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LOCAL ASYMPTOTIC NORMALITY PROPERTY FOR LACUNAR WAVELET
SERIES MULTIFRACTAL MODEL ∗

Jean-Michel Loubes1 and Davy Paindaveine2

Abstract. We consider a lacunar wavelet series function observed with an additive Brownian motion.
Such functions are statistically characterized by two parameters. The first parameter governs the
lacunarity of the wavelet coefficients while the second one governs its intensity. In this paper, we
establish the local and asymptotic normality (LAN) of the model, with respect to this couple of
parameters. This enables to prove the optimality of an estimator for the lacunarity parameter, and to
build optimal (in the Le Cam sense) tests on the intensity parameter.
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1. Introduction

In the last decade random wavelet series have proved a powerful tool in signal processing since many signals,
even very irregular functions, can be accurately represented in a wavelet basis using few coefficients, see for
instance [2,5,6,11] or [7]. In particular random wavelet series provide good functional models for a large number
of difficult issues. The distribution of these random wavelet coefficients describe the properties of the corre-
sponding function. In many situations, a parametric distribution is chosen and inference on the parameters is
thus needed to build a coherent model on observed data. In this paper, we focus on the probabilistic properties,
local asymptotic normality, of a special case of lacunar random wavelet series in order to study the optimality
of estimates of the distribution of the wavelet coefficients.

So, we consider the model initially described in [11]. Consider a wavelet basis ψjk, j ≥ 0, k = 0, . . . , 2j − 1
and a couple of parameters θ = (α, η)T ∈ Θ := (0, 1)2. Then, draw random wavelet coefficients wjk, k =
0, . . . , 2j − 1 following the rescaled Bernoulli distribution wjk ∼ 2(η−1)jδ2−αj + (1 − 2(η−1)j)δ0, where δ is the
Dirac measure. One of the main interest of this yet simple model is that the corresponding random function fn =∑log2 n

j=1

∑2j−1
k=0 wjkψjk converges to a random function which has multifractal properties, as studied in [1,3,11,18].

Moreover, its multifractal behaviour depends on the choice of both the lacunarity coefficient η and the intensity
parameter α.
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In this paper, we assume that we observe noisy coefficients of this function in the following model

djk = wjk + εjk, j = 0, . . . , j1 = log2(n), k = 0, . . . , 2j − 1. (1.1)

wjk are the true wavelet coefficients while εjk are i.i.d centered Gaussian random variables with variance 2−jσ2,
taken independent from the wjk’s. Hence the data are given by the triangular array dn = (djk)1≤j≤j1,0≤k≤2j−1

of independent random variables, such that, for any j, k the distribution of djk is the following Gaussian mixture:

djk ∼ 2(η−1)jN (2−αj , 2−jσ2) + (1 − 2(η−1)j)N (0, 2−jσ2), (1.2)

where θ = (α, η)T ∈ (0, 1)2 is the unknown parameter vector, σ > 0 is known and, as usual, N (m, ξ2) denotes
the Gaussian distribution with mean m and standard deviation ξ.

In the statistical literature, very little is known about the estimation of this kind of multifractal functions,
drawn from model (1.2). In a previous work [8], nonparametric estimation of a realization of such a random
process is tackled in a Bayesian setting. Roughly speaking, the Bayesian nonparametric posterior estimate
is built on a ranked thresholding procedure, and its rate of convergence is different from the usual rates in
nonparametric estimation of smooth functions. In the parametric framework, a first study to construct esti-
mators of the parameters of the mixture (1.2) is conducted in [9]. The estimators of the parameter of interest
are asymptotically normal but their rate of convergence is not the parametric rate of convergence but rather
depends on the values of θ. The main difference with usual Gaussian mixtures, well studied in a large number
of papers (see for instance [12,13,20] or [10]), comes from the fact that both the mixture probabilities and the
mean of the distribution depend on the number of observations, which hampers the estimation and requires a
particular attention.

Hence, in this work, we focus here on statistical inference for empirical estimation of the hyperparameters and
on the efficiency of this estimation procedure. More precisely, we aim at proving Local Asymptotic Normality
(LAN) for the observation model and comparing the different rates of convergence for some estimators. We
refer to [21] for a general definition of LAN property. In particular, we prove optimality in the Le Cam sense
of an estimator of the lacunarity parameter built only with the wavelet coefficients of the last resolution level
j1(n), which improves results in [9].

The paper falls into the following parts. In Section 2, we recall the properties of the random wavelet
series model and describe the corresponding statistical model. In Section 3 we prove, for some values of these
parameters, local asymptotic normality for the associated family of distributions, which implies, in Section 3.2,
optimality of an estimator of the lacunarity parameter. Section 4 is devoted to deriving optimal tests on the
intensity parameter, while the proofs of the main result are postponed to Section 5.

2. The model

Consider a lacunar random wavelet series f , as defined in [1,3,11]

f =
∞∑

j=0

2j−1∑
k=0

wjkψjk, (2.1)

built using a periodized wavelet basis ψjk(x) =
∑

l∈Z
ψ̃(2j(x− l)− k), ∀j ∈ N, k ∈ [0, 2j − 1], for ψ̃ a mother

wavelet in the Schwartz class. In this model, the wavelet coefficients are random variables whose distribution
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depends on two parameters (η, α) and is given by the following relationship. Let (Xjk)j∈N∗, k=0,...,2j−1 be a
triangular array of independent Bernoulli random variables: for η ∈ (0, 1), P(Xjk = 1) = 1 − P(Xjk = 0) =
2(η−1)j . Hence, for j ∈ N

∗ and k = 0, . . . , 2j − 1 the random wavelet coefficients of the lacunar series f are
given by

wjk = 2−αjXjk.

So we obtain

wjk ∼ 2(η−1)jδ2−αj + (1 − 2(η−1)j)δ0. (2.2)

The distribution is characterized by two parameters η and α in (0, 1). On one hand η describes the lacunarity
of the wavelet series (that is its sparsity). On the other hand the coefficient α is inversely proportional to the
intensity of the value of the wavelet coefficients. These parameters completely characterizes the spectrum of
singularity of the random functions involved. As a matter of fact, Jaffard et al. in their work ([1,3,11]) use such
model and they show in [3] that the spectrum of singularity of the function f is almost surely

df (h) =
1 − η

α
h, ∀h ∈

[
α,

α

1 − η

]
· (2.3)

In a statistical framework, the parameters of interest are the parameters η and α of the lacunar wavelet series f .

We assume that, after discretization, we observe the wavelet coefficients at scale j1 = log2(n) in the following
model

dj1k = wj1k + εj1k, k = 0, . . . , 2j1 − 1

where εj1k are i.i.d Gaussian variables, with variance σ2

n where n stands for the number of observations. This
model mimics the discretized version of the observation of a function f , observed together with an independent
Brownian motion.

Actually, the law of the observed coefficients dj1k is determined by the prior given by the model (2.2):

dj1k ∼ 2(η−1)j1N
(

2−αj1 ,
σ2

n

)
+ (1 − 2(η−1)j1)N

(
0,
σ2

n

)
· (2.4)

Hence, if we consider the rescaled observed wavelet coefficients,

Xnk =
√
nwlog2(n)i, k = 1, . . . , n,

the observations become Xn1, . . . , Xnn, a triangular array of observations, where Xni, i = 1, . . . , n are i.i.d.
random variables with common density

fθ := nη−1φα + (1 − nη−1)φ, θ = (η, α)′ ∈ (0, 1) × (0, 1), (2.5)

where φα (resp., φ) stands for the density of a Gaussian random variable with mean n
1
2−α (resp., 0) and variance

σ2. For fixed n, the observations are therefore generated by a Gaussian mixture of the form nη−1N (n
1
2−α, σ2)+

(1 − nη−1)N (0, σ2).

We aim at studying the statistical problem of estimating the parameters θ using the observationsXn1, . . . , Xnn.
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Remark 2.1. Note that, in this paper, we deal with the estimation of θ, considering only the last level in the
wavelet decomposition. Indeed, using all the levels, as studied in [9] does not help in the estimation issue and
is more a drawback, leading to complicate expressions for the estimators.

3. Local asymptotic normality (LAN)

3.1. Main result

Our aim is to establish Local Asymptotic Normality for the statistical model with i.i.d observationsXni, i = 1,
. . . , n with joint distribution Pn

θ , where θ = (η, α)′ ∈ (0, 1) × (0, 1), with

Pθ ∼ N (n
1
2−α, σ2) + (1 − nη−1)N (0, σ2).

Partition the parametric space into Θ = Θ− ∪Θ± ∪Θ+, with Θ− = (0, 1)× (0, 1/2), Θ± = (0, 1)×{1/2}, and
Θ+ = (0, 1) × (1/2, 1). Actually, we prove that the family of distributions P−

n :=
{
Pn

θ

∣∣ θ ∈ Θ−} is LAN.
For any bounded sequence τn = (sn, tn)′, consider the corresponding local perturbation θn = θ+νn(θ)τ n =

(ηn, αn)′ of the parameter value θ = (η, α)′, where νn(θ) = diag(cn(θ), dn(θ)) = diag(n− η
2 (logn)−1, n− η

2 +α− 1
2

(logn)−1) and denote by

Ln
θn/θ = log

dPn
θn

dPn
θ

=
n∑

k=1

[log fθn
(Xnk) − log fθ(Xnk)]

the associated local log-likelihood ratio.

The following result states that the submodel P−
n is LAN.

Theorem 3.1. The family of distributions P−
n is LAN, with central sequence Δn

θ := (Δn
θ,I ,Δ

n
θ,II)

′, where

Δn
θ,I :=

n∑
k=1

Dnk
θ,I := n

η
2 −1

n∑
k=1

φα − φ

nη−1[φα − φ] + φ
(Xnk),

Δn
θ,II :=

n∑
k=1

Dni
θ,II := σ−2n

η
2−1

n∑
k=1

(n
1
2−α −Xnk)

φα

nη−1[φα − φ] + φ
(Xnk),

and information matrix Γ := diag
(
1, σ−2

)
. More precisely, for any θ ∈ Θ− and any bounded sequence τn =

(sn, tn)′, we have

Ln
θ+νn(θ)τn/θ = τ ′

nΔn
θ − 1

2
τ ′

n Γ τn + oP(1) and Δn
θ

L−→ N (0,Γ) (3.1)

under Pn
θ , as n→ ∞.

The proof of this result is technical and is postponed to Section 5.

We point out that inference in P+
n is totally different. Indeed, for θ ∈ Θ+, the rescaled coefficients are

drawn from a mixture distribution composed of a centered Gaussian variable and a Gaussian variable with
mean decreasing to 0, as defined in (2.5). So, in this case it is not possible to estimate the number of non
zero coefficients, neither to distinguish asymptotically non zero and zero coefficients. Hence the model is not
asymptotically identifiable anymore.
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3.2. Local and asymptotic efficiency of a thresholded estimation procedure

If we consider the model described in (2.5), we observe that the parameter η balances the mixture of the two
Gaussian random variables. Under the range θ ∈ Θ−, the two components of the mixture are asymptotically
separated since, in this case, the mean of the first Gaussian variable goes to infinity (n

1
2−α → +∞). Hence, we

propose the following thresholding procedure to build an estimator of the lacunarity of a multifractal function.
We aim at counting the number of coefficients above a given level, growing to infinity, but at a smaller rate
of convergence than the mean of the second group. We point out that, unlike the estimate defined in [9],
which relies on the whole wavelet coefficients, here we only use the coefficients on well chosen resolution level
j1(n) = log2(n). Hence the estimate is more easily computable and still has the same asymptotic behaviour.

Set Sn = 1
n

∑n
k=1 I(Xnk ≥ log n) and define the following estimator

η̂n = 1 +
1

logn
log(Sn). (3.1)

The asymptotics and the optimality of this estimator are given in the following theorem which can be found
in [9].

Theorem 3.2. Under the assumption θ ∈ Θ−, the estimator (3.1) is asymptotically normal. More precisely,

n
η
2 log(n) (η̂n − η) L→ N (0, 1). (3.2)

Hence, η̂n is asymptotically optimal in the Le Cam sense, that is, locally and asymptotically efficient.

Hence, we have constructed a consistent estimator of the lacunarity parameter. Its rate of convergence is
nonparametric since it depends on the true values of the unknown parameter n

η
2 log(n). As for local asymptotic

optimality, recall that an estimator of θ̂n is said to be locally and asymptotically efficient (over P−
n ) iff it

satisfies (νn(θ))−1(θ̂n − θ) = Γ−1Δn
θ + oP(1) at any Pn

θ ∈ P−
n . The asymptotic distribution, under Pn

θ , of such
an estimator is therefore given by

(νn(θ))−1(θ̂n − θ) L→ N (0,Γ−1).
Local asymptotic optimality of our estimator η̂n thus follows directly from (3.2) and the value of Γ (see Thm. 3.1).

Assume that we have at our disposal an estimator θ̃n that converges at the optimal rate, that is, which
satisfies

(νn(θ))−1(θ̃n − θ) = OP(1), (3.3)
at any Pn

θ ∈ P−
n . Le Cam’s one-step methodology then consists in relying on the estimator

θ̂n = θ̃n + νn(θ̃n)Γ−1Δn
θ̃n
,

which can easily be shown to be locally asymptotically optimal (in the above sense). This method thus allows
for transforming an arbitrary preliminary consistent estimator θ̃n (only optimal in terms of consistency rate)
into a locally asymptotically optimal one θ̂n (optimal both in terms of consistency rate and limiting variance).
It is quite notable that our estimator θ̂n does not need this one-step improvement, since it does directly reach
the efficiency bound.

4. Locally and asymptotically optimal tests for intensity

In the previous section, we have provided a locally and asymptotically optimal estimator for the lacunarity
parameter η. Although η is the parameter of interest in the analysis of multifractal models, as cited in [1] for
instance, a natural question still is: is it possible to use LAN to build a locally and asymptotically optimal
estimator of α?
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The answer is unfortunately negative, due to the lack of a suitable preliminary estimator for α. As we have
explained in the previous section, the Le Cam one-step methodology indeed requires some (νn(θ))−1-consistent
estimator for θ. For the intensity parameter, this means – in view of the LAN property given in Theorem 3.1
– that we need a preliminary estimator α̃n such that

log(n)n
η
2 + 1

2−α(α̃n − α) = OP(1), (4.1)

at any Pn
θ ∈ P−

n .
Now, to the authors knowledge, none of the existing estimators for α is consistent at this very rate. For

instance, the estimator

α̃n =
1

logn

∑n
k=1Xnk∑n

k=1X
2
nk − σ2

(4.2)

that was proposed in [9], satisfies (under the additional assumption that η > 2α)

log(n)n
η
2 (α̃n − α) L−→ N (0, σ2),

which shows that α̃n admits the same rate of convergence as η̂n. But since α < 1/2, this rate is unfortunately
larger than the rate in (4.1), which means that α̃n cannot be used as a preliminary estimator in the Le Cam
one-step methodology.

Actually, an optimal estimation procedure should focus only on the mean without relying first on the compo-
sition of the mixture, ruled by the parameter η. But, due to the construction of model (1.2), it seems difficult to
estimate independently the mean of a mixture without knowing the proportion of the mixture, so that it seems
difficult to build a suitable preliminary estimator for α. optimal through our LAN property) To the authors
knowledge, few is done in the statistical literature in this direction. We point out that standard loglikelihood
estimators are too difficult to handle in this case.

However, while the lack of preliminary estimators for α prevents the LAN theory from providing locally and
optimal estimators, LAN still enables to define locally and asymptotically optimal (maximin, actually) tests
about the intensity parameter. More specifically, consider the testing problem (at asymptotic level β ∈ (0, 1)){ H(n)

0 : α ≤ α0

H(n)
1 : α > α0

,

for some fixed α0 < 1/2. Then the LAN result in Theorem 3.1 and the consistency (at the appropriate rate) of
our estimator η̂ in (3.1) straightforwardly yield the following.

Theorem 4.1. Let φ(n) be the test that rejects H(n)
0 in favor of H(n)

1 iff

σΔn
η̂n,α0,II = σ−1n

η̂n
2 −1

n∑
k=1

(n
1
2−α0 −Xnk)

φα0

nη̂n−1[φα0 − φ] + φ
(Xnk)Φ−1(1 − β),

where Φ denotes the cdf of the standard normal distribution. Then the sequence of tests φ(n) is locally and
asymptotically maximin (at asymptotic level β).

One defines optimal two-sided tests in the same way. Of course, one could think of defining (possibly optimal)
estimators of α by inverting such two-sided tests. This, however, would give again standard likelihood estimators
of α, which, as mentioned above, are extremely difficult to handle in this setup.
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5. Appendix

Proving Theorem 3.1 is a two step procedure.

• First, we prove that the central sequence defined in Theorem 3.1, Δn
θ := (Δn

θ,I ,Δ
n
θ,II)

′ is asymptotically
normal with mean 0 and covariance matrix Γ. Asymptotic normality will follow from the Lindeberg-
Feller Central Limit Theorem for an array of random variables while Lemma 5.1 provides the asymptotic
variance of the central sequence.

• Then we prove that the second-order stochastic expansion in (3.1) holds. Swensen (1985)’s Lemma
in [19] enables to conclude, provided its assumptions are satisfied.

Lemma 5.1. Let

Znk = Znk(θ) :=
1
2
(νn(θ)τn)′∇θ log fθ(Xnk)

=
n

η
2−1

2fθ(Xnk)

{
sn(φα − φ)(Xnk) +

tn
σ2

(n
1
2−α −Xnk)φα(Xnk)

}
=

1
2
{
snD

nk
θ,I + tnD

ni
θ,II

}
.

Then, under Pn
θ, as n → ∞, (i) E

[
Dn1

θ,I

]
= E

[
Dn1

θ,II

]
= 0, (ii) Var

[
Dn1

θ,I

]
= n−1(1 + o(1)), (iii) Var

[
Dn1

θ,II

]
=

σ−2n−1(1 + o(1)), (iv) Cov
[
Dn1

θ,I , D
n1
θ,II

]
= o(n−1), and (v) for all δ > 0,

E
[
Z2

n1I(|Zn1| > δ)
]

= o(n−1). (5.1)

Proof of Lemma 5.1. (i) The first claims are trivial since E
[
Dn1

θ,I

]
= n

η
2 −1

∫
(φα − φ)(x) dx = 0 and E

[
Dn1

θ,II

]
=

σ−2n
η
2 −1

∫
(n

1
2−α − x)φα(x) dx = 0.

(ii) Define rn := n
1
2−α/2. First note that φα

φ (x) = exp
[
2rn(x− rn)/σ2

]
for all x. Therefore

nVar
[
Dn1

θ,I

]
= nη−1

∫
(φα − φ)2

nη−1[φα − φ] + φ
(x) dx

=
∫

(exp
[
2rn(x− rn)/σ2

]− 1
)2

exp
[
2rn(x − rn)/σ2

]− 1 + n1−η
φ(x) dx

= Tn1 − Tn2 + Tn3,

where

Tn1 :=
∫ rn

−∞

(
exp

[
2rn(x− rn)/σ2

]− 1
)2

exp
[
2rn(x− rn)/σ2

]− 1 + n1−η
φ(x) dx,

Tn2 :=
∫ ∞

rn

[
exp

[
2rn(x− rn)/σ2

]− (
exp

[
2rn(x− rn)/σ2

]− 1
)2

exp
[
2rn(x− rn)/σ2

]− 1 + n1−η

]
φ(x) dx,

and

Tn3 :=
∫ ∞

rn

exp
[
2rn(x− rn)/σ2

]
φ(x) dx.

Now, Lebesgue’s DCT yields Tn1 = nη−1
( ∫

φ(x) dx + o(1)
)

= o(1) as n → ∞. As for Tn2, one easily shows
that, for some constant C, |Tn2| ≤ C

∫∞
rn
φ(x) dx = o(1) as n → ∞. Eventually, letting y = x− 2rn, we obtain

Tn3 =
∫∞

rn
φα(x) dx =

∫∞
−rn

φ(y) dy = 1 + o(1), as n→ ∞.
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(iii) Letting y = x− 2rn, we have

nVar
[
Dn1

θ,II

]
= σ−4nη−1

∫
(2rn − x)2φ2

α(x)
nη−1[φα − φ] + φ

(x) dx

= σ−4

∫
(2rn − x)2φα(x)

1 + (n1−η − 1)φ(x)/φα(x)
dx

= σ−4

∫
y2φ(y)

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy

= Sn1 + Sn2 + Sn3,

where

Sn1 := σ−4

∫ −rn

−∞

y2φ(y)
1 + (n1−η − 1) exp

[− 2rn(y + rn)/σ2
] dy,

Sn2 := σ−4

∫ ∞

−rn

[
1

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] − 1

]
y2φ(y) dy,

and

Sn3 := σ−4

∫ ∞

−rn

y2φ(y) dy.

Again, Lebesgue’s DCT shows that both Sn1 and Sn2 are o(1) as n → ∞. This yields the result since, clearly,
Sn3 = σ−2 + o(1) as n→ ∞.

(iv) Letting y = x− 2rn again, we have

nCov
[
Dn1

θ,I , D
n1
θ,II

]
= σ−2nη−1

∫
(2rn − x)φα(x)(φα(x) − φ(x))

nη−1[φα − φ] + φ
(x) dx

= σ−2

∫
(2rn − x)φα(x)(1 − φ(x)/φα(x))

1 + (n1−η − 1)φ(x)/φα(x)
dx

= −σ−2

∫
yφ(y)

(
1 − exp

[− 2rn(y + rn)/σ2
])

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy

= Rn1 +Rn2 +Rn3,

where

Rn1 := −σ−2

∫ −rn

−∞

yφ(y)
(
1 − exp

[− 2rn(y + rn)/σ2
])

1 + (n1−η − 1) exp
[− 2rn(y + rn)/σ2

] dy,

Rn2 := σ−2

∫ ∞

−rn

n1−η exp
[− 2rn(y + rn)/σ2

]
1 + (n1−η − 1) exp

[− 2rn(y + rn)/σ2
] yφ(y) dy,

and

Rn3 := −σ−2

∫ ∞

−rn

yφ(y) dy.

Now, |Rn1| ≤ C
∫ −rn

−∞ |y|φ(y) dy for some constant C, so that Rn1 is o(1) as n→ ∞. And, by Lebesgue’s DCT,
so is Rn2. This yields the result since Rn3 = −σ−2(

∫
yφ(y) dy + o(1)) = o(1) as n→ ∞.

(v) Define

In(x) := I

[
n

η
2−1

2

∣∣∣∣sn(φα(x) − φ(x)) + tnσ
−2(2rn − x)φα(x)

nη−1[φα(x) − φ(x)] + φ(x)

∣∣∣∣ > δ

]
.
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Then since

In(x+ 2rn) ≤ I

[ |1 − φ
φα

(x+ 2rn)| + |x|
nη−1 + (1 − nη−1) φ

φα
(x+ 2rn)

> Cn1− η
2

]

≤ I

[∣∣∣1 − φ

φα
(x+ 2rn)

∣∣∣+ |x| > Cn
η
2

]
≤ I

[∣∣1 − exp
[− 2rn(x+ rn)/σ2

]∣∣+ |x| > Cn
η
2

]
,

we obtain that, for all x, In(x+2rn) = o(1) as n→ ∞. Write then nE
[
Z2

n1I(|Zn1| > δ)
] ≤ Cn

(
E
[(
Dn1

θ,I

)2
I(|Zn1| >

δ)
]

+ E
[(
Dn1

θ,II

)2
I(|Zn1| > δ)

])
=: C(Un1 + Un2). Decompose Un1 into Un1 = T̃n1 + T̃n2 + T̃n3, where

T̃ni, i = 1, 2, 3 are defined as in the proof of Lemma 5.1(ii), except that the corresponding integrands are
multiplied by In(x) in each case. Clearly, the same argument as in Lemma 5.1(ii) show that both T̃n1

and T̃n2 are o(1) as n → ∞. As for T̃n3, the absolute continuity of the Lebesgue integral implies that
T̃n3 =

∫∞
rn
φα(x) In(x) dx =

∫∞
−rn

φ(y) In(y + 2rn) dy = o(1), as n→ ∞.

Similarly, defining S̃ni, i = 1, 2, 3 as in the proof of Lemma 5.1(iii), except that the corresponding integrands
are multiplied by In(y+2rn) in each case, we decompose Un2 into Un2 = S̃n1 + S̃n2 + S̃n3. Again, working as in
Lemma 5.1(iii), S̃n1 and S̃n2 are seen to be o(1) as n → ∞. Eventually, by absolute continuity again, we have
S̃n3 = σ−4

∫∞
−rn

y2φ(y) In(y + 2rn) dy = o(1), as n→ ∞. �
Hence, it follows directly from Lemma 5.1 and the Lindeberg-Feller CLT that, under Pn

θ , the central se-
quence Δn

θ is asymptotically normal with mean 0 and covariance matrix Γ.

In order to prove that the second-order stochastic expansion in (3.1) holds, we use Swensen (1985)’s Lemma ([19]).
Defining the quantities

ξnk = ξnk(θ) :=
(
fθn

(Xnk)
fθ(Xnk)

)1/2

− 1,

Swensen’s lemma, in this i.i.d. context, takes the following form.

Lemma 5.2 (Swensen). Assume that (i)
∑n

k=1 E[(Znk − ξnk)2] = o(1), (ii) supn

∑n
k=1 E[Z2

nk] < ∞, (iii)
max1≤k≤n |Znk| = oP(1), (iv)

∑n
k=1 Z

2
nk − 1

4τ ′
n Γ τn = oP(1), (v)

∑n
k=1 E[Z2

nkI(|Znk| > 1/2)] = o(1), (vi)
E[Znk] = 0, and (vii)

∑n
k=1 E[ξ2nk + 2ξnk] = o(1) (where all expectations and convergences in probability are

taken under Pn
θ).

Then the second-order stochastic expansion in (3.1) holds.

This Lemma enables to conclude the proof of Theorem 3.1. Hence it remains to check that the assumptions
hold for our particular model.

Unless otherwise stated, all convergences in probability, expectations and variances, in this proof, are with
respect to Pn

θ .

(i) Since 1
2f

1/2
θ ∇θ log fθ = ∇θf

1/2
θ , we see that

∑n
k=1 E[(Znk − ξnk)2] = nE[(Zn1 − ξn1)2] is given by

n

∫ (
f

1/2
θn

(x) − f
1/2
θ (x) −

{
cnsn(∂ηf

1/2
θ )(x) + dntn(∂αf

1/2
θ )(x)

})2

dx.

Therefore
∑n

k=1 E[(Znk − ξnk)2] ≤ 3n(Vnη + Vnα + Vnηα), where

Vnη :=
∫ (

f
1/2
θn

(x) − f1/2
η,αn

(x) − cnsn(∂ηf
1/2
η,αn

)(x)
)2

dx,

Vnα :=
∫ (

f1/2
η,αn

(x) − f
1/2
θ (x) − dntn(∂αf

1/2
θ )(x)

)2

dx,
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and

Vnηα := c2ns
2
n

∫ (
(∂ηf

1/2
η,αn

)(x) − (∂ηf
1/2
θ )(x)

)2

dx.

We proceed by proving that (a) Vnη, (b) Vnα, and (c) Vnηα all are o(n−1), as n→ ∞.
(a) By using successively the integral form for the remainder of the first order Taylor expansion and Jensen’s

inequality, we obtain

Vnη =
∫ (∫ ηn

η

(ηn − λ) (∂2
ηf

1/2
λ,αn

)(x) dλ
)2

dx

≤ 1
2
(cnsn)2

∫ ∫ ηn

η

(ηn − λ) (∂2
ηf

1/2
λ,αn

)2(x) dλdx,

since
∫ ηn

η (ηn − λ) dλ = (cnsn)2/2. Therefore,

Vnη ≤ Cc2n

∫ ∫ ηn

η

(ηn − λ)
{

2fλ,αn(∂2
ηfλ,αn) − (∂ηfλ,αn)2

f
3/2
λ,αn

(x)
}2

dλdx

≤ Cc2n(log n)4
∫ ∫ ηn

η

(ηn − λ)

×
{[
nλ−1(φαn − φ)

]2 [nλ−1(φαn − φ) + 2φ
]2[

nλ−1(φαn − φ) + φ
]3 }(x) dλdx

since ∂ηfλ,αn = nλ−1(logn)(φαn − φ) and ∂2
ηfλ,αn = nλ−1(log n)2(φαn − φ). Using again φα

φ (x) = exp
[
2rn(x−

rn)/σ2
]
, we obtain

Vnη ≤ Cn−η(log n)2
∫ ∫ ηn

η

(ηn − λ) g2
λ,αn

(x)

[
gλ,αn(x) + 2

]2[
gλ,αn(x) + 1

]3 φ(x) dλdx, (5.2)

with gη,α(x) := nλ−1
(
exp

[
2r̄n(x − r̄n)/σ2

] − 1
)
, r̄n = n

1
2−αn/2. Decompose the upper bound in (5.2) into

C(Vnη,1 + Vnη,2 + Vnη,3), where

Vnη,1 := n−η(logn)2
∫ r̄n

−∞

∫ ηn

η

(ηn − λ) g2
λ,αn

(x)

[
gλ,αn(x) + 2

]2[
gλ,αn(x) + 1

]3 φ(x) dλdx,

Vnη,2 : =n−η(log n)2
∫ ∞

r̄n

∫ ηn

η

(ηn − λ)

{
g2

λ,αn
(x)

[
gλ,αn(x) + 2

]2[
gλ,αn(x) + 1

]3
− nλ−1 exp

[
2r̄n(x− r̄n)/σ2

]}
φ(x) dλdx,

and

Vnη,3 := n−η(logn)2
∫ ∞

r̄n

∫ ηn

η

(ηn − λ)nλ−1 exp
[
2r̄n(x− r̄n)/σ2

]
φ(x) dλdx.
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Now, uniformly in λ and x, we have |gλ,αn(x)|I(x < r̄n) < 1/2, so that

Vnη,1 ≤ Cn−η(logn)2
∫ ∫ ηn

η

(ηn − λ)n2(λ−1) φ(x) dλdx

≤ Cn−1
{(

exp(2snn
−η/2) − 1

)
nη−1 − 2snn

η
2 −1
}
,

which shows that Vnη,1 is indeed o(n−1) as n→ ∞. As for Vnη,2, one can check that

∣∣∣∣∣g2
λ,αn

(x)

[
gλ,αn(x) + 2

]2[
gλ,αn(x) + 1

]3 − nλ−1 exp
[
2r̄n(x− r̄n)/σ2

]∣∣∣∣∣
is bounded in n (uniformly in λ, x), so that

Vnη,2 ≤ n−η(logn)2
(∫ ∞

r̄n

φ(x) dx
)(∫ ηn

η

(ηn − λ) dλ
)

≤ Cn−2η

(∫ ∞

r̄n/σ

exp(−y2/2) dy

)
≤ Cn−2η exp[−r̄n/(2σ)],

which shows that Vnη,2 also is o(n−1) as n→ ∞. Eventually, Vnη,3 is also o(n−1) as n→ ∞, since

Vnη,3 = n−η(log n)2
(∫ ∞

r̄n

φαn(x) dx
)(∫ ηn

η

(ηn − λ)nλ−1 dλ
)

≤ n−1
(
exp(snn

− η
2 ) − 1 − snn

− η
2
)
.

(b) Working as for Vnη, we obtain (since
∫ αn

α (αn − λ)2 dλ = (dntn)3/3)

Vnα =
∫ (∫ αn

α

(αn − λ) (∂2
αf

1/2
η,λ )(x) dλ

)2

dx

≤ 1
3
(dntn)3

∫ ∫ αn

α

(∂2
αf

1/2
η,λ )2(x) dλdx

≤ Cd3
n

∫ ∫ αn

α

{
2fη,λ(∂2

αfη,λ) − (∂αfη,λ)2

f
3/2
η,λ

(x)
}2

dλdx.

Now, ∂αfη,λ(x) = σ−2nη−λ− 1
2 (logn)(n

1
2−λ − x)φλ(x) and ∂2

αfη,λ(x)=σ−4nη−2λ(logn)2φλ(x)
{
(n

1
2−λ − x)2 + σ2

nλ− 1
2x− 2σ2

}
, so that

Vnα ≤ Cd3
nn

η+1(log n)4
∫ ∫ αn

α

n−4λφλ(x)

×
[
2
[
1 + (n1−η − 1) φ

φλ
(x)]2

{
(n

1
2−λ − x)2 + σ2nλ− 1

2 x− 2σ2
}− (n

1
2−λ − x)2

]2[
1 + (n1−η − 1) φ

φλ
(x)]3

dλdx.
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Letting y = x− 2r̃n (with r̃n := n
1
2−λ/2) and using φ

φλ
(y + 2r̃n) = exp

[− 2r̃n(y + r̃n)/σ2
]
, we obtain that

Vnα ≤ Cn− η
2− 1

2 +3α(logn)
∫ ∫ αn

α

n−4λφ(y)

×
[
2
[
1 + (n1−η − 1) exp

[− 2r̃n(y + r̃n)/σ2
]
]2
{
y2 + σ2y/(2r̃n) − σ2

}− y2
]2[

1 + (n1−η − 1) exp
[− 2r̃n(y + r̃n)/σ2

]
]3

dλdy

≤ Cn− η
2− 1

2 +3α(logn)
∫ ∫ αn

α

n−4λφ(y)max(1, y4) dλdy

≤ Cn− η
2− 1

2−α(1 − exp(−4n−η
2− 1

2+αtn)) ≤ Cn−η−1,

so that Vnα = o(n−1) as n→ ∞.
(c) Eventually, we complete the proof of (i) by proving that Vnηα is also o(n−1) as n→ ∞. Defining hnηα(x)

and hnηαn(x) as

exp
[
2rn(x− rn)/σ2

]− 1[
exp

[
2rn(x− rn)/σ2

]− 1 + n1−η
]1/2

and
exp

[
2r̄n(x− r̄n)/σ2

]− 1[
exp

[
2r̄n(x − r̄n)/σ2

]− 1 + n1−η
]1/2

,

respectively, we have

Vnηα ≤ c2nn
2η−2(logn)2

∫ {
(φαn − φ)

nη−1(φαn − φ) + φ
− (φα − φ)
nη−1(φα − φ) + φ

}2

(x) dx

≤ Cnη−2

∫ { φαn

φ − 1[
nη−1(φαn

φ − 1) + 1
]1/2

−
φα

φ − 1[
nη−1(φα

φ − 1) + 1
]1/2

}2

(x)φ(x) dx

≤ Cn−1

∫ {
hnηαn(x) − hnηα(x)

}2

φ(x) dx,

which we decompose into Cn−1(Vnηα,1 + Vnηα,2 + Vnηα,3), where

Vnηα,1 :=
∫ min(rn,r̄n)

−∞

{
hnηαn(x) − hnηα(x)

}2

φ(x) dx,

Vnηα,2 :=
∫

(rn;r̄n)

{
hnηαn(x) − hnηα(x)

}2

φ(x) dx,

and

Vnηα,3 :=
∫ ∞

max(rn,r̄n)

{
hnηαn(x) − hnηα(x)

}2

φ(x) dx;

here, (a; b) denotes the interval (min(a, b),max(a, b)). Now, Lebesgue’s DCT shows that Vnηα,1 = o(1) as n→ ∞
(as for Tn1 in the proof of Lem. 5.1(ii)). As for Vnηα,2, proceeding as in the proof of Lem. 5.1(ii) yields

Vnηα,2 ≤ C

{∫
(rn;r̄n)

h2
nηαn

(x)φ(x) dx +
∫

(rn;r̄n)

h2
nηα(x)φ(x) dx

}
≤ C

{∫
(rn;r̄n)

φ1/2
αn

(x) dx +
∫

(rn;r̄n)

φ1/2
α (x) dx

}
= C

{∫
(−rn;r̄n−2rn)

φ1/2(x) dx +
∫

(rn−2r̄n;−r̄n)

φ1/2(x) dx
}
,
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which, since one can easily check that r̄n = rn + o(1) as n→ ∞, is o(1) as n→ ∞. Eventually, working exactly
as for Tn2 and Tn3 in the proof of Lemma 5.1(ii), we obtain that Vnηα,3 is – up to o(1) terms (as n → ∞) –
successively equal to∫ ∞

max(rn,r̄n)

{(
exp

[
2r̄n(x− r̄n)/σ2

])1/2 − ( exp
[
2rn(x− rn)/σ2

])1/2
}2

φ(x) dx

=
∫ ∞

max(rn,r̄n)

{
φ1/2

αn
(x) − φ1/2

α (x)
}2

dx

=
∫ ∞

max(−rn,r̄n−2rn)

{
φ1/2(y + 2(rn − r̄n)) − φ1/2(y)

}2

dy,

which is seen to be o(1) as n→ ∞, by using again Lebesgue’s DCT and the fact that r̄n = rn + o(1) as n→ ∞.
Therefore, we have shown that Vnηα,i, i = 1, 2, 3 all are o(1) as n → ∞, which yields that Vnηα is o(n−1) as
n→ ∞.

(ii) The boundedness of (τn) implies that Z2
nk ≤ C

{
(Dnk

θ,I)
2 + (Dnk

θ,II)
2
}
. Consequently, Lemma 5.1(i)–(iii)

yield
∑n

k=1 E[Z2
nk] ≤ C

{
Var
[
Dnk

θ,I

]
+ Var

[
Dnk

θ,II

]}
= O(1), as n→ ∞.

(iii) Note that by using Markov’s inequality,

P
[

max
1≤k≤n

|Znk| > δ
]

= P
[ n∑

k=1

Z2
nkI(|Znk| > δ) > δ2

]
≤ δ−2

n∑
k=1

E
[
Z2

nkI(|Znk| > δ)
]
,

so that the result follows from Lemma 5.1(v).

(iv) Letting Dnk
θ := (Dnk

θ,I , D
nk
θ,II)

′, note that

n∑
k=1

Z2
nk − 1

4
τ ′

n Γ τn =
1
4
τ ′

n

{(
n∑

k=1

Dnk
θ Dnk′

θ

)
− Γ

}
τn,

which, by using the boundedness of (τn) and Lemma 5.1(i)–(iv), is seen to be oP(1) as n→ ∞.

(v) This is a particular case of the convergence result in Lemma 5.1(v).
(vi) This is a direct consequence of Lemma 5.1.

(vii) This is trivial since E[ξ2nk + 2ξnk] = E[ξnk(ξnk + 2)] = E[ fθn (Xnk)
fθ(Xnk) − 1] = 0. �
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