ue + T(ef) (T @ 1), (0.2)

where A\, p are the Lamé coefficients of the medium and e is the strain matrix.
In conduction, the strain matrix e of (0.2) is replaced by the electric field Vu, and the stress matrix o by
the electrical current AVu, where A is the conductivity matrix of the composite material. Then, the analogue
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of (0.2) in conduction leads us to the conductivity matrix
A:=als+ B(t®71). (0.3)

This model is based on the two following assumptions: the interaction between the fibers and the medium is
neglected, and the fibers are dimensionless.

To avoid these defaults, Briane [5,6] proposed two new models which are rigorously deduced from the
homogenization of non-periodic fibrous microstructures. In the two models, the fibers are small radius cylinders
periodically distributed in layers. Moreover, the fiber orientation is constant in each layer. In the first model
(Sect. 1.2.1, Fig. 1), the layer width tends to zero but is large with respect to the fiber radius. In the second
one (Sect. 1.2.1, Fig. 2), layers are replaced by rows whose width is of the same order as the fiber radius. So,
the fiber orientation varies in a more realistic way in this second model. In both cases, the homogenization
formula is far from being explicit since one needs to solve an auxiliary problem which is parametrized at each
point of the domain (see Thm. 1.7). Therefore, it seems difficult to compare directly these models with the
biomechanics one without additional hypothesis. Let us mention that another homogenization approach of the
modeling of the myocardium was performed by Caillerie et al. in [8,9]. Their approach differs from Briane’s
one since they consider a large displacement framework and use a discrete homogenization process.

In this paper, our aim is to derive simplified homogenized models assuming small amplitude between the
physical characteristics of the medium and the fibers. The small amplitude (or low contrast) homogenization
theory was developed by Tartar [21,22] and, in particular, was applied by Allaire [1] and Allaire and Gutiérrez [2]
in another context. First of all, we prove a new expansion formula (see Thm. 2.7) which extends to the anisotropic
elasticity case the small amplitude homogenization formula obtained by Tartar [21] in the isotropic case. Then,
we propose two models (I and IT) in conduction, which differ from each other by their geometry, and three
in elasticity (I, I1 and ITT). These models simplify the homogenized ones of [5, 6], taking into account the
small amplitude assumption. Our approach allows us to validate or to refute the biomechanics heuristic model.
Moreover, in some particular cases (model I in conduction and model 177 in elasticity) we obtain simple models
of reinforcement by fibers of varying orientation. We only consider the linear case, both in conduction and
in elasticity, although the nonlinear case seems more relevant for applications. Indeed, the biomechanics of
the heart involves a large deformation approach, but this goes out of the present study (see the third point of
Rem. 4.2). We restrict ourselves to a linear framework in order to focus on the non-periodic homogenization
setting combined with the small amplitude assumption.

The three models are described in the sequel, where the parameter § > 0 measures the low contrast between
the fiber characteristics and the medium ones:

e In isotropic conduction, model I in small amplitude gives (see Thm. 3.1) the following effective conduc-
tivity

Aéﬂ =als3+08(r®71)+ 0((52)7

where 7 is the fiber direction and «, 8 are explicit constants depending on §. Therefore, the biomechanics
model coincides with this first homogenized model under the small amplitude assumption (neglecting
the terms of order greater than 2).

e Model IT (see Thm. 3.4) leads us to the following different homogenized conductivity

Ally = Alg © Desr + 0(0%).

The extra matrix Deg is zero where the fiber angle is constant. It is remarkable that the effective
conductivity Agﬁ of the first model is equal to the orthogonal projection of Agf in the matrix space
spanned by Is and (7 ® 7).
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In linear elasticity, model I gives (see Thm. 4.1) the following effective stress matrix

olg = Ale + (A% — Ale) + [A3e +eotr(e)(T®T) + es(er - T)I5 + ¢4 (e(T RT)+T® 67‘)}
+ 6*N'e + 0(6?),

where A', A2 are, respectively, the Hooke’s laws of the medium and of the fibers, ¢; are constants,
A3, N are fourth order tensors and A?® is isotropic. Furthermore, models I and I agree where the
fiber angle is constant (see Thm. 4.3). Therefore, the biomechanics model does not coincide with the
homogenized ones even under the small amplitude assumption.

Due to the complexity of models I and IT in elasticity we consider model 11 in which the fiber tensor A2
is deduced from the isotropic medium tensor A' by a small anisotropic perturbation acting only in the
fiber direction in the spirit of the biomechanics law (0.1), namely

A?e:=Ale+d(er-7)(r®@7), with Ale:= \tr(e) + 2ue.

Thanks to the anisotropic small amplitude formula of Theorem 2.7, we obtain (see Thm. 4.5) the
following expansion

w1+ A

IIT 1 2 1 2
of = Atet+c(A%e—A'e)— Ky 0 ———
T ( ) s ,Ufl(2ﬂl+>\1)

(er-7)(T ®T) + 0(6?),

where c and k,,, are constants. Therefore, this model rigorously validates the biomechanics one at the
second order, and provides a simple effective tensor.

The paper is organized as follows. In Section 1, we recall the notion of H-convergence and Briane homog-
enization results for the fibrous microstructures. In Section 2, we introduce the notion of H-measure and the
small amplitude homogenization procedure due to Tartar. We conclude this section by a new small amplitude
homogenization formula in anisotropic elasticity (Thm. 2.7). Section 3 is devoted to simplified models obtained
in conduction under the small amplitude assumption. In Section 4 we derive the simplified models in linearized
elasticity.

Along the paper, we will use the following basic notations:

Notations
e N e N, N:=2or 3 in the Sections 3 and 4, N > 1 in Sections 1 and 2.3.
e Yy is the cube (-1, 1)V of RV, N > 2.
e For any subset E of RV, |E| denotes the Lebesgue measure of E.
e B:={ey,...,en} is the canonical basis of RV,
e If x € RN, we denote by z; its coordinates: z = Ziv=1 T;€;.

For z,y ¢ RN, z -y := Zivzl TiYs-
We provide RV*Y with the scalar product “” defined by A : B := tr(A” B).

e For a parallelepiped Z of RN, H #(Z ) (resp. Li(Z )) denotes the space of the Z-periodic functions which

belong to H{ (RY) (resp. which belong to L _(RY)).

loc loc

For f € Li(Z), (fy = \_él [, f(x) dz denotes the mean value.
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1. REVIEWS OF HOMOGENIZATION RESULTS

1.1. A few recalls of H-convergence

1.1.1. H-convergence in conduction

We recall the definition and the “compactness theorem” of the H-convergence theory for second-order elliptic
scalar equations introduced by Murat and Tartar [15] in the general case and by Spagnolo [18] (under the name
of G-convergence) in the symmetric case.

Definition 1.1 (Murat and Tartar [15]). Let © be a bounded open set of RY.
(i) The space M(«, ;) is the set of matrix-valued functions A : x — A(z) defined on £ such that

VEERY, A@)E-€>al¢? and A7M(2)E-€> 3L ae z €.

(ii) A sequence A° of M(a, 3;Q) is said to H-converge to Aeg if Aeg € M(a, §;92) and if for any open set
wE N, f e H 1(w), the solution u. of

—div(A:Vue) = f inw
ue € H} (w),

satisfies the weak convergences

Ue — U HY(Q) weak
AVu. — AegVug L?(Q;RY) weak,

where uq is the solution of

—div(4egVug) = f inw,
Uug € H& (w)

H
The H-convergence of A, to Aeg is denoted by A. — Acg.

The most important result of the H-convergence is the following “compactness theorem” due to Murat and
Tartar:

Theorem 1.2 (Murat and Tartar [15]). If A. is a sequence of M(«, 3;Q) then there exists a subsequence, still
o
denoted by €, and Acg € M(a, 3;9) such that A. — Aes.

1.1.2. H-convergence in linearized elasticity

We recall some basic definitions about elasticity and the definition of the H-convergence in linearized elasticity
(see e.g. [1,12] for a more complete presentation).

Let RY*N be the subset of RV*Y of symmetric matrices and M?%, be the set of symmetric fourth order
tensors, i.e.

MY = {A = (Ayjr)i<ijri<n | Aijrr = Ariig = Ajise = Aijur }-

For u € HY(Q;RY), we denote by e(u) the strain matrix whose coefficients e;;(u) are given by

=9\ 0z; " 0z

Definition 1.3. Let Q be a bounded open set of RY.
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(i) We define the space M*(a, 3;2) as the set of symmetric fourth order tensor valued functions A : x —
A(z) defined from € to M3, such that

Ve c RNV A(z)e:e>alel? and A(z) le:e>f71e|? ae 2€Q.

(i) A sequence A. of M*(a, 3;Q) is said to H-converge to Acg if Acg € M*(a, 3;9Q) and if for any open
set w € Q, f € H ' (w;RY), the solution u. of the Dirichlet problem

—div(Ace(u:)) = f nw
ue € Hi (w;RY),

satisfies the weak convergences

U — U H (O RY) weak,
Ace(us) — Aecge(ug) L2(QRY*N) weak,

where uq is the solution of

—div (Acg(z)e(ug)) = f in w,
up € H} (w; RY).

H
We denoted the H-convergence of A. to Acg by Ac — Acs.
Remark 1.4. Theorem 1.2 established in the conduction case still holds true for the linearized elasticity case.

In the general case, there is no explicit formula for the homogenized law (neither in conduction and nor in
linearized elasticity). Nevertheless, in the periodic case, i.e. A.(z) := A (f) p.p- = € Q where A is periodic, the
homogenized law can be explicitly computed (not totally explicit since one needs to solve a cell problem), see
for example [4].

In the non-periodic case there is some particular microstructures for which the homogenized law can be
explicitly obtained. For instance, in the next section we present two non-periodic microstructures due to
Briane.

1.2. The non-periodic fibrous microstructures

In this section we briefly describe the geometries of the two fibrous microstructures studied in [5,6] and we
recall the homogenization results related to these microstructures.

1.2.1. Geometries of the fibrous microstructures
Let v € C%(R) with |y| < Z and set

T(21) := cosy(x1)es + siny(xq)es. (1.1)

We consider the following two microstructures:

e First microstructure: we consider layers (27 orthogonal to the x;-axis of width €* where 0 < o < 1 in
order to obtain layers of small width but large with respect to the fiber radius er, r» > 0 (see Fig. 1).
In each layer we have a periodic lattice of fibers of period € with a constant orientation which depends
only on the layer. Each fiber makes an angle v(2]) with the xs-axis in the layer QF where 2™ is any
point of Q7.

We denote by x! the characteristic function of this fiber lattice.
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e Second microstructure: in the first microstructure, the fibers have a locally constant orientation. In
order to avoid this assumption, we consider rows orthogonal to the z;-axis of width of order €. In each
row we have a periodic lattice of fibers of radius er, r > 0 with a constant orientation which depends
only on the row (see Fig. 2). Each fiber makes an angle v(z1) with the x9-axis where z is any point of
the fiber.

We denote by xI! the characteristic function of this fiber lattice.

The difference between the two microstructures is that in the first one we consider layers and in the second one,
the layers are replaced by rows. So, in the second microstructure, the fiber orientation varies in a more realistic
way.

1.2.2. H-convergence results for the fibrous microstructures

Let Xﬁ be the Y3-periodic function defined on Y3 as the characteristic function of the cylinder
C:={z€Ys|a}+a3<r’}. (1.2)

Let a,b € ]0,4+o00[ and set
x
B.(z) =B (g) ., where B := (a(l — Xﬁ) + bxﬁ)l&

Let Beg be the constant H-limit of B, which is given (due to the symmetry) by the classical formula (see
e.g. [4])

v e R Bunt € —min{ [ BO)E+ Vo) €+ Vo) dy | o€ b3 | (1.3

Y3
We set

Al = (a(l —xh + bxé)[:g.
Then, one has the following homogenization result:

Theorem 1.5 (Briane [5,6]). The sequence AL H-converges to ALy which satisfies
Alg(x) = R(z1)" Beg R(1), (1.4)
where Beg is given by (1.3) and R(x1) is the orthogonal matriz defined by

1 0 0
R(z1):=| 0  cosy(x1) siny(xzy) |. (1.5)
0 —siny(z1) cosy(zy)

Remark 1.6. In [5,6], formula (1.4) was obtained using a locally periodic homogenization procedure. This is
due to the fact that, in this microstructure, the number of fiber rows in each layer is very large.

Fix z € R? and let x* be the periodic characteristic function of the set composed of cylinders of radius r
parallel to the xo-axis, the period of which is
{ Y (2) := {tier + taes + (ts + t1d(2))es | 0<t; <1, 1<i<3} 16)

where d(2) :=7(21)(cosy(21)22 + siny(z1)z23),

represented in Figure 3.

We set -
BZ(z) := B~ (E) ,  where B?®:= (a(l—x%)+bx?)Is.
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)

FI1GURE 1. Lattice of fibers of constant orientation by layer.

Let BZ; be the constant H-limit of BZ which is given (due to the symmetry) by the classical formula (see
e.g. [4])

V€€ R®, Bié:&=min {ﬁ( )Bz(y)(f + Vo)) - €+ Ve(y) dy ( p € H#(Y(Z))} : (L.7)
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FIGURE 2. Lattice of fibers of constant orientation by row.

We set
A= (a(l —x + bXél)Ig.

Then, one has the following homogenization result:
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FIGURE 3. Section of Y'(z) in the plane x;Ox3.

Theorem 1.7 (Briane [5-7]). The sequence ALl H-converges to the matriv-valued function Agf where, for any
fized x, ALL(z) is given by

Ali(x) = R(z1)" BigR(x1), (1.8)
with BZ; given by (1.7) and R(x1) the rotation matriz defined by (1.5).

Remark 1.8. Contrary to the first one, the second microstructure is no more locally periodic. Theorem 1.7 was
obtained by an approximation of the microstructure on each point z by a locally periodic material parametrized
by z. The fiber lattice which approximates the one of Figure 2 is periodic up to a meso scale €° with 0 < s < 1.
It can be regarded as the tangent lattice of the original one. Its construction is then linear and based on a
first-order Taylor expansion of the angle ~; it follows the appearance of the derivative of v in the period cell Y'(z).

2. H-MEASURES AND SMALL AMPLITUDE HOMOGENIZATION

2.1. Reviews on H-measures and small amplitude homogenization

The notion of H-measure has been developed independently by Gérard [13] and Tartar [22]. Here, we will
consider its application to explicit formulas in small amplitude homogenization introduced by Tartar. We recall
the definition of the H-measures, the expression of the H-measure of a periodic function and the small amplitude
homogenization formula in conduction. We refer to [22] for the proof of these results.

For all subset 2 of RY, we denote by C(Q) the space of continuous real-valued functions on Q and C.()
the subspace of C(Q) formed of functions with compact support. Furthermore, we denote by Cy(R) the space
of continuous complex-valued functions decreasing to 0 at infinity. We define the Fourier transform F on the
space of rapidly decreasing functions S(R™) by

VUES(RN), Fu(€) ::/ u(z.)efina:{ de.
RN

Theorem 2.1 (Tartar [22]. Existence of H-measures). Let U be a sequence converging weakly to 0 in L*>(RY;RP).
Then, up to a subsequence, there exists a family p,j, 1,5 € {1,...,p}, of complez-valued Radon measures on
RN x SN=1 such that for every ¢1, ¢2 € Co(RYN) and for all 1p € C(SN~1), we have

F6 U O F @0 @ <i> de. (2.1)

(b, P12 @ 1) = lim [3

RN
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The matriz-valued measure p of coefficients p, ; given by (2.1) is called the H-measure associated with the
extracted subsequence of U*.

Remark 2.2.

1. Taking into account oscillation directions, the H-measure quantifies the lack of compactness of weakly
converging sequences. This is due to the fact that, taking ¢) = 1 (see Cor. 1.4 of [22]), the sequence U7 U
weakly converges in the distribution sense to the measure v given by

v¢ S CO(RN)7 (Va ¢> = (Mi,ja¢ & 1)

2. In equality (2.1), the right hand-side only depends on the product ¢;¢, instead of the couple (¢1, ¢2)
(see [22] for details).
3. The H-measures are hermitian, i.e. [1; ; = p;; Vi, j € {1,...,p}.

Let u € Li#(YN), denote by (u) the mean value of u on Yy and set uc(z) := u (£). Then the sequence

ue — {u) converges to zero in L?(R") weak. A formula for the H-measure associated with the sequence u. — ()
was obtained in [22] (Ex. 2.1). The proof of this result can be easily generalized to the case of any period.
Let Y} be the parallelepiped of RY defined by

1
2 2

_1
- v¢=1,...,N},

Yyi= {ZA fi

where B’ := {f1,..., fn} is a basis of RY. Let P be the matrix of R" such that PB = B’, where B is the
canonical basis of RV. In the general case of a periodic function of period Y we have the following result:

Proposition 2.3. Let Q be a smooth bounded open set (with Lipschitz boundary) of RN . Let u € Li(Yf). We
set us(z) :=u (L) and we denote by p the H-measure associated with the sequence (ue — (u)). Then, we have

_ S 2 - N-1
W= Z |G|~ ® 5ﬁ in Qx SN
wEZ:}\{O}

where

1
Uy = —— u(y)e” ™ ¥dy  and Zf = { Wk | ke ZN} . (2.2)
\Y¢l Jy,

Now, we recall the small amplitude homogenization formula in conduction.
Let © be an open set of RY and Ay, B, C. € L>®(; RV *N). We assume:

(i) A is continuous and equi-coercive, i.e. 3 a > 0, V&€ € RN, Ag(z)¢-€ > alé]? ae. z €9,
(ii) B- — By L>(Q;RY*N) weaks,
(iii) C. — Cp L>®(Q; RN*N) weaks.

Let 41 be the H-measure associated with the sequence (B. — Bo); it = (ftij,k1)i,j kie{1,...,N}- We set

A(130) := Ag(x) + 6B.(x) + 6*C. ().

Theorem 2.4 (Tartar [22]). There exists a subsequence, still denoted by e, such that for all § > 0 small enough,

we have
H
Ac(+,0) — Aeg(-,0) on Q,
with
Acfi(2;8) = Ag(x) + 6Bo() + 6%(Co(x) — M(x)) + o(6?), (2.3)
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where the matriz-valued measure M, called H-correction, associated with the expansion of the effective matrix
has its coefficients given by

N
B P(2)Er&
Vo € C.(Q /Mw = ,;::1 <um],A e §>, (2.4)

foranyi,je{l,...,N}.
Notation 2.5. Let x be an H-measure and 1 € C(SNV~1), ¢ € C(Q), then we define a measure denoted by
$(E)p(x)v on Q by

Vo e Ce(Q),  (W(&)p(x)v, @) := (1, pp @ ).

If the measure ¥(£)p(x)r admits a density with respect to the Lebesgue measure, the density will also be
denoted by ¥(&)p(x)v.

Example 2.6. Consider A. satisfying the conditions of Theorem 2.4. By the previous notation, the H-
correction M is given by

ZAOQ“% Fhi i,je{l,....N}.
k=1

Furthermore, if Ay := aly, since the H-measure has its support included in RY x S¥~1 we obtain for any
i,7€{l,...,N}

N
Z a€ |§|2Mzkl] = Z €k§l)ﬂzk 1j-

k=1 k=1

2.2. Small amplitude homogenization in elasticity

We give a new small amplitude homogenization formula which extends to anisotropic elasticity the one of
Tartar [21]. Here, we only assume the isotropy of the zero-order term in the expansion of A..
Let © be an open set of RY and Ag, B., C. € L™ (Q; M‘}V) We assume:

(i) Ay is continuous and equi-coercive i.e. 3 & > 0, Ve € RN Ag(z)e:e > ale|? ae. z €,
(i) B. — By L*® (Q;M}) weakx,
(iii) C. — Cy L™ (Q;M;lv) weak.

Let 41 be the H-measure associated with the sequence (B: — Bo); it = (Hijut,mnpq)i,jk,l,m,n,pqe{l

A_(7;0) := Ag(x) + 0B.(2) + 0°C.(2). (2.5)

The new small amplitude formula is given by the following result:

Theorem 2.7. Assume that Ag is isotropic and denote by Ao and pgo the Lamé coefficients of Ao (which are
continuous functions on ). Then there exists a subsequence, still denoted by e, such that for all 6 > 0 small
enough, we have

H
A(,0) — Acg(,0) onQ,

with
Acqr(7;0) = Ao() + 6By () + 6°(Co(x) — M(x)) + 0(6?),
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where the fourth-order tensor wvalued measure M, called H-correction, associated with the expansion of the
effective tensor has its coefficients given by

N

Vo € Ce(9), / Mij(2)p(z) do = ) <Mqu,qul7 €m€p¢>
) "N i (2.6)
N .

+ A
- Z <Niqu,mnkla /;07(;\ §m§n£p£q¢> )
m,n,p,q=1 ,uo( Ho + 0)

for any i, j, k,le {l,...,N}.

Remark 2.8. In the case of an isotropic Hooke’s law A, with expansion of the type (2.5), the Lamé coeffi-
cients p° and A° of A, read as

1= po + 56 + p50%  and AT = Ao + A6 + A562,

where
w; — p L°°(Q) weak®™ and  A; — A\, L%(Q) weak*® fori=1,2.
Let v be the H-measure associated with the sequence (u§ — p1, A; — A1). We set (with Notation 2.5):

Q5 = §i§jun, bij = §i§jRe(V12) and Aijkl = €i€j€k§ll/117 i,j,kﬁ,l (S {1,...,N}.
We also note tr(raz) the measure defined on 2 by
V<Z> S CC(Q), <1}I‘(l/22)7 ¢> = (l/22, (Zﬁ [024] 1) .

Then formula (2.6) reads as, for all 4, j,k,l € {1,...,N},

1 4(po + o)
M = %(@kaiz + dipaji + 0j10ik + duajr) — 70 (2110 & o) Aijkl
1
———— (61 bi + 0;:b —— ;0 © , 2.7
2#04—)\0( ribij + 0ijbr) + WAL r(v22) (2.7)

which is the formula established in [21] and also in [1] for the periodic case. See Section 2.3.2 for the proof
of (2.7).

2.3. Proofs in the anisotropic case

2.3.1. Proof of Theorem 2.7

We follow the same procedure as Tartar [22]. Here, the difficulty comes from delicate algebraic computations
due to the anisotropy of A..

By Proposition 17 of [23], we have that there exists a subsequence, still denoted by e, such that, for any &
small enough, A.(-,0) H-converges to Acg(-, ), where Ag(+,0) is analytic in 4.

Remark 2.9. For any A € M}, and v € HY(Q; RY), we have

Ac(u) = AVu, where (vu)ij:g;? i,jef{l,...,N},

?

since A is symmetric. Thus, in Definition 1.3 we can replace e(u.) by Vu,.
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Let u € HY(RY), w € Q and ud be the solution of

—div(A.(z,8)Vul) = —div(Acg(z,6)Vu) in w,
ud € Hi (w; RY).

1073

As usual in H-convergence theory, it is enough to compute AcgVu in w to obtain A.g on €. Furthermore, by

definition of the H-convergence, A.gVu is obtained as the limit in L?(w;RY) weak of A Vu?.

Preliminary. By Definition 1.3 of the H-convergence, we have

u — u H'(w; RY) weak,
A (,0OVul — Aeg(.,0)Vu L*(w;RV*N) weak.
Let ¢ € C2°(Q) such that ¢ =1 on w, and define
E.(z,0) := V(pu®) and D.(z,0) := A.(z,8)E.(z,0).
We have

6k(E5)i7j = 81'(Ea)k,j in H_I(RN)
E. — Vu L2 (w; RVXN) weak,

for any 1 <1i,j,k < N. Moreover

div (D.) = div (AegVu) in w,
D, — AgVu L2 (w; RVXNY) weak.

(2.10)

The functions E. and D, are analytic in §. From (2.5), combined with (2.8) and considering the case § = 0, we

obtain the following asymptotic expansions
E.(z,8) = Vu(z) + §EX(z) + 62 E2(z) + 0(6?),
where EL, E2 — 0 in L?(; RV *N) weak, and

D.(z;6) = Ag(z)Vu(z) + 0 (Ao(2)EL(z) + B.Vu(z))
+ 6% (Ao(z)E2?(z) + B.(2)EL(z) + Cc(2)Vu(x)) + 0(6?).

Since A.g is analytic in 6, it admits an expansion of the type
Acg(z,0) = A*(2) + B*(2) + C*(2)0” + 0o(6?).

Then, if we denote by le)im the weak limit in L?(w; RY*Y), from (2.10) and (2.12) we obtain

—w

A*Vu = AyVu,
B*'Vu = lim (AoE! + B.Vu) = BoVu,

C*'Vu = ngglw (AgE? + B.E! + C.Vu) = ngljlw(BE —Bo)E! + CyVu,

since lim BoE! = lim AgE? = 0.
L?2—w L2—w

(2.11)

It remains to compute the weak limit of (B. — Bg)E.. In order to compute this limit we proceed in three

steps.
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1. In the first step, we compute the L?(w; RV *Y) weak limit of (B, — Bgo)E? in terms of the H-measure y’
associated with the tensor-valued function K. := (B. — By, E?) (K. has for coefficients (K. );jx, with
1<i,j<Nand1l<kIl<N-+1,see (2.18)).

2. In the second step, from Theorem 1.6 of [22], we express the sum Z u;qu,pq(NH)(NH) for m,n,p,q €

P.q
{1,..., N} in terms of the H-measure p associated with (B. — Bg) using three algebraic computations.

3. Combining the results of steps 1 and 2 we determine the L?(w; RY*Y) weak limit of (B. — Bo)E! in
terms of the H-measure 1 and we obtain the formula for Aqg.

First step. From (2.10), (2.12) and (2.15), we have
div (AgE! + (B. —=Bo)Vu) =0 in H '(w). (2.17)

In the sequel, we choose u such that Vu is continuous. Denote by K. := (B. — Bo, E?) the tensor-valued
function defined on w by

(Ba_BO)ijk‘l lflglajakalgNa
K. = 2.18
(Be)isni {(E;)ij ifk=1=N+1. (2.18)
Then
N
((B: — Bo) EEI)Z] = Z (K<) ijut (Ke)ki(N+1)(N+1)- (2.19)
k=1

We denote by p' the H-measure associated with K. (the coefficients of y/ are the measures u;jklmmm with
1 <i,5,mmn<Nandl<Eklpqg<N-+1). We have from (2.19), thanks to Corollary 1.4 of [22], for all

¢ € Ce(w), .

/RN ((Be —By) (x)Eel (93))” d(x) dx e <N;jkl,kl(N+1)(N+1)a¢ ® 1). (2.20)
k=1

Note that M;jkl,mnpq = Wijki,mnpq, for all 4,5, k,l,m,n,p,q € {1,..., N}. Therefore, to obtain the L?(w;RN*Y)
weak limit of (B. — Bg)E? in terms of the H-measure y, it is enough to express the right hand-side of (2.20)

g

in term of ,ugjkl’mnpq, with 4,7, k,l,m,n,p,q € {1,..., N}. This is the goal of the next step.

Second step. We express the right hand-side of (2.20) in terms of the H-measure p by using Theorem 1.6
(localisation principle) of [22] and algebraic computations. Since the coefficients (Ag)ijr, Opu; are continuous
in 2, by the localisation principle, (2.17) yields

N
Z gj ((Ao)ijkl (x)u;cl(N-‘,-l)(N—',-l),mnpq + akul(x):u‘;jkl,mnpq) =0 inwx SN?la

jik =1
forall p,g € {1,...,N +1} and i,m,n € {1,..., N}. The isotropy of Ay gives
(Ao)ijkt = Ao0ij0r + 110(0ikdj1 + 0i1dji),
which implies

N N N
lu’O(x) ( Z gjlu’{ij(NJrl)(NJrl),mnpq + Z gjﬂ;i(NJrl)(NJrl),mnpq) + Ao (1’) Z giugck(NJrl)(NJrl),mnpq
j=1 j=1 k=1

N
= - Z fjakul(z)uflijkl,mnpqa (22]-)
J,k,l=1
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forall p,ge {1,...,N+1} and i,m,n € {1,..., N}. In the same way, by (2.9) we obtain

gk:u‘fij(N+1)(N+1),mnpq - g’iu;cj(N+1)(N+1),mnpq onw x SN?I? (222)

forall 1 <i,j,k,m,n<Nand1<p,qg<N+1.
Now, in order to obtain
N
> M
Fijpq,pa(N+1)(N+1)

p,q=1
in terms of the H-measure p, we transform equality (2.21) twice by using (2.22). These computations are based
on the fact that the H-measures have their supports included in RV x S¥~1 and that equality (2.21) is satisfied
for all p,g € {1,...,N+ 1} and i,m,n € {1,...,N}.

First computation. By (2.22) and since the H-measure p/ has its support included in RY x SV~ we have

N N N
_ 2 _
Y Gy (V1) amnpg = D & (N1 (N1 mnpg = D Hpi(N+1)(N+1),mnpg
J,p=1 Jp=1 p=1
N N
Z Ep&iHE (N 1) (N+1),mnpg = Z Ep&ill]j(N+1)(N+1),mnpg>
J,p=1 J,p=1

forallg e {1,...,N+1} and i,m,n € {1,..., N}. Multiplying (2.21) by &, and summing over p € {1,..., N},
the previous two equalities yield

N N N
/‘0< D bl 1) g F Z“Zi(l\fﬂ)(!\fﬂ)mnm) 20 D Epli (N4 1) (V41 mnpg
=1 p=1 kp=1

N
- Z gjgpakul(m)ufijkl,mnpqa (223)

Jk,lp=1

forallge {1,...,N+1} and i,m,n € {1,...,N}. Choosing i = ¢ and summing on ¢, equality (2.23) gives

N N N
uo< Y Eoab v (V1) g T D N2q<N+1><N+1>,man> A0 D EabpHi(N 1) (V41 mnpg

J.p,q=1 p,q=1 k,p,q=1

N
= - Z fjgpakul(x):u‘;jkl,mnpq’

Jskslp,g=1
for all m,n € {1,..., N}. Since u;jkhmnpq = Wijki,mnpq, for all 4,5, k,1,m,n,p,q € {1,..., N}, we obtain

N

N
/ _ )\O + /’1/0 /
Z Hpg(N+1)(N+1),mnpq — — 100 Z §p€qujj(N+1)(N+1)7mnpq
pya=1 Jpa=1
1 N
- Z gjgpakul(x)ﬂqjkl,mnpq; (2.24)
Ho Jikslp,q=1
for all m,n € {1,...,N}. Now, in the previous equality, it remains to determine the first term of the right

hand-side in terms of the H-measure pu.
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Second computation. As in the previous computation, we have

Z &G&iti(N +1) (N+1),mnpg = Z:u‘;i(N—i—l)(N-i-l),mnpq

i,j=1 i=1
N
/ . /
Z &i€iklij(N+1)(N+1),mnpq = Z”jj(NH)(NH),mnpqv
7,j=1 J=1

for all m,n € {1,...,N} and p,q € {1,..., N + 1}. Multiplying equality (2.21) by & and summing on ¢, this
gives

N N N
2
D M+ (N +1ymnpg T D Hi(N 1) (N1 mipg | T A0 D E Mk 1) (V1) g
j=1 i=1 i k=1

Z glgﬂ akul szkl mnpq>

i,7,k,l=1
forall myn e {1,...,N} and p,q € {1,..., N 4+ 1}. Therefore
N
(210 + Xo) Z:ukk (N+1)(N+1),mnpg — Z &i&iOpui (@ ”wkl mnpq’
k=1 ik, l=1

forall m,n € {1,...,N} and p,q € {1,..., N + 1}. Multiplying the previous equality by £,{, and summing on
p and ¢, we obtain

N N
(2,&0 + )\0) Z §p§qu§€k(N+1)(N+1)mmpq = — Z gi&j&p&qakul(I)M;jkl,mnpq5 (2'25)
k,p,q=1 ,4,k,l,p,q=1

for all m,n € {1,...,N}.

Third computation. From equalities (2.24) and (2.25) we deduce

N N
Ho + Ao
D HpaN+(N+1) mpg = 210 + 2o Y EEiEE (@) ijitmnpg
p,q=1 Hol=ko 0/ i 4k lp,g=1
1 N
N Z &i&pOkui () Hgjktmnpq (2.26)
Ho Jiklp,q=1
for all m,n € {1,..., N}. Since the H-measures are hermitian (see Rem. 2.2), equality (2.26) can be written
N N
Ho + Ao
Z M;nnpq,pq(NJrl)(NJrl) = 7(2 o) Z §i&i&p€q Ok (T) mnpg.ijki
p,q=1 Hol=ko 0/ 44k lp,g=1
1 N
- % Z &5€p Okt () thmnpa,gjkt

Jikslpyg=1
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for all m,n € {1,..., N}. A suitable permutation of indices gives
N N
/ Mo + )‘0
D HipgpaN+(N+D) = o O EmEnéplaOktittijpgmnki
o f10(210 + Ao) bl mrpig=1
1 N
- Z gmgpakulﬂiqu,qulv (2.27)

Ho k,l,m,p,q=1
for alli,j € {1,...,N}.
Third step. From (2.20) and (2.27) we deduce

al to + A
0 + Ao
/RN ((Be - BO) (x)E; (I))” ¢($) dx ej(; g m%:p - <Miqu,mnkl7 MO(QIJ/O i )\O)Emfnﬁpfq@kulq§>
N
Opwi @
- Z <Niqu,qula§m§p :
k,l,m,p,q=1 Ho

Moreover, by (2.16) we have for all ¢ € C.(w),

N

. + Ao
((Co-CYVu),.0) = 3 <uiqu,mnm, Lsmsnfpfqaku@
il _ o210 + Ao)
,JILmon,p,g=1
b (2.28)
0w @
- Z Miqu,qulvgmgp :
k,l,m,p,q=1 Ho

Fix k,l € {1,...,N}. Let A be the matrix of coefficients defined by A\;; = 0if i # k or j # I, and Ay = 1.
We choose u such that Vu = A on supp(¢). Then, (2.28) reads

N
. _ _ ; Mot Ao
<(C Co)ijkl ) ¢> - N nz: :1 </Mqu,mnkla €m€n§p€q MO(Q,UO + )\0) ¢>
A,]\}qu (z)
+ Z <:uiqu,qul7 _€m€p> .
— Ho
m,p,q=1

Finally, C* = Cy — M, where M has its coefficients given by

N

Ho + Ao >
Mk, @) = — ij ) YR
( gkl ¢> N 7%:(1:1 <,U jpg.mnkl €m€n§p€q MO(Q,UO + )\0)
! ; (2.29)
+ Z <,Ufiqu,qul7 gmgp_> )
S — Ho
for all 4,4,k 1 € {1,...,N} and all ¢ € C.(Q2). O

2.3.2. Proof of formula (2.7)

To prove formula (2.7), we first note that the coefficients of B, — By are given by

(Be — Bo)ijpg = (11 — H1)(8ipdiq + 0igljp) + (AT — A1)0ij0pq, (2.30)
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for all i,7,p,q € {1,...,N}. Then, if 1 denotes the H-measure associated with the sequence (B. — Bg) and v
the H-measure associated with the sequence (u§ — 1, A — A1), we have

Mijpgmnkl = (5ip5jq5mk5nl + 5iq5jp5mk5nl + 5ip5jq5ml5nk + 5iq5jp5ml5nk)l/11
+ (5ij6pq6mn5kl)y22 + (5ip6jq6mn5kl + 6iq5jp5mn6kl)l/12 (23]—)
+ (5mk5n15ij6pq + 5ml(5nk5ijépq)l/217

for all 4,7, k,1,m,n,p,q € {1,..., N}. Indeed, from (2.1) we have for any ¢1, ¢ € Co(Q), ¥ € C(SN 1)

F((B: = Bo)ijpg®1) F (Bz — Bo)mnkih2) (é_|> dg,

<lu’iqu77774nkl; ¢)152 ® Tl)> = hn’(l)
e—0 JpN

for all i, 4, k,l,m,n,p,q € {1,..., N}, which by (2.30) gives, for example, for the last term

e—0 JrN |€
= bbb iy [ (05 = 200 FOG—Aaal (£ ) ae
= 8ij0pgOmn ki (V22, 102 @ V) .

Moreover, using the change of variable £ = —&, we also have
(g, onda) = lim [ (5 = p)on) (©F (05 — 2] ©) St
— tiny [ TR - man ©F (5 - A)éa) (€) 2dag
€0 Jpw €]

= (&& 12, ¢162),
for all i, € {1,..., N}. Since the H-measures are hermitian, we deduce that, for all 4,j € {1,..., N},
&i&rio = &iRe(vi2) = &i&jrmn.
Now from (2.31) we obtain, for all 4, j,k,l € {1,...,N},

N N
Z gm&pﬂiqu,qul = Z (5ip5jq5qk5ml + 5iq5jp5qk5ml + 5ip5jq5ql5mk + 5iq5jp5ql5mk)§m§pV11

m,p,qg=1 m,p,qg=1

N
+ Z (5ip5jq5qm5kl + 5iq5jp5qm5kl + 5qk5ml5ij5pq + 5ql5mk5ij5pq)§m€pRe(V12)

m,p,q=1
N

+ Z (5ij5pq5qm5kl)§m§py22

m,p,q=1

= (&6, + E&0i + Eiilit + E5E100) V11 + 0ij0ri|€)Pvan + 2 (Om&i&) + 0ij€k&)Re(via),
(2.32)

and similarly

N
Z Em&n&patiijpgmnkl = 4 &&iEk&v11 + 0550k € vaz + 2 (S |€1P&&5 + 6i51€12€n&) Re(v12). (2.33)

m,n,p,q=1
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Since the H-measures have their supports included in RN x SV~! we obtain

1€12¢:€Re(v12) = &€ Re(vi2)  and  (|€]2va2, ¢) = (|€[* 12, @) = (12, 0 ® 1), Vo € C.(Q).

Then, using (2.32) and (2.33), formula (2.6) leads us to (2.7). O

3. SIMPLIFIED MODELS IN CONDUCTION

3.1. Statement of the results

In the sequel, 6 := 7r2.

Theorem 3.1. We set

AL = (a(l = x0) +0xl) I, (3.1)
where b := a + ¢§ with 6 > 0 small enough, a > 0 and ¢ € R. Then AL H-converges to Aéﬁ which satisfies
I (b—a)? (b—a)? 2
Agg = [ a(1 —0) + b0 — BT 0(1—0) ) Is+ 7 01 —0)(T @)+ 0(6), (3.2)

where T is given by (1.1).

Remark 3.2. Formula (3.2) shows the validity of the model ALz = al3 + 3(7 @ 7) (at the second order) under
the small amplitude assumption. Thus this model validates rigorously the biomechanics one in the conduction
case.

For the second model, the computations cannot be as much simplified as for the first model. To compare
this model with model (0.3), we compute the orthogonal projection of the effective matrix AL on the space of
the matrices of the form (0.3), i.e. the space {als + B(T ® 7) | a, 5 € R}.

Notation 3.3. Let N € N and let E be a linear subspace of RV*Y  we denote by E+ the orthogonal subspace
of E, i.e.
E+t:={AeRV*N|A:B=0, VBeE}.

For any matrix A € RV*N  there is a unique orthogonal decomposition
A=A ® Ay, with A; € E and 4> € E*.

For the second small amplitude model we have the following result:
Theorem 3.4. We set

A= (a(t = x) + o) I, (3:3)
where b := a + ¢§ with 6 > 0 small enough, a > 0 and ¢ € R. Then A H-converges to Aéflf which admits the
orthogonal decomposition

IT I (b—a)? 2
Aeff(x) = Aeff(x) S a DQH(I) + 0(6 )5
where Deog 1S a matriz-valued function satisfying
d(z) := 7' (x1)(cosy(x1)z2 + siny(z1)x3) = 0 = Deg(z) = 0. (3.4)

Remark 3.5.

1. The coefficients of the matrix-valued function De.g can be given but are not explicit.

2. If 4'(z1) = 0 then d(x) = 0. In some sense, the first model corresponds to the second one when the
fiber orientation is locally constant.

3. Due to the extra term Deg (), the second model does not coincide with the biomechanics one if d(x) # 0.
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3.2. Proof of the results

The proofs of Theorems 3.1 and 3.4 are based on formulas (1.4) and (1.8). Since the two proofs are similar
we only give the one of Theorem 3.1.

Proof of Theorem 3.1. We use the notations of Section 1.2.2. We have

T

B.(z) = (a +ec Xs(z)é) Iy with  ye(z) ==& (E) . (3.5)

Since . converges to 6 weaklyx in L°°(2), from Theorem 2.4 we deduce

Lot art s o),

Bug = (a +(b— a)9)13 -
where, by Notation 2.5,

3
(M")ij = > &bupanyy .5 € {1,2,3},
k=1
and p is the H-measure associated with the sequence (6 — x.)I3. If we denote by v the H-measure associated
with the sequence (6 — x.), we obtain by (2.1) for all ¢1, ¢ € C.(Q) and ¢ € C(S?)

(piags 613, 0 0) =l [ F (0~ x)oon) F O~ x:Igo)e (é) a
e—0 Jpr3 |§|

= sty i, | (0~ x o0 FTO o () ae
= (6iklijv, P16y @),
for all 4,5,k,l =1,2,3. Then, for all 7,5, k,l =1,2,3,
Wik, = Oik0V,

which implies

(M");; = &i&v. (3.6)
Finally, using the periodicity of Xﬁ, we deduce from Proposition 2.3
I o2 Kk , " (N —2imak
(M= > %K) TR with  X(k) := g Xé (e dz, (3.7)
3

kez3\{0}
for any 4,7 = 1,2,3. The characteristic function Xﬁ is independent of the x5 variable, so
X(k1, ko, k3) =0 if ko #£0,

whence
(MT)g2 = (M")12 = (M")g1 = (M")32 = (M")23 = 0. (3.8)
Furthermore,
)A((kla 0,k3) = )A((k'?n 0, kl) = X(_klv 0, k3)7
which gives
(M")13 = (MT)3;, = 0.
We also have
(M")11 = (M')33,
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since x(k1,0,ks) = x(ks,0,k1). Then, we obtain

(M), loP) = <3 ()11 + (M )an + (M), |¢|2>

2
— (5@ +&+emlol ) =3 (wloP w1)
(O o) =5 00-0) [ o) d.
Thus, (M')y1 = (M")s3 9(1; 9 ana
Bet = ((1 —0)a+ 9b)13 _ G ;a“)Q 0(1 — 0)(I5 — es ® e3) + 0(52). (3.9)
From (1.4) and (3.9), we have
Al (z) = (a(l —0) + be) JAU ;a“)Q (1 — 0) (13 —R(a)T(e2 ® eg)R(x1)> +0(5?).

Moreover R(x1)7 (e2 ® e2)R(z1) = R(x1)Tes @ R(x1)Te2 = 7(21) ® 7(21), which gives the result. O

4. SIMPLIFIED MODELS IN ELASTICITY

4.1. Statement of the results
4.1.1. Models I and II

For the first small amplitude model we have the following result:

Theorem 4.1. We set
Al:=(1—x)A' +x{A? (4.1)
where A, A% are two homogeneous (i.e. constant) and isotropic fourth order tensor. Let v, be the H-measure
associated with (9 — Xg) and A1, p1 be the Lamé coefficients of A'. We assume the Lamé coefficients jy and
Xo of A? read as
fo = p1 +0p  and Ay = A1+ 0\, (4.2)
where § > 0 is small enough and p, N € R. Then AL H-converges to Agﬂ which is given, for all e € R3*3, by

Alg ()e = Ale+6(A% — Ale)

() &) + er i) ~ £ (etr @ 7) + 73 er)

242 20\ + A2
—8%0(1—0)| 1 e+ 2= 1
( ) 1 2u1 + M

+ 0°N1(z)e + 0(6%), (4.3)
where T := 7(x1) (given by (1.1)) and N (x) is the fourth order tensor whose coefficients are

4 A 2
(NT(2))iji = ﬁ% §i&i&k&iva (4.4)

for alli,j, k,l =1,2,3 (see Notation 2.5 for the meaning of the last term).
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Remark 4.2.

1. The H-measure v, is parametrized by x since there is no periodicity assumption.

2. In order to compare the expression of Agff with (0.2), one can assume furthermore that p is small
enough. This assumption allows us to remove the term N’ which depends on the H-measure v,. Then
the second order term of expansion (4.3) reads as, for any p small enough,

20 + \?
21 + M

Ap

—60(1—140 —
( ) 21 + M

tr(e)ls + 6(1 —0) [tr(e)(r @ 7) + (er - 7)I3| + o(1?).

Therefore, because of the extra term in (er - 7)I3, formula (4.3) does not coincide (under the small
amplitude assumption) with the biomechanics model, contrary to the conduction case.

3. In fact, we can only conclude that the linear elasticity framework combined with the small amplitude
assumption does not agree with the empirical model. An alternative approach would be to start from
nonlinear (hyperelastic) behaviour laws (see Holzapfel [14], Ogden [16], Spencer [19]) and then to lin-
earize around the identity. This could allow us to preserve the extra anisotropic terms like (et - 7)I3
and e(T ® T7) + T ® e, which are rejected in the previous analysis. However, this more sophisticated
approach combining hyperelasticity and non-periodic homogenization widely goes out of the setting of
our present study, and would thus need a completely new work.

For the second small amplitude model we have the following result:
Theorem 4.3. We set
ALl = (1 - I)A! 4 \!TA2, (4.5)
where A, A? are two homogeneous and isotropic fourth order tensor. Let vl be the H-measure associated with
the sequence (0 — x11) and A1, p1 be the Lamé coefficients of Al. We assume that the Lamé coefficients jz and
X2 of A? read as
fo = p1 + 0 and Ay = A1+ 0\, (4.6)
where § > 0 is small enough and pu, A € R. Then, ALl H-converges to AL which is given, for all e € R2*3, by

All (z)e = Adg(z)e + 6% (N (2)e — N'(z)e + P(x)e) + 0(5?), (4.7)
where N (z) is given by (4.4) and N (z), P(z) are the fourth order tensor whose coefficients are

4 A1) p?
(N (@))igns = %% &, (4.8)

and
(P(x))ijm = Z—j (5ik(Deff($))jz + 0it(Degt () ji + 0k (Der () )1 + 5jl(Deff($))ik>
2\

. (5kl(Deff($))ij + 5ij(Deff(x))kl), (4.9)

for alli,j, k,1 =1,2,3, with Deg(x) the matriz-valued function given by (3.4).

Remark 4.4. The second order term of the expansion (4.7) reads, for any u small enough,

2u\ + A2

—61-9) 21 + M

tr(e) Is +6(1 — 0) 2/“)\7_‘:)\1 (tr(e)(T ®7T)+ (er- T)I3)

2\

S (tr(e)DeH($) + (Dogt () : e)13) +o(p?).
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Thus, from Remark 4.2, the difference between the two models at the second order is given for any p small

enough by
2\ . i
m (tl‘(e)Deff(x) + (Degi () : 6)[3) + o(u?).

In particular, the two models coincide when the fiber orientation is locally constant.

4.1.2. Model II11

Since models I and I1 do not valid the biomechanics one in linearized elasticity, we introduced a new model.
From [5,6], we know that the first model in conduction locally corresponds to the periodic distribution of fibers
of constant orientation. This can be easily extended to the elasticity case. Then we are led to a periodic
microstructure with fibers of constant orientation 7. As in the previous models, 7 depends on z; but we omit
this dependence. Then for this third model we focus on the anisotropy rather than on the non-periodicity.

We fix 2z € R3. Set 7 := 7(z1) and R := R(2;) defined by (1.5). Let Xﬁ be the Y3-periodic function defined
in Y3 as the characteristic function of the cylinder C' given by (1.2). We have the following result:

Theorem 4.5. We set

. - Rx
AU = (1 —xD)AY + xTA?  with  xI(z) :== X2 (?) , (4.10)

where A1, A% € M*(a, 3;9Q). We assume Al is homogeneous and isotropic of Lamé coefficients py, A1 and A>
is given, for all e € R3*3 by
A?e=A'e+d(er-T)(T@7T), (4.11)

where § > 0 is small enough. Then, AT H-converges to AL which is given, for all e € R3*3, by

H1+ Ay

Alife= Aleto(A%e Al =, & TEIEE

(et -T)(T®T)+ 0(52), (4.12)

with Ky, given by (see Notation 2.5)

3

Ryr = Z TanTqufmgngpngTa (413)

m,n,p,q=1

where V7 is the H-measure associated with the sequence (8 — xT).

Remark 4.6.

1. Formula (4.12) shows the validity of the model Atr(e) + 2ue + & (eT - 7)(7 ® 7) (at the second order)
under the small amplitude assumption.

2. From (4.13) and Proposition 2.3, we have that x, r is constant. Moreover, by Notation 2.5, equal-
ity (4.13) reads as, for all ¢ € C.(Q) such that fﬂ odx =1,

3
Fur = D (Tt ) (V716 © Embabnl):

m,n,p,q=1

Using Proposition 2.3 the constant x, » may be written as a series. For example, in the case 7 = €3, a
simple computation leads to

4
. . . 1 ik
Ryes = E |X2(k)|2 2 with X2(k) - X? (y)e ? kydya
kez3\{0} ‘

which cannot be easily simplified.
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In the same way, one can obtain an effective matrix with a zero H-correction.

Proposition 4.7. Consider AT defined by (4.10) with A* homogeneous and isotropic and A? given, for all
e € R332 by
A?e = Ale + dtr(e)(r @ 7), (4.14)

where 6 > 0 is small enough. Then, Ag” H -converges to Aéflfl which is given, for all e € R§X3, by

Alle = Ale+0(A% — Ale) + 0(5?). (4.15)

4.2. Proof of the results

Since the proofs of Theorems 4.1 and 4.3 are based on the same arguments, we only give the proof of Theo-
rem 4.1. The proof of Theorem 4.5 is similar but with some specifics which are clarified.

Proof of Theorem 4.1. The formula (1.4) obtained for the first model is no more valid. Indeed, in elasticity the
isotropy does not allow us to simplify the change of variable as in (1.4). So to obtain an expansion of Alg , we
will use (3.2) and Theorem 2.7.

In the conduction case, Al is given by

Al = al3 + e5x!1s.

From the definition of x! and by application of Lemma 2.6 of [5] we obtain that y! converges weakly* in L>°()
to § = mr2. Thus the sequence (6 — x!) defines an H-measure v,. Then, from Theorem 2.4 we deduce

Alg(x) = al3 + ¢ 6013 — M (2)6? + o(6?),
where, for all 4,5 = 1,2, 3,
I c?
(M7)ij(x) = — &&jve.

On the other hand, by Theorem 3.1 we have

2010

Alg = aly + ¢ 5015 — §° < % (Ig - T®T> + 0(8%).
a

Therefore, for all 7,5 = 1, 2, 3,

§iljve = w(éij — 7i(2)7; (x)). (4.16)

Recall that by Notation 2.5, (4.16) reads, for all ¢,j = 1,2, 3,
W€ @), mooag) =10 [ (5 - no)m() s
In linearized elasticity, we have by (4.1) and (4.2)
Al(@) = M(ls @ Is) + 2T +8 X (2) (AIs @ L) + 201
Then, by Theorem 2.7, AL H-converges to ALg which reads as

Alg (2) = M(I3 @ I3) + 21+ 6 9()\(]3 ®I3) + 2,uI> — M (2) + 0(8?), (4.17)
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where by (2.7) the coefficients of M/ (z) are given by

2
(M (x))iju = % (0i&i&ve + 6uli&kva + 0jk&iive + 08ikkVa)

2\ A2
— (6p&&ive + 6 - 01 —-60) ——
+2ﬂ1+)\1 (Ok1&i&ive + Orér&iva) + 6( ) SIS

4(/.11 + )\1) ,u2
——~ — && Vg, 4.18
201 + A i ggjfkgl ( )

050k

for all 4, j,k,l = 1,2,3. We use (4.16) to determine explicitly the first terms of M!(z). From (4.16) and (4.18)
we deduce that, for all ¢,5 = 1,2, 3,

2 20\ + A2

2

0(1 —0) u?
R (2(er)i7j + 2(67’)]'7'1')
—0(1-0) ﬁ (tr(e)rﬂj + (eT - T)5ij) — (NT(2)e)s;,

where N7 (z) is given by (4.4). This implies

212
M (z)e= 6(1—0) =— e+6(1 -0 tr(e) I
(@e = 001—0) L= e 01— 0) T2 wo,
2
s
—60(1—6) o (e(r®r) +T®67‘)
A
—0(1-10) 2/1171& (tr(e)(r ®7)+ (er - T)Ig) — N (z)e. (4.19)
Then (4.17) and (4.19) yield the desired result. O

Remark 4.8. The last term is more complicated. For example, consider the simpler case of a periodic mi-
crostructure. Let Xﬁ be the Ys-periodic function defined on Y3 as the characteristic function of the cylinder C
defined by (1.2) and set x.(z) := Xﬁ (%£). Let v be the H-measure associated with (6§ — x.), then we obtain by

Proposition 2.3, for all 4,5, k, 1 = 1,2, 3,

~ TN NEN - —2irz-n
&Gy = Z I (n)[? Wkl, where x(n) ::/ Xﬁ(z)e 2 dz.
nezs\{0} v

Thus the simplifications made in the conduction case on the terms &;¢;v cannot be performed here.

Proof of Theorem 4.5. First note that
3

> mné&y” =0, (4.20)

k=1
which is a straightforward consequence of (4.16). As in the proof of Theorem 4.3, by (4.10) and (4.11) combined
with Theorem 2.7, we obtain that AZ/! H-converges to the constant tensor-valued function Agflfl which satisfies

AT — AY 49 (A2 — AY) — 82MIHT 4 0(6?),
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where by (2.6) and Notation 2.5 the coefficients of M/! are given by

1 3
117 T
igkl — E : Emgp:u‘iqu,qul
H m,p,q=1
p1+ A

3
m Z gmgn&p&q:u’szq,mnkh

m,n,p,q=1

foralli,j,k,1=1,2,3, with 7 the H-measure associated with the sequence (0 — xI)(7®7®7®7). From (4.11)
and (2.1) we obtain, for all ¢, j, k,{,m,n,p,qg=1,2,3,

Hijpg.mnkl = TiTiTpTq TmTnTkTL V', (4.21)

which gives
TR
iTjTkTI
MZI;IkIl =175 Z TngngmngT
H1 _
m,p,q=1
3
(1 + A)TiTi TR >y .
TanTqugmgngpng .

@A)

Since |7| = 1, we deduce from (4.20) that
3 3
Z TqQTmegmngT = Z TpTm&m&pr” =0,
m,p,q=1 m,p=1
which gives
+ A1)
M = e ('uli ;
igkl 15Tk Tl u1(2ul+>\1) v, T

for all 4,5, k,1 = 1,2,3, where &, ; is given by (4.13). O
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