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ON THE LARGE DEVIATIONS OF A CLASS OF MODULATED ADDITIVE
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Abstract. We prove that the large deviation principle holds for a class of processes inspired by semi-
Markov additive processes. For the processes we consider, the sojourn times in the phase process
need not be independent and identically distributed. Moreover the state selection process need not be
independent of the sojourn times. We assume that the phase process takes values in a finite set and
that the order in which elements in the set, called states, are visited is selected stochastically. The
sojourn times determine how long the phase process spends in a state once it has been selected. The
main tool is a representation formula for the sample paths of the empirical laws of the phase process.
Then, based on assumed joint large deviation behavior of the state selection and sojourn processes, we
prove that the empirical laws of the phase process satisfy a sample path large deviation principle. From
this large deviation principle, the large deviations behavior of a class of modulated additive processes
is deduced. As an illustration of the utility of the general results, we provide an alternate proof of
results for modulated Lévy processes. As a practical application of the results, we calculate the large
deviation rate function for a processes that arises as the International Telecommunications Union’s
standardized stochastic model of two-way conversational speech.
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1. Introduction

Many stochastic models are most readily analyzed by expressing them as functions of well understood sto-
chastic processes. Properties of the well understood processes can often be preserved by the representation.
For example, the Large Deviation Principle (LDP) is preserved by quasi-continuous maps via the contraction
principle [20] and weak convergence is preserved by continuous maps via the continuous mapping theorem [6].

In this article we illustrate how functional LDP techniques can be used to prove qualitative properties of a class
of processes created through the apparently complex interactions of well behaved primitives. We demonstrate
that the primary difficulty is in developing an appropriate sample path representation, whereupon the main
results follow by the application of machinery that is, by now, standard. If additional independence assumptions
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hold, more quantitative conclusions can be drawn. We illustrate this by showing how results for modulated
Lévy processes known by more traditional methods can be recovered by the functional LDP approach.

We illustrate the practical merits of the functional LDP approach by considering the application of our
general results to a stochastic process defined in the ITU-T standard for modeling artificial conversation speech.
These internationally standardized stochastic models of information sources are becoming increasingly common.
For equipment to be standards-compliant, their performance is evaluated and bench-marked when processing
work generated by these stochastic models. We calculate the large deviations rate function for ITU-T P.59,
the stochastic model for a two way speech conversation. We use the rate function to deduce estimates on this
processes queueing properties at a single server queue, which are used by teletraffic engineers as quality of
service metrics.

2. Modulated processes

Modulated processes are constructed by concatenating together parts of paths of distinct processes to make
a new process. Thus, at different times, the sample paths of the modulated process possess characteristics of
the distinct underlying processes. The stochastic process that determines which underlying process is selected
as a function of time is called the phase process.

The study of modulated processes dates back to at least the 1960s with Neveu’s work on F-processes [30]
and Çinlar’s work on Markov Additive Processes (MAPs) [10] (which form a super-set of F-processes). Large
deviation results for MAPs can be found in papers of Iscoe et al. [22], Ney and Nummelin [31,32] and Lehtonen
and Nyrhinen [25]. Early applications of these processes used them successfully as models of packetized voice
data, see, for example, Heffes and Lucantoni [21].

In MAPs the phase process is Markovian, so that underlying processes are followed for exponentially dis-
tributed periods of time, at the end of which the next process to be followed is chosen in a Markovian manner.
The underlying processes are then required to have conditionally independent increments given the state of the
phase process. Sometimes the underlying processes are required to be counting processes, as in recent work of
Latouche et al. [23], but this is not always the case.

MAPs, and in particular their subclasses of batch Markov Arrival Processes and Markov Modulated Poisson
Processes, have been widely adopted as tools in queueing theory as they enable the construction of traffic sources
with bursty statistics. For examples of developments of results for these processes in queueing theory, see the
papers by Pacheco and Prabhu [34] and Breuer [8].

Markov modulated processes are also used in finance and risk theory where the Markov state can be used to
represent fundamental market conditions. For a recent example of work on Markov Modulated Lévy processes
in risk theory see Asmussen and Pihlsg̊ard [4], and for a recent example of work on finance with a Markov
Modulated Drift process see Rieder and Bäuerle [37]. For an introduction to this area, see Asmussen [1,2].

Semi-Markov modulated (or semi-Markov additive) processes form a generalization to MAPs where the
period of time that underlying stochastic processes are followed for are no longer exponential, but still form
i.i.d. sequences; see e.g. Dshalalow and Russell [15], Özekici and Soyer [33] and Dshalalow [14]. The decision
of which process to follow at the end of a period is again Markovian. As in the MAP setting, the underlying
processes are assumed to be independent of the phase process.

In this paper we consider a natural collection of processes that are inspired by finite state semi-Markov
additive processes. We relax the independence assumptions that are typically present within the construction
of the phase process. This allows us to include in the treatment, for example, phase processes that visit states
following a periodic structure or whose sojourn times are correlated.

We study the Large Deviation Principle (LDP) for a process that is modulated by a phase process that takes
values in a finite state space {1, . . . ,K}. Our results give estimates on the likelihood that the sample paths of
the empirical laws of the phase process behave atypically and estimates on the likelihood that the modulated
additive process behaves atypically.

The phase process {Yt, t ∈ R+} is characterized by a state selection sequence {σn, n ∈ N}, where σn ∈
{1, . . . ,K} is the nth state visited, and by sojourn times {τkn , n ∈ N}Kk=1, where τkn is the time that the process
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Figure 1. Example construction of the phase process {Yt}.

spends on its nth visit to state k. Throughout this paper we assume that all sojourn times τkn are almost surely
positive, P (τkn > 0) = 1. In general, we will not assume that the {σn} and {τkn}Kk=1 are independent of each
other or that they are formed by i.i.d. random variables.

For a specific example of the construction of the phase process from {σn} and {τkn}Kk=1, consider the sequence
σ1 = 1, σ2 = 1, σ3 = 2, σ4 = 1, . . . The corresponding phase process would be

Yt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ t < τ1
1

1 if τ1
1 ≤ t < τ1

1 + τ1
2

2 if τ1
1 + τ1

2 ≤ t < τ1
1 + τ1

2 + τ2
1

1 if τ1
1 + τ1

2 + τ2
1 ≤ t < τ1

1 + τ1
2 + τ2

1 + τ1
3

...
...

as illustrated in Figure 1.
We are interested in the large deviations of additive processes modulated by {Yt}. That is, associated to

each state k ∈ {1, . . . ,K} there is an underlying stochastic process. At time t, the additive process consists of
the sum over all K underlying processes, where for each state k, the process is evaluated at a time determined
by how long Yt has spent in state k by time t.

The rest of this paper is organized as follows. In Section 3 we construct a representation for the sample
paths of the empirical laws of the phase process, {Yt}, in terms of the sample paths of the empirical laws of the
state selection process {σn} and the sample paths of the partial sums of the sojourn times {τkn}Kk=1 processes.
This construction plays a crucial role in deriving the large deviation principles of this paper and is our primary
contribution.

In Section 4 we recall the basic definitions of the theory of large deviations and, in Theorem 4.1, deduce a
functional LDP for the empirical laws of the phase process {Yt} based on assumed sample path large deviation
behavior for the empirical laws of the state selection process {σn} and the partial sums of the sojourn times
{τkn}Kk=1.

We choose to work in the topology popularized by Ganesh et al. [17] on the space of continuous functions
indexed by the positive real line. The topology is induced by a generalization of a supremum norm. By working
in that space and its topology we are focusing on sojourn time processes that satisfy a uniform super-exponential
tail condition, as for light tailed random variables it has been known since Mogulskii’s [28] work that supremum-
norm topologies are not appropriate for the sample path LDP. For light tailed sojourn times, one should use a
generalization of the Skorohod topologies on the space of càdlàg functions indexed by non-compact sets, as in,
for example, the work of Puhalskii [35] and Puhalskii and Whitt [36].

From the functional LDP for the empirical laws of the phase process, {Yt}, we deduce the LDP for processes
whose behavior is modulated by {Yt}. In Section 5, Theorem 5.1 treats the large deviations of a process that
accumulates a fixed value vk ∈ R when Yt = k. This process has applications in the modeling many of the
standardized stochastic models of traffic processes in telecommunications. In particular, we give an application
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Figure 2. Example construction of the counting process {Nt}.

of the theory to the ITU-T standard for modeling artificial conversation speech. In practice, samples from this
model are used to check that voice processing devices are standards compliant.

Results on overflow probabilities when traffic from modulated stochastic sources are fed into a single server
queue are given in Section 6. Propositions 6.2 and 6.3 present new sufficient conditions under which these
overflow probabilities decay asymptotically exponentially, demonstrating how this methodology can yield results
of practical value. Finally, in Section 7 we consider modulated Lévy processes, which have applications in risk
theory and finance, to illustrate how, under additional hypotheses, the general qualitative results can recover
quantitative results. All proofs are deferred to Section 8.

3. A representation of the empirical laws of the phase process

The main tool of this paper is the representation formula in Theorem 3.3. This formula represents the sample
paths of the empirical laws of the phase process {Yt} in terms of the sample paths of the partial sums of the
sojourn times {τkn} and sample paths of the empirical laws of the state selection process {σn}.

To start with, we identify a tractable representation for Yt in terms of the sequences {σn} and {τkn}Kk=1. We
begin by introducing new random variables. With empty sums defined to be zero, for each k ∈ {1, . . . ,K},
n ∈ N, t ∈ R+ define

Lkn :=
n∑
i=1

1{σi=k}, S
k
n :=

n∑
i=1

τki , (T0 := 0) Tn :=
K∑
k=1

SkLk
n
, Nt := sup{n : Tn ≤ t}. (3.1)

The first object records the number of the first n states visited that are state k, so that (L1
n/n, . . . , L

K
n /n) is

the empirical law of {σ1, . . . , σn}. The second records the total time the phase process has spent in state k after
it has been visited n times. The third records the total time that has passed when n states have been visited.
The fourth records the number of state selections that have occurred before time t.

Corresponding to the example given in Section 2 ({Yt} in Fig. 1), Figure 2 plots Nt against t and Figure 3
plots the cumulative time spent in state 1 process, S1

L1
Nt

, against t.

We can represent the phase process {Yt} at time t in terms of the random variables in equation (3.1):

Yt = σNt+1. (3.2)
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Figure 3. Example construction of the cumulative time spent in state 1 process {S1
L1

Nt

}.

For each k ∈ {1, . . . ,K}, we define Zkt as the amount of time the process {Yt} has spent in state k by time t:

Zkt := SkLk
Nt

+ (t− TNt)1{σNt+1=k}. (3.3)

Using equations (3.3) and (3.1) we have

K∑
k=1

Zkt =
K∑
k=1

SkLk
Nt

+ t− TNt = t.

The process {(Z1
t /t, . . . , Z

K
t /t)} is the empirical measure process for {Yt}. That is, Zkt /t records the fraction

of time {Ys, s ≤ t} spent in the state k by time t.
We will construct a representation for the normalized sample paths for the empirical laws of {Yt} as a func-

tion of the normalized sample paths of the partial sums of {σn} and {τkn}Kk=1.

Remark. In most problems involving sample path representations it is natural to write the quantity of interest
in terms of the càdlàg paths (paths which are right continuous with finite left limits), where the sample paths
have discontinuities at the points where random variables are added. The use of continuous approximations to
these paths, the polygonal sample paths, is typically a mathematical convenience and usually results in small
errors that for large deviations must be managed through exponentially good approximations. However, here
it will transpire that the continuous sample paths are the most natural building blocks and no exponential
approximations will be necessary.

Throughout this paper we denote the integer part of x ∈ R by [x]. For a stochastic process indexed by the
integers, {Wn, n ∈ N}, we define its polygonal sample path to be

W1(t) = W[t] + (t− [t])
(
W[t]+1 −W[t]

)
for all t ∈ R+.

Its normalized polygonal sample paths are then defined for each n ∈ N to be

Wn(t) :=
1
n
W1(nt) =

1
n
W[nt] +

(
t− [nt]

n

)
(W[nt]+1 −W[nt]) t ∈ R+.
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In what follows we consider the normalized polygonal sample paths for the sequences {Lkn}Kk=1, {Skn}Kk=1 and
{Tn}. Define

k∗ = k∗(n, t) := σ[nt]+1, (n ∈ N, t ∈ R+) (3.4)

which is the ([nt] + 1)th state visited by the process. We then have for all n ∈ N, t ∈ R+,

Lkn(t) :=
1
n
Lk[nt] +

(
t− [nt]

n

)
1{k=k∗}, (3.5)

Skn(t) :=
1
n
Sk[nt] +

(
t− [nt]

n

)
τk[nt]+1 (3.6)

and Tn(t) :=
1
n
T[nt] +

(
t− [nt]

n

)
τk

∗
Lk∗

[nt]+1
. (3.7)

The sample path Lkn(·) is for the empirical law for the number of visits to state k, while Skn(·) is the sample
path for the total time spent in state k. These are the basic paths from which we will deduce all the others.
The sample path Tn(·) is for the total time that has passed after a given number of states have been visited.

The following lemma gives a representation of Tn(·) in terms of the sample paths
S1
n(·), . . . , SKn (·), L1

n(·), . . . , LKn (·).
Lemma 3.1 (S ◦ L representation). The following equation holds

Skn(Lkn(t)) =
1
n
SkLk

[nt]
+
(
t− [nt]

n

)
1{k=k∗}τkLk

[nt]+1 (3.8)

and, as a consequence, we have the following representation for Tn(·) in terms of the sample paths Skn(·) and
Lkn(·):

Tn(·) =
K∑
k=1

Skn ◦ Lkn(·).

Next we need to introduce the sample paths associated with the counting process {Nt}. Define

k∗∗ = k∗∗(n, t) := σNnt+1, (3.9)

which, by equation (3.2), is the phase process Ynt at time nt. Then we define the normalized sample paths

Nn(t) :=
1
n
Nnt +

(
t− TNnt

n

)(
τk

∗∗
Lk∗∗

Nnt
+1

)−1

, for n ∈ N, t ∈ R+. (3.10)

Considering N1(·), it is clear that it is the natural polygonal approximation to the sample path of {Nt}, whose
càdlàg paths would have discontinuities at not-necessarily integer times. It records the number of states that
have been visited by time t, plus a linear proportion of the time that has passed prior to the following state-
change. It therefore takes values in R+ not in N.

Given two nonnegative stochastic processes with strictly increasing trajectories {W1(t), t ∈ R+} and {W2(t),
t ∈ R+}, we say that they are inverse to each other if W1(W2(t)) = W2(W1(t)) = t for all t ∈ R+, and we write
W−1

1 (·) = W2(·) and W−1
2 (·) = W1(·).
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Lemma 3.2 (Nn = T−1
n ). For all n ∈ N, Tn(·) and Nn(·) are inverse to each other.

We define the normalized polygonal sample path for the empirical laws for the time spent in state k, {Zkt }
defined in equation (3.3), to be

Zkn(t) :=
1
n
SkLk

Nnt

+
(
t− TNnt

n

)
1{k=k∗∗}. (3.11)

The following theorem gives a representation for Zkn(·) in terms of Skn(·) and Lkn(·), k ∈ {1, . . . ,K}.
Theorem 3.3 (Zkn = Skn ◦ Lkn ◦Nn). We have the following representation of the normalized sample paths for
the empirical laws {Zkn(·)} of the phase process {Yt} in terms of the normalized sample paths for the empirical
laws {Lkn(·)} of the state selection process {σn} and the normalized sample paths {Skn(·)} for the partial sums
of the sojourn times {τkn}Kk=1. For all n ≥ 1,

Zkn(·) = Skn ◦ Lkn ◦Nn(·) = Skn ◦ Lkn ◦
(

K∑
k=1

Skn ◦ Lkn
)−1

(·). (3.12)

In the next section we will assume the LDP for {(S1
n(·), . . . , SKn (·), L1

n(·), . . . , LKn (·)) , n ∈ N}. This is a natural
assumption as we can appeal to a general theorem that asserts this is the case for a large collection of processes.
We will then deduce a functional LDP for {(Z1

n(·), . . . , ZKn (·)) , n ∈ N} and an LDP for {(Z1
n/n, . . . , Z

K
n /n

)
, n ∈

N} from the representation in equation (3.12).

4. Large deviations and the empirical laws of the phase process

For convenience we recall the definition of the Large Deviation Principle (LDP), which can be found in a
standard text such as Dembo and Zeitouni [12], and introduce the function spaces we will use. Let X be a
Hausdorff space with Borel σ-algebra B and let {μn, n ∈ N} be a sequence of probability measures on (X ,B).
We say that {μn, n ∈ N} satisfies the LDP in X with rate function I : X → [0,+∞] if I is lower semi-continuous,

− inf
x∈G

I(x) ≤ lim inf
n→∞

1
n

logμn[G] and lim sup
n→∞

1
n

logμn[F ] ≤ − inf
x∈F

I(x)

for all open G and all closed F . Rate functions whose level-sets {x : I(x) ≤ α} are compact for all α ≥ 0 are
said to be good. We say that a process {Wn, n ∈ N} satisfies the LDP if Wn is a realization of μn for each n.
The main large deviation tool used throughout this paper is the Contraction Principle (e.g. Thm. 4.2.1 of [12]).

Let C[0,∞) denote the collection of R-valued continuous functions φ on [0,∞) such that φ(0) = 0. Let
A[0,∞) denote the subset of C[0,∞) whose elements are the integrals of Lebesgue integrable functions on [0, x)
for all x > 0. Define the space

Y :=
{
φ ∈ C[0,∞) : lim

t→∞
φ(t)
1 + t

exists in R

}
and equip it with the topology induced by the norm

||φ|| = sup
t≥0

∣∣∣∣ φ(t)
1 + t

∣∣∣∣ · (4.1)

Define

Y↑ := {φ ∈ Y : φ is strictly increasing and limφ(t)/(1 + t) > 0}
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and

Yemp.meas. =

{
(ψ1, . . . , ψK) ∈ YK : each ψk is non-decreasing and

K∑
k=1

ψk(t) = t

}
,

Here Y↑ is a metric subspace of Y, and Yemp.meas. is a metric subspace of YK equipped with the product
topology. Moreover, Yemp.meas. is closed.

Our main assumption is the following:

Assumption 4.1. The sequence {(S1
n(·), . . . , SKn (·), L1

n(·), . . . , LKn (·)) , n ∈ N} satisfies the LDP in (Y↑)K ×
Yemp.meas. with good rate function I.

Assumption 4.1 holds for a large class of processes. Generalizing Mogulskii’s theorem [28] for i.i.d. processes,
Theorem 2 of Dembo and Zajic [11] establishes that, for a class of processes which satisfy a mixing condition and
a uniform super-exponential tail condition, the polygonal sample paths of their partial sums satisfy the LDP
in the space of continuous functions on [0, 1] equipped with the supremum norm. Ganesh and O’Connell [18]∗

prove that these LDPs can be strengthened to hold in Y with the topology induced by the norm defined in
equation (4.1). This is why it is reasonable to start with assumed large deviation properties for the sample
paths of partial sums of {σn} and {τkn}Kk=1.

Theorem 4.1 (LDP for the empirical laws of the phase process). Under Assumption 4.1 we have:

(1) the normalized sample paths of the empirical laws of the phase process, {(Z1
n(·), . . . , ZKn (·)) , n ∈ N},

satisfy the LDP in Yemp.meas. with good rate function

JZ(•)(η1, . . . , ηK) = inf

⎧⎪⎨⎪⎩I(φ1, . . . , ψK) : φk ◦ ψk ◦
⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

= ηk, k ∈ {1, . . . ,K}

⎫⎪⎬⎪⎭ ;

(2) the empirical laws of the phase process, {(Z1
n/n, . . . , Z

K
n /n

)
, n ∈ N}, satisfy the LDP in R

K with good
rate function

JZ(z1, . . . , zK) = inf

⎧⎪⎨⎪⎩I(φ1, . . . , ψK) : φk ◦ ψk ◦
⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

(1) = zk, k ∈ {1, . . . ,K}

⎫⎪⎬⎪⎭ . (4.2)

Theorem 4.1 establishes that the LDP holds for the sample paths of the empirical laws of a large class of finite
state phase processes. From this LDP, we can deduce LDPs for associated modulated additive processes, as we
illustrate in the following sections.

5. Fluid processes: large deviations

Consider the setting where there is a fixed value vk ∈ R associated with each state k ∈ {1, . . . ,K}. Define
the modulated additive process by

Xt :=
∫ t

0

vYs ds for all t ∈ R+. (5.1)

∗These results can also be found in Section 6 of [17].
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Processes such as these arise in models of traffic-sources in telecommunication networks where Xt represents
the total amount of traffic generated by a source by time t. The transmission rates, {vk}Kk=1, depend upon the
underlying application and change dynamically (see e.g. Markopoulou et al. [27]).

It will be helpful to use the following alternative representation to equation (5.1) for Xt:

Xt =
K∑
k=1

vkZ
k
t =

K∑
k=1

vkS
k
Lk

Nt

+ vσNt+1(t− TNt). (5.2)

We define the normalized polygonal sample paths for {Xt} as being scaled down by a factor n and speeded up
by factor n,

Xn(t) :=
1
n

K∑
k=1

vkS
k
Lk

Nnt

+ vσNnt+1

(
t− 1

n
TNnt

)
=

K∑
k=1

vkZ
k
n(t). (5.3)

Note that, for example, evaluating Xn(1) results in the same expression as using equation (5.2) to determine
Xn/n.

Theorem 5.1 (LDP for fluid processes). Under Assumption 4.1, {Xn/n, n ∈ N} satisfies the LDP in R with
good rate function

JX(x) = inf

⎧⎪⎨⎪⎩I(φ1, . . . , ψK) :
K∑
k=1

vk φ
k ◦ ψk ◦

⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

(1) = x

⎫⎪⎬⎪⎭ . (5.4)

Before identifying sufficient conditions under which equation (5.4) reduces to finite dimensional optimization,
we make two elementary comments.

Firstly, define the set

ΔK :=

{
(y1, . . . , yK) ∈ [0, 1]K :

K∑
k=1

yk = 1

}
. (5.5)

By Lemma 4.1.5 [12] easily follows that JX(x) = ∞ for x /∈ [mink vk,maxk vk] and JZ(z) = ∞ for z /∈ ΔK .
Secondly, note that by Theorem 5.1, {Xt/t, t ∈ R+} satisfies the LDP with good rate function JX , indeed a
straightforward computation shows that the processes {Xt/t, t ∈ R+} and {X[t]/[t], t ∈ R+} are exponentially
equivalent (see e.g. [12], Def. 4.2.10 and Thm. 4.2.13).

Without additional assumptions, the variational problem in equation (5.4) does not simplify further. This is
typically the case in functional large deviations if the representation formula is involved. We present two sets of
additional independence conditions in which it simplifies to a finite dimensional convex optimization problem.

5.1. Independent state selection and sojourn time processes

Firstly we consider the case where the state selection sequence {σn} is independent of the sojourn times
{τkn}Kk=1, and {τ in} is independent of {τ jn} for all i �= j. However, the state selection sequence {σn} need not
consist of independent random variables, nor for each k need {τkn} consist of independent random variables.

In the telecommunications application, this corresponds to the transmission rate being chosen independently
of how long the transmission will take. However there can be correlations in how long a transmission rate is
adopted once it has been selected. There may also be correlations within the state selection process.
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Define the set

Y# := {(φ1, . . . , ψK) ∈ (Y↑)K × Yemp.meas. : φ1, . . . , ψK ∈ A[0,∞)},

and consider the following assumption:

Assumption 5.1. Assumption 4.1 holds and, in addition,

I(φ1, . . . , ψK) =

{ ∫∞
0

(∑K
k=1 I

k(φ̇k(s)) +H(ψ̇1(s), . . . , ψ̇K(s))
)

ds, if (φ1, . . . , ψK) ∈ Y#

∞ otherwise,
(5.6)

where Ik : R+ → [0,∞] and H : ΔK → [0,∞], with ΔK defined in equation (5.5), are convex lower semi-
continuous functions.

With this assumption in force, the functional infimization in equation (5.4) simplifies into a convex programme
that can be readily solved numerically.

Corollary 5.2 (Independent state selection and sojourn times). Under Assumption 5.1, JX is convex and
given by

JX(x) = inf
y>0

inf
y1,...,yK>0

inf
x1,...,xK>0

{
K∑
k=1

ykI
k

(
xk
yk

)
+ yH

(
y1
y
, . . . ,

yK
y

)
: (5.7)

K∑
k=1

yk = y,

K∑
k=1

vkxk = x,

K∑
k=1

xk = 1

}
.

In the proof of Corollary 5.2 we point out that there exist m1, . . . ,mK ∈ (0,∞) and (l1, . . . , lK) ∈ ΔK such
that Ik(mk) = 0 (k ∈ {1, . . . ,K}) and H(l1, . . . , lK) = 0. Now consider the following choice of the variables
y, y1, . . . , yK , x1, . . . , xK in (5.7): for k ∈ {1, . . . ,K} we set yk/y = lk and xk/yk = mk, whence we obtain
xk = mklky. Therefore we have y = (

∑
kmklk)−1 since

∑
k xk = 1, and finally the constraint

∑
k vkxk = x

gives x =
∑

k vkmklk/
∑
kmklk. Thus JX(x) = 0 for x =

∑
k vkmklk/

∑
kmklk.

Example. We illustrate the result in Corollary 5.2 by treating a process which arises in a telecommunications
standard. We consider the large deviations of the total volume of traffic generated by a two way conversation.

The International Telecommunication Union (ITU), which has been a specialized agency of the United Na-
tions since 1947, has a permanent organ called the ITU Standardization Sector (ITU-T). It is responsible for
issuing “Recommendations” with a view to standardizing telecommunications on a worldwide basis. The ITU-T
Recommendations are, effectively, worldwide standards.

In its Recommendation P.59 [39], which was approved in March 1993, the ITU-T gives a model for two way
voice traffic. The Recommendation is based on papers such as those by Brady [7] and by Lee and Un [24]. The
P.59 model for generating artificial conversational speech has three states: state 1 corresponds to mutual silence;
state 2 corresponds to single talk; and state 3 corresponds to double talk. Conditioned on the state, the model’s
sojourn times are i.i.d. random variables with given means. We model the sojourn times as a deterministic
pause plus a truncated exponential distribution. The state selection process, {σn}, forms a Markov chain with
transition matrix

π =

⎛⎝ 0 1 0
α 0 1 − α
0 1 0

⎞⎠, (5.8)

where, in the standard, α = 0.4. That is, both mutual silence and double talk are always followed by single
talk. Single talk is followed by either mutual silence, with probability 0.4, or double talk, with probability 0.6.
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Figure 4. Empirical law rate function H(a, 0.5, 0.5− a) for state selection in ITU-T P.59

Using equation (4.1.37) in Deuschel and Stroock [13], it is possible to calculate H(·, ·, ·) in equation (5.7) for
this Markov chain. The rate function H(x, y, z) is only finite if (x, y, z) = (a, 1/2, 1/2− a), where a ∈ [0, 1/2],
and then

H

(
a,

1
2
,
1
2
− a

)
=

⎧⎪⎨⎪⎩
− 1

2 log(1 − α) if a = 0,
−(1

2 − a) log(1 − α) + (1
2 − a) log(1 − 2a) + a log

(
2a
α

)
if a ∈ (0, 1/2),

− 1
2 log(α) if a = 1/2.

With α = 0.4, as in the standard, the rate function H(a, 0.5, 0.5− a) is plotted in Figure 4.
Returning to the sojourn times, each τ i1 has distribution

P (τ > t) =

⎧⎪⎨⎪⎩
1 if t ≤ Tl

exp(−λit) if t ∈ [Tl, Tu)
0 if t ≥ Tu

where 0 < Tl < Tu. In the standard Tl = 200 ms. We choose large Tu and then the {λi} are selected so that
the mean sojourn times are as in the Recommendation. This gives λ1 = 0.8555, λ2 = 0.2261 and λ3 = 0.4564.
Then Ii(x) = supθ∈R

{
xθ − log E[exp(θτ i1)]

}
. For the truncated exponential, this is a transcendental equation

for Ii(x) that can be readily solved numerically.
As mutual silence generates no traffic, we set v1 = 0. With v2 = 1, we let v3 = 2 as double talk generates

twice as much traffic as single talk. As H is infinite for a large range of values, JX defined in equation (5.7)
reduces to

JX(x) = inf
y>0

inf
a∈[0,1/2]

inf
z∈(0,x)

{
ayI1

(
2 − x− z

2ay

)
+
y

2
I2

(
2z
y

)
(5.9)

+
(

1
2
− a

)
yI3

(
x− z

(1 − 2a)y

)
+ yH

(
a,

1
2
,
1
2
− a

)}
.
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Figure 5. JX(x) vs. x for a two way voice conversation based on ITU-T P.59

This is a finite dimensional convex programme that is readily solved numerically. For ITU-T P.59, the rate
function JX(x) is plotted in Figure 5. As α = 0.4, the average volume of traffic produced is greater than 1, the
amount caused by single talk. However, the rate function is skewed as when mutual silence periods occur they
are likely to last for longer than double talk periods. Thus, using JX(·) we can estimate the likelihood that a
long lived conversation will generate more (or less) traffic than is expected.

Before concluding this subsection, we make one last remark that will prove useful in the consideration of the
example in Section 7.

Remark. Under Assumption 5.1 the functional infimization in equation (4.2) for JZ also simplifies into a convex
programme that can be readily solved numerically. More precisely, arguing as in the proof of Corollary 5.2, for
all (z1, . . . , zK) ∈ ΔK ,

JZ(z1, . . . , zK) = inf
y1,...,yK>0

{
K∑
k=1

ykI
k

(
zk
yk

)
+

(
K∑
k=1

yk

)
H

(
y1∑
k yk

, . . . ,
yK∑
k yk

)}
,

and JZ(z1, . . . , zK) = +∞ if (z1, . . . , zK) /∈ ΔK .
In anticipation of the example in Section 7 we remark that, if we assume that there exists m > 0 such that

Ik(x) =
{

0 if x = m
∞ if x �= m

for all k ∈ {1, . . . ,K},

then

JZ(z1, . . . , zK) =
{
m−1H(z1, . . . , zK) if (z1, . . . , zK) ∈ ΔK

∞ otherwise.
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5.2. Equally visited states

A simpler setting is where all states are visited equally frequently. Define the set

Y∗ := {(φ1, . . . , ψK) ∈ (Y↑)K × Yemp.meas. : φ1, . . . , φK ∈ A[0,∞), ψ1(t) = · · · = ψK(t) = t/K},

and consider the following assumption:

Assumption 5.2. Assumption 4.1 holds with

I(φ1, . . . , ψK) =
{ ∫∞

0 I ′(φ̇1(s), . . . , φ̇K(s))ds if (φ1, . . . , ψK) ∈ Y∗

∞ otherwise,

where I ′ : R
K
+ → [0,∞] is a convex lower semi-continuous function.

Corollary 5.3 (equally visited states). Under Assumption 5.2, JX is convex and given by

JX(x) = inf
y>0

inf
x1,...,xK>0

{
yI ′
(
x1

y
, . . . ,

xK
y

)
:
K∑
k=1

vkxk = x,

K∑
k=1

xk = 1

}
.

Example. In the case of K = 2 with v1 = 0 and v2 = 1, this gives the rate function for an alternating two-state
on–off process in terms of the joint rate function for its sojourn times:

JX(x) = inf
y>0

y I ′
(

1 − x

y
,
x

y

)
. (5.10)

A result related to that in equation (5.10), but for sub-exponential sojourn times, appears in Duffy and
Sapozhnikov [16]. There the sojourn times are i.i.d. with Weibull distribution, P (τ > t) = exp(−tα) with
α ∈ (0, 1), and the result is proved by non-functional techniques. However, it is interesting to note that the
resulting rate function has the form JX(x) = infy yα(IW ((1 − x)/y) + IW (x/y)), where IW (·) is the rate func-
tion for partial sums of i.i.d. Weibull distributed random variables which can be found in, e.g., Nagaev [29] or
Gantert [19].

6. Fluid processes: overflow probabilities

Define the random variable

Xsup := sup
t>0

{Xt − t}.

As Xsup/n = supt>0{Xn(t) − t}, by proving the LDP for {supt>0{Xn(t) − t}, n ∈ N} we are proving that
{Xsup/n, n ∈ N} satisfies the LDP. From this we can deduce that the tail of the distribution of Xsup is
approximately exponential (see e.g. [17]). If we consider {Xt} as representing a source of traffic that sends data
at constant rate vk when Yt = k, then Xsup corresponds to the waiting time at a single server queue served at
constant rate 1 (see e.g. Asmussen [3]).

We start with the following assumption:

Assumption 6.1. Assumption 4.1 holds, and ZJX ⊂ (−∞, 1) where ZJX := {x ∈ R : JX(x) = 0} and JX
is the rate function in Theorem 5.1. Moreover the sequence {Xn/n, n ∈ N} in Theorem 5.1 converges almost
surely.
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In the application, ZJX ⊂ (−∞, 1) corresponds to requiring the queue to be stable on the scale of large
deviations. We also note that x∞ ∈ ZJX if and only if

x∞ =
K∑
k=1

vkφ
k
∞ ◦ ψk∞ ◦

⎛⎝ K∑
j=1

φj∞ ◦ ψj∞

⎞⎠−1

(1)

for some (φ1∞, . . . , ψK∞) such that I(φ1∞, . . . , ψK∞) = 0, where I is the rate function in Assumption 4.1.
The following lemma is proved along the similar lines to results in the literature (see e.g. [17] and the

references cited therein). However, here we consider the more general situation where ZJX is not reduced to a
single point.

Lemma 6.1 (Tail asymptotics for supremum). Under Assumption 6.1, we have that

− inf
s>1

JsupX(s) ≤ lim inf
n→∞

1
n

logP (Xsup > n) (6.1)

≤ lim sup
n→∞

1
n

logP (Xsup ≥ n) ≤ − inf
s≥1

JsupX(s), (6.2)

where

JsupX(s) = inf

⎧⎪⎨⎪⎩I(φ1, . . . , ψK) : sup
t>0

⎛⎜⎝ K∑
k=1

vkφ
k ◦ ψk ◦

⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

(t) − t

⎞⎟⎠ = s

⎫⎪⎬⎪⎭ .

Note that the upper and lower bounds in equations (6.1) and (6.2) do not necessarily coincide. This is demon-
strated by considering the following example of Benaim and Friz [5]: P (Xsup > x) = exp(− exp(log[x])). Thus
it is important to identify conditions such that infs>1 JsupX(s) = infs≥1 JsupX(s). Due to the variational form
of the rate function JsupX we are able to give a positive answer if in place of Assumption 4.1 we consider
an analogous assumption to Assumption 6.1 with either of Assumption 5.1 or Assumption 5.2. The values
v1, . . . , vK that appear in the following assumption are those that occur in the definition of Xt presented in
equation (5.1).

Assumption 6.2. Assumption 5.1 holds with I1, . . . , IK : R+ → [0,∞), and
∑
k vkmklk/

∑
jmj lj < 1 for all

m1, . . . ,mK > 0 and (l1, . . . , lK) ∈ ΔK such that I1(m1) = · · · = IK(mK) = H(l1, . . . , lK) = 0. Moreover the
sequence {Xn/n, n ∈ N} in Theorem 5.1 converges almost surely.

Proposition 6.2 (Tail asymptotics for supremum 1). Under Assumption 6.2, we have that infs>1 JsupX(s) =
infs≥1 JsupX(s).

Assumption 6.3. Assumption 5.2 holds with I ′ : R
K
+ → [0,∞), and

∑
k vkmk/

∑
jmj < 1 for all (m1, . . . ,mK) ∈

R
K
+ such that I ′(m1, . . . ,mK) = 0. Moreover the sequence {Xn/n, n ∈ N} in Theorem 5.1 converges almost

surely.

Proposition 6.3 (Tail asymptotics for supremum 2). Under Assumption 6.3, we have infs>1 JsupX(s) =
infs≥1 JsupX(s).

Thus, under Assumptions 6.2 and 6.3 respectively, Propositions 6.2 and 6.3 prove that the two bounds in
equations (6.1) and (6.2) coincide and that the tail of the distribution has logarithmic asymptotics:

lim
n→∞

1
n

logP (Xsup > n) = − inf
s≥1

JsupX(s).
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Figure 6. Rate of decay, δ(r), of the tail of the queuelength distribution at a single server
queue fed with ITU-T P.59 and serving at rate r, where δ(r) = +∞ if r > 2

Example. Consider a single server queue processing at rate r and fed by a stochastic source of work, Xt,
defined by the ITU-T P.59 process introduced in the example in Section 5.1. The queuelength distribution at
the single server queue equals supt>0Xt − rt and, using the convexity of JX(·) defined in equation (5.9), satisfies

lim
n→∞

1
n

logP
(

sup
t>0

Xt − rt > n

)
= − inf

s>0
sJX

(
1
s

+ r

)
=: −δ(r).

That is, the tail of the queuelength distribution at a single server queue fed with ITU-T P.59 and served at rate
r decays exponentially with rate δ(r) plotted in Figure 6. This can be used by teletraffic engineers as a quality
of service metric for this source of traffic.

7. Modulated Lévy processes

In this section we consider independent Lévy processes selected by the phase process. This situation has
interest in several fields. For instance it is used to model the price of a stock, where the phase process describes
the underlying state of the economy.

Let {Ckt , t ∈ R+}Kk=1 be independent Lévy processes, independent of {Yt, t ∈ R+}. We define the process
{Ct, t ∈ R+} as follows

Ct :=
Nt∑
n=1

(Cσn

Tn
− Cσn

Tn−1
) + (CσNt+1

t − C
σNt+1

TNt
).

For any k ∈ {1, . . . ,K} define the cumulant generating function Λk(γ) := log E[eγC
k
1 ] (γ ∈ R) and its Legendre

transform Λ∗
k(c) := supγ∈R[γc−Λk(γ)]. Note that we can write the moment generating function of Ct in terms

of ΛYs as follows:

E[eγCt ] = E[e
∑

k Λk(γ)Zk
t ] = E[e

∫ t
0 ΛYs (γ)ds].



98 K.R. DUFFY ET AL.

Proposition 7.1 (LDP for modulated Lévy processes). If in addition to Assumption 4.1, the functions
Λ1, . . . ,ΛK are finite and essentially smooth, then

(1) {(Cn/n, Z1
n/n, . . . , Z

K
n /n), n ∈ N} satisfies the LDP in R

K+1 with good rate function

JC,Z(c, z1, . . . , zK) = JC|Z(c|z1, . . . , zK) + JZ(z1, . . . , zK),

where JC|Z(c|z1, . . . , zK) = inf{∑K
k=1 zkΛ

∗
k(ck) :

∑K
k=1 zkck = c}.

(2) {Cn/n, n ∈ N} satisfies the LDP in R with good rate function

JC(c) = inf{JC|Z(c|z1, . . . , zK) + JZ(z1, . . . , zK) : (z1, . . . , zK) ∈ ΔK}.

Remark. The result in Proposition 7.1 generalizes a known result in the literature for discrete time Markov
additive processes. Indeed, let {σn, n ∈ N} denote an irreducible Markov chain with state space {1, . . . ,K} and
transition matrix (pij), and assume that the sojourn times τkn are all equal to 1. Thus Tn = n, Nt = [t] and
therefore

Cn =
n∑
k=1

(Cσk

k − Cσk

k−1).

Note that in this specific case {(σn, (Cn/n, Z1
n/n, . . . , Z

K
n /n)), n ∈ N} is a discrete time Markov additive

process (with K + 1 additive components). The rate function JC,Z is given by a straightforward application of
Proposition 7.1, where JZ coincides with H on ΔK and it is equal to infinity on Δc

K (see the remark at the
end of Sect. 4.1). This is a well-known formula whose standard proof is based on a direct application of the
Gärtner-Ellis theorem (see e.g. [22], [31], [32] and [25]).

8. Proofs

Lemma 3.1, S ◦ L representation.

Proof. We start by noting that, by (3.5), as nt− [nt] < 1 and Lk[nt] is an integer,

[nLkn(t)] = [Lk[nt] + (nt− [nt])1{k=k∗}] = Lk[nt].

Combining this with equations (3.6) and (3.5), we have

Skn(L
k
n(t)) =

1
n
Sk[nLk

n(t)] +
(
Lkn(t) −

1
n

[nLkn(t)]
)
τk[nLk

n(t)]+1

=
1
n
SkLk

[nt]
+
(
t− [nt]

n

)
1{k=k∗}τkLk

[nt]+1.

Finally, summing over all states k ∈ {1, . . . ,K} gives

K∑
k=1

Skn(L
k
n(t)) =

K∑
k=1

1
n
SkLk

[nt]
+
(
t− [nt]

n

)
τk

∗
Lk∗

[nt]+1
= Tn(t). �

Lemma 3.2, Nn = T−1
n .

Proof. We first show that Tn(Nn(t)) = t. Note that [nNn(t)] = Nnt as Nnt is an integer and

(nt− TNnt)
(
τk

∗∗
Lk∗∗

Nnt
+1

)−1

< 1.
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Therefore

k∗(n,Nn(t)) = σ[nNn(t)]+1 = σNnt+1 = k∗∗(n, t) = k∗∗,

where k∗∗ is defined in equation (3.9). Using equations (3.7) and (3.10) we have that

Tn(Nn(t)) =
1
n
T[nNn(t)] +

(
Nn(t) − [nNn(t)]

n

)
τ
k∗(n,Nn(t))

L
k∗(n,Nn(t))
[nNn(t)] +1

=
1
n
TNnt +

(
t− 1

n
TNnt

)(
τk

∗∗
Lk∗∗

Nnt
+1

)−1

τk
∗∗

Lk∗∗
Nnt

+1
= t.

To show that the reverse property holds, Nn(Tn(t)) = t, first note that as nt− [nt] < 1

NnTn(t) = sup {m : Tm ≤ nTn(t)}

= sup
{
m : Tm ≤ T[nt] + (nt− [nt]) τk

∗
Lk∗

[nt]+1

}
= sup

{
m : Tm ≤ T[nt]

}
= [nt]

and that therefore

k∗∗(n, Tn(t)) = σNnTn(t)+1 = σ[nt]+1 = k∗(n, t) = k∗,

where k∗ is defined in (3.4). Using equations (3.7) and (3.10), this gives

Nn(Tn(t)) =
1
n
NnTn(t) +

(
Tn(t) −

TNnTn(t)

n

)(
τ
k∗∗(n,Tn(t))

L
k∗∗(n,Tn(t))
NnTn(t)

+1

)−1

=
1
n

[nt] +
(
Tn(t) −

T[nt]

n

)(
τk

∗
Lk∗

[nt]+1

)−1

=
1
n

[nt] +
(
t− 1

n
[nt]
)
τk

∗
Lk∗

[nt]+1

(
τk

∗
Lk∗

[nt]+1

)−1

= t. �

Theorem 3.3, Zkn = Skn ◦ Lkn ◦Nn.
Proof. As remarked in the proof of Lemma 3.2, we have [nNn(t)] = Nnt and k∗(n,Nn(t)) = k∗∗. Then, using
equations (3.8) and (3.10), we obtain

Skn(L
k
n(Nn(t))) =

1
n
SkLk

[nNn(t)]
+
(
Nn(t) − 1

n
[nNn(t)]

)
1{k=k∗(n,Nn(t))}τkLk

[nNn(t)]+1

=
1
n
SkLk

Nnt

+
(
t− TNnt

n

)(
τk

∗∗
Lk∗∗

Nnt
+1

)−1

1{k=k∗∗}τkLk
Nnt

+1

=
1
n
SkLk

Nnt

+
(
t− TNnt

n

)
1{k=k∗∗} = Zkn(t).

Thus Zkn(·), defined in equation (3.11), is exactly Skn◦Lkn◦Nn(·). We get the final result using the representation of
Nn(·) in terms of Tn(·) in Lemma 3.2 and then the representation of Tn(·) in terms of Skn and Lkn, k ∈ {1, . . . ,K},
in Lemma 3.1. �

Theorem 4.1, LDP for the empirical laws of the phase process.
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Proof. We start proving that the function χ :=
∑K

k=1 φ
k◦ψk belongs to Y↑. The function χ is strictly increasing:

for t1 < t2, we have ψk(t1) ≤ ψk(t2) and φk ◦ ψk(t1) ≤ φk ◦ ψk(t2) for all k ∈ {1, . . . ,K}; moreover, since∑
k ψ

k(t) = t, there exists k ∈ {1, . . . ,K} such that ψk(t1) < ψk(t2), and therefore φk◦ψk(t1) < φk◦ψk(t2) since
φk ∈ Y↑. Furthermore there exists limt→∞ χ(t)(1 + t)−1 ∈ (0,∞); indeed, for each fixed k ∈ {1, . . . ,K}, there
exist the limits ψk(∞) := limt ψ

k(t) ∈ [0,∞], �φk := limt φ
k(t)(1+t)−1 ∈ (0,∞) and �ψk := limt ψ

k(t)(1+t)−1 ∈
[0,∞) therefore we have limt χ(t)(1 + t)−1 =

∑
k �φk�ψk since

χ(t)
1 + t

=
∑
k

φk ◦ ψk(t)
1 + ψk(t)

1 + ψk(t)
1 + t

and
φk ◦ ψk(t)
1 + ψk(t)

1 + ψk(t)
1 + t

→
{
�φk�ψk if ψk(∞) = ∞
0 if ψk(∞) <∞ as t→ ∞;

moreover
∑
k �φk�ψk ∈ (0,∞) since �ψk ∈ [0,∞) and

∑
k �ψk = 1.

Elementary arguments reveal that summation and projection are continuous on Y. Inversion is continuous
on Y↑ by Lemma B.6 of Majewski [26]. Composition is continuous on Y × Y↑ by Lemma B.1 of [26]. Thus,
due to Theorem 3.3, we prove the statements 1 and 2 by applying the contraction principle with the following
two maps in equations (8.1) and (8.2) respectively, which are continuous maps as they are the composition of
continuous maps:

(φ1, . . . , φK , ψ1, . . . , ψK) 
→ (
φ1 ◦ ψ1 ◦ χ−1, . . . , φK ◦ ψK ◦ χ−1

)
(8.1)


→ (
φ1 ◦ ψ1 ◦ χ−1, . . . , φK ◦ ψK ◦ χ−1

)
(1). (8.2)

�
Theorem 5.1, LDP for fluid processes.

Proof. The LDP for {Xn/n, n ∈ N} follows from the representation in equation (5.3), statement 2 of Theo-
rem 4.1 and an application of the contraction principle. �

Corollary 5.2, independent state selection and sojourn times.

Proof. We first prove the equality in equation (5.7). We start showing that

JX(x) = inf
y>0

inf

{
I(φ1, . . . , ψK) :

K∑
k=1

vkφ
k(ψk(y)) = x,

K∑
k=1

φk(ψk(y)) = 1

}
. (8.3)

Define the sets

Cx :=

⎧⎪⎨⎪⎩(φ1, . . . , φK , ψ1, . . . , ψK) :
K∑
k=1

vk φ
k ◦ ψk ◦

⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

(1) = x

⎫⎪⎬⎪⎭
and

Cx,y :=

{
(φ1, . . . , φK , ψ1, . . . , ψK) :

K∑
k=1

vkφ
k(ψk(y)) = x,

K∑
k=1

φk(ψk(y)) = 1

}
;

then Cx,y ⊂ Cx for all y > 0, and therefore

JX(x) ≤ inf
y>0

inf
{
I(φ1, . . . , ψK) : (φ1, . . . , ψK) ∈ Cx,y

}
.
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Moreover the infimum JX(x) in (5.4) is attained at some (φ1∗, . . . , ψK∗ ) ∈ Cx since Cx is closed and I is a good
rate function; thus, defining y∗ =

(∑
k φ

k
∗ ◦ ψk∗

)−1 (1), we have

inf
y>0

inf
{
I(φ1, . . . , ψK) : (φ1, . . . , ψK) ∈ Cx,y

} ≤ inf
{
I(φ1, . . . , ψK) : (φ1, . . . , ψK) ∈ Cx,y∗

}
≤ I(φ1

∗, . . . , ψ
K
∗ ) = JX(x).

This proves (8.3). Arguing as for equality (8.3), we have

JX(x) = inf
y>0

inf

{
I(φ1, . . . , ψK) :

K∑
k=1

vkφ
k(ψk(y)) = x,

K∑
k=1

φk(ψk(y)) = 1

}
= inf

y>0
inf

y1,...,yK>0
inf
{
I(φ1, . . . , ψK) :

ψk(y) = yk,

K∑
k=1

yk = y,

K∑
k=1

vkφ
k(yk) = x,

K∑
k=1

φk(yk) = 1

}
= inf

y>0
inf

y1,...,yK>0
inf

x1,...,xK>0
inf
{
I(φ1, . . . , ψK) :

ψk(y) = yk,

K∑
k=1

yk = y, φk(yk) = xk,

K∑
k=1

vkxk = x,

K∑
k=1

xk = 1

}

= inf
y>0

inf
y1,...,yK>0

inf
x1,...,xK>0

{∫ ∞

0

(
K∑
k=1

Ik(φ̇k(s)) +H(ψ̇1(s), . . . , ψ̇K(s))

)
ds :

ψk(y) = yk,
K∑
k=1

yk = y, φk(yk) = xk,
K∑
k=1

vkxk = x,
K∑
k=1

xk = 1

}
.

Therefore, defining

F (y, y1, . . . , yK , x1, . . . , xK) :=
K∑
k=1

ykI
k

(
xk
yk

)
+ yH

(
y1
y
, . . . ,

yK
y

)

for y, y1, . . . , yK , x1, . . . , xK > 0, we have

JX(x) ≥ inf
y>0

inf
y1,...,yK>0

inf
x1,...,xK>0

{
K∑
k=1

∫ yk

0

Ik(φ̇k(s))ds+
∫ y

0

H(ψ̇1(s), . . . , ψ̇K(s))ds :

ψk(y) = yk,

K∑
k=1

yk = y, φk(yk) = xk,

K∑
k=1

vkxk = x,

K∑
k=1

xk = 1

}
≥ inf

y>0
inf

y1,...,yK>0
inf

x1,...,xK>0
{F (y, y1, . . . , yK , x1, . . . , xK) :

K∑
k=1

yk = y,

K∑
k=1

vkxk = x,

K∑
k=1

xk = 1

}
=: J̃(x), (8.4)

where in the last line we have used Jensen’s inequality, as Ik and H are convex.
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By the definition of the infimum J̃(x) in (8.4), given ε > 0, there exist ŷ, ŷ1, . . . , ŷK , x̂1, . . . x̂K > 0 such that∑
ŷk = ŷ,

∑
vkx̂k = x and

∑
x̂k = 1 and

F (ŷ, ŷ1, . . . , ŷK , x̂1, . . . , x̂K) ≤ J̃(x) + ε.

Note that I attains the value 0 since it is a good rate function; thus there exist m1, . . . ,mK ∈ (0,∞) and
(l1, . . . , lK) ∈ ΔK such that Ik(mk) = 0 (k ∈ {1, . . . ,K}) and H(l1, . . . , lK) = 0. For k ∈ {1, . . . ,K} we define
the functions

φ̂k(t) =

⎧⎨⎩
x̂k
ŷk
t if t ≤ ŷk

x̂k + (t− ŷk)mk if t ≥ ŷk

and ψ̂k(t) =

⎧⎨⎩
ŷk
ŷ
t if t ≤ ŷ

ŷk + (t− ŷ)lk if t ≥ ŷ;

then it is easy to check that

φ̂k(ψ̂k(t)) =

⎧⎨⎩
x̂k
ŷ
t if t ≤ ŷ

x̂k + (t− ŷ)lkmk if t ≥ ŷ,

these functions meet the constraints of equation (5.4) and, using equation (5.6), we have that

JX(x) ≤ I(φ̂1, . . . , φ̂K , ψ̂1, . . . , ψ̂K) = F (ŷ, ŷ1, . . . , ŷK , x̂1, . . . , x̂K) ≤ J̃(x) + ε.

Thus JX(x) = J̃(x) since ε > 0 is arbitrary, and this proves (5.7).
We finally show that JX is convex. We start showing that F defined above is convex. For α ∈ [0, 1] consider

F (αy + (1 − α)u, αy1 + (1 − α)u1, . . . , αyK + (1 − α)uK , αx1 + (1 − α)w1, . . . , αxK + (1 − α)wK).

This equals

K∑
k=1

(αyk + (1 − α)uk)Ik
(
αxk + (1 − α)wk
αyk + (1 − α)uk

)
+ (αy + (1 − α)u)H

(
αy1 + (1 − α)u1

αy + (1 − α)u
, . . . ,

αyK + (1 − α)uK
αy + (1 − α)u

)
· (8.5)

Now, defining

γ =
αy

αy + (1 − α)u
∈ [0, 1] and for all k ∈ {1, . . . ,K} γk =

αyk
αyk + (1 − α)uk

∈ [0, 1],

the expression (8.5) equals

K∑
k=1

(αyk + (1 − α)uk)Ik
(
γk
xk
yk

+ (1 − γk)
wk
uk

)
+ (αy + (1 − α)u)H

(
γ
y1
y

+ (1 − γ)
u1

u
, . . . , γ

yK
y

+ (1 − γ)
uK
u

)
·

The convexity of I1, . . . , IK and H easily gives the convexity of F .
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Now, define the (2k + 1) × 3 matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0
+1 0 0

...
+1 0 0
0 v1 1

...
0 vK 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the function

F̃ (w, x, z) = inf{F (y, y1, . . . , yK , x1, . . . , xK) : (y, y1, . . . , yK , x1, . . . , xK)A = (w, x, z)}

where the infimum is over all positive y, y1, . . . , yK , x1, . . . , xK ; then F̃ is convex by the convexity of F and
Theorem 5.7 of Rockafellar [38]. Therefore JX(x) = F̃ (0, x, 1) is also convex. �

Corollary 5.3, equally visited states.

Proof. The proof of this corollary is similar to that for Corollary 5.2 and is omitted. �

Lemma 6.1, tail asymptotics for supremum.

Proof. We shall show later that the sequence {supt>0{Xn(t) − t}, n ∈ N} satisfies the LDP with good rate
function JsupX . Thus the claim is an immediate consequence of this LDP and the equalities

{Xsup > n} =
{

sup
t>0

(Xn(t) − t) > 1
}

and {Xsup ≥ n} =
{

sup
t>0

(Xn(t) − t) ≥ 1
}
,

which hold as Xnt/n = Xn(t) for all n ∈ N and t > 0. It remains to prove the announced LDP. Note that

P

({
lim
n→∞

Xn

n
∈ ZJX

})
= 1 (8.6)

by Theorem 5.1 and Lemma A.1 (for Lem. A.1, see the Appendix at the end of this section). Let ZJX − 1 be
the set defined by

ZJX − 1 := {x ∈ R : x = y − 1, y ∈ ZJX}.
The set ZJX − 1 is compact since ZJX is the set of all the zeros of the good rate function JX ; thus

Ỹ :=
{
φ ∈ Y : lim

t→∞
φ(t)
1 + t

∈ ZJX − 1
}

is closed. We remark that, for each n ∈ N, Xn(·) − id(·) (where id(t) = t) belongs to Ỹ almost surely; indeed
Xn(·) − id(·) is continuous, Xn(·) − id(·) starts at the origin (i.e. Xn(0) − id(0) = 0) and, by (8.6),

lim
t→∞

Xn(t) − id(t)
1 + t

= lim
t→∞

Xnt

n(1 + t)
− t

1 + t
∈ ZJX − 1

almost surely.
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Arguing as in the proof of Theorem 4.1 one can show that the function (φ1, . . . , ψK) 
→ ∑
k φ

k ◦ ψk ◦(∑
j φ

j ◦ ψj
)−1

is continuous. Thus, by Assumption 4.1 and the contraction principle, {Xn(·) − id(·), n ∈ N}
satisfies the LDP in Ỹ with good rate function J

X(•)−id defined by

JX(•)−id(η) = inf

⎧⎪⎨⎪⎩I(φ1, . . . , ψK) :
K∑
k=1

vk φ
k ◦ ψk ◦

⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

− id = η

⎫⎪⎬⎪⎭ .

Finally the LDP follows by applying again the contraction principle. Indeed, the function η 
→ sup{η(t) : t > 0}
is continuous on Ỹ since ZJX − 1 ⊂ (−∞, 0) by Assumption 6.1; this can be checked by adapting the proof of
Theorem 5.3 in [17]. �

Proposition 6.2, tail asymptotics for supremum 1.

Proof. First note that the hypotheses imply Assumption 6.1. We distinguish two cases.
Case 1 : vk ≤ 1 for all k ∈ {1, . . . ,K}. We have P (supt>0{Xt − t} = 0) = 1, and therefore

JsupX(s) =
{

0 if s = 0
∞ if s �= 0;

thus infs>1 JsupX(s) = infs≥1 JsupX(s) = ∞.
Case 2 : there exists k∗ ∈ {1, . . . ,K} such that vk∗ > 1. In this case JsupX has the following form:

JsupX(s) = inf

{∫ ∞

0

(
K∑
k=1

Ik(φ̇k(t)) +H(ψ̇1(t), . . . , ψ̇K(t))

)
dt :

(φ1, . . . , ψK) ∈ Y#, sup
t>0

⎛⎜⎝ K∑
k=1

vkφ
k ◦ ψk ◦

⎛⎝ K∑
j=1

φj ◦ ψj
⎞⎠−1

(t) − t

⎞⎟⎠ = s

⎫⎪⎬⎪⎭ .

We remark that, since the infimum over a closed set of a good rate function is attained at some point, we have:
infs≥1 JsupX(s) = JsupX(s∗) for some s∗ ≥ 1;

JsupX(s∗) =
∫ ∞

0

(
K∑
k=1

Ik(φ̇k∗(t)) +H(ψ̇1
∗(t), . . . , ψ̇

K
∗ (t))

)
dt

for some (φ1
∗, . . . , ψ

K
∗ ) ∈ Y# such that

sup
t>0

⎛⎜⎝ K∑
k=1

vkφ
k
∗ ◦ ψk∗ ◦

⎛⎝ K∑
j=1

φj∗ ◦ ψj∗

⎞⎠−1

(t) − t

⎞⎟⎠ = s∗.

We remark that, for (φ1, . . . , ψK) ∈ Y# and y > 0, by Jensen’s inequality we have∫ ∞

0

(
K∑
k=1

Ik(φ̇k(s)) +H(ψ̇1(s), . . . , ψ̇K(s))

)
ds ≥

K∑
k=1

ykI
k

(
xk
yk

)
+ yH

(
y1
y
, . . . ,

yk
y

)

where ψk(y) = yk and xk = φk(yk) for all k ∈ {1, . . . ,K}; moreover the lower bound is attained with suitable
piecewise linear functions. We recall that there exist m1, . . . ,mK > 0 and (l1, . . . , lK) ∈ ΔK such that I1(m1) =
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· · · = IK(mK) = H(l1, . . . , lK) = 0; for a choice of these values we set x∞ =
∑

k vkmklk/
∑
jmj lj, and we have

x∞ < 1 by Assumption 6.2. Thus the minimizing point (φ1∗, . . . , ψK∗ ) ∈ Y# is of the form

φk∗(t) =

{ xk
yk
t if t ≤ yk

xk + (t− yk)mk if t ≥ yk
and ψk∗ (t) =

{ yk
y
t if t ≤ y

yk + (t− y)lk if t ≥ y

for k ∈ {1, . . . ,K} and y, y1, . . . , yK , x1, . . . , xK > 0 such that
∑
k yk = y. Moreover we have to choose

x1, . . . , xK > 0 such that
∑
k(vk − 1)xk = s∗; indeed it is easy to check that

φk∗ ◦ ψk∗ (t) =

{ xk
y
t if t ≤ y

xk + (t− y)lkmk if t ≥ y
(k ∈ {1, . . . ,K}),

⎛⎝∑
j

φj∗ ◦ ψj∗

⎞⎠−1

(t) =

⎧⎪⎨⎪⎩
y∑
j xj

t if t ≤∑j xj

y +
t−∑ j xj∑

j mj lj
if t ≥∑j xj ,

∑
k

vkφ
k
∗ ◦ ψk∗ ◦

⎛⎝∑
j

φj∗ ◦ ψj∗

⎞⎠−1

(t) =

⎧⎪⎨⎪⎩
∑
k vkxk∑
j xj

t if t ≤∑j xj∑
k vk

(
xk +

t−∑ j xj∑
j mj lj

mklk

)
if t ≥∑j xj

=

⎧⎪⎨⎪⎩
(

s∗∑
j xj

+ 1

)
t if t ≤∑j xj

s∗ +
∑

j xj + x∞(t−∑j xj) if t ≥∑j xj ,

and therefore

sup
t>0

⎛⎜⎝∑
k

vkφ
k
∗ ◦ ψk∗ ◦

⎛⎝∑
j

φj∗ ◦ ψj∗

⎞⎠−1

(t) − t

⎞⎟⎠ = s∗

since x∞ < 1.
Now, for a fixed ε > 0, consider (φ1

ε, . . . , φ
K
ε , ψ

1
ε , . . . , ψ

K
ε ) such that ψkε = ψk∗ for all k ∈ {1, . . . ,K}, φkε = φk∗

for all k ∈ {1, . . . ,K} \ {k∗} and

φk
∗
ε (t) =

⎧⎨⎩
xk∗ + ε

yk∗
t if t ≤ yk∗

xk∗ + ε+ (t− yk∗)mk∗ if t ≥ yk∗ .

It is easy to check that

∑
k

vkφ
k
ε ◦ ψkε ◦

⎛⎝∑
j

φjε ◦ ψjε

⎞⎠−1

(t) − t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s∗ + (vk∗ − 1)ε∑

j xj + ε
t if t ≤∑j xj + ε

s∗ + (vk∗ − 1)ε
+(x∞ − 1)

(
t−
(∑

j xj + ε
))

if t ≥∑j xj + ε,
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and therefore

sup
t>0

⎛⎜⎝∑
k

vkφ
k
ε ◦ ψkε ◦

⎛⎝∑
j

φjε ◦ ψjε

⎞⎠−1

(t) − t

⎞⎟⎠ = s∗ + (vk∗ − 1)ε

> s∗ ≥ 1,

since x∞ < 1, vk∗ > 1 and ε > 0. In conclusion we have

inf
s≥1

JsupX(s) ≤ inf
s>1

JsupX(s)

≤ I(φ1
ε, . . . , φ

K
ε , ψ

1
ε , . . . , ψ

K
ε )

=
∑
k 	=k∗

ykI
k

(
xk
yk

)
+ yk∗I

k∗
(
xk∗ + ε

yk∗

)
+ yH

(
y1
y
, . . . ,

yk
y

)

→ε→0

K∑
k=1

ykI
k

(
xk
yk

)
+ yH

(
y1
y
, . . . ,

yk
y

)
(8.7)

= I(φ1
∗, . . . , ψ

K
∗ ) = JsupX(s∗) = inf

s≥1
JsupX(s),

where in (8.7) we used the continuity of Ik
∗
. �

Proposition 6.3, tail asymptotics for supremum 2.

Proof. The proof of this proposition is similar to that for Proposition 6.2 and is omitted. �

Proposition 7.1, LDP for modulated Lévy processes.

Proof. We only need to show that statement 1 holds, as statement 2 is a consequence of the statement 1 and
the contraction principle. The proof of the statement 1 is based on Theorem 2.3 of Chaganty [9]. Denote by
νn(·|Z1

n/n, . . . , Z
K
n /n) the conditional law of Cn/n given (Z1

n/n, . . . , Z
K
n /n). The sequence {(Z1

n/n, . . . , Z
K
n /n),

n ∈ N} satisfies the LDP with good rate function JZ by statement 2 of Theorem 4.1. Thus we only have
to check the following three conditions: (i) for any sequence {zn} ⊂ ΔK which converges to a point z =
(z1, . . . , zK) ∈ ΔK , {νn(·|zn)} satisfies the LDP with good rate function JC|Z(·|z1, . . . , zK); (ii) the function
(c, z1, . . . , zK) 
→ JC|Z(c|z1, . . . , zK) is lower semi-continuous; (iii) JC,Z is a good rate function.

Proof of (i). Denote by ν̂n(·|zn) the moment generating function concerning νn(·|zn). Then

lim
n→∞

1
n

log ν̂n(nγ|zn) = lim
n→∞

1
n

log exp

(
n
∑
k

Λk(γ)zkn

)
=
∑
k

zkΛk(γ).

So, by Gärtner Ellis Theorem (see e.g. [12], Chap. 2, Sect. 3), {νn(·|zn)} satisfies the LDP with good rate
function

JC|Z(c|z1, . . . , zK) = sup
γ∈R

[
γc−

∑
k

zkΛk(γ)
]
.

We complete the proof of (i) by noting that the Legendre transform of a sum of lower semi-continuous convex
functions is the infimal convolution of the Legendre transforms of the individual elements (e.g. Thm. 16.4



ON THE LARGE DEVIATIONS OF A CLASS OF MODULATED ADDITIVE PROCESSES 107

of [38]) and that supγ∈R{γx− zkΛk(γ)} = zkΛ∗(x/zk). Therefore we have that

JC|Z(c|z1, . . . , zK) = inf

{
K∑
k=1

zkΛ∗(ck) :
K∑
k=1

zkck = c

}
.

Proof of (ii). Consider a sequence {(cn, zn)} ⊂ R × ΔK which converges to a point (c, z) ∈ R × ΔK . Then, for
all γ ∈ R, we have JC|Z(cn|z1

n, . . . , z
K
n ) ≥ γcn −∑k z

k
nΛk(γ) (for all n ∈ N), and therefore

lim inf
n→∞ JC|Z(cn|z1

n, . . . , z
K
n ) ≥ γc−

∑
k

zkΛk(γ).

The claim follows taking the supremum over γ ∈ R.
Proof of (iii). We have to check that, for all η > 0, the level set Lη := {(c, z) : JC,Z(c, z) ≤ η} is compact. First
of all it is a closed set since JC,Z is lower semi-continuous; indeed, for any sequence {(cn, zn)} ⊂ R×ΔK which
converges to a point (c, z) ∈ R × ΔK , the lower semi-continuity of JC|Z and JZ gives

lim inf
n→∞ JC,Z(cn, zn) ≥ lim inf

n→∞ JC|Z(cn|zn) + lim inf
n→∞ JZ(zn)

≥ JC|Z(c|z) + JZ(z) = JC,Z(c, z).

Now consider the set Gη := {(c, z) ∈ R × ΔK : JC|Z(c|z) ≤ η} and note that Lη ⊂ Gη. The claim follows
if we prove that Gη is bounded. Reasoning by contradiction, since ΔK is bounded, there exists a sequence
{(cn, zn)} ⊂ Gη such that limn→∞ |cn| = +∞. Thus we have

η ≥ JC|Z(cn|zn) ≥ γcn −
∑
k

zknΛk(γ)

for all γ ∈ R and for all n ∈ N; this leads to a contradiction if we choose γ ∈ R such that limn→∞ γcn = +∞. �

Appendix A. Lemma A.1

Lemma A.1. Let {Wn, n ∈ N} be a sequence of real valued random variables which satisfies the LDP with
good rate function I, and let Z be the set defined by Z := {w ∈ R : I(w) = 0}. Moreover assume that
P ({limn→∞Wn = W∞}) = 1 for a suitable random variable W∞. Then P (W∞ ∈ Z) = 1.

Proof. In this proof we use the following standard notation for A ⊂ R: Ac = R \ A and A is the closure
of A. The set Z is closed and nonempty since I is a good rate function. Let Zε be the set defined by
Zε := {x ∈ R : there exists yx ∈ Z such that |x− yx| < ε} for ε > 0; then I(Zc

ε) := inf{I(x) : x ∈ Zc
ε} > 0.

We have lim supn→∞
1
n logP (Wn ∈ Zc

ε) ≤ −I(Zc
ε) and, for δ ∈ (0, I(Zc

ε)), there exists n ∈ N such that
P (Wn ∈ Zc

ε) ≤ e−n(I(Zc
ε)−δ) for n ≥ n. Then

∑
n≥n P (Wn ∈ Zc

ε) ≤
∑

n≥n e−n(I(Zc
ε)−δ) <∞ and, by the Borel-

Cantelli lemma, we have P
(
lim infn→∞

{
Wn /∈ Zc

ε

})
= 1. Thus P (lim infn→∞ {Wn ∈ Zε}) = 1 since Zc

ε ⊃ Zc
ε .

Then we have P (Aε) = 1 where

Aε = lim inf
n→∞ {|Wn −W∞| < ε} ∩ lim inf

n→∞ {Wn ∈ Zε}
= lim inf

n→∞ ({|Wn −W∞| < ε} ∩ {Wn ∈ Zε}) ;

this means that there exists n∗
ε(ω) such that for all n ≥ n∗

ε(ω) we have |Wn(ω) −W∞(ω)| < ε and |Wn(ω) −
yWn(ω)| < ε for some yWn(ω) ∈ Z, whence we obtain

|W∞(ω) − yWn(ω)| ≤ |W∞(ω) −Wn(ω)| + |Wn(ω) − yWn(ω)| < 2ε.
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Therefore W∞(ω) ∈ Z2ε (with yW∞(ω) = yWn(ω) ∈ Z for some arbitrarily fixed n ≥ n∗
ε(ω)); thus Aε ⊂ {W∞ ∈

Z2ε}, and therefore P (W∞ ∈ Z2ε) = 1. We conclude the proof noting that P (W∞ ∈ Z) = 1. Indeed, since Z
is a closed set, we have Z =

⋂
ε>0,ε∈Q Z2ε. �

Acknowledgements. The authors thank an anonymous reviewer for spotting an error in, and proposing the correction to,
our original definition of JC|Z(c|z1, . . . , zK) in Proposition 7.1.
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