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EXPANSIONS FOR THE DISTRIBUTION OF M-ESTIMATES
WITH APPLICATIONS TO THE MULTI-TONE PROBLEM

CHRISTOPHER S. WITHERS' AND SARALEES NADARAJAH?

Abstract. We give a stochastic expansion for estimates 0 that minimise the arithmetic mean of
(typically independent) random functions of a known parameter . Examples include least squares
estimates, maximum likelihood estimates and more generally M-estimates. This is used to obtain
leading cumulant coefficients of 6 needed for the Edgeworth expansions for the distribution and density
of n'/2(6 — 6°) to magnitude n~3/? (or to n~2 for the symmetric case), where 6° is the true parameter
value and n is typically the sample size. Applications are given to least squares estimates for both
real and complex models. An alternative approach is given when the linear parameters of the model
are nuisance parameters. The methods are illustrated with the problem of estimating the frequencies
when the signal consists of the sum of sinusoids of unknown amplitudes.
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1. INTRODUCTION AND SUMMARY

Let  denote an estimate of # in R? based on a random sample of size n. There is a large amount of work
on expansions for 0 — 69, where #° is the true value of . However, most of the work to date are for the
sample mean and functions of it. For example, Monti [5] obtains an expansion for the sample mean up to the
second order by expanding the saddlepoint approximation. Booth et al. [1] give tilted expansions of a sample
mean from a distribution on k points. Kakizawa and Taniguchi [4] obtain expansions for P(é\ < ) under the
assumption that 0 has a cumulant expansion in powers of n~!. Gatto and Ronchetti [3] provide approximations
for P(m(X) < z) up to 1+ O(n~!) for m(-) a smooth function. For a comprehensive review of the known work,
we refer the readers to [8].

The aim of this paper is to provide expansions for those 9 that minimise the arithmetic mean of random
functions of §. Maximum likelihood estimates (MLEs), least squares estimates (LSEs), and more generally
M-estimates are examples of 9 which minimise a random mean function

A=AO)=n""Y An(0)
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140 C.S. WITHERS AND S. NADARAJAH

for 6 in RP. If EOA/90 = 0 and E 9?A/0006" > 0, then §—>p 0% as n — co. (We use R and C to denote the
real and complex numbers).

The contents of this paper are organized as follows. In Section 2 we give a stochastic expansion for § — 6° of
the form

(o)
gfﬁozz:d“,
a=1

where % = O,(n~%2). (The a in §° is a superscript not a power).
In Section 3 we use this to obtain the leading coefficients in the expansions for the cumulants of 6:

K‘(,éiun'aé\ir)% Z k;l‘lmirn_j (11)

Jj=r—1

for r > 1 with k} = 69. This implies that Y, = n'/2(6 — 6°) — Np(0,V) with V = (ki'?) = A~! for
A= EJ*A\/000¢'. The leading bias and skewness coefficients k:él and kzémii" give the Edgeworth expansion of
the distribution (and its derivatives) of ¥;, to O(n~1), while the coefficients k5> and k%" give the Edgeworth
expansion of the distribution of ¥;, to O(n=3/?) and P(Y, € S) to O(n"2) for S = —S C RP.

Section 4 applies these results to the LSEs for the general signal plus noise model

Yn=5Syv0)+eyinRorC,1<N<n (1.2)

with Ay (0) = |Yn — Sn(0)]?/2, where the residuals ey, .. ., e, are assumed independent with mean zero. While
the complex formulation can also be dealt with by the real formulation, there are some significant simplifications
in staying with the complex model. The M-estimate with respect to a given convex function p on R or C for
the model (1.2) is 9 for An(0) = p(Yy — p(6)). For smooth p the leading cumulant coefficients were essentially
found by this method in the real case in [7].

Section 5 considers two examples on the signal frequency problem

yr =s(0) +np in CM, k=1,... K, (1.3)
where ny, is complex normal with covariance not depending on 6, and the mth component of s(0) is

R
sm(0) = Za,. exp(jor + jw,(m + mg)/M) for m=0,1,...,M — 1,

r=1

where j = v/—1. The p = 3R parameters are ' = (a’,¢',w’). So, (1.3) can be written in the form (1.2) with
n = 2kM. Changing the covariance constant my is equivalent to reparameterising ¢,.: we shall see that if R = 1
then taking mo = — (M — 1)/2 makes the asymptotic covariance of § diagonal.

In Section 6 we give a variation of the method for the case when the linear parameters of the model are
nuisance parameters.

Appendix A provides a list of summation notations used throughout the paper. Some technical details
required for the two examples in Section 5 are given in Appendices B and C. The proofs of all theorems are
given in Appendix D.

For z a complex matrix we shall use =’ to denote its transpose, T its complex conjugate, and z* the transpose
of its complex conjugate.
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2. THE STOCHASTIC EXPANSION

Suppose {An(#)} are real random functions of 6 in R”. Here we show that 6 minimising A = A9) =
n~1 Y%, An(0) in RP has the stochastic expansion

(o]
§=0-0"=> 0o (2.1)
a=1
with §¢ = Op(n’“/Q). To avoid excessive subscripts we shall fix 1 < ig,41,... < p and set
67 = (6%)i;, 0; =0/00;;,65 = (6)i;, Na2... = 0102... A(6), (2.2)
Ap.. = FEAja ,and Ap = Aqa. — A .

Theorem 2.1 gives the first three 6% explicitly in terms of these A’s and A’s. By (2.1) this gives ) explicitly in
terms of A’s and A’s to Op(n™2).

For 0 to be a consistent estimate we need to assume that

A, = EA;=0, (2.4)

A, = Op(n_l/Q) as n — oo.

Typically the model contains a location parameter, and the constraint (2.4) effectively specifies how it is defined,
as well as identifying the other parameters of the model. The constraint (2.5) generally follows by the Central
Limit Theorem, if the {Ax(0)} are independent or weakly dependent.

Theorem 2.1. Suppose 9 is the estimate as defined above satisfying (2.4) and (2.5). Suppose also that the
eigenvalues of the p x p matrix A = (A2 : 1 < iy, ia < p) are bounded away from zero as n — oo, so A has
bounded inverse A~1 = (A'?) as n — oo. Then (2.1) holds. Furthermore,

56 _ *AOlAl, (26)
52 = AMAABA; — BOALA;, (2.7)
2
05 = —AM(A10% — Arns Y AZAR/2 + A1y A AL AT NG /2 — CFT A AGAT),
23

= A" {A(AP A AP Ay — BB AGAY)

2
—27 Ao Z A AL (AP Agg AT A7 — B3O A Ag)
23
F27 A AP N 193 Ay — O A A3 AL} (2.8)

and so on, where B123 = A1 A25 A3 A 56 /2 and CF57 = A1534A?° A35 AY7 /6.

Note that B%® B234 B356 and C?3* in (2.6)—(2.8) follow from the definitions given for B23 and C757. For
example, BY% = A0 A% A0 A 55 /2 B2 = A4 A3 A A 56 /2 and O34 = A3, A22A33 A% /6. The first three
6% given will be sufficient to obtain the cumulant coefficients needed.

3. THE LEADING CUMULANT COEFFICIENTS

In this section we give the cumulant coefficients of (1.1) needed for the distribution of n*/2(8—6°) to _O(n_?’/ 2),
namely k'?, k%, k3%, k'3, k5%, where we extend the notation of (D.1), (2.3) by setting k" = kj' ", We
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now assume Aq(6),...,A,(0) independent. For 7 a sequence of integers in {1,...,p}, using the dot notation
of (2.2) for partial derivatives,

n
=n! E AN
N=1

So, for 71, ma, ... such sequences, the joint cumulants of the A.; are given by
KAy A) =0 Ty, ] (3.1)
where
n
e m] =07 k(AN - AN, (3.2)
N=1

For example, [1...r] = EA4._, = A;._,. We shall give the leading cumulant coefficients we need in terms of
these [.] functions.
Set 0, = 1 for 7 = s and 0 otherwise, and a?' -’ = k(5% ..., d%). This has an expansion of the form

by...by. __ by...b, —J
ay. . = § : Ay r. 7 n .
5> (bittby)/2

Also, the left hand side of (1.1) is equal to 6 6,1 + £(01,...,d,). Substituting (2.1) into this gives

"= 91-01(57«1(5]‘0 + Z alil Tb] , (3.3)
bi+...+b,-<2j

where by, ...,b, are positive integers.

Theorem 3.1. The coefficients k12, k%, k12, k12 and k123* of (3.3) can be expressed as

12 _ 0 _ 123 _ 111 112
k'? =atbq, kY =aly, kY a193.2 + E (123,25 (3.4)
112

ks = 2‘1122 Jr2‘1122 +af3, (3.5)

and
4
k% = atg3is + Z atsis + Z atsis + Z 13543, (3.6)
1112 1113 1122
where
k2 =ail, = AB A3, 4], (3.7)

kY = ai, = A°MA%*[12,3] — B™[4, 5], (3.8)
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ailt, = —AM AP A4, 5 6], (3.9)
2 2

a1g3., = AMAP {A%NS > 4,67 [5,8] — B*7 Y "[4,6][5, 7]} : (3.10)
45 45

a1z, = —AB A% A0[3,45,6] + AP B?*[3,4, 5], (3.11)

3 3
all, = A13A24{A56A782[3745] [67,8) = BT > [3,45] [6,7]

2 3 3
—27 Ayse » A <A68A9710 > 13, 7](89,10] — B> [3,7] 8, 9])
56

3 3
+271APT AR Y 7[3,456] [7,8] — C37 > [3,5] [6, 7]} , (3.12)
2 2 2
afs, = ABA®ANATN"[5,8](34,67) - Y AP AP BT "[5,6][7,34]
34,5 12 6,7
2
| 134267 2[3,6] [4,7], (3.13)
34
alsil o = AP A6 AT A [5.6,7, 8], (3.14)
6 6
alsi? o = AP A6 437 {A48A9710 Z[gg, 10] [5,6, 7] + B8 Z[s, 9] 5,6, 7]} , (3.15)
15
aldld . = A AAT A {A9710A11’12 > [5,6][7,89] [10.11,12]

15
_pgo10,11 2[5, 6] [7,89] [10, 11]

2 15
—27 Agg 10 »_ AV <A10712A13’14 > [5,6][7,11] [12.13, 14]
9,10

—pl012.13 i[a 6] [7,11] [12, 13])

15
+27 1AM A2 N 5 6] [7,89.10] [11,12]

—CM N 15,61 (7, 9] [10, 11]} (3.16)
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and

15

aiaas = A15A26{A37A89 A0 A2 N5 6] [78,9] [10.11, 12]

—pHion i[& 6] [78,9] [10, 11]]

15

—B¥8 | A0 AN 12N 5 6] [7,8] [10.11, 12

—B4101 N5, 6] (7, 8] [10, 11]] } . (3.17)

4. LEAST SQUARES ESTIMATES

Here we apply the previous section to LSEs for both real and complex models. We begin with the real model.
Suppose we observe

Y =5(0)+einR", thatis Yy =Sy(0) +eyin Rfor 1 <N <n (4.1)

with eq, ..., e, independent and identically distributed (i.i.d.) with mean zero. Denote their rth cumulant by
Ar = kr(e1). The LSE is 6 minimising

A=n"'Y =SO)/2=n""> Ax(0), (4.2)

N=1

where Ay (0) = |Yn — Sn(6)|%/2. So,
ANa.r=01...0:8% /2= YNSNar, Al p=[L...71]=n""! zn: {01...0:5%/2 = SnSN1..r }-
N=1
For 71, ma, ... sequences of integersin 1...p, set
(1,2, ... =n! i SNy SNy -+ - (4.3)

N=1

Theorem 4.1 uses the previous section to express the cumulant coefficients we need in terms of these () functions.
Theorem 4.2 notes what form these take for the special case when A is diagonal, having in mind the example
of the next section for the case R = 1.

Theorem 4.1. For the model given by (4.1), the cumulant coefficients of Theorem 3.1 are
kP =k = 0A", (4.4)
Ko = k% = 271N A% AT (1,23) — (2,13) + (3,12)}, (4.5)
3

kgt = kPP = AN A A% {)\3<4, 5,6) + A3 ) (4, 56}} —6A3B'%, (4.6)
456
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ai3.5 = AgA' (A?*A0(3,45,6) — B**(3,4,5)) , (4.7)
2
ai3,/N3 = APAAT <A78 > (3,45) (8,67) + (34, 56>>
38

—2_1A24<3,45>A56A678(A13A78 4 2A18A37)
+ABAM (—271(3,45)B° — (6,45)B5°
+2A34GB6 + 2_1A456A378A57A68 + 21 <3, 456>A56

+(6,345) A — 271 A3456 A%°) (4.8)
2
a3z 5 /N3 = AV A (AYT(34,67) + AT A™8(34,8) (5,67)) — 2 Z A'3B?46(6,34) + 2B B2°, (4.9)
12
athyhs = MAP A AYTAM(5,6,7,8), (4.10)
3
alzi? . = [Aa)s] {A15A26A37A48A9’10 Z<5, 89) (10,6, 7)
567
—AB[AZ5 43T A19(89,6,7) + AP A3TA(89,5,7) + A A6 439(89, 5, 6)]
3
+A15A26A37A48A9’10 Z A58,10<67 7, 9>} , (411)
567
15
ai%éi& _ )\%A15A26A37A48 {A9’10A11’12 Z<5a6> <77 89> (12, 1011)

15
_g910,11 Z<5, 6) (7,89) (10, 11)

2 15
—27" Agg 10 »_ AWM <A10712A13714 > (5,6) (7,11) (12.13,14)
9,10

15 15
~B'01213N 5,6) (7,11) (12, 13>> +271 AP A2 N (5. 6) (7,89.10) (11, 12)

—CMS (5,6) (7,9) (10, 11>} (4.12)

and

15

a%%§i3 _ )\§A15A26 {AS'?ASQ AL10 411,12 Z<5’ 6><78, 9><1011’ 12>

15
— B3 7(56) (78,9)(10, 11)

15

— B38| ABI0AT2 N (5, 6)(7,8)(10.11,12)

—pHioit i(& 6) (7,8) (10, 11>] } , (4.13)

where Bl = Bl23A23 = 271A12A234A34 and B%B = B234A14 = 271A145A24A35.
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Theorem 4.2. The corresponding expressions of Theorem 4.1 for A diagonal are

Ko = k9 = —271X, 40 4%2(0, 22),

3
kyete = k70 = AN AP AP {)\3<1, 2,3) + A3 (Zu, 23) — 3A123> } :

123

ai%z = )\31411 {A22A55<17 25) 5> - BQ45<1’ 4’ 5>} ’

aldo /A3 = AYMAZAB[AT((1,25) (7,57) + (1,57) (7,25)) + (12, 55)]
—2_1A11A22A55(<1,25>A577A77
+2(3,25) A531 A%3) + AN A22[—271(1,25) B®
—(6,25)B + 2415685 + 271 A1 56 Ags6 A%° A5C
+271(1,255) A% + (5,125) A% — 271 A 155 A7),

2
a3/ 0] = AT AP AM((14,24) + AT(7,14) (4,27)) — Y A B5(6,14) + 2B{* B3,

12

a}%ééll?; - )\4A11A22A33A44<1, 27 3; 4>7

3 3
aldl2 . /(Mads) = A“...A“{A55Z<1,45><2,3,5>Z<1,2,34>
123 123

123

3
+A Y " A1is(2,3, 5>} :
15
ai3333/A3 = A11A22A33A44{A99A11711Z<1,2>(3,49><11,9.11>

15
—BY101Y 7(1,2)(3,49)(10, 11)

2 15
—27" Agg 10 »_ A”® <A10710A13713 > (1,2)(3,9)(10- 13,13)

9,10

15 15
—B01213°37(1,2)(3,9)(12, 13>> +27 1A% AN (1, 2)(3,49.10)(9, 10)

—CPOY 7(1,2)(3,9)(10, 11>}

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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and

15

a&%%is/)\g _ A11A22 {ASSASS A44A11,11 Z<17 2> <38, 8> <411, 11>

15
—BRIOLN (1 9)(38,8)(10,11)

15

— B38| AM ALY (1,2)(7,8)(4.11,11)

—BH10IN (1, 2)(7,8)(10, 11>] } , (4.22)

where B123 = A11A22A33A123/2, 01234 = A1234A22A33A44/6, and
B =27 AY A2 A oy, B =271 A 53472 A3, (4.23)

Note that the implicit summations are over the i’s not on the left hand side. For example, in (4.14) the
summation 1S over is, not ig.

Note that B®, BS, Bg’ﬁ, Bé3 and B§6 in Theorem 4.1 follow from the definitions given for B! and B?3. For
example, B5 = B2 A,3, BS = B2 A3, B3S = B%4A3, and BE® = B34 Ag,. Similar comments apply to

Theorem 4.2.
Now suppose we replace the real model (4.1) by the complex model

Y =50)+einC", thatis Yy = Sy(f)+exinCfor1 <N <n (4.24)

with ey = ey1+jens for j = /—1 and {en1,en2} independent and identically distributed with mean zero and
cumulants {A,}. The LSE is again given by (4.2). This can be put in the framework of (4.1) with n replaced
by 2n, (so that A and A;..., are half what they are for the complex version with ex; = ey of (4.1)), but it is
simpler to adapt the preceding as follows:

Ana.» = 81...67-5_']\751\7/2—YNSN~1...7'/2_YNSN~1...T/2a
Ay, [L..r]=n""Y {01...0.|n["/2 — Re SySn1..r}
N=1
n Y1 ...0,S]2/2 — Re S*S1...).

(Recall that Yy is the complex conjugate of Yy, and S* = S’.) Let us extend the notation of (4.3) by writing

n
— 71 ~
(T, T2, m3) =M E SN SN 7SNy

N=1
and so on for 7y, 79, ... sequences of integers in 1...p. One obtains
nA.1 = —Re 6*5.1, TLA.12 = Re (5*152 - 6*5.12),
A12 = Re B12 = (B12 + 312)/2 for B12 = S*ISQ/TL = <L 2>, (425)

A-l...r = Re (Blmr — e*S.lmr/n), Al,..r = R@ Bl...ra
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where

Bias

3 3
(Z S_*}S.23> /n = Z<I, 23>,

123 123
4 3 4 3
Biaga = (Z S4Sa1+ Y S?‘12S.34> /n =) (1,234) + ) (12,34).
1234 123 1234 123

Note that By, , can be written down using the form for the partial Bell polynomial B,s on page 307 of [2]; his
Booy = ac%, his B3o = 32122, his Bys = 4x123 + 330%, his Bss = bx1x4 + 102223 so that

5 10 5 10
Biogas = (Z S,*ls.2345 + Z S,*12S.345> /n = Z(L 2345> + Z<ﬁ, 345>7

and so on. We now give the complex form of (D.5). Set v; = S.., and T; = e*~;. If r > 1 then

(=2)"[r1, ..y m] = 2'n 'R(ReTy,...,ReT,) =n 'k(Ty +Ti,..., T +T))
o0
= > RAT )Y Fre o Fa i), (4.26)
i=0

,€1), counting e; ¢ times and €; j times. Also the inner summation is over

where k(liTj) =r(er, - ,€1,61, "
all such (71, . , i) giving different terms. These joint cumulants can be written in terms of the real cumulants
(A k(1Y) = [1 4 (=1)"""j"]\, so that k(12) =0, k(11) = 2),. For example,

2

Z(ﬁl, 7T2> = 4)\2 Real((ﬁl, 7T2>) s

2
Almy,m] = FE <T1T2 + ZT1T2 + T1T2> /n =2X

23 Real <(1 +7) {(7’(’1,71’2,7T3> + Z<F1,77277T3>}> ;

3
44 Real <{<7T1,’/T2,’/T3,7T4> -+ Z<ﬁ1,ﬁg,’ﬂ3,’ﬂ4>}> .

—8[7‘1’1,7‘(’2,71’3] =
234

16[71'1,7'('2,7'('3, 7T4]

So, by (D.5) the cumulant coefficients for the complex case are obtained from those for the real case by replacing

(my,m2) by Real({(71,m2)),
3
(m1,m2,m3) by Real ((1+j){(m,m,m)+Z<7r1,7_r2,7_r3>}> /4, (4.27)

3
7T177T2;7T3;7T4> + Z<ﬁ17ﬁ27ﬂ-37ﬂ-4>}> /4;

(my, T2, T3, m4) by Real({(
234
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and so on. A simpler way of seeing this — without having to involve the joint cumulants k(1 T Z) is as follows.
Consider the complex numbers a = a1 + jag, b = b1 + jba, ... Then a1 = (e +a)/2 and az = —(a — a)j/2. So,

airb; +ashby = Real(ab),

3
arbicy + azbaca = Real((1+74) <abc + Z%c) /4, (4.28)

3
aibicidy + asbscads = Real (abcd + Z ab@) /4
bed

= Real (abcd + abed + acbd + ad%) /4,

and so on. Now take a = Sy.r,, b = SNy, ... Then n=1 37N (a1bic1 + asgbacs) is twice the real version of (my,
ma, m3) for the real version of the complex version with n replaced by 2n. By (4.28) it equals the right hand
side of (4.27). Similarly, one can write down (m, ..., m.) for the real version of the complex model in terms of
(71, ..., m) for the complex model. So, the real versions (4.4), (4.5), (4.6), imply the complex versions

Eir = k12 = A2 Kl = k0 = 2710, A% A% Real ({—(1,23) — (2,13) + (3,12)}),

ke = k% = AMA® A% Real ()\3(1 +4) { (4,5,6) +Z 5,6 }/4+A2 > 56>> —6A;B'.
456

Similarly, k4" = k12 can be written down from its real form given by (3.5), (3.11), (3.12), (3.13), and ki 2% =
k123* can be written down from its real form given by (3.6), (3.14)—(3.17). Note that if e; is complex normal
with components having the same variance, then (4.26) implies that [7,..., 7] = 0 for r > 2 just as this holds
by (D.5) for the real case (4.1) if e; ~ N (0, A2).

5. EXAMPLES

We now drop the convention of Sections 2-4 of suppressing the ¢’s to the usual convention that
SN.“HJ'T = 81-1 .. .81-7,SN

for 0; = 0/00;. That is, we write (i; ...4,), where we had (1...r), A;;, = (i1,i2), where we had A5 = (1,2)
n (D.3), (i1,i2¢3), where we had (1,23) in (D.4), and so on. So, now

Aps = (r,s) = n~t Z SN.SN.s.
N=1
Example 5.1. Consider the R signal M frequency problem: observe
yr=50)+npinC” for k=1,... K,

where ny,...,ng are independent CAN /(0,vlp), that is, with real and imaginary parts independent
N (0,vIp/2). (So, A2 of Sect. 4 is v/2 and A\, = 0 for r # 2.) Counting m = 0,1,..., M — 1, suppose
that the mth component of s(6) has the form

R

Sm(o) - Zar eXP(jOCmr) = Sm1 +]Sm2
r=1
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say, for j = /—1, where oy, = ¢, + vpw, and vy, = (m + mg)/M, and {a., ¢, w,} are real so that p = 3R
and we can take 0’ = (a’, ¢’,w’). The main parameter is w; (a, ¢) are nuisance parameters. We shall obtain the
leading cumulant coeflicients firstly by using the real model (4.1), and then for comparison using the complex
model (4.24). For the real model the MLE 6 minimises

N=1

YO (L o () (v g o1 <k < K,
S1 Sy Sm1 Sm2

and Ykm = Ykm1 + JYkme. This puts the problem into the real formulation of (4.1) with ey ~ AN(0, A2).
The constant mg is arbitrary, since it reparameterises ¢. Choose mo = —(M — 1)/2, so that {v,,,} have
arithmetic mean zero. For 1 < r,s < R, Sjp1.r = COS Qmpy Smir+R = —0p SN Qppey Smlop42R = —VmGr SN Qe
Sm2.r = sin Amry Sm2.r+R = Qr COS Qmyp, Sm2.r42R = Vm Gy COS Qmyp and

K n
Z|yk—s(9)|2/2 = Z (Y — Sn(0))? /2, where n = 2kM,
k=1

M—-1
A'r‘s = (2M)_1 Z Zsmj.rsmj.s.
m=0 j=1
Fix 1 <r, s <R and set
Ors = Pr — Psy Wrs = Wy — Ws, O = Qmp — Qms = Prs + Vi Wrs. (51)

Then the elements of A = {A : 1 < a, b < 3R} can be identified as follows.

M-1
(a,d'y : (r;s) = (2M)™* Z COS Oy,
m=0
So, (r, ) =271 and for r # s,
1/2
(r,s) = 27! / cos(prs + Twyg) dr + O(M™1)
~1/2

= (cos @rs)w, sin(wys/2) + O(M 1) as M — oo,

M-1 1/2
(a,¢): (rs+R) = as2M)"' Y sing,, = a32_1/ sin(,s + 2wps) dz + O(M 1)
m=0 —1/2

= as(sing,s) w sin(w,s/2) + O(M ™) if r # s

= 0ifr =s,
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M—
(a,w') : (r;s+2R) = as(2M)~*! Z Vi, SIN Oy,

m=0

—

1/2
= as2_1/ xsin(prs +xwrs)dm+O(M_1)
~1/2

= as27 " cos s {—w; ! cos(wrs/2) 4 2w, 7 sin(w,s/2) }
+O(M 1Y ifr#s

= 0ifr=s,
M—1
<§0790/> : <T + R, s+ R> = aras(QM)_l Z cos O = ara5<7",8>,
m=0
M1
(') : (r+ R,s+2R) = (2M) 'a,a, Z Uy, COS Oy
m=0

1/2
= 271a,«a8/ 2 cos(pps + Twys) dz + O(M ™)
—1/2

= a,assin @TS{Q_lwr_sl cos(wys/2) — w;f sin(w,s/2)}
+O(M™Y)ifr# s

= 0ifr=s,

and

[

M—
(w,w') : (r+2R,s+2R) = aras(2M)"* Z V2, cos Oy,
m=0

1/2
= aras2_1/ ) 22 cos(prs + Twys) do + O(M ™)
~1/2

aras cos s { (47wt — 2w, %) sin(w,/2)
w2 cos(wys/2)} + O(M 1) if r # s

2 e
azve /2 if r = s,

where
M-1 . 1/2 .
’Ui:Milzl/:n:/ z'dr +O(M™1h).
m

=0 —1/2

In particular,

U2 (1—a)/12, v = (1 — a)(3 — Ta) /240,
ve = (1—a)(3—18a+31a%)/1344, vz = (1 — a)(5 — 55 + 239a° — 381a3) /11520,

and v; = 0 for i odd, where a = M ~2. So, A is only diagonal if R = 1.
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The complex formulation, (4.24) with n = Mk, is simpler than the real formulation above: choose 6 as above.
We have

Smer = 3m~7‘+R/(ja7') = 3m~7‘+2R/(ijar) = exp(jamr)-

Set

M-1
g (0) = M1 Z Uy, €xXp(jVm0).

m=0

A closed form for gy, is given in Appendix C. For example, gp0(0) = 1 and if § # 0, then

Mgno(6) = {cos(a —b) —cos(a+b)}/(1 —cos2b) =sina/sinb,
go(6) = sina/a for a=46/2,b=40/(2M).
Note that
gy (8) = g:(8) + O(M ™),
where

1/2 r
g:(6) = / " exp(jad)de = 2(=1)"r16 1> (1/(r = k))(5/2)" by
—1/2 k=0

and b = sin((km + §)/2) or jcos((km + d)/2) for r even or odd. Since {—vp} = {vm},
I (0) = garr (—6) = (=1)"gnr (6),

S0 garr is real for 7 even, and imaginary for r odd, that is, has(0) = 57 1gar-(0) is real for 7 odd. The A, ..,
can be conveniently written in terms of the real and imaginary parts of the function

M—1
Gyr(dr,ds) = Hy(dv, do) + jI,(dr,d2) = exp(jdi)gnrr(da) = M~ vy exp(j(di + vimda)).
m=0
So, for r even,
H,(d1,d2) = cosdy gur(dz2), Ir(di,d2) = sindy garr(da),

and for r odd,

H,(dy,d2) = —sindy ha(da), I.(dy,da) = cosdy hpr(dz).
For example, B of (4.25) is given by Bg, = s¥,s.5/M. As before fix 1 <r,s < R. Then

Bys = Brsir/(jas) = Brirstr/(aras) = exp(—jers)gao(wrs),

Br,erQR/(jas) = BTJrR,erQR/(aras) = eXP(*ﬁPrs)ng (*wrs)a
BT+2R,5+2R = Qras exp(*j@rs)gM2 (wrs)-
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So, A = A’ is given in terms of ¢,s, w,s of (5.1) by

Ars = ATJrR,erR/(aras) = COS Prs gMO(wrs)a Ar,erR = Qg sin Prs gMO(wrs)a
Ar,s+2R = Rejas eXP(*jCPrs)(*j)hMl (wrs) = Qs COS Prg h/Ml(wrs);
Ar+R,s+2R = —Q,0sSIN Ppg hart (w7's)7 Ar+2R,s+2R = QrQs COS Prs GM2 (wrs)-

Although A for the real and complex formulations look different, A and Aj;..., for the complex formulation are
exactly twice what they are for the real formulation, as noted in Section 4.

For both the real and complex models A;,...;, requires 6, 10 and 16 formulas for » = 2,3 and 4; we gave these
six formulas for » = 2 above; we now give the ten formulas for » = 3 for the complex case. We use the notation
1<r,;s,t<R,ry=r+(—1)R,s;=s+(i—1)Rand t; =t+ (i —1)R. So, By s;t;, = 0and A, = Ay 5,1, = 0.
Similarly, in terms of the Kronecker delta function 6;; = 1 for ¢ = j and 0 for ¢ # j, we have, for example,

2
Br252t3 = Z 6starast1 (9057"; wsr) - 5T5aratjG1 (Sarta wrt)a
rs
2
Br233t3 = 6starast2 ((Ps'r'; ws'r‘) + Z 57‘ta7'as.jG2 (907'5'7 w'r‘s)a
st
3
BT‘383t3 = Z 6starast3 ((Ps'r'; ws7‘)7
rst
so that
ATlsth = 6stA7's + 6t'rAst;
Arisats = as(0pt — O5t) 08 @rs grro(Wrs) + ardrs 08 re grro(Wrt ),
3
Ar232t2 = Z Q504 SIN Prs gMo0 (wrs)a
rst
2
ATlSltg = COSPrs Z 5sthM1 (wrs)
rs
= 0ifr=s,
2
Arl sots — Ostas sin Prs har (w'r‘s) - Z Ortas sin Prs har (w'r's)a
st
2
Avyssts = G515 08 @rs gara(Wrs) + ¥ Gris €08 Prs gara(wes),
st
2
Ar252t3 == - Z 5stara511 (SDSMU}ST) + 5rsarat-[1 (Cprtawrt)a
rs
2
Ar233t3 = —dgaarasly (Spsr; ws'r‘) - Z Ortarasls (()07'87 w7‘s)7
st
3
AT383t3 = - Z Ostarasls (Spsrv wsr)-
rst

We now specialise the above example to the case R = 1.
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Example 5.2. Consider the one signal case, R = 1, of the previous example. By the real formulation above,
with a = aq,

= (1/2)diag (1,a% a®vy) , A™" = diag (2,2a7%,2a v, ") .

By (4.4), ncovarf = Ay A~! + O(n~1). By (4.14),

3
ke = =27 A A0 N " AR (i dyis).
10=1
Also spmj11 = 0, Sz = — SNy, Sm113 = —Vm SINQuy, S;m2.12 = COSQup, Sm2.13 = Vi COS Oy, Sip1.22 =
—ACOS Uy, Sm1.23 = —Vn@COS Oy, Sm1.33 = —V2,aCOSQp, Sm2.22 = —GSINQn, Sma.23 = —Vmasina, and
Sm2.33 = V2,a8in ay,, where a,, = qu,1. So, the non-zero (i, jk) are (2,12) = —(1,22) = a/2 and (3,13) =
—(1,33) = ave/2. So, ki =2X\y/a and k} =k} = 0. So, ¢ and @ have low bias but not @. The non-zero A;;x,
ij ijk _ 3 - _
Bk and k" are Ajss = a/2, Aizz = ave/2, B'?? = 2473, B33 = 2473, I and k3?2 = —8X\2a73 = wokd33.

Since @ and @ both have ki = ki = 0, we should check whether their distributions are symmetric.
Next we show that

K03 = da* (5uy ! + va/v3) (5:2)
y (4.17), with i5 = i, i7 = 7,
a33 2/>\2 = (A33)2A”[Ajjcl + (33,44)] — _1(A33)2Aii14jj02

+(A®)2[—271(3,3i) B' — (j, 2i)BY + 2433, B" + 271 A}, A" AT
+271(3, 3id) A% 4 (i, 331) A — 271 Agzy A,

where ¢1 = (3,3i) (4, j9) + (3,47) (4, 3i) and co = (3,3i)Aij; + 2(j, 3i) Asi;. So,

af3 .02 A% = AU[AT (e — 27 ey} + (33, id)
+27 A3 AV +271(3, i) + (i, 334) — 27 Asgyi]
+2A33,B" — 2*1<3 3i>Bi — (§,2i)BY

= gi+f'tj Zgl—"_zf’tj

1,j=1

say. Note that
A1ss = (11,33) + 2(13,13) + 2(1,133) + 2(3,113) =0+ v2 —v2 + 0 =0

since

M-—1
(13,13) -1 v2,

m=0
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Note that
B1 = AiiAlii = A22A122 + A33A133 = 2@720,/2 + 2&72’()2_1@1)2/2 = 2&71,
fig = AP[A{er =27 e} + 271 A5 AV — (4, 24) BY,
gi = A"[(33,i) +271(3,3ii) + (i,33i) — 27  Agsy] + (2433, — 271(3, 30)) B,
g1 = 2[(1,331) — 27 Aggn] + (24331 — 271(3,31)) B’
= —wvy+tavy-2a"t — (av/4) - 2¢7 1 = va/2,
g2 = 2a72%[(22,33) +271(3,322) + (2,332) — 27! A3300],
where
M—1
(22,33) -1 a’v?, La2v,.
m=0
Note that s,,1.203 = alVy, Sin @y, Sm1.233 = cwzn Sin Qi , Sm1.333 = cwg1 SiN Quyyy Sim2.223 = — AV, COS Qlyy, S2.233 =
70,1/7271 COS (y, and Sy,1.333 = faz/% COS Qlyyyy SO
M—1
(3,322) = —(2M)™ 1 Y (avn)? = —27 a2,
m=0
and
M—1
(2,332) = —(2M)~* a’v2, = —2"'a%v,.
m=0
Note that
Agaszs = (22,33) 4 2(23,23) + 2(2,233) + 2(3,223)
and
M—1
(23,23) - Z Uma)? = 27 a%vy,
m=0

s0 Agozz = 27 av(1 4+ 2 — 2 —2) = —271a2vy. So, go = vo — 27 vy — vy + 271wy = 0. Note that

g5 = A®[(33,33) +3(3,333)/2 — 27  Ag333] — 271(3,33) B>,
Assss = 3(33,33) + 4(3,333),
M—1
(33,33) = (2M)7! Z a’vt =274y, (3,333) -1 a’vt = —271a2uy,
m=0
s0 g3 = —a~2vy ' [27 a?vy — 27 'a?vy] = 0. Note that

f1j = AV A {ep — 27 Vo) + 271 A2 L AV — (5,21)BYY
J 315 1

at ¢1 = (3,31) (4, 41) + (3,14) (4, 31) and ¢z = (3,31)Ay;; + 2(j, 31) Az15. So, fi1 =0 and f1o = AM[A**{(3,31)
(2,21) — 271(3,31) A122}] — (2,21)B}2. By (4.23), B{?2 =2714;1, A1 A?2 = 0, so

fr2/2 = 2a~*{(av2/2)(a/2) — 27 (av2/2)(a/2)} = va/4, fis = AT [A%Pe + 271 A2, A% -
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at c3 = 2(3, 13>2 — 3.2_1(3, 13) Ai33. So,
fiz = AT A[(3,13){2(3,13) — 3A133/2} + 27 A%] = va, fo; = AR[AV ey + 0] — (j,22)BY

at ¢4 = ¢1 —c2/2 and ¢ = c2 = 0. By (4.23), B! = 0 as B?3 = A14B?** is symmetric in 2, 3. So, fz; = 0.
Note that

faj = AB[ATic, + 2—1A§3jAjj] — (j,23)B¥, ¢1 = 0+ (3,37) (,33), c2 = 0+ 2(j,33) Az3;.
So, fs2 = f33 =0 and f3; = A A cs at
cs =cq +271 A% = (3,31) (1,33) — (1,33) Ay33 + 271 A2, = a?vd/8.

SO, f31 = ’U2/2. SO,

a3 A; %0 3 /4= fii+ Y gi = 3u2/2.
i i

So, a3, = 6 3a"%v, ', By (4.18),
a33.0/05 = Zgi + Z fij
i ij

for g; = (A®)% A% (3i,3i) and fi; = (A%%)? A" AJT (§,3i) (i,3)) + f; + [, where fl, = —2A3% B3 (j,3i)
and f% = 2BY BY | giving Y g; = 4a=* vy® (vs + 203) as before. Note that >, iy = —2A%A(3,31),

f21j = —2A4%.0=0and f31_] = —2A33A33 (4,31) = 0, giving Zij le = f4a74v51. Note that

[l = (A%)?AM AT (31, ) (35,1) + 2B BY,
fi = 2(Bi*»?=0asby (4.23) B{®* =2714,3A414% =0,
ffa = 2B3'B¥ =0as B’ =0,
i = 2B3'B3 4 (A%)324'1(31,3) (33,1),
B?1)3 _ 2_1A133A11A33, B?S _ 2_1A133(A33)2.
So,
A = 271AZ AN(A3%)3 1 2(43%)3(1,33) (3,31) = 0,

f222 _ (ASB)Q(A22)2<32, 2>2 + Q(BSQ)Q -0
as Bi? = 271 A9,; A% A?? = 0. Note that
J3 = (A¥)2A%(32,3) (33.2) + 2B5° B = 0, [y = (4%)1(3,33) + 2(B3")* = 0.

So, > 12] =0. So, a33.,/7\} = 4a=*vy(vg + 203). So, (5.2) holds: compare it with k33 /Xy = A% = 2420, *.
So,

var @ = 2Xpa" 2vy 'n Tt + 40307 5oy b+ vgvg 22 4+ O(n3)
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at n =2KM and Ay = v/2. Set SNR = a?/(v/KM) so that SNR™* = v/(a>KM). So,

var @ = 2 s 'SNRT1427"'SNR 5+ vy/v3)] + O(SNR™?)
= 6(1-M3)"ISNR 1+ SNR13.4(1+0(M~2))] + O(SNR™3)

since v = 1271(1 — M%) and vy = 8071 + O(M ~2).

6. WHEN LINEAR PARAMETERS ARE NUISANCE PARAMETERS

Here we give an approach that allows us to reduce the dimension of the parameter space by eliminating
nuisance parameters that enter the model linearly, when using the LSE. (For example, in Example 5.1, 6 has
dimension 3R, but the parameter of interest w has dimension only R.)

The method of Section 2 does not require A = A(#) to be the mean of random functions A1(0),..., A, (0),
but only that A; =0, A = (A;2) is bounded away from zero, A;. _, is bounded for r > 1, and

Aq =0, 3. (6.1)

First consider again the real model (4.1) Yy = 2y (w)B 4+ en in C with §in R?, w in R, that is Y = X (w)F +e
in R, where X(w) = (z1---x,) = X and oy = any(w). That is, we now suppose that § = (g) and
Sn(0) = xn(w)'B. So, S(0) =5 = X(w)s. Set

n
A(w) = infg n~* Z Yy — XNB)?2 =n"tY — XB(w)|2 =n"Y'QY,
N=1

where I —Q =1 — Q(w) = P = X(X'X) !X’ and B(w) = (X'X)71X'Y, assuming X'X has full rank ¢ < n.
So, the LSE is
o= ("),
W

where @ minimises A(w). Theorem 6.1 verifies that the conditions (6.1) hold with (6, A(f)) replaced by
(w, A(w)).
Theorem 6.1. Consider the model (4.1). Assume that X'X has full rank ¢ <n and that xn satisfies

oy (w) = y(N/n,w) = y(N/n) (6.2)
for some function y(t,w). Also assume that eq,..., e, are i.i.d. in R with mean zero and cumulants {\,}.
Finally, assume that

det(T(1:2)) #0, (6.3)

where T(my @ m) = T(m,m2) — T(-,m) T YT(-,m), where T(my,m2) = fol Yo, )Y, (£)'dt, and -w denotes
differentiation with respect to w, nott. Then Ay =0, A = (A12) is bounded away from zero, Ay, is bounded
forr>1, and (6.1) holds.

We now consider how to adapt Section 3. Since A(w) is no longer a sum of independent random variables, (3.1)
with (3.2) no longer applies. So, let us take (3.1) as the definition of [-]. To be of use we need [-] to be bounded
as n — oo. Note that [r] = A, is bounded. For r > 1,

(71, m] =0 [Ar, .. Ar ], [T, me] = n 7 K[€ Q. S+ € Qure, € QS 4 €' Quryel.
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Clearly {A, } has rth-order cumulants O(n'="):

Kr(Apyty ey Dr ) =0 [, T,
where
[Tyt = A (Vg e ooy Yoo 1,
n
Grs e ¥t = 07D YN YNy An = (Yan) = QS
N=1
By (D.12),

W EA: 1 Arys =M Y QNN QNN w4 2X5trQ Qo = O(1),
N=1

Similarly, one expects the moments and cumulants of {nA,,} to be O(1), and so the rth-order cross-cumulants
of {Ar,} to be O(n™"). So, one expects the rth-order cross-cumulants of {A,,1, Ar,2} to be O(n!=") or O(n=")
and so the [-] functions of (3.2) to be bounded. So, the results of Section 3 should hold with [] defined by (3.1),
not (3.2).

The complex case is similar: observe

Yy =2zyf+en in C with 8 in C?, zn = an(w),

that is Y = X + e in C", where X* = (x1---x,). Assume that ey = ey + jens for j = /—1 with {eny}
i.i.d. with mean zero and rth cumulants \,./2. So, Ay = Elen|?. Set

A(w) = infgn~" Z Yy — a6 =n"tYy — Xa(w)|2 =n"Y*QY,
N=1

where Q = Q(w) =1 — P, P= X(X*X)"'1X* and B(w) = (X*X)71X*Y, assuming X*X has full rank ¢ < n.
So, the LSE is

7 (3@)),

where @ minimises A(w). Again we assume (6.2) and (6.3) hold with ' replacing * in (D.9)—(D.11) so that
Ay =0, Ay, is bounded, A = (A;2) is bounded away from zero. Note that A, is given by (D.6)—(D.9) and
their extensions, with ’ replacing *. Also

Ay =200, + Aoy (6.4)

for 2nA1, = 2Re e*vx = e*vx + vie, Yo = Q.xS and nAg; = e*Q.re, where again S = S(0) = X3. The
argument that A is Op(n_l/ 2) carries over. If w lies in RY then A, and A, are still real.

Example 6.1. Observe yp = S + ¢ in C" for k= 1,..., K with e ~ CN(0,V1,) for some scalar V > 0. So,
{yr} have arithmetic mean Y = S + e with e ~ CN(0,v1,,) and v = K~1V. (So, \a = v/2 and )\, = 0 for
r # 2.) Suppose Y = (Yo,...,Y,—1) and S = (So,...,Sn—1)", where Sy = xn0 for 8 in C, xny = exp(jyn),
j=v—1, 9 =vNw, vy = (N + Ng)/nand Ng = —(n—1)/2. So,q=1, X*X =n, [ -Q =P =n"1XX*
has (a,b) element

nratay, =n"texp{j(m — va)} = nLexp{jw(b — a)/n}
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and A(w) = n 'Y]2 = n 2| X*Y|2 and X*Y = S v_anVy. Since ¢ = 1 we now replace 1...r, where
it occurs by r and use the convention f(w), = (0/0w)” f(w) for any smooth function f(w). For example,
IN.r = (8/810)%3]\, - (jVN)T:EN- So,

X = (T ooy Tr1.0) = (=) Wm0, ooy V1 Tp1), XEX s = (=15 nv,y

_ -1
for v, = n= 1Y\, V. So,

v = 0,v=(1-n"2)/12, v4= (1 —n"?)(1 —7n"2/3)/80,
vo= 277/(r+1)+0(n7?),
X:X/n = jv, X3X =0, X1X1/n =,
Qi = —Pi=-nYX1X"+XX3), Qo=-—n"YXoX*+2X X5 +XX5%),
Q3 = —n NX3X*+3XoX5 +3X X5+ XX5),
Qa4 = —n HX4X*+4X3X5 +6X X5 +4X 1 X5 + XX75),
Q1X = —Xi, QoX =—(X2—Xw), Q33X =—(X3—-3X1v2 — Xjuv3),
Q4X = —(X4—6Xo0—4X 1jvs+ Xvy),
X*QaX/n = 2vy, X*Q3X/n=0, X*Q.4X/n = —2(vy + 30v3).

By (D.6), A, = |BPX*Q.,X/n, so Az = 2|[|?v2, A3 = 0 and Ay = —2|B|*(v4 + 3v3). Also var @ = koyn~! +
kaan=2 + ..., where by (3.5), (3.6)—(3.11), replacing [1, 111] by [1,3] and so on,

koy = AJ%[1,1], koo = 2a'? + 243 + 0%,
a? = —A3%[1,1,2], a® = A7 ([1,1][2,2] + [1,2]%),
a® = AZ4(2[1,2% 4+ [1,1][2,2] + 3[1,1][1,3]/2) — Ay 7 A4[1,1]/2,

giving
koo = —2A53[1,1,2] + A;4(5[1, 2% + 3[1,1] [2,2] + 3[1, 1] [1, 3]) — A5 > A4[1,1]%

By (6.4), nA, = e*v, +vie + e*Q.re for v, = Q..S. By Appendix B,

2 2
En’AA, = E) yiee™ve+ e Quee’Que) = vy iy + A (tr Qutr Qo+ tr QrQ.)
s s
= nV|ﬂ|2(drs + d:s) + V2Drs;

where d,s = (Q.-X)*(Q.sX)/nand D, = tr Q.,Q.s are O(1). In particular, d11 = va, d1a = X (X.o—Xw9)/n =
—jus, diz = —vg4 — 3’()%, dos = v4 + 3’()%, D11 = 2v9, D15 =0, D13 = 2(’()4 — 3’()%) and Doy = 2(’1)4 +’U%) So,

[1,1] = nEA? =2v|8]2vy(1 +¢) for e = vn~ 3|72,
[1,2] = nEAA; =0, [1,3] = nEA1 Az = —2v|6*{vy + 302 — e(vg — 303)},
2,2] = 2v|6/*{vs + 303 +e(vg +v3)}-

Also for ¢, = e*Q..e and T, = tr ., = 0, by Appendix B

n[l1,1,2] = n*EA2A; = E(2¢*v1ivie + ¢)ae
= 22(VinTe + v Qoam) + VP (TET + 2Tt Q1Q2Totr Q4 + 2tr Q4Q.0)
2nv?| 8% di21 + 203 D119,
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where dio; = (Q1X)*Q2(Q.1X)/n = —2v3 and Dy1o = tr Q3Q.2 = 0. So, var @ = 2 vy e + c£2 + O(e%),
where

c = 27yt (from ko) 4wyt (from 2a'3) + 2720y ? (v + 303) (from 2a*® + a??)
= 6x27/5+0(n?).

So, var @ = 6¢(1 + 5.4e) + O(g3).

APPENDIX A

The following is the list of distinct summation notations used in the paper:

2 3 3
i =i+ Fiin Y figk = Fik + Frig + Firin Y Fiign = Fizgr + fingit + Fagin,
ij

ijk

4 5
Z fijir = fijra + fuijre + freisg + Fimi, Z fijrim = fijiim + fmijrt + fimije + froimig + fikimis
ijkl ijklm

6
> fijk = fijk + fing + Fiin + Fiki + Fris + Friis
ik

6
Z fisji = fuigj + fijag + Fijie + Fyiig + Fiage + Fijais
1jj

6
Z fijort = fijgr + firgji + fugie + firgi + [gik + frigij

6
Zglmfijk = gifjkm + Gim[ikl + it fikm + Gjm fikt + Grt fijm + Grm fiji,

10
Z fijGrim = fijGrim + fikGjim + fuGikm + fimGiret + fikGitm + fj19ikm + fimGict + friGijm
+ fem8ijt + fimGijk,
10
Z fijkGimn = fijkGimn + fijiGkmn + fijmGrin + fijnGrim + fikiGjmn + fikmGjin + fiknGjim
+filmgjkn + filngjkm + fimngjkla
12
Z fit@ikmn = fuGikmn + fimGikin + finGjkim + fi1Gikmn + [imGikin + finGikim + frigijmn
+fkmgijln + fkngijlm + flmgijkn + flngijkm + fmngijkla
15
Z fijguihmn = fijguihmn + fikGjithmn + fagixhmn + fim@iphin + fingjrhim + fixgiahmn

+fj1Gikhmn + fimGichin + fingixhim + fri9ijhmn + femiihin + fengijhim
+flmgijhkn + flngijhkm + fmngijhkla
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2
> w1, o) s, ma] = [my, o] [r3, wa] + [3, w2] [m1, 74,

1,73

2
> [mme] [my, ma) = [m, wo] (3, wa) + [y, ) [z, mal

2,73

3
> lmu o] [wa, ma) = [0, 2] [, ] + [w1, ms] (o, 4] + [, 7] (2, a]

6
Z (T4, ms] [m1, mo, 3] = w1, ma] [m2, w3, 5] + [0, w5] (72, 73, wa] + [m2, 7a] [0, 73, 705]

+ [m2, 5] [m1, 73, wa] + [, wa] [0, 72, 75 + [73, 5] [, T2, 4]

and
15
> " fmy, o (s, wal [, me] = [y, w2 [ws, ma] [ms, ] + [m1, 7] [m2, 7] 5, 7]
+ [, wa] [ma, 73] [m5, 6] + [m1, 75| [7r2, 73] [74, 6]
+ [7(1) 7r6] [7T2a 7T3] [7T4; 5] + [772; 7T3] [Wla 7T4] [WS, 6]
+ [mo, 4] [1, 3] [75, 6] + [, 75 [71, W3] [7m4, 76]
+ [, mg) [m1, W3] T4, 5] + [w3, T4] [701, W] [705, 6]
+ [ms, 75| [, wo] [ma, w6 + [m3, 76| [71, 2] [, 75
+ [, 75| [y, wo] [ms, w6 + [, 76| [71, 2] [703, 75
+ [75, 6] [1, 2] [73, 4] .
APPENDIX B
Theorem B.1. Suppose X ~CN,(0,V) so V =EXX*. Its non-zero moments
M1..n,n+1..2n = EXI e XanJrl e X2n
are (1,2 = Vi, 2,314 = VizVaa + ViaVas, and so on, satisfying the recurrence relation
H1..nn+1..2n = ZNl,n+iﬂ2...n,(n+1...2n),,a (Bl)
i=1
where (n+ 1...2n); drops the ith term. Similarly, for i1,...,in,j1,...,Jn 0 1,...,p,
E Xil cee Xin ]n Z ‘/'lel . 'L'n.k'n.’ (BQ)

where Zn! sums over all n! permutations k1 ...ky of j1...jn

So, in expanded form, the right hand side of (B.1) has n! terms, as compared with 1-3...(2n — 1) =
(2n)!127"/n! = EN(0,1)?" terms for the real case X ~ N, (0,V). Reed [6] proved (B.2) for the stationary case
Vi; a function of ¢ — j, but his proof holds without this assumption.
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Theorem B.2. Let g, = X*a, X for a, in CP*P. Set B, = a,V and ty..., = trace(By - -+ By). Then

3 2
Eq = t1, Eqiqe = tita +t12, Eqiqaqs = titats + Zt1t23 + Zt123,
123 23
6 4 2 3 6
Eqi...qq = titatgty + Z t1tatsy + Z tq Zt234 + Zt12t34 + Zt1234,
34 234

and in general
T
Bqi...qr =Y Tpj for Ty = {tm, .. te; : ||+ ...+ | =7},
J=1 ™

where for m = (i1 ...14,), tx = trace(B;, ... B;,.), and ) sums over all such (w1, ..., ;) giving different terms.

APPENDIX C
Theorem C.1 gives a closed expression for

M—1
g (0) = Mt Z Vi exp(jvmd),

m=0
where v, = m/M — (M —1)/2.

Theorem C.1. Let a = (M +1)/(2M), b= (1 —-M)/(2M), ¢ = 1/M, N(x) = exp(ax) — exp(bx), D(z) =
exp(cx) — 1, I(z) = 1/D(x) and G(x) = Z%;Ol exp(avy,) = N(z)I(x). We have

guir(8) = MG (o), (C.1)
where
r - . .
G (z) = (k) N,_xcf Py, N; = a'exp(az) — b exp(bx)
k=0
and
k , . '/ .
P, = Z(—l)li!D_z_l eXp(C’i.Z‘)Cki, Cri = Z (n) (—1)’_”nk.
=0 n=0
In particular,

Py = D' Pr=D"'—-D2exp(cx), P, =D' — D 2exp(ca) + 4D 3 exp(2cz),

Py = D'~ D ?exp(ex) + 12D 3 exp(2cx) — 36 D% exp(3ca),

P, = D' — D Zexp(cx) + 28D 3 exp(2cx) — 216D~ * exp(3cx) + 576 D5 exp(4cx),

and so on. Also

g (0) =M1 " =g,

M-1
m=0
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say, is given by g, = 0 for r odd, and for d = M2, by

g = 1, go=(1—d)/12, g4 = (3 —10d + 7d*)/240, ge = (3 — 21d + 49d*> — 31d>)/1344,
gs = (5—60d+294d? — 620d° + 381d*) /11520,
gio = (3 —55d+462d> —2046d> + 4191d* — 2555d°) /33792,
and so on.

APPENDIX D

Proof of Theorem 2.1. For {Ay} sufficiently smooth, 9 satisfies

-~

0= A1(9) = A.1 + A.1252/1! + A.1235253/2! + ...

by the multivariate Taylor expansion, using the tensor summations convention: repeated pairs of suffixes are
implicitly summed over their range 1...p. For example, A.1262 = > _ A.1282. So,

in=1
0=A1+ (A2 +A12)02 + (A123 + A123)0263/2 + . ...
Multiply by A%, Since A°* A5 =1 or 0 for iy = iy or iy # i, this gives
0 =00+ A" {Aq + A120s + (Aroz + A123)0203/2 + ...}, (D.1)

where the first two terms have magnitude O, (n~'/2), the next two are O,(n~!) and so on. So, an expansion of
the form (2.1) is possible. Substituting (2.1) into (D.1) gives 0 = 3_°° | T,,, where T, = O, (n~%/?):

Ty = 65+ A"Ay, Th =65 + A% (A1205 + A1236565/2),
2
Ts = 0+ A" (A1205 + A1oz Y 0305 + A1236303 /2 + Ar._4050301/6),
23
2 2
Ty = 05+ A" {A105 + A123(0505 + > 6363)/2+ Aras ¥ 6363 /2
23 23

3
+A1.1 ) 036307 /6 + A1 4630301/6 + Av 505030165 /24)},
234

and so on. We can now obtain {63} in (2.6)—(2.8) by setting T, = 0 and solving these recurrence relations
for 4. O

Proof of Theorem 3.1. Note that all = A¥A*k(A3, Ay), so (3.7) follows. Note that a} = 0, so a}; = 0,
al = AMABEA13A3 — BYEA,A5, so (3.8) follows. Note that aiil = —AM A2 A305 (A4, As, Ag), so (3.9)
follows. Note that

2 2
agg = A14A25 {A36A78 Z K(A4, A67)I€(A5, Ag) - 3367 Z IQ(A4, AG)K(A5, A7)} + O (n_3)
45 45

since if

EXZ =0 and Hiy.. 5, = Ele .. .X]’T, (DQ)
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then

2

K(X1, X2, X3X4) = k(X1, Xo, X3, X4) + ZM13M24-
12

So, (3.10) follows. So, k'3 is given by (3.4), (3.9) and (3.10). We next give k% of (3.5). Recall that aj3, =0
for k # 1. Note that

al2 = —ABk(Az, A2 A5 A5 A6 — B> A4A5),
so (3.11) follows since (D.2) implies x(X1, X2X3) = p123. Also
aly = ABAME(A;, Ays(ACATAG Ag — BT AgA7)
—9 1 Ay i AT A7 (A% AP0 Ago A ry — BO AgAg)
56

+271A57A68A456A7A8 — CZG7A5A6A7))
= A13A24 {A56A78I€(A3, A45A67A8) — B567H(A3, A45A6A7)
2
27 gz Y ATT(AB AT IOk (Ag, ArAggA1g) — Bk(As, ArAgAg))
56

+271A57A68I$(A3, A456A7A8) — 267H(A3, A5A6A7)} .

Also (D.2) implies

3
(X1, XoX3Xy) = 14 =r(Xq,..., X4) + 2“12“34'

So, (3.12) follows. Also

af% = H(A13A45A34A5 — 3134A3A4, A26A78A67A8 — BQG7A6A7)
= A13A45A26A78H(A34A5,A67A8)
2
- Z 14131445B267I€(A34A57 A6A7) + 31343267/€(A3A4, A6A7).
12

Also (D.2) implies
2
K(X1 X9, X3Xy) = pi1..4 — paopisa = k(X1, ..., Xa) + ZM13M24-
12

So, (3.13) follows. So, kX? is given by (3.5), (3.11), (3.12), (3.13). Finally, we give k234 starting from (3.6):

ajgzy = APAPATABE(As, Ag, A7, Ag),
ajss = —APAPAYTK(A5, Ag, Ar, ABAMOA A1y — B¥IAgA),

so (3.14) follows. Also (D.2) implies

6
K(X1, Xa, X3, XaX5) = 6(X1,..., X5) + > paspias.
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So, (3.15) follows and

a%%éi _ A15A26A37A48,‘-€(A5, AG; A7,Agg(A9’10A11’12A10711A12 _ BQ,IO,llAloAll)
2
-1 9,11 10,12 413,14 10,12,13
—27" Ag9,10 E AP A (A A A1213A14 — B A12Aq3)
9,10

F2 AN AZ AL 1 A Ay — CPPO M AgA g ALY).

Also setting k1., = k(X1,...,X;), (D.2) implies

3 10 15
K(X1, X2, X3, XuX5X6) = f.6— Zuum...s =ki.6+ Z k123kase + ZM12M34M56
123
12
+ZM14]€2356-

So, (3.16) follows and

a%%%i — A15A26,‘-€(A5, A67 A37A89A78A9 _ BB7SA7A8, A4,10A11,12A10711A12 _ B4’10’11A10A11).

Also (D.2) implies

15 10 15
(X1, X2, X3 Xy, X5 X6) = kis+ Z pi2ks.. 6 + Z H123 456 + ZM12#34#56

—H134 256 — H234H4156-
So, (3.17) follows. So, k3% is given by (3.6), (3.14)—(3.17).

Proof of Theorems 4.1 and 4.2. Note that A; = 0 as required. Also

Ay = [12]=n"">" SnaSna=(1,2),
N=1
3
Ay = [123] = (1,23),
3 4
Arpgy = [1234] =) (12,34) + > (1,234),
1,y m] = (=) "A{m, ..o, 70
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(D.3)

(D.4)

(D.5)

for r > 1. So, [1,2] = A2(1,2) = A2 A15. So, by (3.7), the asymptotic covariance of 8 is given by (4.4). By (3.8),

o~

the asymptotic bias of # is given by (4.5). For A diagonal (4.5) reduces to (4.14). By (3.4), (3.9) and (3.10),
we have (4.6) and (4.15). Note that k5’ is given by (3.5) in terms of (4.7)-(4.9). For A diagonal, (4.7), (4.8)
and (4.9) reduce to (4.16), (4.17) and (4.18), respectively. Note that k' *2*3" = k123 is given by (3.6) in terms

of (4.10)—(4.13). For A diagonal, (4.10)—(4.13) reduce to (4.19)—(4.22).

O

Proof of Theorem 6.1. Using the notational conventions of Section 2, tr Q =n —¢g so tr Q.1.., = 0 for r > 1.

Also A4, = n_1Y/Q~1...rY7 S0

Al =n"rQ. (Mol +558) =n"18'Q1 S =n"1X'Q1 . XP.

(D.6)
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Also
PX=X,0QX=0, QuX +QX1=0, X'Q1X = —X'QX1 =0, A =0,
Q12X +Q1X 2+ Qa2X1+0QX12=0,
2 2
X'Q.10X = — Z)('Q.lx.2 = ZX_’lQX.Q, (D.7)
12 12
3
Q123X + Z(Q.12X.3 +Q.3X.12) + QX 123 =0,
123
3 6 3
X'Qa23X = — ZX'(Q~12X~3 +Q.3X12) = ZX.llQan + ZX.llQX~23- (D.8)
123 123 123
By (6.2),
n
nIX'X =nt Z eyt =T+ 0Mn™1) (D.9)

N=1

as n — oo, where T' = fol y(t)y(t)’'dt. (Higher order terms are given by the Euler-McLaurin expansion.)
Similarly, for 71, mo sequences of integers,

n
X X, =07 Y an @y, = T(m,m) + O(n7h). (D.10)
N=1

Also
n X! PXo, =T X' X)) (0T X X) T (T X X ) = T, m) T T (- mo) + O(nh),
where T'(-, m3) is T'(m1, m2) with m empty. So,
n ' X! QX =T(m 1)+ 0. (D.11)

So, by (D.7), n71X’Q.12X is bounded. So, by (D.6) Az is bounded. The condition that A = (A4;2) be bounded
away from zero holds because of (6.3). Similarly, the second term in the right hand side of (D.8) is O(n). That
the first term is also follows similarly from

Q~1 = —P1 = —X.lMXI - XM.lXI - XMXll and M.1 = —ML.lM,

where M~! = L = X'X. So, Ajs3 is bounded. Similarly, A;. , is bounded.

We now show that A, = O,(n~/?). Note that A, = 2A;; + Ag, for Ay = n7'e/Q .S and Ay, =
n=le'Q.re. Also Ai~N (0, n= X'V, 3) for V,, = n 1 X'Q% X = O(1) by a similar argument to above. So,
Arr = O0p(n~12). Also

n
EAgr =n"'Xoptr Q. =0, n?EAS =\ Y QRvr + 203 tr Q% (D.12)
N=1

where Q?Vl N, are the elements of ). By a similar argument to above

> Qine =07 and tr Q% = O(1).
N=1
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So, Agr = Op,(n~1). So, the conditions needed for Section 2 hold. O
Proof of Theorem C.1. Note that (C.1) holds. By Leibniz’ rule,

T

¢y =Y <;> NT=R) () 1™ (2).

k=0

Also note that N (z) = N;. By Faa di Bruno’s rule, Comtet ([2], page 137), for f(D) = D!,

k
I®(z) =" fiBr(y)
i=0

for f; = fO(D) = (=1)%!D~""', y; = DW(z) = ¢’ exp(cx) — i, and By;(y) the partial exponential Bell
polynomial tabled on page 307 of [2]. These are defined in terms of

S =y /k!
k=1

St/il = i 2" Bri(y) /K.

k=i

But in our case S = exp(cz){exp(cz) — 1} giving Byi(y) = exp(icz)c*Cy;/i!. As an aside, since Byx(y) = y¥,
we obtain the interesting identity Cy; = 0 for k < i, Cir, = k!l. So, with (C.1) we obtain the results of the
theorem. ]
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