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Abstract. The superconsistent collocation method, which is based on a collocation grid different
from the one used to represent the solution, has proven to be very accurate in the resolution of
various functional equations. Excellent results can be also obtained for what concerns preconditioning.
Some analysis and numerous experiments, regarding the use of finite-differences preconditioners, for
matrices arising from pseudospectral approximations of advection-diffusion boundary value problems,
are presented and discussed, both in the case of Legendre and Chebyshev representation nodes.
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Introduction

Given a linear differential operator L and a function f , we look for spectral type algebraic polynomial
approximations to the solution u of the problem

Lu = f in ]− 1, 1[. (1)

For simplicity, we assume homogeneous Dirichlet boundary conditions, although other kind of boundary con-
straints can be treated without any problem.

We would like to approximate the solution of (1) by a superconsistent collocation method (see [6,8,9]). This
means that we need two sets of nodes for this discretization. We call the first set of nodes, belonging to ]− 1, 1[,
the representation grid. They are denoted by x = {xj}j=1,...,n−1, where n is the discretization parameter.
This grid is actually used to represent the approximated solution un, belonging to P

0
n, which is the space of

polynomials of degree less than or equal to n, vanishing at x = ±1. Due to this, the polynomial un will be
regarded as a linear combination of the Lagrange basis functions lj ∈ P

0
n, j = 1, . . . , n − 1, with respect to the

set of nodes x, that is:

un =
n−1∑
j=1

un(xj)lj , with lj(xi) = δij , i, j = 1, . . . , n − 1,

where δij is the Kronecker symbol.
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Italy. lorella.fatone@unimo.it; daniele.funaro@unimo.it; s.valentina@tin.it

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.esaim-m2an.org or http://dx.doi.org/10.1051/m2an:2007052

http://www.edpsciences.org
http://www.esaim-m2an.org
http://dx.doi.org/10.1051/m2an:2007052


1022 L. FATONE ET AL.

The second set of nodes, belonging to ]− 1, 1[, is called collocation grid (or residual grid) and denoted by
z = {zi}i=1,...,n−1. The discretized operator Ln is a vector map defined in the following way. For a function v,
the i-th component of Lnv is given by:

{Lnv}i =
n−1∑
j=1

v(xj)(Llj)(zi). (2)

We expect that {Lnv}i is an approximation of (Lv)(zi). Indeed, every time v belongs to P
0
n, it is true that:

{Lnv}i − (Lv)(zi) = 0, i = 1, . . . , n − 1, (3)

since v can be written as v =
∑n−1

j=1 v(xj)lj . Note that, in vector form, (3) is equivalent to write:

Lnv − (Lv)(z) = 0. (4)

The discrete solution un will be then required to satisfy the following equation:

Lnun = f(z),

from where it can be easily deduced a linear system of dimension n − 1, having un(x) as unknown vector.
Usually, the two grids x and z coincide and are related to zeros of orthogonal polynomials, such as Legendre

or Chebyshev polynomials, or, more appropriately, to the zeros of their derivatives. However, we are free to
choose collocation nodes which are different from the representation nodes. Actually, in the superconsistent
method, we are concerned with finding, for a given set of nodes x, a new set of nodes z in such a way that (4) is
true also for functions that do not belong to P

0
n. For instance, we want (4) to be also satisfied for all functions v

which are polynomials of degree n + 1, vanishing at x = ±1, that is v ∈ P
0
n+1. We see later in the paper how

to build up the collocation grid in order to achieve such a superconsistency property.
There are several advantages in using collocation nodes linked to representation nodes in a superconsistent

way. First of all, we improve the numerical performances of the method. The improvement is mild concerning
symmetric type differential operators, such as L = − d2

dx2 , but it is extremely significant in the case of the
advection-dominated operator L = −ε d2

dx2 + β d
dx (see [7]). Many of the results of this paper will deal with the

treatment of this non symmetric case, which is known to be quite nasty when the diffusion coefficient ε is very
small compared to the transported coefficient β.

As well explained in the survey paper by Mund [17], another important feature is the possibility of con-
structing excellent finite-difference preconditioners, especially in the non symmetric case, where in the classical
collocation method this technique does not work properly if the ratio β/ε is large (see [14,15]). The most of the
paper will be devoted to this aspect, both for approximations based on Legendre and Chebyshev representation
nodes. Together with some theory and a series of numerical experiments, we shall point out several remarkable
properties that can be useful for other applications and extensions. Note that, although the superconsistent
method is very effective, very little theory has been developed up to now. This paper, unfortunately restricted
to one-dimensional case, is a first attempt towards a rigorous analysis.

1. Preconditioners for the second derivative operator in the Legendre case

Let L in (1) be the second derivative operator: i.e. L = − d2

dx2 . Thus, for a given function f we consider the
following Dirichlet boundary-value problem:

−u′′ = f in ]− 1, 1[, with u(−1) = u(1) = 0. (5)

A collocation method to approximate u can be constructed by taking the points of the grid x to be the zeros
of P ′

n, where Pn is the Legendre polynomial of degree n. In the literature these nodes are known as Legendre
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Gauss-Lobatto nodes, but here, for brevity, we refer to them as Legendre nodes. Then, we look for un ∈ P
0
n

such that:
−u′′

n(xi) = f(xi) for i = 1, . . . , n − 1. (6)
It is known (see [2]) that un converges to u for n → +∞, and that the rate of convergence is of spectral type,
that is, it only depends on the regularity of u.

We can now introduce another collocation grid z, and consider the problem of finding a new solution wn ∈ P
0
n

such that:
−w′′

n(zi) = f(zi) for i = 1, . . . , n − 1. (7)
As we already mentioned, let us note that (4) is automatically satisfied for any v ∈ P

0
n, whatever is the grid z.

In order to have superconsistency we have to require that (4) is satisfied also for v ∈ P
0
n+1. This means that z

must be in such a way that:

n−1∑
j=1

v(xj)l′′j (zi) − v′′(zi) = 0, i = 1, . . . , n − 1, (8)

for all polynomials v ∈ P
0
n+1. To find z we start by noting that any polynomial v of degree n + 1, vanishing at

x = ±1, can be written as
v = cχn+1 + qn,

where c is a constant, χn+1 = (1 − x2)P ′
n belongs to P

0
n+1, and qn belongs to P

0
n. Hence, by linearity, the

following non linear equation for the unknown z must hold:

Lnχn+1 − (Lχn+1)(z) = 0.

Since χn+1(x) = 0, according to (2), we discover that Lnχn+1 = 0. Therefore, each zi must be solution to the
equation:

(Lχn+1)(zi) = −χ′′
n+1(zi) = 0, (9)

which has exactly n − 1 zeros.
We can say more about these zeros by using the following Sturm-Liouville problem:

−(1 − x2)P ′′
n + 2xP ′

n = n(n + 1)Pn, (10)

that characterizes the family of Legendre polynomials. From (10) we have:

−χ′′
n+1(zi) = −[(1 − x2)P ′

n]′(zi) = n(n + 1)P ′
n(zi) = 0, i = 1, . . . , n − 1.

In other words, we find out that x should be the same as z, that shows that the collocation problem (6) is
already superconsistent. Therefore, we must have: wn = un. This is however a very special case. As we shall
see later on, when L is a different operator (see Sect. 5) or when the nodes x are zeros of other sets of orthogonal
polynomials (see Sect. 2), the representation grid and the superconsistent collocation grid do not coincide.

An interesting result is the following one.

Theorem 1.1. Let L = − d2

dx2 , with homogeneous Dirichlet boundary conditions in x = ±1. Suppose that (4) is
true for any v ∈ P

0
n+1. Then x = z if and only if the points xi, i = 1, . . . , n − 1, are the zeros of P ′

n.

Proof. We have already shown that if x is such that P ′
n(xi) = 0, i = 1, . . . , n − 1, then z = x. To prove

the converse, let us assume that z = x and that Qn is a polynomial of degree n such that Q′
n(xi) = 0,

i = 1, . . . , n − 1. Then v = (1 − x2)Q′
n ∈ P

0
n+1, so that, due to (8), we must have v′′(zi) = v′′(xi) = 0. This

says that Q′
n and v′′, which have the same degree, have common roots. Therefore, they are proportional, i.e.

v′′ = [(1 − x2)Q′
n]′′ = λQ′

n. Integrating, we have:

[(1 − x2)Q′
n]′ = λQn + c,
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where c is a constant. If we look for polynomial solutions, we end up with the set of Legendre polynomials (see,
for instance [5]). Then, it is easy to check that there must be two constants a and b such that Qn = aPn + b.
Hence, the nodes x are the roots of P ′

n. �
We are now concerned with finding the entries of the discretization matrix

An−1 = {−l′′j (xi)}i,j=1,...,n−1, (11)

associated to the linear system arising from (6).
We first give the expression of the polynomials of the Lagrange basis (see, for instance, [10]):

lj(x) = − 1
n(n + 1)Pn(xj)

(1 − x2)P ′
n(x)

x − xj
, j = 1, . . . , n − 1. (12)

Differentiating twice and evaluating at x, we get:

l′′j (xi) = −Pn(xi)
Pn(xj)

2
(xi − xj)2

, i, j = 1, . . . , n − 1, i �= j,

l′′i (xi) = − n

3(1 − x2
i )

, i = 1, . . . , n − 1.

Thus, the matrix An−1 is full and non symmetric. Moreover, it is known to have positive real eigenvalues, the
maximum of them growing as n4 when n grows.

Due to the above considerations, the matrix is ill-conditioned. Hence, it is not suitable when the system
is solved by an iterative method. In the past, very effective preconditioners were proposed (see [1, 11, 17, 18]).
It is sufficient, for example, to consider the matrix Mn−1, of dimension n − 1, related to the finite-difference
discretization of the operator L = − d2

dx2 .
For a given function v vanishing at x = ±1, the i-th component, i = 1, . . . , n − 1, of the vector obtained by

applying Mn−1 to the vector v(x) is given by:

{Mn−1v(x)}i =
−2

xi+1 − xi−1

[
v(xi+1) − v(xi)

xi+1 − xi
− v(xi) − v(xi−1)

xi − xi−1

]
, (13)

with x0 = −1 and xn = 1. It turns out that Mn−1 is tridiagonal.
If we compute the eigenvalues of M−1

n−1An−1, we discover that they are all real and positive. Moreover, the
minimum eigenvalue is always equal to 1. This can be explained by noting that, for n ≥ 2, there is no difference
in applying the spectral operator or the finite-difference operator to the vector obtained by interpolating the
second degree polynomial 1−x2 at the grid x. Denoting by λn the maximum eigenvalue of M−1

n−1An−1, we find
out that this is bounded independently of n by a constant. The proof of this fact is provided in [14, 15]. We
report in Table 1, the values of λn for various n.

The extension of these results in the case of the Laplace operator can be also found in [14] and detailed
numerical experiments are reported in [7].

2. Preconditioners for the second derivative operator in the Chebyshev case

Another collocation method for problem (5) is obtained by taking the points of the grid x to be the zeros of
T ′

n, where Tn is the Chebyshev polynomial of degree n. These zeros are known as Chebyshev Gauss-Lobatto
nodes, and we briefly refer to them as Chebyshev nodes. We recall that, in this case, the exact expression of
these zeros is known, i.e.:

xj = − cos θj where θj =
jπ

n
, j = 1, . . . , n − 1.
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Table 1. Maximum preconditioned eigenvalues for the collocation method at the zeros of P ′
n.

n λn n λn

5 1.72 13 2.11
6 1.81 14 2.13
7 1.88 15 2.15
8 1.93 16 2.17
9 1.98 17 2.18
10 2.02 18 2.20
11 2.05 19 2.21
12 2.08 20 2.26

In addition, the Chebyshev polynomials satisfy the following Sturm-Liouville problem:

(1 − x2)T ′′
n − xT ′

n + n2Tn = 0,

from which, by differentiation, we obtain the two relations:

[(1 − x2)T ′
n]′ = −(n2Tn + xT ′

n), (14)

[(1 − x2)T ′
n]′′ = −[(n2 + 1)T ′

n + xT ′′
n ]. (15)

In order to recover the new superconsistent grid z, we proceed as in Section 1. We can easily deduce the
equation (9), where now χn+1 is given by χn+1 = (1 − x2)T ′

n. Taking into account (15), we can write:

−χ′′
n+1(zi) = 0 ⇔ [(n2 + 1)T ′

n(zi) + ziT
′′
n (zi)] = 0, i = 1, . . . , n − 1. (16)

By virtue of Theorem 1.1 in Section 1, the grid z is now different from the grid x. In [8], the following estimate
regarding the location of the nodes z is given:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xj < zj < ξj+1, j = 1, . . . , [n/2],

ξj < zj < xj , j = [n/2] + 1, . . . , n − 1,

zj = 0, n even and j = n/2,

(17)

where [ ∗ ] is the integer part of ∗ and ξj = − cos (2j−1)π
2n , j = 1, . . . , n. The computation of the superconsistent

nodes is easily carried out using an iterative method combined with the recurrence formulas for Chebyshev
polynomials. To this purpose, the bounds given in (17) are helpful for setting the initial guesses. For n = 10,
we show in Figure 1 the distribution of the nodes xi, i = 1, . . . , 9 (black circles) and that of the superconsistent
Chebyshev nodes zi, i = 1, . . . , 9 (white circles). Due to the difference between the representation grid x and
the collocation grid z, the solution un of problem (6) does not coincide with the solution wn of problem (7).
In [8], some numerical tests show that, in the L2 and L∞ norms, the error |u − wn| decay faster than the error
|u−un|, and this last quantity is known to converge to zero exponentially. We discuss some convergence results
in the next section. A complete theoretical convergence analysis of the discrete superconsistent Chebyshev
solution wn to the exact solution u for n → ∞ can be found in [4]. Unfortunately, let us note that the error
estimate proven in [4] is not optimal. However the study of the Lebesgue constants shown in Section 4 and
the numerical experiments of Section 5 actually ensure an optimal decay of the error. This means that the
theoretical results in [4] could be improved upon, although this kind of analysis looks quite nasty.
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Figure 1. The grid x (black circles) and the grid z (white circles) for the superconsistent
Chebyshev method with n = 10.

The improvement in convergence is one of the reasons to prefer the superconsistent approach. Another reason
emerges from the study of the preconditioned eigenvalues. As in Section 1, we denote by An−1 the spectral
discretization matrix (11) associated with the Chebyshev nodes. On the other hand, we now have a new matrix
Bn−1:

Bn−1 = {−l′′j (zi)}i,j=1,...,n−1.

The polynomials of the Lagrange basis with respect to the grid x are given by:

lj(x) = − (−1)n+j

n2

(1 − x2)T ′
n(x)

x − xj
, j = 1, . . . , n − 1. (18)

Differentiating twice and evaluating at x, we obtain the entries of the matrix An−1:

l′′j (xi) = −(−1)i+j 2 − xixj − x2
i

(xi − xj)2(1 − x2
i )

, i �= j, i = 1, . . . , n − 1,

l′′i (xi) =
−1

3(1 − x2
i )

(
n2 + 2 +

3x2
i

1 − x2
i

)
, i = 1, . . . , n − 1.

Evaluating instead at the new nodes z yields the entries of the matrix Bn−1:

l′′j (zi) =
−2(−1)n+j

n2

(
n2Tn(zi)(zi − xj) + (1 − zixj)T ′

n(zi)
(zi − xj)3

)

=
−2(−1)j

n

(
n(zi − xj) cosnζi − (1 − zixj)T ′

n(zi)
(zi − xj)3

)
, with zi = − cos ζi i = 1, . . . , n − 1,

except for n even and i = j = n/2, where z(n/2) = x(n/2) = 0 and

l′′n/2(0) = −n2 + 2
3

·

Let now Mn−1 be the matrix of dimension n−1 given by (13), where x is the Chebyshev grid. Experimentally,
we can check that the eigenvalues of both the two matrices M−1

n−1An−1 and M−1
n−1Bn−1 are real, positive and very

well-behaved. Let λA
n,m and λB

n,m, m = 1, . . . , n− 1, be the eigenvalues, ordered increasingly, of M−1
n−1An−1 and

M−1
n−1Bn−1 respectively. In [11], the following explicit expression for the Chebyshev preconditioned eigenvalues

λA
n,m, m = 1, . . . , n − 1, is given:

λA
n,m = n(n + 1)

sin2( π
2n ) cos( π

2n )

sin(mπ
2n ) sin (m+1)π

2n

, m = 1, . . . , n − 1.

Consequently, the following estimate holds:

1 ≤ λA
n,m < π2/4, m = 1, . . . , n − 1.
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Table 2. Maximum preconditioned eigenvalues for the standard Chebyshev collocation
method (λA

n,n−1), compared to those of the superconsistent Chebyshev collocation method
(λB

n,n−1).

n λA
n,n−1 λB

n,n−1 n λA
n,n−1 λB

n,n−1

5 1.90 1.72 13 2.26 2.13
6 2.00 1.82 14 2.28 2.15
7 2.07 1.89 15 2.29 2.17
8 2.13 1.95 16 2.30 2.18
9 2.17 2.00 17 2.31 2.20
10 2.20 2.04 18 2.32 2.21
11 2.22 2.07 19 2.33 2.22
12 2.24 2.10 20 2.33 2.24

For the superconsistent preconditioned eigenvalues λB
n,m, m = 1, . . . , n−1, we did not find any explicit expression.

However, numerical experiments show an even better result, that is:

1 ≤ λB
n,m < λA

n,m, m = 1, . . . , n − 1.

In Table 2 we give the values of the maximum preconditioned eigenvalues λA
n,n−1 and λB

n,n−1 for various n. We
note that λA

n,1 = 1 and λB
n,1 = λB

n,2 = 1. It is also worthwhile to note that the matrix Mn−1 does not depend
on the grid z.

3. Convergence analysis for the superconsistent Chebyshev method

The convergence, for n → +∞, of the discrete solution un, obtained by collocation at the Chebyshev nodes,
to the exact solution u of problem (5) is proved in [2], where estimates showing the spectral decay of the error
are given. Before briefly discussing some convergence results of the superconsistent discrete solution wn to u for
n → +∞ (we refer to [4] for a complete and detailed convergence analysis), we introduce here some interesting
lemmas which play an important role in the proof of convergence. In particular a suitable quadrature formula
is going to be introduced and studied.

We will denote by Pn the space of polynomials of degree less than or equal to n.

Lemma 3.1. Let χn+1 = (1 − x2)T ′
n. Then, the following orthogonality relation holds:

∫ 1

−1

χ′′
n+1qnω dx = 0, with ω(x) =

1√
1 − x2

,

for all qn polynomials of degree n with qn(±1) = 0 and q′n(±1) = 0.

Proof. Let qn be a polynomial of degree n with qn(±1) = 0 and q′n(±1) = 0. Then, we can write

qn(x) = (1 − x2)sn−2(x),

where sn−2 is a polynomial of degree n − 2 with sn−2(±1) = 0. Integrating by parts twice and using the
boundary constraints, we have:

∫ 1

−1

χ′′
n+1qnω dx =

∫ 1

−1

χ′′
n+1(1 − x2)sn−2ω dx =

∫ 1

−1

χn+1

[
(1 − x2)sn−2ω

]′′
dx. (19)
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Now, we recall that the derivatives of Chebyshev polynomials form a set of orthogonal functions (see, for
instance, [19]), i.e.: ∫ 1

−1

T ′
nT ′

m(1 − x2)ω dx = 0, ∀ n �= m.

Thus, we have: ∫ 1

−1

T ′
nr′n−1(1 − x2)ω dx = 0, ∀ rn−1 ∈ Pn−1.

Recalling the definition of χn+1, we can write:

∫ 1

−1

χn+1

[
(1 − x2)sn−2ω

]′′
dx =

∫ 1

−1

T ′
n

[
(1 − x2)sn−2ω

]′′
ω

(1 − x2)ω dx = 0. (20)

The last equality in (20) is true because [(1−x2)sn−2ω]′′/ω is a polynomial of degree less then or equal to n−1,
under the hypothesis sn−2(±1) = 0. Combining with (19) this concludes the proof. �

This lemma provides a link between the Chebyshev superconsistent grid and the so called Sobolev-type
orthogonal polynomials (see [13, 16]). In fact, given a function f , the set of nodes z is related to a Gauss
integration formula of the type:

∫ 1

−1

fω dx ≈
n∑

i=0

f(zi)ωi + f ′(−1)ω̃0 + f ′(1)ω̃n, (21)

where z0 = −1, zn = 1 and ω̃0, ω̃n and ωi, i = 0, . . . , n, are suitable weights. As a matter of fact, we can prove
the following results.

Lemma 3.2. The quadrature formula (21) is exact if f is a polynomial of degree less than or equal to 2n − 1.

Proof. Let us choose a Lagrange type polynomial basis as follows:

l̂i ∈ Pn+2, i = 0, . . . , n, such that: l̂i(zj) = δij , l̂′i(±1) = 0, j = 1, . . . , n − 1,

l̃0 ∈ Pn+2 such that: l̃0(zi) = 0, i = 0, . . . , n, l̃′0(−1) = 1, l̃′0(1) = 0,

l̃n ∈ Pn+2 such that: l̃n(zi) = 0, i = 0, . . . , n, l̃′n(−1) = 0, l̃′n(1) = 1.

Afterwards, we define:

ωi =
∫ 1

−1

l̂iω dx, i = 0, . . . , n, ω̃0 =
∫ 1

−1

l̃0ω dx, ω̃n =
∫ 1

−1

l̃nω dx.

With this setting it should be clear that formula (21) is exact for any polynomial f of degree n + 2. Let us
also note that ω̃0 = −ω̃n. To prove the exactness up to the degree 2n − 1, let us consider the two following
interpolation operators. Let În+2f be the interpolant of f constructed with the help of the Lagrange basis
introduced above, i.e.:

(În+2f)(zi) = f(zi), i = 0, . . . , n, (În+2f)′(±1) = f ′(±1).

Let I
{z}
n−2f be the interpolant of f at the nodes z, i.e.:

(
I
{z}
n−2f

)
(zi) = f(zi), i = 1, . . . , n − 1.
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First of all, let us prove that the quadrature formula (21) is exact for any polynomial f of degree 2n−1 satisfying
f(±1) = 0 and f ′(±1) = 0. Actually, in this case we can write f = (1 − x2)2g with g ∈ P2n−5. Since:

În+2f = (1 − x2)2I{z}n−2g,

we have:
f − În+2f = (1 − x2)2[g − I

{z}
n−2g] = (1 − x2)2χ′′

n+1h, with h ∈ Pn−4.

Lemma 3.1 implies that: ∫ 1

−1

(1 − x2)2χ′′
n+1hω dx = 0,

hence ∫ 1

−1

fω dx =
∫ 1

−1

În+2fω dx =
n∑

i=0

f(zi)ωi + f ′(−1)ω̃0 + f ′(1)ω̃n =
n−1∑
i=1

f(zi)ωi,

where we used that the formula is exact up to degree n + 2. This shows that the quadrature formula (21) is
exact for any f ∈ P2n−1 with f(±1) = 0 and f ′(±1) = 0.

Now, for an arbitrary f ∈ P2n−1, we can write

f = f̄ + r3, f̄ ∈ P2n−1, r3 ∈ P3,

with
f̄(±1) = 0, f̄ ′(±1) = 0,

and
r3(−1) = f(−1), r3(1) = f(1), r′3(−1) = f ′(−1), r′3(1) = f ′(1).

In this case we obtain:
∫ 1

−1

fω dx =
∫ 1

−1

f̄ω dx +
∫ 1

−1

r3ω dx =
n∑

i=0

f̄(zi)ωi + f̄ ′(−1)ω̃0 + f̄ ′(1)ω̃n

+
n∑

i=0

r3(zi)ωi + r′3(−1)ω̃0 + r′3(1)ω̃n =
n∑

i=0

f(zi)ωi + f ′(−1)ω̃0 + f ′(1)ω̃n,

so that the quadrature formula (21) is exact for any polynomial f ∈ P2n−1. �

The theoretical proof of the convergence, for n → +∞, of the discrete solution wn of (7) (obtained by
collocation at the superconsistent Chebyshev grid) to the solution u of (5) is basically obtained from the
properties of the quadrature formula (21). More specifically the knowledge of the behavior of nodes and weights
of that formula, and in particular the fact that the weights in (21) are positive (except one), are of crucial
relevance for the development of a convergence theory. The proof of these important facts is actually given
in [4]. We review here the main steps of the convergence proof. For a more rigorous analysis we refer to
Theorem 9 in [4].

Let us begin by observing that from (7) we can write:

−w′′
n = I

{z}
n−2f in ]− 1, 1[, (22)

since w′′
n and I

{z}
n−2 have both degree n − 2 and coincide in n − 1 points.

On the other hand, denoting by I
{x}
n−2f the interpolant of f at the nodes x, i.e.:

(
I
{x}
n−2f

)
(xi) = f(xi), i = 1, . . . , n − 1,
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we have that
−u′′

n = I
{x}
n−2f in ]− 1, 1[. (23)

After introducing the weighted Sobolev spaces L2
ω = L2

ω(−1, 1) and H1
0,ω = H1

0,ω(−1, 1) in the usual way, by the
triangle inequality, we have:

‖u − wn‖H1
0,ω

≤ ‖u − un‖H1
0,ω

+ ‖un − wn‖H1
0,ω

. (24)

We already know that the first term on the right-hand side of (24) converges to zero, so that we now estimate
the second one. From (22) and (23) we get:

−(un − wn)′′ = I
{x}
n−2f − I

{z}
n−2f in ]− 1, 1[. (25)

By an inequality proven in [2] (see also [5], p. 192), equation (25) implies:

‖un − wn‖2
H1

0,ω
≤ C1

∫ 1

−1

(un − wn)′((un − wn)ω)′dx

= −C1

∫ 1

−1

(un − wn)′′(un − wn)ω dx = C1

∫ 1

−1

(
I
{x}
n−2f − I

{z}
n−2f

)
(un − wn)ω dx,

where C1 is a constant not depending on n.
In [4], the following inequality has been proven:

‖un − wn‖H1
0,ω

≤ C2
1√
n
‖f − I

{x}
n−2f‖L∞ , (26)

for some constant C2 not depending on n. The above inequality, that strongly uses the properties of the
quadrature formula (21), is crucial to end the convergence proof, since from (24) and (26) we obtain:

‖u − wn‖H1
0,ω

≤ ‖u − un‖H1
0,ω

+ C3
1√
n
‖f − I

{x}
n−2f‖L∞ , (27)

for some positive constant C3 not depending on n.
In conclusion, the spectral convergence, for n → +∞, of wn to the exact solution u comes from the conver-

gence, for n → +∞, of un to u and of I
{x}
n−2f to f . This is a well-established result (see, for example, [3]).

Let us remark that the error estimate (27) is not optimal, due to the term n−1/2 appearing on the right-hand
side of that inequality. Nevertheless, numerical experiments, part of them reported in the coming two sections,
show that the error converges to zero more rapidly than estimated.

4. Lebesgue constants

In this section we present some numerical results about the Lebesgue constant associated with the distribu-
tions of nodes examined in the previous sections.

We remind that the Lebesgue constant associated with a generic distribution of n + 1 nodes xj , j = 0, . . . , n
in [−1, 1], with x0 = −1 and xn = 1, is defined as:

Λn = max
x∈[−1,1]

n∑
j=0

|lj(x)|,
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Figure 2. Initial (equispaced) distribution and the first two iterations of the recursive algo-
rithm for n = 16.

where {lj}j=0,...,n is the Lagrange basis with respect to the set of nodes. An equivalent definition is:

Λn = sup
f∈C0([−1,1]),f �=0

‖Inf‖L∞(−1,1)

‖f‖L∞(−1,1)
,

where In : C0([−1, 1]) → Pn is the interpolation operator at the nodes.
It is known (see [12]) that, for any given n ≥ 2, there exists a unique distribution of nodes minimizing the

Lebesgue constant, although its computation turns out to be quite a hard optimization problem. Both the
distribution of the Legendre Gauss-Lobatto nodes (zeros of (1 − x2)P ′

n) and the one of the Chebyshev Gauss-
Lobatto nodes (zeros of (1 − x2)T ′

n) are very close to minimize Λn. Another very good distribution (see [12]),
probably the best from a practical point of view, is the one obtained by taking the zeros of Tn+1 and applying
a dilation in order to fit the first and the last of these points to the endpoints ±1. This is achieved by dividing
the zeros of Tn+1 by cos (π/2(n + 1)). Equispaced nodes give instead very high values of the Lebesgue constant.

In Table 3 we show the values of the Lebesgue constant for different distributions of nodes. We note that
the set of superconsistent Chebyshev nodes zi, i = 1, . . . , n − 1, introduced in Section 2, with the addition of
the two points z0 = −1 and zn = 1, has a Lebesgue constant which is less than the one associated with the
distribution of the Chebyshev Gauss-Lobatto nodes.

In [9] the following iterative procedure was suggested. Given an initial distribution x of n − 1 points in
]− 1, 1[, we proceed according to the following:

Recursive algorithm

1. Construct χn+1 to be the polynomial of degree n + 1, vanishing at x ∪ {±1};
2. Compute the grid z given by the n − 1 zeros of χ′′

n+1;
3. Replace the grid x by z;
4. Go to 1.

We noticed in Section 1 (Thm. 1.1) that we expect to have x = z only when x is the set of the zeros of the
derivative of the Legendre polynomial of degree n. Therefore, if we start from this set, the sequence turns out
to be constant. Thus, the Gauss-Lobatto Legendre distribution is a stable fixed-point and the unique limit of
the sequence constructed using the recursive algorithm.
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Table 3. Lebesgue constant for different distribution of nodes: (1) equispaced; (2) Chebyshev
Gauss-Lobatto: zeros of T ′

n ∪ {±1}; (3) superconsistent Chebyshev: zeros of χ′′
n+1 ∪ {±1} with

χn+1 = (1 − x2)T ′
n; (4) Legendre Gauss-Lobatto: zeros of P ′

n ∪ {±1}; (5) dilated Gauss: zeros
of Tn+1 divided by cos (π/2(n + 1)); (6) optimal distribution.

n (1) (2) (3) (4) (5) (6)
7 6.929 2.202 2.107 1.972 1.866 1.852
8 10.945 2.274 2.188 2.045 1.941 1.925
9 17.848 2.361 2.282 2.120 2.008 1.996
10 29.899 2.420 2.348 2.180 2.068 2.053
11 51.214 2.489 2.422 2.241 2.123 2.129
12 89.324 2.539 2.476 2.291 2.174 2.170
13 158.102 2.595 2.537 2.342 2.221 2.205
14 283.211 2.638 2.583 2.386 2.265 2.248
15 512.351 2.686 2.634 2.430 2.306 2.291
16 934.533 2.724 2.675 2.468 2.344 2.328
17 1716.460 2.766 2.719 2.507 2.381 2.364
18 3171.365 2.800 2.756 2.541 2.415 2.398
19 5889.585 2.837 2.795 2.575 2.448 2.429
20 10 986.700 2.867 2.827 2.606 2.479 2.463

Table 4. Lebesgue constants, for n = 16, relative to the distributions of points in [−1, 1],
obtained by applying 19 iterations of the recursive algorithm of Section 4. The first value
(iteration 0) refers to the Lebesgue constant of the equispaced distribution.

Iteration Lebesgue constant Iteration Lebesgue constant
0 934.53 10 2.48
1 126.79 11 2.43
2 29.90 12 2.40
3 11.71 13 2.39
4 6.40 14 2.39
5 4.34 15 2.39
6 3.39 16 2.41
7 2.97 17 2.42
8 2.72 18 2.43
9 2.57 19 2.44

It is interesting to observe that such a limit distribution has quite a large basin of attraction, since the
procedure converges even if the starting grid is equispaced. In Figure 2, for n = 16, we compare the grids
corresponding to the initial equispaced distribution and two subsequent iterations. The last of them is already
very similar to a Gauss type distribution of nodes. The convergence is fast as we can check from Table 4,
where we give the Lebesgue constants relative to the sequence of grids obtained starting from the equispaced
grid. These numbers are rapidly approaching the value 2.468 (see Tab. 3, column (4) for n = 16). Note also
that, during the iteration process, there are distributions with a Lebesgue constant lower than the limit value,
remaining, of course, above the minimum which is 2.328 (see Tab. 3, column (6) for n = 16). Similar results
hold for different values of n.
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5. Superconsistent discretizations of the advection-diffusion operator

Let now L in (1) be the advection-diffusion operator: i.e. L = −ε d2

dx2 +β d
dx , where ε > 0, β are two constants.

Therefore, for a given function f , we will consider the Dirichlet boundary-value problem:

−εu′′ + βu′ = f in ]− 1, 1[, with u(−1) = u(1) = 0. (28)

Based on the same ideas developed in the previous sections, we can find the approximated solution of (28)
following two different strategies. The classical one consists in finding a discrete function un ∈ P

0
n, solution of

the following standard collocation problem:

[−εu′′
n + βu′

n](xi) = f(xi) for i = 1, . . . , n − 1, (29)

where the nodes xi, i = 1, . . . , n − 1, can be either the Legendre or the Chebyshev nodes, that is the zeros of
P ′

n or T ′
n respectively.

The second strategy introduces a special superconsistent grid z and requires the determination of a new
solution wn ∈ P

0
n such that:

[−εw′′
n + βw′

n](zi) = f(zi) for i = 1, . . . , n − 1. (30)

Arguing as in (9), the collocation grid z is determined by solving the equation:

(Lχn+1)(zi) = −εχ′′
n+1(zi) + βχ′

n+1(zi) = 0, i = 1, . . . , n − 1, (31)

where χn+1 = (1 − x2)P ′
n, if we look for a superconsistent Legendre grid, or χn+1 = (1 − x2)T ′

n if we are
interested in working with a superconsistent Chebyshev grid.

In particular, for the superconsistent Legendre grid, thanks to (10), we have:

(Lχn+1)(zi) = n(n + 1)[εP ′
n(zi) − βPn](zi) = 0, i = 1, . . . , n − 1.

The above equation has actually n distinct zeros, but one of them is not interesting to us since, in general, is
outside the interval [−1, 1] (it goes to infinity for β tending to zero). We address to [6] for more information
and other conjectures about the exact localization of these nodes. In short, each zi is positioned upwind with
respect to the corresponding point xi. We obtain zi = xi, i = 1, . . . , n − 1, if and only if β = 0.

In the Chebyshev case, by writing (14) and (15) in trigonometric way, it is easy to see that:

−εχ′′
n+1(zi) + βχ′

n+1(zi) = 0 ⇔ F (ξ) = 0, i = 1, . . . , n − 1,

where the function F is defined as follows:

F (ξ) = −ε(n2 + 1)n sin(nξ) sin2 ξ + εξn cos ξ sin(nξ)

− εξn2 sin ξ cos(nξ) − βn2 cos(nξ) sin3 ξ − βn cos ξ sin(nξ) sin2 ξ. (32)

Also this equation has n zeros. By numerical evidence it turns out that n − 1 of these zeros belong to ]− 1, 1[
for any choice of the coefficients β and ε. We eliminate the unique zero that tends to infinity when β goes to
zero. This choice is motivated by the fact that, when β = 0, we must reobtain the zeros given by (16).

To find the zeros of F defined in (32) it is helpful to have some more information about their location. Let
us suppose for instance that β > 0, and let us denote by [aj , bj ], j = 1, . . . , n− 1, the n− 1 intervals defined by:

aj =
2j − 1

2n
π, bj =

2j + 1
2n

π, j = 1, . . . , n − 2,
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Figure 3. The grid x (black circles) and the grid z (white circles) for the superconsistent
Chebyshev method with n = 4, β = 1 and three different choices of the diffusion parameter,
namely: ε = 1, ε = 0.1 and ε = 0.01.

and

an−1 =
n − 2

n
π, bn−1 =

n − 1
n

π.

Numerical experiments bring to the conclusion that each interval contains a unique zero of F . From these
estimates we can deduce that each zi is located upwind with respect the corresponding point xi. Figure 3
shows, for n = 4 and β = 1, the distribution of the nodes zi, i = 1, . . . , 3 (white circles) and the one of the
nodes xi, i = 1, . . . , 3 (black circles) for ε = 1, ε = 0.1 and ε = 0.01. Let us note again that, in the Chebyshev
case, when β = 0, we do not have the equivalence zi = xi, i = 1, . . . , n − 1 as in the Legendre case.

It is not difficult to write the linear systems associated to (29) and (30) by differentiating the Lagrange
polynomials (see (12) and (18)) and evaluating at the collocation nodes. The discretization matrices associated
to the linear systems arising from (29) and (30) are given respectively by:

An−1 = {−ε l′′j (xi) + β l′j(xi)}i,j=1,...,n−1,

and

Bn−1 = {−ε l′′j (zi) + β l′j(zi)}i,j=1,...,n−1. (33)

For the advection-diffusion problem the use of the superconsistent method (both in the Legendre and the
Chebyshev case) brings to a substantial improvement when compared to the standard collocation method. For
the one-dimensional Legendre case, some numerical tests were given in [6], and, for two-dimensional problems,
in [7]. Here we show some tests concerning the Chebyshev case.

It is known that the standard collocation method is not stabilized with respect to the parameter ε, by meaning
that wide oscillations are observed when n is not sufficiently large and ε is small compared to |β|. In Figure 4
we show, for example, the exact solution of problem (28) when

f = 1, ε = 0.001, β = 1.
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Figure 4. Exact solution of problem (28) with f = 1, ε = 0.001 and β = 1.
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Figure 5. Approximated solution un (left) and wn (right) of problem (28) with f = 1, ε =
0.001, β = 1 and n = 4 obtained with standard collocation (left) and superconsistent collocation
(right) respectively.

The behavior of the approximated solution un obtained by collocating at the standard Chebyshev nodes xi,
i = 1, . . . , n − 1, is shown in Figure 5 for n = 4 and Figure 6 for n = 11. As expected, the boundary layer at
the point x = 1 gives rise to inaccurate solutions. Moreover, un blows up for n fixed and ε tending to zero,
which means that there is no stabilization with respect to ε. The situation definitely changes after collocating
at the superconsistent Chebyshev nodes zi, i = 1, . . . , n− 1 (see Figs. 5 and 6). As the reader can see, now the
approximated solution wn is bounded independently of ε. More accuracy can be only obtained by increasing n.
We should note, in fact, that, for ε fixed, both un and wn converge to u exponentially. The superconsistent
approach is therefore suggested when, for practical reasons, n cannot be larger than a certain limit.

We conclude this section showing that also in the case of the advection-diffusion operator the use of super-
consistent grids allows the construction of very-effective finite-difference preconditioners.

Let us consider the matrix Mn−1, of dimension n − 1, related to the finite-difference discretization of the
advection-diffusion operator L = −ε d2

dx2 + β d
dx .
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Figure 6. Approximated solution un (left) and wn (right) of problem (28) with f = 1,
ε = 0.001, β = 1 and n = 11 obtained with standard collocation (left) and superconsistent
collocation (right) respectively.

Table 5. Comparison of the maximum preconditioned eigenvalues in the case of the advection-
diffusion equation when β = 1.

n ε Collocation at x Collocation at z
8 2.125 1.952
16 2.297 2.187
24 1 2.355 2.275
32 2.383 2.321
64 2.426 2.392
8 3.429 1.001
16 2.165 + 0.696 i 2.013
24 0.1 2.148 + 0.540 i 2.170
32 2.182 + 0.431 i 2.253
64 2.323 2.372
8 14.240 1.546 + 0.071 i
16 2.594 + 1.320 i 1.823
24 0.05 2.323 + 1.164 i 2.009
32 2.256 + 0.970 i 2.126
64 2.279 + 0.549 i 2.322
8 negative real part 1.410 + 0.030 i
16 134.15 1.542 + 0.035 i
24 0.01 5.362 + 3.427 i 1.658
32 4.148 + 3.828 i 1.746
64 2.760 + 2.823 i 2.045

For a given function v vanishing at x = ±1, the i-th component, i = 1, . . . , n − 1, of the vector obtained by
applying Mn−1 to the vector v(x) is given by:

{Mn−1v(x)}i =
−2ε

xi+1 − xi−1

[
v(xi+1) − v(xi)

xi+1 − xi
− v(xi) − v(xi−1)

xi − xi−1

]

+ β

[
v(xi−1)

2zi − xi − xi+1

(xi−1 − xi)(xi−1 − xi+1)
+ v(xi)

2zi − xi−1 − xi+1

(xi − xi−1)(xi − xi+1)

+ v(xi+1)
2zi − xi − xi−1

(xi+1 − xi−1)(xi+1 − xi)

]
, (34)
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Figure 7. Spectra of the preconditioned matrices obtained by standard and superconsistent
collocation respectively, when ε = 0.01, β = 1 and n = 32 (left), n = 64 (right).

|
-1 0 +1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ |• • • • • • • • • • •

|
-1 0 +1

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ |• • • • • • • • • • •

Figure 8. The grid x (black circles) and the grid z (white circles) for the superconsistent
Chebyshev method with n = 12, ε = 0.05 and β(x) = x2 − 1 (top), β(x) = x + 0.5 (bottom).

with x0 = −1 and xn = 1. Concerning the choice of the collocation points zi, i = 1, . . . , n − 1, we used the
same z recovered from the pseudospectral approximation. These nodes are the zeros of T ′

n for the standard
collocation method, or the zeros given by (31), where χn+1 = (1 − x2)T ′

n, for the superconsistent method. An
alternative would be to use the nodes making superconsistent the finite-difference approximation, which are
obtained by looking for the zeros of −εχ′′

3 +βχ′
3 where χ3(x) = (x−xi−1)(x−xi)(x−xi+1). This second choice

is not as effective as the first one, so that it will be not implemented in the experiments below.
In Table 5, for β = 1 and different values of n and ε, we compare the maximum (i.e., the one with the

highest complex norm) preconditioned eigenvalue, both in the standard collocation case and the superconsistent
collocation case. Concerning the second method we observe a clear improvement, bringing to eigenvalues
bounded with respect to both ε and n. In addition, Figure 7 shows the distribution in the complex plane
of the eigenvalues for ε = 0.01, β = 1 when n = 32 and n = 64. We used the symbol ∗ for the standard
Chebyshev collocation and the symbol ◦ for the superconsistent collocation. It is worthwhile to remark that
such computations have been carried out in double precision. Actually these kind of matrices are very sensitive
to roundoff errors, as detailed in [20]. Thus, it is not excluded that extra care is needed in order to get more
reliable results.

For the variable coefficient case the organization of the job is going to be more tricky, although we obtain
perfectly similar results. The superconsistent nodes are shifted left or right according to the sign of the coefficient
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Figure 9. Spectra of the preconditioned matrices obtained by standard and superconsistent
collocation respectively, when n = 12, ε = 0.05 and β(x) = x2 − 1 (left), β(x) = x+ 0.5 (right).

β = β(x) in (28). Each collocation node zi, i = 1, . . . , n − 1, can be independently computed, according to
the local direction and magnitude of the advective term β. Finally, the discretization matrix is assembled as
in (33) and the preconditioner as in (34) where the coefficient β is evaluated in zi, i = 1, . . . , n−1. Hints for the
implementation are also given in [7], where the Legendre superconsistent case with variable coefficients is also
discussed. We provide here some results. Figure 8 shows, for n = 12, ε = 0.05, β(x) = x2 +1 and β(x) = x+0.5,
the distribution of the nodes zi, i = 1, . . . , 11 (white circles) and the one of the nodes xi, i = 1, . . . , 11 (black
circles). The displacement in the complex plane of the corresponding eigenvalues is shown in Figure 9, where we
used the symbol ∗ for the standard Chebyshev collocation and the symbol ◦ for the superconsistent collocation.
Note that, in the second case, β changes sign in ]− 1, 1[. Therefore, both −1 and +1 are outflow boundary
points. The corresponding collocation nodes zi, i = 1, . . . , n − 1 are of upwind type, thus, as one can see in
Figure 8, part of them is shifted on the right and the remaining is shifted on the left.
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