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A NEW STOCHASTIC RESTRICTED BIASED ESTIMATOR UNDER
HETEROSCEDASTIC OR CORRELATED ERROR

Mustafa Ismaeel Alheety
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Abstract. In this paper, under the linear regression model with heteroscedastic and/or correlated
errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a gen-
eralization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR)
and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator
against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist.
Papers 50 (2007) 639–647] are examined in terms of matrix mean square error criterion. A numerical
example is considered to illustrate the theoretical results.
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1. Introduction

Consider the multiple linear regression model

Y = Xβ + ε, (1.1)

where Y is an n × 1 vector of observations, X is an n × p matrix of rank p, β is a p × 1 vector of unknown
parameters, and ε is an n × 1 vector of nonobservable errors with E(ε) = 0 and variance-covariance matrix
Cov(ε) = σ2In.

The method of least squares is generally used to estimate the coefficients in the model (1.1)

β̂ = (X ′X)−1X ′Y. (1.2)

β̂ has minimum variance in the class of unbiased estimators. While this property is theoretically satisfying, in
practice the results of β̂ are often unacceptable, particularly when there are near-linear dependencies among
the regressors variables. This is a problem of multicollinearity. To overcome this problem, different remedial
actions have been proposed. We believe that biased estimation methods are useful techniques, that they should
be considered, when the analyst deals with such a problem.
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Hoerl and Kennard [4,5] suggested the ordinary ridge regression estimator (ORR)

β̂(k) = (X ′X + kI)−1X ′Y, (1.3)

where k > 0 is a scalar constant, often called the biasing parameter.
Liu [7] combined the Stein estimator [10] with ORR estimator which is called (LE). The motivation of LE is

came by the fact: the combining of two estimators may inherit advantages of both estimators. LE is defined as
follows

β̂(d) = (X ′X + I)−1 (X ′X + dI) β̂, (1.4)
where 0 < d < 1 is a biasing parameter.

An alternative technique to combat multicollinearity is to consider the parameter estimation of the model
with some restrictions on the unknown parameters.

Suppose there are some prior information with the model (1.1) about β as a set of q independent stochastic
linear restrictions as follows

r = Rβ + φ, φ ∼ (0, σ2V ) (1.5)
where r is a q×1 known vector, R is a q×p known matrix of rank q and φ is a q×1 vector of disturbances with
mean 0 and variance-covariance matrix σ2V , V may be assumed to be known and positive definite (p.d.). Theil
and Goldberger [12] and Theil [11] introduced the mixed estimator (OME) technique by bringing together the
sample and the prior information (1.5) (

Y
r

)
=
(

X
R

)
β +

(
ε
φ

)
, (1.6)

where both random errors are uncorrelated
E (εφ′) = 0.

Since E (εε′) = σ2In, therefore, with (1.5), the variance-covariance matrix becomes

E

(
ε
φ

)
(ε φ)′ = σ2

(
In 0
0 V

)
. (1.7)

Calling the augmented matrices and vectors in the mixed model (1.6) Y∗, X∗ and ε∗, that is

Y∗ =
(

Y
r

)
, X∗ =

(
X
R

)
, ε∗ =

(
ε
φ

)
.

Therefore, we may write
Y∗ = X∗β + ε∗, ε∗ ∼ (0, σ2W∗), (1.8)

where

W∗ =
(

In 0
0 V

)
is positive definite (p.d.). The best linear unbiased estimator of β in the mixed model (1.8) which is called
ordinary mixed estimator (OME) is given as follows:

β̂OME =
(
X ′X + R′V −1R

)−1 (
X ′Y + R′V −1r

)
= β̂ + (X ′X)−1R′ (V + R(X ′X)−1R′)−1

(
r − Rβ̂

)
. (1.9)

In order to improve the OME, Hubert and Wijekoon [6] inserted the Liu estimator into the OME procedure
and obtained a new type of stochastic restricted Liu estimators as

β̂srd(d) = Jdβ̂OME,
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where Jd = (X ′X + I)−1(X ′X + dI). In practical applications, the homoscedasticity
(
Var(ε) = σ2In

)
and/or

uncorrelatedness (Var(εi, εj) = 0), for i �= j can not be satisfied. Then with model (1.1) we consider the error
assumption which is called heteroscedasticity and/or correlated errors as follows

E (ε) = 0, Cov (ε) = σ2W, (1.10)

where W is a known n × n symmetric positive definite (p.d.) matrix.
Since W is symmetric and p.d., there exists a nonsingular n×n matrix T such that W−1 = T ′T . Transforming

the model (1.1) by premultiplication with T :

TY = TXβ + T ε.

Let Y ∗ = TY, X∗ = TX, ε∗ = T ε, it is seen that E (ε∗) = 0 and Cov (ε∗) = σ2I. Therefore, the transformed
model

Y ∗ = X∗β + ε∗ (1.11)
satisfies the assumptions of the homoscedasticity and uncorrelated errors. The OLS estimator of β in (1.11) is

β̂G =
(
X∗′

X∗
)−1

X∗′
Y ∗ =

(
X ′W−1X

)−1
X ′W−1Y (1.12)

which is well known as the generalized least squares (GLS) estimator.
Hence, the best linear unbiased estimator of β in the model (1.10) with the assumptions (1.9) and the

stochastic restrictions (1.4) is defined as:

β̂GOME =
(
S + R′V −1R

)−1 (
X ′W−1Y + R′V −1r

)
, (1.13)

where S = X ′W−1X . The estimator in (1.13) also called mixed estimator but under heteroscedasticity and/or
correlated errors and we denoted as (GOME).

Trenkler [13] specified the ridge estimator of β in the model (1.10) as

β̂G(k) = (S + kI)−1
X ′W−1Y, k > 0 (1.14)

to reduce the effect of the multicollinearity problem on the variance of the estimated model (1.1) with assump-
tion (1.10), we denoted as (GORR).

Consider the LE of β in the model (1.11) as

β̂G(d) = (S + I)−1 (S + dI) β̂G (1.15)

and we denoted as (GOLE).
Yang and Xu [14] introduced the stochastic restricted Liu estimator (SRLE) under the linear model (1.1)

with assumption of homoscadesticity and uncorrelated errors as follows

β̂SRLE(d) =
(
X ′X + R′V −1R

)−1 (
JdX

′Y + R′V −1r
)
. (1.16)

Since we are interesting in the model (1.11) with assumption (1.10) and stochastic restrictions (1.4), β̂SRLE will
be considered as follows

β̂GSRLE(d) =
(
S + R′V −1R

)−1 (
FdX

′W−1Y + R′V −1r
)
, (1.17)

where Fd = (S + I)−1 (S + dI) and we denoted as (GSRLE) to be not confused with (SRLE).
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In this paper, we introduce a new mixed estimator under stochastic restrictions with heteroscedastic and/or
correlated errors. In Section 2 we give some Lemmas with the concept of the new estimator. The performance
of the new estimator compared with the GOME, GORR GLS and GSRLE is shown in Section 3. Section 4
gives the numerical example to illustrate the theoretical results.

2. Some lemmas and the new estimator

In this section we need to give some lemmas which are needed to do and prove our theoretical results. Also
we consider the new estimator with its properties.

Lemma 2.1 (Rao et al. [9]). Suppose that the square matrices A : p × p, C : n × n are not singular, and
B : p × n, D : n × p be any two matrices, then

(A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1
DA−1.

Lemma 2.2 (Farebrother [2]). Suppose that A is p.d. and a is a column vector. Then A− aa′ is non negative
definite (n.n.d.) if and only if

a′A−1a ≤ 1.

Lemma 2.3 (Rao [8]). Let B a p.d. matrix and A a n.n.d. matrix, and Λ = diag
(
λB

i (A)
)

the diagonal matrix
of the eigen values of A in the B. Then there exists a non singular matrix H such that

B = H ′H, A = H ′ΛH.

Lemma 2.4 (Rao et al. [9]). Suppose that D = Cov(β̂1)−Cov(β̂2) is p.d. Then Δ = MSEM(β̂1)−MSEM(β̂2)
is n.n.d. if and only if

(1 + d11)(d22 − 1) ≤ d2
12,

where dij = B′
iD

−1Bj, Bi = Bias(β̂i) i, j = 1, 2.

By using Lemma 2.1, we may rewrite β̂GOME in (1.12) as follows:

β̂GOME = β̂G + S−1R′ (V + RS−1R′)−1
(
r − Rβ̂G

)
. (2.1)

It is clear that from (2.1) and when the stochastic restrictions are correct,

Cov
(
β̂G

)
− Cov

(
β̂GOME

)
= σ2S−1R′ (V + RS−1R′)−1

RS−1

is n.n.d. Therefore, the GOME is unbiased and has smaller variance compared with GLS.
For the sake, we are ready to introduce a new mixed estimator with stochastic restrictions when the het-

eroscedasticity and/or correlated errors are exists. This estimator simply coming by combining the GOME and
GORR as follows

β̂GSRRE(k) = β̂G(k) + S−1R′ (V + RS−1R′)−1
(
r − Rβ̂G(k)

)
=
(
S + R′V −1R

)−1 (
FkX ′W−1Y + R′V −1r

)
, (2.2)

where Fk = (S + kI)−1
S and S−1R′ (V + RS−1R′)−1

r =
(
V + RS−1R′)−1

R′V −1r. In fact, β̂GSRRE(k) is a
general estimator which includes the GOME, GORR and GLS estimators as special cases, that is
if k = 0, then

β̂GSRRE(0) = β̂GOME
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if k = 0 and R = 0q×p, then

β̂GSRRE(0) = β̂G

if R = 0q×p, then

β̂GSRRE(k) = β̂G(k).

The expectation and the variance-covariance matrix of β̂GSRRE(k) are

E
(
β̂GSRRE(k)

)
= A∗ (FkS + R′V −1R

)
β

= β + A∗ (Fk − I)Sβ, (2.3)

Cov
(
β̂GSRRE(k)

)
= σ2A∗ (FkSF ′

k + R′V −1R
)
A∗ (2.4)

where A∗ =
(
S + R′V −1R

)−1. From (2.3) we can obtain the bias of β̂GSRRE(k)

Bias
(
β̂GSRRE(k)

)
= A∗ (Fk − I)Sβ. (2.5)

The β̂GSRRE(k) is always biased unless k = 0.

3. Superiority of the new estimator

The mean square error matrix (MSEM) of any estimator β∗ of β is defined as follows

MSEM (β∗) = E (β∗ − β) (β∗ − β)′

= Cov (β∗) + Bias (β∗) Bias (β∗)′ . (3.1)

It is well known that when we have biased estimators, the MSEM is a good measure for checking the performance
of any two estimators. Therefore, for any two estimators β̂j , j = 1, 2 of β, we said that β̂1 is superior to β̂2

with respect to MSEM if and only if

Δ = MSEM
(
β̂1

)
− MSEM

(
β̂2

)

is n.n.d.
For the sake, from (1.12), (1.13), (1.17) and (2.2) we obtain the MSEM of β̂GOME, β̂G(k), β̂GSLRE(d) and

β̂GSRRE(k) respectively as follows

MSEM
(
β̂GOME

)
= σ2A∗ (3.2)

MSEM
(
β̂G(k)

)
= σ2S−1(k)SS−1(k) + k2S−1(k)ββ′S−1(k) (3.3)

MSEM
(
β̂GSRLE(d)

)
= σ2A∗ (FdSF ′

d + R′V −1R
)
A∗ + A∗ (Fd − I)Sββ′S (Fd − I)A∗ (3.4)

MSEM
(
β̂GSRRE(k)

)
= σ2A∗ (FkSF ′

k + R′V −1R
)
A∗ + A∗ (Fk − I)Sββ′S (Fk − I) A∗. (3.5)



A NEW STOCHASTIC RESTRICTED BIASED ESTIMATOR 35

The differences between the mean square error matrix of β̂GOME, β̂G(k), β̂GSRLE(d) and β̂GSRRE(k) are obtained
as follows

Δ1 = MSEM
(
β̂GOME

)
− MSEM

(
β̂GSRRE(k)

)
= σ2D1 − B2B

′
2

Δ2 = MSEM
(
β̂G(k)

)
− MSEM

(
β̂GSRRE(k)

)
= σ2D2 + B1B

′
1 − B2B

′
2,

Δ3 = MSEM
(
β̂GSRRE(k)

)
− MSEM

(
β̂GSRLE(d)

)
= σ2D3 + B2B

′
2 − B3B

′
3,

Δ4 = MSEM
(
β̂GSRLE(d)

)
− MSEM

(
β̂GSRRE(k)

)
= σ2D4 + B3B

′
3 − B2B

′
2,

where D1 = A∗ (S − FkSF ′
k)A∗, D2 = S−1(k)SS−1(k)−A∗ (FkSF ′

k − R′V −1R
)
A∗, D3 = A∗ (FkSF ′

k − FdSF ′
d)

A∗, D4 = A∗ (FdSF ′
d − FkSF ′

k)A∗ and S−1(k) = (S + kI)−1. Since we want to check the performance of the
new estimator, we should prove that Δ1, Δ2, Δ3 and Δ4 are n.n.d. Therefore, we can find the necessary and
sufficient condition for that purpose.

Since S = X ′W−1X is p.d., there exist an orthogonal matrix P such that S = PΛP ′ where Λ = diag{λ1, ..., λp}
is the diagonal matrix of the eigenvalues of S.

So, S − FkSF ′
k = PΓP ′, where Γ = diag{γ1, ..., γp} is the diagonal matrix of S − FkSF ′

k. Now,

γi = λi − λ3
i

(λi + k)2

= λi

(
1 − λ2

i

(λi + k)2

)
·

Since λi > 0 and k > 0 for all i = 1, 2, ..., p, it is clear that S −FkSF ′
k is p.d., therefore, D1 is p.d. We can state

the following theorem after applying Lemma 2.2.

Theorem 3.1. Under the linear regression model (1.11) with the stochastic linear restrictions (1.5) and for
k > 0, Δ1 is n.n.d. if and only if

B′
2D

−1
1 B2 ≤ σ2.

Corollary. Under the linear regression model (1.11) with the stochastic linear restrictions (1.5), when Theo-
rem (1.1) holds, the β̂GSRRE(k) is superior than of β̂G in the mean square error matrix sense.

By Lemma 2.3, we may rewrite D2 as

D2 = H ′ (I − Ω)H,

where Ω = diag{ωS−1(k)SS−1(k)
i

(
A∗ (FkSF ′

k − R′V −1R
)
A∗)} the diagonal matrix of the eigenvalues of A∗(

FkSF ′
k − R′V −1R

)
A∗ in the S−1(k)SS−1(k) and we denote it as ωi(D2).

So,

x′D2x = x′H ′ (I − Ω)Hx

= y′ (I − Ω) y

=
p∑

i=1

(1 − ωi(D2)) y2
i ,

where y = Hx. Therefore, if ωi(D2) < 1, then x′D2x is p.d. Therefore, after applying Lemma 2.4 we can give
the following theorem.
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Theorem 3.2. Under the linear regression model (1.11) with the stochastic linear restrictions (1.5).
If ωi(D2) < 1 then Δ2 is n.n.d. if and only if

(1 + d11) (d22 − 1) ≤ d2
12.

To prove that D3 is p.d., we request to show that (FkSF ′
k − FdSF ′

d) is p.d. Consider d to be fixed. Therefore,
(FkSF ′

k − FdSF ′
d) is p.d. if and only if

diag

{
λ3

i

(λi + k)2
− (λi + d)2 λi

(λi + 1)2

}p

i=1

≥ 0

⇔ λ3
i (λi + 1)2 − (λi + k)2 (λi + d)2 λi

(λi + 1)2 (λi + k)2
≥ 0 ∀i

⇔ λi (λi + 1) − (λi + k) (λi + d) ≥ 0

⇔ (λi + k) ≤ λi (λi + 1)
(λi + d)

⇔ k ≤ k∗ =
λi (1 − d)
(λi + d)

·

For the sake, for k ≤ k∗ = λi(1−d)
(λi+d) , D3 will be p.d. After applying Lemma 2.4, we can state the following

theorem.

Theorem 3.3. Under the linear regression model (1.11) with the stochastic linear restrictions (1.5)
1) For k ≤ k∗, Δ3 will be n.n.d. if and only if

(1 + d22) (d33 − 1) ≤ d2
23.

2) For k ≥ k∗, Δ4 will be n.n.d. if and only if

(1 + d33) (d22 − 1) ≤ d2
32

where k∗ = λi(1−d)
(λi+d) ·

Now, let us consider k to be fixed, by repeating the same proof of Theorem 3.3, we obtain the following
theorem

Theorem 3.4. Under the linear regression model (1.11) with the stochastic linear restrictions (1.5)
1) For d ≤ d∗, Δ4 will be n.n.d. if and only if

(1 + d33) (d22 − 1) ≤ d2
32.

2) For d ≥ d∗, Δ3 will be n.n.d. if and only if

(1 + d22) (d33 − 1) ≤ d2
23

where d∗ = λi(1−k)
(λi+k) ·

We can note from our theorems that the comparison results depend on the unknown parameters β and σ2.
In consequence of that, we can not exclude that our results obtained in the theorems will be held and the results



A NEW STOCHASTIC RESTRICTED BIASED ESTIMATOR 37

may be changeable. So, we replace them (β and σ2) by their unbiased estimators. Since W is rarely known,
the estimate of W can be used. Trenkler [13] gave some estimates of W as

W = (vij) , vij = ρ|i−j|, i, j = 1, 2, ..., n (3.6)

and

W =
1

1 + ρ2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + ρ2 ρ 0 · · · 0
ρ 1 + ρ2 ρ · · · 0
0 ρ 0 · · · 0
...

...
...

...
...

0 0 · · · 1 + ρ2 ρ
0 0 · · · ρ 1 + ρ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

there are other estimates of W matrix are given by Firinguetti [3] and Bayhan and Bayhan [1].

4. Numerical example

To illustrate our theoretical results, we consider a dataset which discussed by Bayhan and Bayhan [1].
Tables 1 and 2 give 75 weekly observations of sales. Sixty observations in Table 1 are taken as historical data
and fifteen observations in Table 2 are taken from the last 15 weeks as a fresh data. These two Tables yi and yj

denote weekly quantities of shampoos sold, while xi1, xi2 and xj1, xj2 denote the weekly list prices (averages
from selected supermarkets) of the firm’s shampoos and of a certain brand of soap, substituted from shampoos,
respectively.

Using the data in Table 2, the matrix X ′X has eigenvalues λ1 = 41392.6, λ2 = 0.5. In the literature several
diagnostic procedures are suggested for detecting multicollinearity. One of these diagnostic is the condition num-
ber K = λmax/λmin. Therefore the condition number in this case is K = 91873.2. The condition number here is
very large, that means this data has strong multicollinearity. The Durbin-Watson statistics d =

∑n
i=2(êi− ˆei−1)2∑

n
i=1 ê2

i

can be used to detect the presence of autocorrelation where êi denote the residuals of a linear regression model.
If we use the data in Table 2 for computing d, we find that d = 0.38. For a significance level of 0.05 and for
n = 15, the critical values of the Durbin-Watson statistic are dL = 0.95 and dU = 1.54. since d < dL, it is
concluded that autocorrelation is present for this data. The estimated value of W is given as follows: 0.72284,
0.42003, 0.28663, 0.15967, 0.10987, 0.16687, 0.20766, 0.20862, 0.17573, 0.17168, 0.12975, –0.02658, –0.13842 and
–0.12330.

We may improve our estimators by adding stochastic linear restrictions to the model. consider the following
stochastic linear restrictions:

R =
(

92.8 23.0
76.0 25.4

)
, r =

(
33.144
33.294

)
.

Also the matrix V is determined as:

V =
(

1 0.7228
0.7228 1

)
the ordinary mixed estimator (GOME) of the regression coefficients are:

β̂GOME =
(

0.091096
0.962606

)
.

Therefore the estimator of σ2 is obtained as

σ̂2 =
(Y − Xβ̂GOME)′(Y − Xβ̂GOME)

n − p
= 1.5297.



38 M.I. ALHEETY

Table 1. Historical data for weekly sales of shampoos and prices.

Obs. yi1 xi1 xi2 Obs. yi1 xi1 xi2
1 28.445 49 12.5 31 31.446 84.4 21.2
2 28.547 49 12.5 32 31.549 85 21.2
3 28.644 51.2 13 33 31.641 85 21.2
4 28.746 51.2 13 34 31.743 78 20.1
5 28.849 40.3 13 35 31.848 78 20.1
6 28.94 52 13 36 31.94 81.3 20.1
7 29.045 52.3 13.8 37 32.043 83.1 21
8 29.142 58 14.4 38 32.146 83 21
9 29.248 58 14.4 39 32.25 88.5 22.3
10 29.25 58 14.4 40 32.344 88.5 22.3
11 29.443 62 16 41 32.441 88.5 22.3
12 29.545 62 16 42 32.545 68.7 22.9
13 29.644 62 16 43 32.643 68.7 22.9
14 29.747 52 17.1 44 32.748 91.3 22.9
15 29.841 67.2 17.1 45 32.842 91.3 22.9
16 29.045 67.2 17.1 46 32.95 91.3 23
17 30.046 67.2 18 47 33.039 92.8 23
18 30.142 67.2 18 48 33.144 92.8 23
19 30.245 72.4 18 49 33.249 76 25.4
20 30.348 72.4 18 50 33.347 76 26
21 30.441 72.4 18 51 33.442 93.4 24.1
22 30.549 72.4 21 52 33.543 93.4 24.1
23 30.641 80 21 53 33.647 93.4 24.1
24 30.739 72 18.3 54 33.746 96.3 24.1
25 30.849 72 18.3 55 33.849 96.3 24.3
26 30.949 55 19 56 33.94 97.2 24.3
27 31.051 48 19 57 34.041 97.2 24.3
28 31.148 80.1 19.4 58 34.143 75.2 25.1
29 31.245 80.1 21.2 59 34.248 100 25.1
30 31.342 84.4 21.2 60 34.345 101.5 25.4

To evaluate the value of the shrinkage parameter k in (2.2), Hoerl et al. (1975) proposed that an appropriate
choice for k is:

k̂ =
pσ̂2∗

β̂′β̂
,

where σ̂2∗ and β̂ are found from the method of least squares. Using the method of least squares for the standard
observations of the data in Table 2, we obtain σ̂2∗ = 0.01379 and β̂ = (4.987 − 4.099)′. Hence, k̂ = 0.00065.

Interpretation of the results

1. From Figure 1, when k > 0, the value of the trace MSEM (trMSEM) of the GSRRE is smaller than the
value of the trace MSEM of GOME. Also, by calculating γi, we find that γi = 0.0013000; 0.0012972,
i = 1, 2 is positive. Therefore Theorem 3.1 is held.

2. We compute the following values of ωi(D2): 0.4760; –0.0053. Since ωi(D2) < 1, D2 is p.d. Therefore
using Theorem 3.2, the trMSEM value of GORR is 3.2859 which is greater than the trMSEM value of
GSRRE 0.01811.
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Table 2. Fresh data for weekly sales of shampoos and prices.

Obs. yj1 xj1 xj2
1 34.481 101.3 25.3
2 34.369 102 25.5
3 34.268 102.7 25.7
4 34.16 102.35 25.9
5 34.215 104.2 26.1
6 34.308 104.9 26.2
7 34.402 105.6 26.4
8 34.479 106.9 26.6
9 34.58 107 26.8
10 34.682 107.7 27
11 34.78 108.5 27.1
12 34.875 109.1 27.3
13 34.963 109.9 27.5
14 35.054 110.6 27.7
15 35.173 111.3 27.8

Figure 1. Estimated trMSEM values of the estimators GOME, GSRLE and GSRRE (y-axis ×104).

3. Let d = 0.9 be fixed. Using k∗
i in Theorem 3.3, we find the following values of k∗

i : 0.099; 0.0334.
Comparing the MSEM value of GSRLE trMSEM(β̂GSRLE(d = .9)) = 0.0182 with trMSEM(β̂GSRRE(k =
0.4)) = 0.0181 for k = 0.4 < min(k∗

i ) = 0.0334. Since the condition in Theorem 3 (1.1) does not hold,
trMSEM(β̂GSRRE(k = 0.4)) = 0.0181 < trMSEM(β̂GSRLE(d = .9)) = 0.0182. That means Δ3 is
not positive. We have trMSEM(β̂GSRLE(d = .9)) = 0.0182 with trMSEM(β̂GSRRE(k = 0.1)) = 0.018
for k = 0.1 > max(k∗

i ) = 0.0999. We see that trMSEM(β̂GSRRE(k = 0.1)) = 0.018 is smaller than
trMSEM(β̂GSRLE(d = .9)) = 0.0182 as stated in Theorem 3 (1.2). That means Δ4 is positive (see also
Fig. 2).

4. Let k = 0.5 be fixed. Using d∗i in Theorem 3.4, we find the following values of d∗i : 0.78; 0.554. For d =
0.4 < min(d∗i ) = 0.554, we have the following inequality from Theorem 3.4 (1.1): trMSEM(β̂GSRLE(d =
.4)) = 0.01811 > trMSEM(β̂GSRRE(k = 0.5)) = 0.01806. Since the condition in Theorem 3.4 (1.2) does
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Figure 2. Estimated trMSEM values of the estimators GSRLE and GSRRE (y-axis ×104).

not hold, trMSEM(β̂GSRLE(d = .8)) = 0.018105 is greater than trMSEM(β̂GSRRE(k = 0.5)) = 0.01806
which means that Δ3 is not positive.

5. Conclusions

In this paper, a new estimator under linear regression model with heteroscedasitc and/or correlated error
when stochastic linear restrictions on the unknown parameter vector β available is introduced. The performance
of the new estimator GSRRE against GLS, GORR and GSRLE is examined with respect to mean square error
matrix sense. Under some conditions, the new estimator has mean square error matrix less than other estimators.
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