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SMALL AMPLITUDE HOMOGENIZATION APPLIED TO MODELS
OF NON-PERIODIC FIBROUS MATERIALS

David Manceau1

Abstract. In this paper, we compare a biomechanics empirical model of the heart fibrous structure
to two models obtained by a non-periodic homogenization process. To this end, the two homogenized
models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction
and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic
elastic materials is also derived and allows us to obtain a third simplified model.
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Introduction

The left ventricle of the heart is composed of oriented fibers. Anatomic studies show that the cardiac fibers
have an orientation that varies continuously from an angle γ0 at the endocardium to −γ0 at the epicardium.
Several biomechanics empirical models were derived (see e.g. Arts [3], Chadwick [10], Feit [11], Peskin [17] and
Streeter [20]) considering the fibers as an oriented elastic material embedded in a homogeneous medium. In
particular, Peskin [17] deduced this fiber architecture of the heart from the starting assumption that the stress
matrix reads as

σ := σm + σf , with σf := T (ef)(τ ⊗ τ), (0.1)

where σm is the isotropic medium stress matrix, σf is the stress matrix in the fiber direction, τ is the fiber
direction, T (ef ) the fiber tension and ef the strain coefficients in the fiber direction. Then, in linear elasticity
this general biomechanics model leads us to a stress matrix of the type

σ := λtr(e)I3 + 2µe+ T (ef)(τ ⊗ τ), (0.2)

where λ, µ are the Lamé coefficients of the medium and e is the strain matrix.
In conduction, the strain matrix e of (0.2) is replaced by the electric field ∇u, and the stress matrix σ by

the electrical current A∇u, where A is the conductivity matrix of the composite material. Then, the analogue
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Cedex, France. dmanceau@insa-rennes.fr

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.esaim-m2an.org or http://dx.doi.org/10.1051/m2an:2007050

http://www.edpsciences.org
http://www.esaim-m2an.org
http://dx.doi.org/10.1051/m2an:2007050


1062 D. MANCEAU

of (0.2) in conduction leads us to the conductivity matrix

A := αI3 + β(τ ⊗ τ). (0.3)

This model is based on the two following assumptions: the interaction between the fibers and the medium is
neglected, and the fibers are dimensionless.

To avoid these defaults, Briane [5, 6] proposed two new models which are rigorously deduced from the
homogenization of non-periodic fibrous microstructures. In the two models, the fibers are small radius cylinders
periodically distributed in layers. Moreover, the fiber orientation is constant in each layer. In the first model
(Sect. 1.2.1, Fig. 1), the layer width tends to zero but is large with respect to the fiber radius. In the second
one (Sect. 1.2.1, Fig. 2), layers are replaced by rows whose width is of the same order as the fiber radius. So,
the fiber orientation varies in a more realistic way in this second model. In both cases, the homogenization
formula is far from being explicit since one needs to solve an auxiliary problem which is parametrized at each
point of the domain (see Thm. 1.7). Therefore, it seems difficult to compare directly these models with the
biomechanics one without additional hypothesis. Let us mention that another homogenization approach of the
modeling of the myocardium was performed by Caillerie et al. in [8, 9]. Their approach differs from Briane’s
one since they consider a large displacement framework and use a discrete homogenization process.

In this paper, our aim is to derive simplified homogenized models assuming small amplitude between the
physical characteristics of the medium and the fibers. The small amplitude (or low contrast) homogenization
theory was developed by Tartar [21,22] and, in particular, was applied by Allaire [1] and Allaire and Gutiérrez [2]
in another context. First of all, we prove a new expansion formula (see Thm. 2.7) which extends to the anisotropic
elasticity case the small amplitude homogenization formula obtained by Tartar [21] in the isotropic case. Then,
we propose two models (I and II) in conduction, which differ from each other by their geometry, and three
in elasticity (I, II and III). These models simplify the homogenized ones of [5, 6], taking into account the
small amplitude assumption. Our approach allows us to validate or to refute the biomechanics heuristic model.
Moreover, in some particular cases (model I in conduction and model III in elasticity) we obtain simple models
of reinforcement by fibers of varying orientation. We only consider the linear case, both in conduction and
in elasticity, although the nonlinear case seems more relevant for applications. Indeed, the biomechanics of
the heart involves a large deformation approach, but this goes out of the present study (see the third point of
Rem. 4.2). We restrict ourselves to a linear framework in order to focus on the non-periodic homogenization
setting combined with the small amplitude assumption.

The three models are described in the sequel, where the parameter δ > 0 measures the low contrast between
the fiber characteristics and the medium ones:

• In isotropic conduction, model I in small amplitude gives (see Thm. 3.1) the following effective conduc-
tivity

AI
eff = αI3 + β(τ ⊗ τ) + o(δ2),

where τ is the fiber direction and α, β are explicit constants depending on δ. Therefore, the biomechanics
model coincides with this first homogenized model under the small amplitude assumption (neglecting
the terms of order greater than 2).

• Model II (see Thm. 3.4) leads us to the following different homogenized conductivity

AII
eff = AI

eff ⊕Deff + o(δ2).

The extra matrix Deff is zero where the fiber angle is constant. It is remarkable that the effective
conductivity AI

eff of the first model is equal to the orthogonal projection of AII
eff in the matrix space

spanned by I3 and (τ ⊗ τ).
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• In linear elasticity, model I gives (see Thm. 4.1) the following effective stress matrix

σI
eff = A1e+ c1(A2e− A1e) +

[
A3e+ c2tr(e)(τ ⊗ τ) + c3(eτ · τ)I3 + c4

(
e(τ ⊗ τ) + τ ⊗ eτ

)]
+ δ2NIe+ o(δ2),

where A1, A2 are, respectively, the Hooke’s laws of the medium and of the fibers, ci are constants,
A3, NI are fourth order tensors and A3 is isotropic. Furthermore, models I and II agree where the
fiber angle is constant (see Thm. 4.3). Therefore, the biomechanics model does not coincide with the
homogenized ones even under the small amplitude assumption.

• Due to the complexity of models I and II in elasticity we consider model III in which the fiber tensor A2

is deduced from the isotropic medium tensor A1 by a small anisotropic perturbation acting only in the
fiber direction in the spirit of the biomechanics law (0.1), namely

A2e := A1e+ δ(eτ · τ)(τ ⊗ τ), with A1e := λ1tr(e) + 2µ1e.

Thanks to the anisotropic small amplitude formula of Theorem 2.7, we obtain (see Thm. 4.5) the
following expansion

σIII
eff = A1e+ c (A2e− A1e) − κν,τ δ

2 µ1 + λ1

µ1(2µ1 + λ1)
(eτ · τ)(τ ⊗ τ) + o(δ2),

where c and κν,τ are constants. Therefore, this model rigorously validates the biomechanics one at the
second order, and provides a simple effective tensor.

The paper is organized as follows. In Section 1, we recall the notion of H-convergence and Briane homog-
enization results for the fibrous microstructures. In Section 2, we introduce the notion of H-measure and the
small amplitude homogenization procedure due to Tartar. We conclude this section by a new small amplitude
homogenization formula in anisotropic elasticity (Thm. 2.7). Section 3 is devoted to simplified models obtained
in conduction under the small amplitude assumption. In Section 4 we derive the simplified models in linearized
elasticity.

Along the paper, we will use the following basic notations:

Notations

• N ∈ N, N := 2 or 3 in the Sections 3 and 4, N ≥ 1 in Sections 1 and 2.3.
• YN is the cube (− 1

2 ,
1
2 )N of R

N , N ≥ 2.
• For any subset E of R

N , |E| denotes the Lebesgue measure of E.
• B := {e1, . . . , eN} is the canonical basis of R

N .
• If x ∈ R

N , we denote by xi its coordinates: x =
∑N

i=1 xiei.

• For x, y ∈ R
N , x · y :=

∑N
i=1 xiyi.

• We provide R
N×N with the scalar product “:” defined by A : B := tr(ATB).

• For a parallelepiped Z of R
N , H1

#(Z) (resp. L2
#(Z)) denotes the space of the Z-periodic functions which

belong to H1
loc(R

N ) (resp. which belong to L2
loc(R

N )).
• For f ∈ L2

#(Z), 〈f〉 := 1
|Z|

∫
Z
f(x) dx denotes the mean value.
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1. Reviews of homogenization results

1.1. A few recalls of H-convergence

1.1.1. H-convergence in conduction

We recall the definition and the “compactness theorem” of the H-convergence theory for second-order elliptic
scalar equations introduced by Murat and Tartar [15] in the general case and by Spagnolo [18] (under the name
of G-convergence) in the symmetric case.

Definition 1.1 (Murat and Tartar [15]). Let Ω be a bounded open set of R
N .

(i) The space M(α, β; Ω) is the set of matrix-valued functions A : x �→ A(x) defined on Ω such that

∀ξ ∈ R
N , A(x)ξ · ξ ≥ α|ξ|2 and A−1(x)ξ · ξ ≥ β−1|ξ|2 a.e. x ∈ Ω.

(ii) A sequence Aε of M(α, β; Ω) is said to H-converge to Aeff if Aeff ∈ M(α, β; Ω) and if for any open set
ω � Ω, f ∈ H−1(ω), the solution uε of

{
−div(Aε∇uε) = f in ω
uε ∈ H1

0 (ω),

satisfies the weak convergences
{

uε −⇀ u0 H1(Ω) weak
Aε∇uε −⇀ Aeff∇u0 L2(Ω; RN ) weak,

where u0 is the solution of {
−div(Aeff∇u0) = f in ω,
u0 ∈ H1

0 (ω).

The H-convergence of Aε to Aeff is denoted by Aε

H−⇀ Aeff .

The most important result of the H-convergence is the following “compactness theorem” due to Murat and
Tartar:

Theorem 1.2 (Murat and Tartar [15]). If Aε is a sequence of M(α, β; Ω) then there exists a subsequence, still

denoted by ε, and Aeff ∈ M(α, β; Ω) such that Aε

H−⇀ Aeff .

1.1.2. H-convergence in linearized elasticity

We recall some basic definitions about elasticity and the definition of theH-convergence in linearized elasticity
(see e.g. [1, 12] for a more complete presentation).

Let R
N×N
s be the subset of R

N×N of symmetric matrices and M4
N be the set of symmetric fourth order

tensors, i.e.
M4

N := {A := (Aijkl)1≤i,j,k,l≤N | Aijkl = Aklij = Ajikl = Aijlk}.
For u ∈ H1(Ω; RN ), we denote by e(u) the strain matrix whose coefficients eij(u) are given by

eij(u) =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
·

Definition 1.3. Let Ω be a bounded open set of R
N .



NON-PERIODIC SMALL AMPLITUDE HOMOGENIZATION 1065

(i) We define the space M4(α, β; Ω) as the set of symmetric fourth order tensor valued functions A : x→
A(x) defined from Ω to M4

N such that

∀e ∈ R
N×N
s , A(x)e : e ≥ α|e|2 and A(x)−1e : e ≥ β−1|e|2 a.e. x ∈ Ω.

(ii) A sequence Aε of M4(α, β; Ω) is said to H-converge to Aeff if Aeff ∈ M4(α, β; Ω) and if for any open
set ω � Ω, f ∈ H−1(ω; RN ), the solution uε of the Dirichlet problem

{
−div (Aεe(uε)) = f in ω

uε ∈ H1
0 (ω; RN ),

satisfies the weak convergences{
uε −⇀ u0 H1

0 (Ω; RN ) weak,
Aεe(uε) −⇀ Aeffe(u0) L2(Ω; RN×N

s ) weak,

where u0 is the solution of {
−div (Aeff(x)e(u0)) = f in ω,
u0 ∈ H1

0 (ω; RN).

We denoted the H-convergence of Aε to Aeff by Aε

H−⇀ Aeff .

Remark 1.4. Theorem 1.2 established in the conduction case still holds true for the linearized elasticity case.

In the general case, there is no explicit formula for the homogenized law (neither in conduction and nor in
linearized elasticity). Nevertheless, in the periodic case, i.e. Aε(x) := A

(
x
ε

)
p.p. x ∈ Ω where A is periodic, the

homogenized law can be explicitly computed (not totally explicit since one needs to solve a cell problem), see
for example [4].

In the non-periodic case there is some particular microstructures for which the homogenized law can be
explicitly obtained. For instance, in the next section we present two non-periodic microstructures due to
Briane.

1.2. The non-periodic fibrous microstructures

In this section we briefly describe the geometries of the two fibrous microstructures studied in [5, 6] and we
recall the homogenization results related to these microstructures.

1.2.1. Geometries of the fibrous microstructures

Let γ ∈ C2(R) with |γ| < π
2 and set

τ(x1) := cos γ(x1)e2 + sin γ(x1)e3. (1.1)

We consider the following two microstructures:
• First microstructure: we consider layers Ωn

ε orthogonal to the x1-axis of width εα where 0 < α < 1 in
order to obtain layers of small width but large with respect to the fiber radius εr, r > 0 (see Fig. 1).
In each layer we have a periodic lattice of fibers of period ε with a constant orientation which depends
only on the layer. Each fiber makes an angle γ(xn

1 ) with the x2-axis in the layer Ωn
ε where xn is any

point of Ωn
ε .

We denote by χI
ε the characteristic function of this fiber lattice.
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• Second microstructure: in the first microstructure, the fibers have a locally constant orientation. In
order to avoid this assumption, we consider rows orthogonal to the x1-axis of width of order ε. In each
row we have a periodic lattice of fibers of radius εr, r > 0 with a constant orientation which depends
only on the row (see Fig. 2). Each fiber makes an angle γ(x1) with the x2-axis where x is any point of
the fiber.
We denote by χII

ε the characteristic function of this fiber lattice.
The difference between the two microstructures is that in the first one we consider layers and in the second one,
the layers are replaced by rows. So, in the second microstructure, the fiber orientation varies in a more realistic
way.

1.2.2. H-convergence results for the fibrous microstructures

Let χ#
C be the Y3-periodic function defined on Y3 as the characteristic function of the cylinder

C :=
{
x ∈ Y3 | x2

1 + x2
3 ≤ r2

}
. (1.2)

Let a, b ∈ ]0,+∞[ and set

Bε(x) := B
(x
ε

)
, where B :=

(
a(1 − χ#

C ) + bχ#
C

)
I3.

Let Beff be the constant H-limit of Bε which is given (due to the symmetry) by the classical formula (see
e.g. [4])

∀ξ ∈ R
3, Beffξ : ξ = min

{
−
∫

Y3

B(y)(ξ + ∇ϕ(y)) · (ξ + ∇ϕ(y)) dy
∣∣∣ ϕ ∈ H1

#(Y3)
}
. (1.3)

We set
AI

ε :=
(
a(1 − χI

ε) + bχI
ε

)
I3.

Then, one has the following homogenization result:

Theorem 1.5 (Briane [5, 6]). The sequence AI
ε H-converges to AI

eff which satisfies

AI
eff(x) = R(x1)TBeffR(x1), (1.4)

where Beff is given by (1.3) and R(x1) is the orthogonal matrix defined by

R(x1) :=

⎛
⎝ 1 0 0

0 cos γ(x1) sinγ(x1)
0 − sinγ(x1) cos γ(x1)

⎞
⎠ . (1.5)

Remark 1.6. In [5, 6], formula (1.4) was obtained using a locally periodic homogenization procedure. This is
due to the fact that, in this microstructure, the number of fiber rows in each layer is very large.

Fix z ∈ R
3 and let χz be the periodic characteristic function of the set composed of cylinders of radius r

parallel to the x2-axis, the period of which is{
Y (z) := {t1e1 + t2e2 + (t3 + t1d(z))e3 | 0 ≤ ti ≤ 1, 1 ≤ i ≤ 3}
where d(z) := γ′(z1)(cos γ(z1)z2 + sin γ(z1)z3),

(1.6)

represented in Figure 3.
We set

Bz
ε (x) := Bz

(x
ε

)
, where Bz := (a(1 − χz) + bχz) I3.
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x2

Ωx3

x3

ε

ε

2εr

x1

γ(xn
1)

Ωn
ε

εα

τ (xn
1)

Figure 1. Lattice of fibers of constant orientation by layer.

Let Bz
eff be the constant H-limit of Bz

ε which is given (due to the symmetry) by the classical formula (see
e.g. [4])

∀ξ ∈ R
3, Bz

effξ : ξ = min

{
−
∫

Y (z)

Bz(y)(ξ + ∇ϕ(y)) · (ξ + ∇ϕ(y)) dy
∣∣∣ ϕ ∈ H1

#

(
Y (z)

)}
. (1.7)



1068 D. MANCEAU

x1

x2

ε

x3

2εr

Figure 2. Lattice of fibers of constant orientation by row.

We set
AII

ε :=
(
a(1 − χII

ε ) + bχII
ε

)
I3.

Then, one has the following homogenization result:
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2r

d(z)

x3

x1

Figure 3. Section of Y (z) in the plane x1Ox3.

Theorem 1.7 (Briane [5–7]). The sequence AII
ε H-converges to the matrix-valued function AII

eff where, for any
fixed x, AII

eff(x) is given by
AII

eff(x) = R(x1)TBx
effR(x1), (1.8)

with Bx
eff given by (1.7) and R(x1) the rotation matrix defined by (1.5).

Remark 1.8. Contrary to the first one, the second microstructure is no more locally periodic. Theorem 1.7 was
obtained by an approximation of the microstructure on each point z by a locally periodic material parametrized
by z. The fiber lattice which approximates the one of Figure 2 is periodic up to a meso scale εs with 0 < s < 1.
It can be regarded as the tangent lattice of the original one. Its construction is then linear and based on a
first-order Taylor expansion of the angle γ; it follows the appearance of the derivative of γ in the period cell Y (z).

2. H-measures and small amplitude homogenization

2.1. Reviews on H-measures and small amplitude homogenization

The notion of H-measure has been developed independently by Gérard [13] and Tartar [22]. Here, we will
consider its application to explicit formulas in small amplitude homogenization introduced by Tartar. We recall
the definition of the H-measures, the expression of the H-measure of a periodic function and the small amplitude
homogenization formula in conduction. We refer to [22] for the proof of these results.

For all subset Ω of R
N , we denote by C(Ω) the space of continuous real-valued functions on Ω and Cc(Ω)

the subspace of C(Ω) formed of functions with compact support. Furthermore, we denote by C0(RN ) the space
of continuous complex-valued functions decreasing to 0 at infinity. We define the Fourier transform F on the
space of rapidly decreasing functions S(RN ) by

∀u ∈ S(RN ), Fu(ξ) :=
∫

RN

u(x)e−2iπx·ξ dx.

Theorem 2.1 (Tartar [22]. Existence ofH-measures). Let Uε be a sequence converging weakly to 0 in L2(RN ; Rp).
Then, up to a subsequence, there exists a family µi,j, i, j ∈ {1, . . . , p}, of complex-valued Radon measures on
R

N × SN−1 such that for every φ1, φ2 ∈ C0(RN ) and for all ψ ∈ C(SN−1), we have

〈µi,j , φ1φ2 ⊗ ψ〉 = lim
ε→0

∫
RN

[F(φ1U
ε
i )(ξ)][F(φ2Uε

j )(ξ)]ψ
(
ξ

|ξ|
)

dξ. (2.1)
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The matrix-valued measure µ of coefficients µi,j given by (2.1) is called the H-measure associated with the
extracted subsequence of Uε.

Remark 2.2.
1. Taking into account oscillation directions, the H-measure quantifies the lack of compactness of weakly

converging sequences. This is due to the fact that, taking ψ ≡ 1 (see Cor. 1.4 of [22]), the sequence Uε
i U

ε
j

weakly converges in the distribution sense to the measure ν given by

∀φ ∈ C0(RN ), 〈ν, φ〉 := 〈µi,j , φ⊗ 1〉.

2. In equality (2.1), the right hand-side only depends on the product φ1φ2 instead of the couple (φ1, φ2)
(see [22] for details).

3. The H-measures are hermitian, i.e. µi,j = µj,i ∀i, j ∈ {1, . . . , p}.
Let u ∈ L2

#(YN ), denote by 〈u〉 the mean value of u on YN and set uε(x) := u
(

x
ε

)
. Then the sequence

uε −〈u〉 converges to zero in L2(RN ) weak. A formula for the H-measure associated with the sequence uε −〈u〉
was obtained in [22] (Ex. 2.1). The proof of this result can be easily generalized to the case of any period.

Let Yf be the parallelepiped of R
N defined by

Yf :=

{
N∑

i=1

λifi

∣∣∣ − 1
2
≤ λi ≤ 1

2
, ∀i = 1, . . . , N

}
,

where B′ := {f1, . . . , fN} is a basis of R
N . Let P be the matrix of R

N such that PB = B′, where B is the
canonical basis of R

N . In the general case of a periodic function of period Yf we have the following result:

Proposition 2.3. Let Ω be a smooth bounded open set (with Lipschitz boundary) of R
N . Let u ∈ L2

#(Yf ). We
set uε(x) := u

(
x
ε

)
and we denote by µ the H-measure associated with the sequence (uε − 〈u〉). Then, we have

µ =
∑

ω∈Z
3
f\{0}

|ûω|2 ⊗ δ ω
|ω| in Ω × SN−1,

where

ûω =
1

|Yf |
∫

Yf

u(y)e−2iπω·ydy and Z
3
f :=

{
(P−1)T k | k ∈ Z

N
}
. (2.2)

Now, we recall the small amplitude homogenization formula in conduction.
Let Ω be an open set of R

N and A0, Bε, Cε ∈ L∞(Ω; RN×N ). We assume:
(i) A0 is continuous and equi-coercive, i.e. ∃ α > 0, ∀ξ ∈ R

N , A0(x)ξ · ξ ≥ α|ξ|2 a.e. x ∈ Ω,
(ii) Bε −⇀ B0 L∞(Ω; RN×N ) weak∗,
(iii) Cε −⇀ C0 L∞(Ω; RN×N ) weak∗.

Let µ be the H-measure associated with the sequence (Bε −B0); µ = (µij,kl)i,j,k,l∈{1,...,N}. We set

Aε(x; δ) := A0(x) + δBε(x) + δ2Cε(x).

Theorem 2.4 (Tartar [22]). There exists a subsequence, still denoted by ε, such that for all δ > 0 small enough,
we have

Aε(·, δ)
H−⇀ Aeff(·, δ) on Ω,

with
Aeff(x; δ) = A0(x) + δB0(x) + δ2(C0(x) −M(x)) + o(δ2), (2.3)
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where the matrix-valued measure M , called H-correction, associated with the expansion of the effective matrix
has its coefficients given by

∀φ ∈ Cc(Ω),
∫

Ω

Mij(x)φ(x) dx :=
N∑

k,l=1

〈
µik,lj ,

φ(x)ξkξl
A0(x)ξ · ξ

〉
, (2.4)

for any i, j ∈ {1, . . . , N}.
Notation 2.5. Let µ be an H-measure and ψ ∈ C(SN−1), ϕ ∈ C(Ω), then we define a measure denoted by
ψ(ξ)ϕ(x)ν on Ω by

∀φ ∈ Cc(Ω), 〈ψ(ξ)ϕ(x)ν, φ〉 := 〈µ, φϕ ⊗ ψ〉.
If the measure ψ(ξ)ϕ(x)ν admits a density with respect to the Lebesgue measure, the density will also be
denoted by ψ(ξ)ϕ(x)ν.

Example 2.6. Consider Aε satisfying the conditions of Theorem 2.4. By the previous notation, the H-
correction M is given by

Mij(x) =
N∑

k,l=1

ξkξl
A0(x)ξ · ξ µik,lj i, j ∈ {1, . . . , N}.

Furthermore, if A0 := aIN , since the H-measure has its support included in R
N × SN−1, we obtain for any

i, j ∈ {1, . . . , N}

Mij(x) =
N∑

k,l=1

ξkξl
a(x)|ξ|2µik,lj =

N∑
k,l=1

ξkξl
a(x)

µik,lj .

2.2. Small amplitude homogenization in elasticity

We give a new small amplitude homogenization formula which extends to anisotropic elasticity the one of
Tartar [21]. Here, we only assume the isotropy of the zero-order term in the expansion of Aε.

Let Ω be an open set of R
N and A0, Bε, Cε ∈ L∞ (

Ω;M4
N

)
. We assume:

(i) A0 is continuous and equi-coercive i.e. ∃ α > 0, ∀e ∈ R
N×N
s , A0(x)e : e ≥ α|e|2 a.e. x ∈ Ω,

(ii) Bε −⇀ B0 L∞ (
Ω;M4

N

)
weak∗,

(iii) Cε −⇀ C0 L∞ (
Ω;M4

N

)
weak∗.

Let µ be the H-measure associated with the sequence (Bε − B0); µ = (µijkl,mnpq)i,j,k,l,m,n,p,q∈{1,...,N}. We set

Aε(x; δ) := A0(x) + δBε(x) + δ2Cε(x). (2.5)

The new small amplitude formula is given by the following result:

Theorem 2.7. Assume that A0 is isotropic and denote by λ0 and µ0 the Lamé coefficients of A0 (which are
continuous functions on Ω). Then there exists a subsequence, still denoted by ε, such that for all δ > 0 small
enough, we have

Aε(·, δ)
H−⇀ Aeff(·, δ) on Ω,

with

Aeff(x; δ) = A0(x) + δB0(x) + δ2(C0(x) − M(x)) + o(δ2),
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where the fourth-order tensor valued measure M, called H-correction, associated with the expansion of the
effective tensor has its coefficients given by

∀φ ∈ Cc(Ω),
∫

Ω

Mijkl(x)φ(x) dx =
N∑

m,p,q=1

〈
µijpq,qmkl ,

ξmξpφ

µ0

〉

−
N∑

m,n,p,q=1

〈
µijpq,mnkl ,

µ0 + λ0

µ0(2µ0 + λ0)
ξmξnξpξqφ

〉
,

(2.6)

for any i, j, k, l ∈ {1, . . . , N}.
Remark 2.8. In the case of an isotropic Hooke’s law Aε with expansion of the type (2.5), the Lamé coeffi-
cients µε and λε of Aε read as

µε = µ0 + µε
1δ + µε

2δ
2 and λε = λ0 + λε

1δ + λε
2δ

2,

where
µε

i −⇀ µi L∞(Ω) weak* and λε
i −⇀ λi L∞(Ω) weak* for i = 1, 2.

Let ν be the H-measure associated with the sequence (µε
1 − µ1, λ

ε
1 − λ1). We set (with Notation 2.5):

aij := ξiξjν11, bij := ξiξjRe(ν12) and aijkl := ξiξjξkξlν11, i, j, k, l ∈ {1, . . . , N}.

We also note tr(ν22) the measure defined on Ω by

∀φ ∈ Cc(Ω), 〈tr(ν22), φ〉 := 〈ν22, φ⊗ 1〉 .

Then formula (2.6) reads as, for all i, j, k, l ∈ {1, . . . , N},

Mijkl =
1
µ0

(δjkail + δikajl + δjlaik + δilajk) − 4(µ0 + λ0)
µ0(2µ0 + λ0)

aijkl

+
2

2µ0 + λ0
(δklbij + δijbkl) +

1
2µ0 + λ0

δijδkl tr(ν22), (2.7)

which is the formula established in [21] and also in [1] for the periodic case. See Section 2.3.2 for the proof
of (2.7).

2.3. Proofs in the anisotropic case

2.3.1. Proof of Theorem 2.7

We follow the same procedure as Tartar [22]. Here, the difficulty comes from delicate algebraic computations
due to the anisotropy of Aε.

By Proposition 17 of [23], we have that there exists a subsequence, still denoted by ε, such that, for any δ
small enough, Aε(·, δ) H-converges to Aeff(·, δ), where Aeff(·, δ) is analytic in δ.

Remark 2.9. For any A ∈ M4
N and u ∈ H1(Ω; RN ), we have

Ae(u) = A∇u, where (∇u)ij =
∂uj

∂xi
i, j ∈ {1, . . . , N},

since A is symmetric. Thus, in Definition 1.3 we can replace e(uε) by ∇uε.
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Let u ∈ H1
0 (Ω; RN ), ω � Ω and uδ

ε be the solution of{
−div(Aε(x, δ)∇uδ

ε) = −div(Aeff(x, δ)∇u) in ω,
uδ

ε ∈ H1
0 (ω; RN ).

As usual in H-convergence theory, it is enough to compute Aeff∇u in ω to obtain Aeff on Ω. Furthermore, by
definition of the H-convergence, Aeff∇u is obtained as the limit in L2(ω; RN ) weak of Aε∇uδ

ε.

Preliminary. By Definition 1.3 of the H-convergence, we have{
uδ

ε −⇀ u H1(ω; RN ) weak,

Aε(., δ)∇uδ
ε −⇀ Aeff(., δ)∇u L2(ω; RN×N) weak.

Let ϕ ∈ C∞
c (Ω) such that ϕ ≡ 1 on ω, and define

Eε(x, δ) := ∇(ϕuδ
ε) and Dε(x, δ) := Aε(x, δ)Eε(x, δ). (2.8)

We have {
∂k(Eε)i,j = ∂i(Eε)k,j in H−1(RN )

Eε −⇀ ∇u L2(ω; RN×N ) weak,
(2.9)

for any 1 ≤ i, j, k ≤ N . Moreover{
div (Dε) = div (Aeff∇u) in ω,

Dε −⇀ Aeff∇u L2(ω; RN×N) weak.
(2.10)

The functions Eε and Dε are analytic in δ. From (2.5), combined with (2.8) and considering the case δ = 0, we
obtain the following asymptotic expansions

Eε(x, δ) = ∇u(x) + δE1
ε (x) + δ2E2

ε (x) + o(δ2), (2.11)

where E1
ε , E

2
ε −⇀ 0 in L2(Ω; RN×N ) weak, and

Dε(x; δ) = A0(x)∇u(x) + δ
(
A0(x)E1

ε (x) + Bε∇u(x)
)

+ δ2
(
A0(x)E2

ε (x) + Bε(x)E1
ε (x) + Cε(x)∇u(x)

)
+ o(δ2). (2.12)

Since Aeff is analytic in δ, it admits an expansion of the type

Aeff(x, δ) = A∗(x) + B∗(x)δ + C∗(x)δ2 + o(δ2). (2.13)

Then, if we denote by lim
L2−w

the weak limit in L2(ω; RN×N), from (2.10) and (2.12) we obtain

A∗∇u = A0∇u, (2.14)
B∗∇u = lim

L2−w

(
A0E

1
ε + Bε∇u

)
= B0∇u, (2.15)

C∗∇u = lim
L2−w

(
A0E

2
ε + BεE

1
ε + Cε∇u

)
= lim

L2−w
(Bε − B0)E1

ε + C0∇u, (2.16)

since lim
L2−w

B0E
1
ε = lim

L2−w
A0E

2
ε = 0.

It remains to compute the weak limit of (Bε − B0)E1
ε . In order to compute this limit we proceed in three

steps.
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1. In the first step, we compute the L2(ω; RN×N) weak limit of (Bε −B0)E1
ε in terms of the H-measure µ′

associated with the tensor-valued function Kε := (Bε − B0, E
1
ε ) (Kε has for coefficients (Kε)ijkl , with

1 ≤ i, j ≤ N and 1 ≤ k, l ≤ N + 1, see (2.18)).
2. In the second step, from Theorem 1.6 of [22], we express the sum

∑
p,q

µ′
ijpq,pq(N+1)(N+1) for m,n, p, q ∈

{1, . . . , N} in terms of the H-measure µ associated with (Bε −B0) using three algebraic computations.
3. Combining the results of steps 1 and 2 we determine the L2(ω; RN×N) weak limit of (Bε − B0)E1

ε in
terms of the H-measure µ and we obtain the formula for Aeff .

First step. From (2.10), (2.12) and (2.15), we have

div
(
A0E

1
ε + (Bε − B0)∇u

)
= 0 in H−1(ω). (2.17)

In the sequel, we choose u such that ∇u is continuous. Denote by Kε := (Bε − B0, E
1
ε ) the tensor-valued

function defined on ω by

(Kε)ijkl :=

{
(Bε −B0)ijkl if 1 ≤ i, j, k, l ≤ N,

(E1
ε )ij if k = l = N + 1.

(2.18)

Then (
(Bε − B0)E1

ε

)
ij

=
N∑

k,l=1

(Kε)ijkl(Kε)kl(N+1)(N+1). (2.19)

We denote by µ′ the H-measure associated with Kε (the coefficients of µ′ are the measures µ′
ijkl,mnpq with

1 ≤ i, j,m, n ≤ N and 1 ≤ k, l, p, q ≤ N + 1). We have from (2.19), thanks to Corollary 1.4 of [22], for all
φ ∈ Cc(ω), ∫

RN

(
(Bε − B0) (x)E1

ε (x)
)

ij
φ(x) dx −→

ε→0

N∑
k,l=1

〈µ′
ijkl,kl(N+1)(N+1) , φ⊗ 1〉. (2.20)

Note that µ′
ijkl,mnpq = µijkl,mnpq , for all i, j, k, l,m, n, p, q ∈ {1, . . . , N}. Therefore, to obtain the L2(ω; RN×N)

weak limit of (Bε − B0)E1
ε in terms of the H-measure µ, it is enough to express the right hand-side of (2.20)

in term of µ′
ijkl,mnpq , with i, j, k, l,m, n, p, q ∈ {1, . . . , N}. This is the goal of the next step.

Second step. We express the right hand-side of (2.20) in terms of the H-measure µ by using Theorem 1.6
(localisation principle) of [22] and algebraic computations. Since the coefficients (A0)ijkl , ∂kul are continuous
in Ω, by the localisation principle, (2.17) yields

N∑
j,k,l=1

ξj

(
(A0)ijkl(x)µ′

kl(N+1)(N+1),mnpq + ∂kul(x)µ′
ijkl,mnpq

)
= 0 in ω × SN−1,

for all p, q ∈ {1, . . . , N + 1} and i,m, n ∈ {1, . . . , N}. The isotropy of A0 gives

(A0)ijkl = λ0δijδkl + µ0(δikδjl + δilδjk),

which implies

µ0(x)

(
N∑

j=1

ξjµ
′
ij(N+1)(N+1),mnpq +

N∑
j=1

ξjµ
′
ji(N+1)(N+1),mnpq

)
+ λ0(x)

N∑
k=1

ξiµ
′
kk(N+1)(N+1),mnpq

= −
N∑

j,k,l=1

ξj∂kul(x)µ′
ijkl,mnpq , (2.21)
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for all p, q ∈ {1, . . . , N + 1} and i,m, n ∈ {1, . . . , N}. In the same way, by (2.9) we obtain

ξkµ
′
ij(N+1)(N+1),mnpq = ξiµ

′
kj(N+1)(N+1),mnpq on ω × SN−1, (2.22)

for all 1 ≤ i, j, k,m, n ≤ N and 1 ≤ p, q ≤ N + 1.
Now, in order to obtain

N∑
p,q=1

µ′
ijpq,pq(N+1)(N+1)

in terms of the H-measure µ, we transform equality (2.21) twice by using (2.22). These computations are based
on the fact that the H-measures have their supports included in R

N ×SN−1, and that equality (2.21) is satisfied
for all p, q ∈ {1, . . . , N + 1} and i,m, n ∈ {1, . . . , N}.
First computation. By (2.22) and since the H-measure µ′ has its support included in R

N × SN−1, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
j,p=1

ξjξpµ
′
ji(N+1)(N+1),mnpq =

N∑
j,p=1

ξ2jµ
′
pi(N+1)(N+1),mnpq =

N∑
p=1

µ′
pi(N+1)(N+1),mnpq

N∑
j,p=1

ξpξjµ
′
ij(N+1)(N+1),mnpq =

N∑
j,p=1

ξpξiµ
′
jj(N+1)(N+1),mnpq ,

for all q ∈ {1, . . . , N + 1} and i,m, n ∈ {1, . . . , N}. Multiplying (2.21) by ξp and summing over p ∈ {1, . . . , N},
the previous two equalities yield

µ0

(
N∑

j,p=1

ξpξiµ
′
jj(N+1)(N+1),mnpq +

N∑
p=1

µ′
pi(N+1)(N+1),mnpq

)
+ λ0

N∑
k,p=1

ξiξpµ
′
kk(N+1)(N+1),mnpq

= −
N∑

j,k,l,p=1

ξjξp∂kul(x)µ′
ijkl,mnpq , (2.23)

for all q ∈ {1, . . . , N + 1} and i,m, n ∈ {1, . . . , N}. Choosing i = q and summing on q, equality (2.23) gives

µ0

(
N∑

j,p,q=1

ξpξqµ
′
jj(N+1)(N+1),mnpq +

N∑
p,q=1

µ′
pq(N+1)(N+1),mnpq

)
+ λ0

N∑
k,p,q=1

ξqξpµ
′
kk(N+1)(N+1),mnpq

= −
N∑

j,k,l,p,q=1

ξjξp∂kul(x)µ′
qjkl,mnpq ,

for all m,n ∈ {1, . . . , N}. Since µ′
ijkl,mnpq = µijkl,mnpq , for all i, j, k, l,m, n, p, q ∈ {1, . . . , N}, we obtain

N∑
p,q=1

µ′
pq(N+1)(N+1),mnpq = − λ0 + µ0

µ0

N∑
j,p,q=1

ξpξqµ
′
jj(N+1)(N+1),mnpq

− 1
µ0

N∑
j,k,l,p,q=1

ξjξp∂kul(x)µqjkl,mnpq , (2.24)

for all m,n ∈ {1, . . . , N}. Now, in the previous equality, it remains to determine the first term of the right
hand-side in terms of the H-measure µ.
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Second computation. As in the previous computation, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
i,j=1

ξjξiµ
′
ji(N+1)(N+1),mnpq =

N∑
i=1

µ′
ii(N+1)(N+1),mnpq

N∑
i,j=1

ξjξiµ
′
ij(N+1)(N+1),mnpq =

N∑
j=1

µ′
jj(N+1)(N+1),mnpq ,

for all m,n ∈ {1, . . . , N} and p, q ∈ {1, . . . , N + 1}. Multiplying equality (2.21) by ξi and summing on i, this
gives

µ0

⎛
⎝ N∑

j=1

µ′
jj(N+1)(N+1),mnpq +

N∑
i=1

µ′
ii(N+1)(N+1),mnpq

⎞
⎠+ λ0

N∑
i,k=1

ξ2i µ
′
kk(N+1)(N+1),mnpq

= −
N∑

i,j,k,l=1

ξiξj∂kul(x)µ′
ijkl,mnpq ,

for all m,n ∈ {1, . . . , N} and p, q ∈ {1, . . . , N + 1}. Therefore

(2µ0 + λ0)
N∑

k=1

µ′
kk(N+1)(N+1),mnpq = −

N∑
i,j,k,l=1

ξiξj∂kul(x)µ′
ijkl,mnpq ,

for all m,n ∈ {1, . . . , N} and p, q ∈ {1, . . . , N + 1}. Multiplying the previous equality by ξpξq and summing on
p and q, we obtain

(2µ0 + λ0)
N∑

k,p,q=1

ξpξqµ
′
kk(N+1)(N+1),mnpq = −

N∑
i,j,k,l,p,q=1

ξiξjξpξq∂kul(x)µ′
ijkl,mnpq , (2.25)

for all m,n ∈ {1, . . . , N}.
Third computation. From equalities (2.24) and (2.25) we deduce

N∑
p,q=1

µ′
pq(N+1)(N+1),mnpq =

µ0 + λ0

µ0(2µ0 + λ0)

N∑
i,j,k,l,p,q=1

ξiξjξpξq∂kul(x)µijkl,mnpq

− 1
µ0

N∑
j,k,l,p,q=1

ξjξp∂kul(x)µqjkl,mnpq , (2.26)

for all m,n ∈ {1, . . . , N}. Since the H-measures are hermitian (see Rem. 2.2), equality (2.26) can be written

N∑
p,q=1

µ′
mnpq,pq(N+1)(N+1) =

µ0 + λ0

µ0(2µ0 + λ0)

N∑
i,j,k,l,p,q=1

ξiξjξpξq∂kul(x)µmnpq,ijkl

− 1
µ0

N∑
j,k,l,p,q=1

ξjξp∂kul(x)µmnpq,qjkl ,
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for all m,n ∈ {1, . . . , N}. A suitable permutation of indices gives

N∑
p,q=1

µ′
ijpq,pq(N+1)(N+1) =

µ0 + λ0

µ0(2µ0 + λ0)

N∑
k,l,m,n,p,q=1

ξmξnξpξq∂kulµijpq,mnkl

− 1
µ0

N∑
k,l,m,p,q=1

ξmξp∂kulµijpq,qmkl , (2.27)

for all i, j ∈ {1, . . . , N}.
Third step. From (2.20) and (2.27) we deduce

∫
RN

(
(Bε − B0) (x)E1

ε (x)
)

ij
φ(x) dx −→

ε→0

N∑
k,l,m,n,p,q=1

〈
µijpq,mnkl ,

µ0 + λ0

µ0(2µ0 + λ0)
ξmξnξpξq∂kulφ

〉

−
N∑

k,l,m,p,q=1

〈
µijpq,qmkl , ξmξp

∂kulφ

µ0

〉
·

Moreover, by (2.16) we have for all φ ∈ Cc(ω),

〈
((C0 − C∗)∇u)ij , φ

〉
=

N∑
k,l,m,n,p,q=1

〈
µijpq,mnkl ,

µ0 + λ0

µ0(2µ0 + λ0)
ξmξnξpξq∂kulφ

〉

−
N∑

k,l,m,p,q=1

〈
µijpq,qmkl , ξmξp

∂kulφ

µ0

〉
·

(2.28)

Fix k, l ∈ {1, . . . , N}. Let λ be the matrix of coefficients defined by λij = 0 if i �= k or j �= l, and λkl = 1.
We choose u such that ∇u = λ on supp(φ). Then, (2.28) reads

〈
(C∗ − C0)ijkl , φ

〉
= −

N∑
m,n,p,q=1

〈
µijpq,mnkl, ξmξnξpξq

µ0 + λ0

µ0(2µ0 + λ0)
φ

〉

+
N∑

m,p,q=1

〈
µijpq,qmkl ,

φ

µ0
ξmξp

〉
.

Finally, C∗ = C0 − M, where M has its coefficients given by

〈Mijkl , φ〉 = −
N∑

m,n,p,q=1

〈
µijpq,mnkl , ξmξnξpξq

µ0 + λ0

µ0(2µ0 + λ0)
φ

〉

+
N∑

m,p,q=1

〈
µijpq,qmkl , ξmξp

φ

µ0

〉
,

(2.29)

for all i, j, k, l ∈ {1, . . . , N} and all φ ∈ Cc(Ω). �

2.3.2. Proof of formula (2.7)

To prove formula (2.7), we first note that the coefficients of Bε − B0 are given by

(Bε −B0)ijpq = (µε
1 − µ1)(δipδjq + δiqδjp) + (λε

1 − λ1)δijδpq, (2.30)
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for all i, j, p, q ∈ {1, . . . , N}. Then, if µ denotes the H-measure associated with the sequence (Bε − B0) and ν
the H-measure associated with the sequence (µε

1 − µ1, λ
ε
1 − λ1), we have

µijpq,mnkl = (δipδjqδmkδnl + δiqδjpδmkδnl + δipδjqδmlδnk + δiqδjpδmlδnk)ν11
+ (δijδpqδmnδkl)ν22 + (δipδjqδmnδkl + δiqδjpδmnδkl)ν12
+ (δmkδnlδijδpq + δmlδnkδijδpq)ν21,

(2.31)

for all i, j, k, l,m, n, p, q ∈ {1, . . . , N}. Indeed, from (2.1) we have for any φ1, φ2 ∈ Cc(Ω), ψ ∈ C(SN−1)

〈
µijpq,mnkl , φ1φ2 ⊗ ψ

〉
= lim

ε→0

∫
RN

F ((Bε −B0)ijpqφ1)F ((Bε −B0)mnklφ2)ψ
(
ξ

|ξ|
)

dξ,

for all i, j, k, l,m, n, p, q ∈ {1, . . . , N}, which by (2.30) gives, for example, for the last term

lim
ε→0

∫
RN

F ((λε
1 − λ1)δijδpqφ1)F ((λε

1 − λ1)δmnδklφ2)ψ
(
ξ

|ξ|
)

dξ

= δijδpqδmnδkl lim
ε→0

∫
RN

F ((λε
1 − λ1)φ1)F ((λε

1 − λ1)φ2)ψ
(
ξ

|ξ|
)

dξ

= δijδpqδmnδkl

〈
ν22, φ1φ2 ⊗ ψ

〉
.

Moreover, using the change of variable ξ′ = −ξ, we also have

〈
ξiξjν12, φ1φ2

〉
= lim

ε→0

∫
RN

F ((µε
1 − µ1)φ1) (ξ)F ((λε

1 − λ1)φ2) (ξ)
ξiξj
|ξ|2 dξ

= lim
ε→0

∫
RN

F ((µε
1 − µ1)φ1) (ξ′)F ((λε

1 − λ1)φ2) (ξ′)
ξiξj
|ξ|2 dξ′

=
〈
ξiξjν12, φ1φ2

〉
,

for all i, j ∈ {1, . . . , N}. Since the H-measures are hermitian, we deduce that, for all i, j ∈ {1, . . . , N},

ξiξjν12 = ξiξjRe(ν12) = ξiξjν21.

Now from (2.31) we obtain, for all i, j, k, l ∈ {1, . . . , N},
N∑

m,p,q=1

ξmξpµijpq,qmkl =
N∑

m,p,q=1

(δipδjqδqkδml + δiqδjpδqkδml + δipδjqδqlδmk + δiqδjpδqlδmk)ξmξpν11

+
N∑

m,p,q=1

(δipδjqδqmδkl + δiqδjpδqmδkl + δqkδmlδijδpq + δqlδmkδijδpq)ξmξpRe(ν12)

+
N∑

m,p,q=1

(δijδpqδqmδkl)ξmξpν22

= (ξiξlδjk + ξjξlδik + ξiξkδjl + ξjξkδil)ν11 + δijδkl|ξ|2ν22 + 2 (δklξiξj + δijξkξl)Re(ν12),
(2.32)

and similarly

N∑
m,n,p,q=1

ξmξnξpξqµijpq,mnkl = 4 ξiξjξkξlν11 + δijδkl|ξ|4ν22 + 2 (δkl|ξ|2ξiξj + δij |ξ|2ξkξl)Re(ν12). (2.33)
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Since the H-measures have their supports included in R
N × SN−1, we obtain

|ξ|2ξiξjRe(ν12) = ξiξjRe(ν12) and
〈|ξ|2ν22, φ〉 =

〈|ξ|4ν22, φ〉 = 〈ν22, φ⊗ 1〉 , ∀φ ∈ Cc(Ω).

Then, using (2.32) and (2.33), formula (2.6) leads us to (2.7). �

3. Simplified models in conduction

3.1. Statement of the results

In the sequel, θ := πr2.

Theorem 3.1. We set
AI

ε :=
(
a(1 − χI

ε) + bχI
ε

)
I3, (3.1)

where b := a+ cδ with δ > 0 small enough, a > 0 and c ∈ R. Then AI
ε H-converges to AI

eff which satisfies

AI
eff =

(
a(1 − θ) + bθ − (b − a)2

2a
θ(1 − θ)

)
I3 +

(b− a)2

2a
θ(1 − θ)(τ ⊗ τ) + o(δ2), (3.2)

where τ is given by (1.1).

Remark 3.2. Formula (3.2) shows the validity of the model AI
eff = αI3 + β(τ ⊗ τ) (at the second order) under

the small amplitude assumption. Thus this model validates rigorously the biomechanics one in the conduction
case.

For the second model, the computations cannot be as much simplified as for the first model. To compare
this model with model (0.3), we compute the orthogonal projection of the effective matrix AII

eff on the space of
the matrices of the form (0.3), i.e. the space {αI3 + β(τ ⊗ τ) | α, β ∈ R}.
Notation 3.3. Let N ∈ N and let E be a linear subspace of R

N×N , we denote by E⊥ the orthogonal subspace
of E, i.e.

E⊥ :=
{
A ∈ R

N×N | A : B = 0, ∀B ∈ E
}
.

For any matrix A ∈ R
N×N , there is a unique orthogonal decomposition

A = A1 ⊕A2, with A1 ∈ E and A2 ∈ E⊥.

For the second small amplitude model we have the following result:

Theorem 3.4. We set
AII

ε :=
(
a(1 − χII

ε ) + bχII
ε

)
I3, (3.3)

where b := a+ cδ with δ > 0 small enough, a > 0 and c ∈ R. Then AII
ε H-converges to AII

eff which admits the
orthogonal decomposition

AII
eff(x) = AI

eff(x) ⊕ (b− a)2

a
Deff(x) + o(δ2),

where Deff is a matrix-valued function satisfying

d(x) := γ′(x1)(cos γ(x1)x2 + sin γ(x1)x3) = 0 ⇒ Deff(x) = 0. (3.4)

Remark 3.5.
1. The coefficients of the matrix-valued function Deff can be given but are not explicit.
2. If γ′(x1) = 0 then d(x) = 0. In some sense, the first model corresponds to the second one when the

fiber orientation is locally constant.
3. Due to the extra termDeff(x), the second model does not coincide with the biomechanics one if d(x) �= 0.
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3.2. Proof of the results

The proofs of Theorems 3.1 and 3.4 are based on formulas (1.4) and (1.8). Since the two proofs are similar
we only give the one of Theorem 3.1.

Proof of Theorem 3.1. We use the notations of Section 1.2.2. We have

Bε(x) =
(
a+ c χε(x)δ

)
I3 with χε(x) := χ#

C

(x
ε

)
. (3.5)

Since χε converges to θ weakly∗ in L∞(Ω), from Theorem 2.4 we deduce

Beff =
(
a+ (b− a)θ

)
I3 − (b − a)2

a
M I + o(δ2),

where, by Notation 2.5,

(M I)ij :=
3∑

k,l=1

ξkξlµik,lj i, j ∈ {1, 2, 3},

and µ is the H-measure associated with the sequence (θ − χε)I3. If we denote by ν the H-measure associated
with the sequence (θ − χε), we obtain by (2.1) for all φ1, φ2 ∈ Cc(Ω) and ψ ∈ C(S2)

〈
µik,lj , φ1φ2 ⊗ ψ

〉
= lim

ε→0

∫
R3

F ((θ − χε)δikφ1)F ((θ − χε)δljφ2)ψ
(
ξ

|ξ|
)

dξ

= δikδlj lim
ε→0

∫
R3

F ((θ − χε)φ1)F ((θ − χε)φ2)ψ
(
ξ

|ξ|
)

dξ

=
〈
δikδljν, φ1φ2 ⊗ ψ

〉
,

for all i, j, k, l = 1, 2, 3. Then, for all i, j, k, l = 1, 2, 3,

µik,lj = δikδljν,

which implies
(M I)ij = ξiξjν. (3.6)

Finally, using the periodicity of χ#
C , we deduce from Proposition 2.3

(M I)ij =
∑

k∈Z3\{0}
|χ̂(k)|2 kikj

|k|2 , with χ̂(k) :=
∫

Y3

χ#
C (x)e−2iπx·kdx, (3.7)

for any i, j = 1, 2, 3. The characteristic function χ#
C is independent of the x2 variable, so

χ̂(k1, k2, k3) = 0 if k2 �= 0,

whence
(M I)22 = (M I)12 = (M I)21 = (M I)32 = (M I)23 = 0. (3.8)

Furthermore,
χ̂(k1, 0, k3) = χ̂(k3, 0, k1) = χ̂(−k1, 0, k3),

which gives
(M I)13 = (M I)31 = 0.

We also have
(M I)11 = (M I)33,
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since χ̂(k1, 0, k3) = χ̂(k3, 0, k1). Then, we obtain

〈
(M I)11, |φ|2

〉
=
〈

1
2

((M I)11 + (M I)22 + (M I)33), |φ|2
〉

=
〈

1
2

(ξ21 + ξ22 + ξ23)ν, |φ|2
〉

=
1
2
〈
ν, |φ|2 ⊗ 1

〉
〈
(M I)11, |φ|2

〉
=

1
2
θ(1 − θ)

∫
R3

|φ(x)|2dx.

Thus, (M I)11 = (M I)33 =
θ(1 − θ)

2
and

Beff =
(
(1 − θ)a+ θb

)
I3 − (b− a)2

2a
θ(1 − θ)(I3 − e2 ⊗ e2) + o(δ2). (3.9)

From (1.4) and (3.9), we have

AI
eff(x) =

(
a(1 − θ) + bθ

)
I3 − (b− a)2

2a
θ(1 − θ)

(
I3 −R(x1)T (e2 ⊗ e2)R(x1)

)
+ o(δ2).

Moreover R(x1)T (e2 ⊗ e2)R(x1) = R(x1)T e2 ⊗R(x1)T e2 = τ(x1) ⊗ τ(x1), which gives the result. �

4. Simplified models in elasticity

4.1. Statement of the results

4.1.1. Models I and II

For the first small amplitude model we have the following result:

Theorem 4.1. We set
AI

ε := (1 − χI
ε)A

1 + χI
εA

2, (4.1)
where A1, A2 are two homogeneous (i.e. constant) and isotropic fourth order tensor. Let νx be the H-measure
associated with

(
θ − χI

ε

)
and λ1, µ1 be the Lamé coefficients of A1. We assume the Lamé coefficients µ2 and

λ2 of A2 read as
µ2 := µ1 + δµ and λ2 := λ1 + δλ, (4.2)

where δ > 0 is small enough and µ, λ ∈ R. Then AI
ε H-converges to AI

eff which is given, for all e ∈ R
3×3
s , by

Aeff
I (x)e = A1e+ θ(A2e− A1e)

− δ2θ(1 − θ)

[
2µ2

µ1
e+

2µλ+ λ2

2µ1 + λ1
tr(e)I3 − λµ

2µ1 + λ1

(
tr(e)(τ ⊗ τ) + (eτ · τ)I3

)
− µ2

µ1

(
e(τ ⊗ τ) + τ ⊗ eτ

)]

+ δ2NI(x)e+ o(δ2), (4.3)

where τ := τ(x1) (given by (1.1)) and NI(x) is the fourth order tensor whose coefficients are

(N I(x))ijkl :=
4(µ1 + λ1)
2µ1 + λ1

µ2

µ1
ξiξjξkξlνx (4.4)

for all i, j, k, l = 1, 2, 3 (see Notation 2.5 for the meaning of the last term).
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Remark 4.2.
1. The H-measure νx is parametrized by x since there is no periodicity assumption.
2. In order to compare the expression of AI

eff with (0.2), one can assume furthermore that µ is small
enough. This assumption allows us to remove the term NI which depends on the H-measure νx. Then
the second order term of expansion (4.3) reads as, for any µ small enough,

− θ(1 − θ)
2µλ+ λ2

2µ1 + λ1
tr(e)I3 + θ(1 − θ)

λµ

2µ1 + λ1

[
tr(e)(τ ⊗ τ) + (eτ · τ)I3

]
+ o(µ2).

Therefore, because of the extra term in (eτ · τ)I3, formula (4.3) does not coincide (under the small
amplitude assumption) with the biomechanics model, contrary to the conduction case.

3. In fact, we can only conclude that the linear elasticity framework combined with the small amplitude
assumption does not agree with the empirical model. An alternative approach would be to start from
nonlinear (hyperelastic) behaviour laws (see Holzapfel [14], Ogden [16], Spencer [19]) and then to lin-
earize around the identity. This could allow us to preserve the extra anisotropic terms like (eτ · τ)I3
and e(τ ⊗ τ) + τ ⊗ eτ , which are rejected in the previous analysis. However, this more sophisticated
approach combining hyperelasticity and non-periodic homogenization widely goes out of the setting of
our present study, and would thus need a completely new work.

For the second small amplitude model we have the following result:

Theorem 4.3. We set
AII

ε := (1 − χII
ε )A1 + χII

ε A2, (4.5)
where A1, A2 are two homogeneous and isotropic fourth order tensor. Let ν′x be the H-measure associated with
the sequence (θ−χII

ε ) and λ1, µ1 be the Lamé coefficients of A1. We assume that the Lamé coefficients µ2 and
λ2 of A2 read as

µ2 := µ1 + δµ and λ2 := λ1 + δλ, (4.6)
where δ > 0 is small enough and µ, λ ∈ R. Then, AII

ε H-converges to AII
eff which is given, for all e ∈ R

3×3
s , by

Aeff
II (x)e = Aeff

I (x)e+ δ2
(
NII(x)e− NI(x)e+ P(x)e

)
+ o(δ2), (4.7)

where NI(x) is given by (4.4) and NII(x), P(x) are the fourth order tensor whose coefficients are

(N II(x))ijkl :=
4(µ1 + λ1)
2µ1 + λ1

µ2

µ1
ξiξjξkξlν

′
x, (4.8)

and

(P (x))ijkl :=
µ2

µ1

(
δik(Deff(x))jl + δil(Deff(x))jk + δjk(Deff(x))il + δjl(Deff(x))ik

)
+

2λµ
2µ1 + λ1

(
δkl(Deff(x))ij + δij(Deff(x))kl

)
, (4.9)

for all i, j, k, l = 1, 2, 3, with Deff(x) the matrix-valued function given by (3.4).

Remark 4.4. The second order term of the expansion (4.7) reads, for any µ small enough,

− θ(1 − θ)
2µλ+ λ2

2µ1 + λ1
tr(e) I3 + θ(1 − θ)

λµ

2µ1 + λ1

(
tr(e)(τ ⊗ τ) + (eτ · τ)I3

)

+
2λµ

2µ1 + λ1

(
tr(e)Deff(x) + (Deff(x) : e)I3

)
+ o(µ2).
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Thus, from Remark 4.2, the difference between the two models at the second order is given for any µ small
enough by

2λµ
2µ1 + λ1

(
tr(e)Deff(x) + (Deff(x) : e)I3

)
+ o(µ2).

In particular, the two models coincide when the fiber orientation is locally constant.

4.1.2. Model III

Since models I and II do not valid the biomechanics one in linearized elasticity, we introduced a new model.
From [5,6], we know that the first model in conduction locally corresponds to the periodic distribution of fibers
of constant orientation. This can be easily extended to the elasticity case. Then we are led to a periodic
microstructure with fibers of constant orientation τ . As in the previous models, τ depends on z1 but we omit
this dependence. Then for this third model we focus on the anisotropy rather than on the non-periodicity.

We fix z ∈ R
3. Set τ := τ(z1) and R := R(z1) defined by (1.5). Let χ#

C be the Y3-periodic function defined
in Y3 as the characteristic function of the cylinder C given by (1.2). We have the following result:

Theorem 4.5. We set

AIII
ε := (1 − χτ

ε)A1 + χτ
εA

2 with χτ
ε (x) := χ#

C

(
Rx

ε

)
, (4.10)

where A1,A2 ∈ M4(α, β; Ω). We assume A1 is homogeneous and isotropic of Lamé coefficients µ1, λ1 and A2

is given, for all e ∈ R
3×3
s , by

A2e = A1e+ δ(eτ · τ)(τ ⊗ τ), (4.11)
where δ > 0 is small enough. Then, AIII

ε H-converges to AIII
eff which is given, for all e ∈ R

3×3
s , by

AIII
eff e = A1e+ θ(A2e− A1e) − κν,τ δ

2 µ1 + λ1

µ1(2µ1 + λ1)
(eτ · τ)(τ ⊗ τ) + o(δ2), (4.12)

with κν,τ given by (see Notation 2.5)

κν,τ =
3∑

m,n,p,q=1

τmτnτpτqξmξnξpξqν
τ , (4.13)

where ντ is the H-measure associated with the sequence (θ − χτ
ε).

Remark 4.6.
1. Formula (4.12) shows the validity of the model λtr(e) + 2µe + κ (eτ · τ)(τ ⊗ τ) (at the second order)

under the small amplitude assumption.
2. From (4.13) and Proposition 2.3, we have that κν,τ is constant. Moreover, by Notation 2.5, equal-

ity (4.13) reads as, for all φ ∈ Cc(Ω) such that
∫
Ω
φdx = 1,

κν,τ =
3∑

m,n,p,q=1

(τmτnτpτq)〈ντ , φ⊗ ξmξnξpξq〉.

Using Proposition 2.3 the constant κν,τ may be written as a series. For example, in the case τ = e2, a
simple computation leads to

κν,e2 =
∑

k∈Z3\{0}
|χ̂2(k)|2 k

4
2

|k|4 with χ̂2(k) =
1

|Y3|
∫

Y3

χe2
ε (y)e−2iπk·ydy,

which cannot be easily simplified.
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In the same way, one can obtain an effective matrix with a zero H-correction.

Proposition 4.7. Consider AIII
ε defined by (4.10) with A1 homogeneous and isotropic and A2 given, for all

e ∈ R
3×3
s , by

A2e = A1e+ δtr(e)(τ ⊗ τ), (4.14)

where δ > 0 is small enough. Then, AIII
ε H-converges to AIII

eff which is given, for all e ∈ R
3×3
s , by

Aeff
IIIe = A1e+ θ(A2e− A1e) + o(δ2). (4.15)

4.2. Proof of the results

Since the proofs of Theorems 4.1 and 4.3 are based on the same arguments, we only give the proof of Theo-
rem 4.1. The proof of Theorem 4.5 is similar but with some specifics which are clarified.

Proof of Theorem 4.1. The formula (1.4) obtained for the first model is no more valid. Indeed, in elasticity the
isotropy does not allow us to simplify the change of variable as in (1.4). So to obtain an expansion of Aeff

I , we
will use (3.2) and Theorem 2.7.

In the conduction case, AI
ε is given by

AI
ε = aI3 + cδχI

εI3.

From the definition of χI
ε and by application of Lemma 2.6 of [5] we obtain that χI

ε converges weakly∗ in L∞(Ω)
to θ = πr2. Thus the sequence (θ − χI

ε) defines an H-measure νx. Then, from Theorem 2.4 we deduce

AI
eff(x) = aI3 + c δθI3 −M I(x)δ2 + o(δ2),

where, for all i, j = 1, 2, 3,

(M I)ij(x) :=
c2

a
ξiξjνx.

On the other hand, by Theorem 3.1 we have

AI
eff = aI3 + c δθI3 − δ2

c2

a

θ(1 − θ)
2

(
I3 − τ ⊗ τ

)
+ o(δ2).

Therefore, for all i, j = 1, 2, 3,

ξiξjνx =
θ(1 − θ)

2

(
δij − τi(x)τj(x)

)
. (4.16)

Recall that by Notation 2.5, (4.16) reads, for all i, j = 1, 2, 3,

∀φ ∈ Cc(Ω), 〈νx, φ⊗ ξiξj〉 =
θ(1 − θ)

2

∫
Ω

(
δij − τi(x)τj(x)

)
φ(x)dx.

In linearized elasticity, we have by (4.1) and (4.2)

AI
ε(x) = λ1(I3 ⊗ I3) + 2µ1I + δ χI

ε(x)
(
λ(I3 ⊗ I3) + 2µI

)
.

Then, by Theorem 2.7, AI
ε H-converges to Aeff

I which reads as

Aeff
I (x) = λ1(I3 ⊗ I3) + 2µ1I + δ θ

(
λ(I3 ⊗ I3) + 2µI

)
− δ2MI(x) + o(δ2), (4.17)
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where by (2.7) the coefficients of MI(x) are given by

(M I(x))ijkl =
µ2

µ1
(δikξjξlνx + δilξjξkνx + δjkξiξlνx + δjlξiξkνx)

+
2λµ

2µ1 + λ1
(δklξiξjνx + δklξkξlνx) + θ(1 − θ)

λ2

2µ1 + λ1
δijδkl

− 4(µ1 + λ1)
2µ1 + λ1

µ2

µ1
ξiξjξkξlνx, (4.18)

for all i, j, k, l = 1, 2, 3. We use (4.16) to determine explicitly the first terms of MI(x). From (4.16) and (4.18)
we deduce that, for all i, j = 1, 2, 3,

(MI(x)e)ij = θ(1 − θ)
2µ2

µ1
eij + θ(1 − θ)

2µλ+ λ2

2µ1 + λ1
tr(e)δij

− θ(1 − θ)
2

µ2

µ1

(
2(eτ)iτj + 2(eτ)jτi

)
− θ(1 − θ)

λµ

2µ1 + λ1

(
tr(e)τiτj + (eτ · τ)δij

)
− (NI(x)e)ij ,

where NI(x) is given by (4.4). This implies

MI(x)e = θ(1 − θ)
2µ2

µ1
e+ θ(1 − θ)

2µλ+ λ2

2µ1 + λ1
tr(e)I3

− θ(1 − θ)
µ2

µ1

(
e(τ ⊗ τ) + τ ⊗ eτ

)

− θ(1 − θ)
λµ

2µ1 + λ1

(
tr(e)(τ ⊗ τ) + (eτ · τ)I3

)
− NI(x)e. (4.19)

Then (4.17) and (4.19) yield the desired result. �

Remark 4.8. The last term is more complicated. For example, consider the simpler case of a periodic mi-
crostructure. Let χ#

C be the Y3-periodic function defined on Y3 as the characteristic function of the cylinder C
defined by (1.2) and set χε(x) := χ#

C

(
x
ε

)
. Let ν be the H-measure associated with (θ− χε), then we obtain by

Proposition 2.3, for all i, j, k, l = 1, 2, 3,

ξiξjξkξlν =
∑

n∈Z3\{0}
|χ̂(n)|2 ninjnknl

|n|4 , where χ̂(n) :=
∫

Y3

χ#
C (x)e−2iπx·ndx.

Thus the simplifications made in the conduction case on the terms ξiξjν cannot be performed here.

Proof of Theorem 4.5. First note that
3∑

k,l=1

τkτlξkξlν
τ = 0, (4.20)

which is a straightforward consequence of (4.16). As in the proof of Theorem 4.3, by (4.10) and (4.11) combined
with Theorem 2.7, we obtain that AIII

ε H-converges to the constant tensor-valued function AIII
eff which satisfies

AIII
eff = A1 + θ (A2 − A1) − δ2MIII + o(δ2),
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where by (2.6) and Notation 2.5 the coefficients of MIII are given by

M III
ijkl =

1
µ1

3∑
m,p,q=1

ξmξpµ
τ
ijpq,qmkl

+
µ1 + λ1

µ1(2µ1 + λ1)

3∑
m,n,p,q=1

ξmξnξpξqµ
τ
ijpq,mnkl,

for all i, j, k, l = 1, 2, 3, with µτ the H-measure associated with the sequence (θ−χτ
ε)(τ ⊗τ⊗τ⊗τ). From (4.11)

and (2.1) we obtain, for all i, j, k, l,m, n, p, q = 1, 2, 3,

µτ
ijpq,mnkl = τiτjτpτq τmτnτkτl ν

τ , (4.21)

which gives

M III
ijkl =

τiτjτkτl
µ1

3∑
m,p,q=1

τ2
q τpτmξmξpν

τ

+
(µ1 + λ1)τiτjτkτl
µ1(2µ1 + λ1)

3∑
m,n,p,q=1

τmτnτpτqξmξnξpξqν
τ .

Since |τ | = 1, we deduce from (4.20) that

3∑
m,p,q=1

τ2
q τpτmξmξpν

τ =
3∑

m,p=1

τpτmξmξpν
τ = 0,

which gives

M III
ijkl = τiτjτkτl

(µ1 + λ1)
µ1(2µ1 + λ1)

κν,τ ,

for all i, j, k, l = 1, 2, 3, where κν,τ is given by (4.13). �
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[5] M. Briane, Homogénéisation de materiaux fibrés et multi-couches. Ph.D. thesis, Université Paris 6, France (1990).
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