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Abstract. Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation
P (Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x ∈ [0, o(n1/6)) when the kernel satisfies some regular
conditions.
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1. Introduction and main results

Let X,X1, X2, . . . , Xn be a sequence of independent and identically distributed (i.i.d.) random variables,
and let h(x1, x2) be a real-valued symmetric Borel measurable function. Assume that θ = Eh(X1, X2). An
unbiased estimator of θ is the Hoeffding [7] U -statistic

Un =
( n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj). (1.1)

The U-statistic elegantly and usefully generalizes the notion of a sample mean. Typical examples include
(i) sample mean: h(x1, x2) = 1

2 (x1 + x2);
(ii) sample variance: h(x1, x2) = 1

2 (x1 − x2)2;
(iii) Gini’s mean difference: h(x1, x2) = |x1 − x2|;
(iv) one-sample Wilcoxon’s statistic: h(x1, x2) = 1(x1 + x2 ≤ 0).

The non-degenerate U-statistic shares many limiting properties with the sample mean. For example, if Eh2(X1,
X2) <∞ and σ2

1 = Var(g(X1)) > 0, where

g(x) = Eh(x,X), (1.2)
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CRAMÉR TYPE MODERATE DEVIATIONS FOR STUDENTIZED U-STATISTICS 169

then the central limit theorem holds, i.e.,

sup
x

|P
(√

n

2σ1
(Un − θ) ≤ x

)
− Φ(x)| → 0, (1.3)

where Φ(x) is the standard normal distribution function. A systematic presentation of the theory of U-statistics
was given in [10]. We refer the study on uniform Berry-Esseen bound for U-statistics to Alberink and Bentkus [1,
2], Wang and Weber [17] and the references there. One can also refer to Borovskich and Weber [4,5] for large
deviations. However, since σ1 is typically unknown, it is necessary to estimate σ1 first and then substitute it in
(1.3). Therefore, what used in practice is actually the following studentized U-statistic (see, e.g., Arvesen [3])

Tn =
√
n(Un − θ)/Rn, (1.4)

where

R2
n =

4(n− 1)
(n− 2)2

n∑
i=1

(
qi − Un)2 with qi =

1
n− 1

n∑
j=1
j �=i

h(Xi, Xj). (1.5)

One can refer to Wang, Jing and Zhao [16] on uniform Berry-Esseen bound for studentized U-statistics. Also see
Callaert and Veraverbeke [6] and Zhao [18]. We also refer to Vandemaele and Veraverbeke [14] and Wang [15]
for the Cramér type moderate deviation.

A special case of the studentized U-statics is the Student t-statistic with h(x1, x2) = (x1 + x2)/2. Although
the t-statistic has a close relationship with the classical standardized partial sum, it has been found that the
t-statistic enjoys much better limiting properties. For example, Shao [11] proves that the large deviation always
holds for t-statistic without any moment assumption and Shao [12] further shows that a Cramér type moderate
deviation is valid under only a finite third moment. Jing, et al. [8] proved a Cramér type moderate deviation
result (for independent random variables) under a Lindeberg type condition. Jing, et al. [9] obtained the
saddlepoint approximation without any moment condition. Thus, it is natural to ask whether similar results
hold for the studentized U-statistics. The main objective of this paper is to show that the studentized U-statistics
share similar properties like the student t-statistic does when the kernel satisfies

h2(x1, x2) − θ ≤ c0[σ2
1 + g2(x1) − θ + g2(x2) − θ] (1.6)

for some c0 > 0. This condition is satisfied by the typical examples of U-statistics listed at the beginning of this
section.

Theorem 1.1. Assume 0 < σ2
1 <∞ and that (1.6) holds for some c0 > 0. Then, for any xn with xn → ∞ and

xn = o(n1/2),
lnP (Tn ≥ xn) ∼ −x2

n/2. (1.7)
If in addition E|g(X1)|3 <∞, then

P (Tn ≥ x) = (1 − Φ(x))
[
1 + o(1)

]
(1.8)

holds uniformly in x ∈ [0, o(n1/6)).

Assume θ = 0. Write Sn =
∑n

j=1 g(Xj) and V 2
n =

∑n
j=1 g

2(Xj). It is known (see Shao [11]) that

lnP (Sn/Vn ≥ xn) ∼ −x2
n/2 (1.9)

for any xn with xn → ∞ and xn = o(n1/2). It is also known (see Jing et al. [8]) that if E|g(X1)|3 <∞, then

P (Sn/Vn ≥ x) = (1 − Φ(x))
[
1 +O(1)(1 + x3)n−1/2

]
(1.10)
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for 0 ≤ x ≤ O(n1/6). The following theorem shows that the studentized U -statistic Tn can be approximated
by the self-normalized sum Sn/Vn under the condition (1.6). As a result, (1.7) and (1.8) follow from (1.9) and
(1.10), together with (1.11) below, respectively.

Theorem 1.2. Assume that θ = 0, 0 < σ2
1 = Eg2(X1) < ∞ and the kernel h(x1, x2) satisfies the condition

(1.6). Then there exists a constant η > 0 depending only on σ2
1 and c0 such that, for all 4/(n− 1) ≤ εn < 1,

0 ≤ x ≤ √
n/3 and n sufficiently large,

P
[
Sn/Vn ≥ (1 + εn)x

] − 5
√

2(n+ 2)e−ηmin{nε2n,
√
nεnx} ≤ P (Tn ≥ x)

≤ P
[
Sn/Vn ≥ (1 − εn)x

]
+ 5

√
2(n+ 2)e−ηmin{nε2n,

√
nεnx}. (1.11)

This paper is organized as follows. In the next section we will prove the main theorems. A technical proposition
will be postponed to Section 3.

2. Proofs of theorems

We start with some preliminaries. Write

T ∗
n =

√
nUn/R

∗
n, (2.1)

where R∗2
n = 4(n−1)

(n−2)2

∑n
i=1 q

2
i . Observe that

n∑
i=1

(qi − Un)2 =
n∑
i=1

q2i − 2Un
n∑
i=1

qi + nU2
n =

n∑
i=1

q2i − nU2
n.

We have
Tn =

T ∗
n(

1 − 4(n−1)
(n−2)2 T

∗2
n

)1/2
(2.2)

and
{Tn ≥ x} =

{
T ∗
n ≥ x

[1 + 4x2(n− 1)/(n− 2)2]1/2

}
· (2.3)

We now establish a relationship between T ∗
n and Sn/Vn. To do this, further let ψ(x1, x2) = h(x1, x2)− g(x1)−

g(x2),

Δn =
1

n− 1

∑
1≤i<j≤n

ψ(Xi, Xj), W (i)
n =

n∑
j=1
j �=i

ψ(Xi, Xj), Λ2
n =

n∑
i=1

(
W (i)
n

)2
.

It is easy to see that

nUn/2 = Sn + Δn. (2.4)

Also observe that
∑n

j=1
j �=i

h(Xi, Xj) = (n− 2)g(Xi) + Sn +W
(i)
n and

(n− 1)(n− 2)2

4
R∗2
n =

n∑
i=1

( n∑
j=1
j �=i

h(Xi, Xj)
)2

= (n− 2)2V 2
n + Λ2

n + (3n− 4)S2
n

+2(n− 2)
n∑
i=1

g(Xi)W (i)
n + 2Sn

n∑
i=1

W (i)
n .
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Therefore, using |∑n
i=1 g(Xi)W

(i)
n | ≤ VnΛn,

|Sn
n∑
i=1

W (i)
n | ≤ |Sn|

√
nΛn and Λ2

n ≤ n max
1≤i≤n

|W (i)
n |2

by the Hőlder’s inequality, we have

R∗2
n =

4
n− 1

V 2
n (1 + δn), (2.5)

where

|δn| ≤ 1
(n− 2)2

[
Λ2
n

V 2
n

+
3nS2

n

V 2
n

+
2nΛn
Vn

+ 2
√
n
|Sn|Λn
V 2
n

]

≤ 1
(n− 2)2

(
Λ2
n

V 2
n

+
4nΛn
Vn

+
3nS2

n

V 2
n

)
· (2.6)

By (2.4)–(2.5) and (2.1)

T ∗
n =

Sn + Δn

dnVn(1 + δn)1/2
, (2.7)

where dn =
√
n/(n− 1).

Next proposition shows that Δn and δn are negligible.

Proposition 2.1. There exist constants δ0 > 0 and δ1 > 0, depending only on σ2
1 and c0, such that for all

y > 0
P (|δn| ≥ y) ≤ 4

√
2(n+ 2) exp(−δ0 min{1, y, y2}n) (2.8)

and
P (|Δn| ≥ yVn) ≤

√
2 (n+ 2) exp

( − δ1 min{n, y√n}). (2.9)

The proof of Proposition 2.1 is postponed to Section 3. We mention that the proof is based on exponential
inequalities for self-normalized sums of martingale difference sequence (Lems. 3.1 and 3.4) and for self-normalized
sums of independent random variables (Lems. 3.2 and 3.3). These inequalities are interesting in their own rights.

We are now ready to prove our main results.

Proof of Theorem 1.2. Since x2 ≤ n/9 and 0 ≤ εn < 1, it is easy to show that, for 0 ≤ x ≤ √
n/3,

τn ≡
(
1 − εn

4

)1/2

τ ′n ≥ 1 − εn/2,

whenever n is sufficiently large, where τ ′n =
√

n
n−1

[
1 + 4x2(n−1)

(n−2)2

]−1/2

. Hence it follows from (2.3), (2.7) and
Proposition 2.1 that

P (Tn ≥ x) ≤ P
[
Sn/Vn ≥ (1 − εn)x

]
+ P

{
|Δn|/Vn ≥ x (εn − 1) + x τ ′n (1 + δn)1/2

}
≤ P

[
Sn/Vn ≥ (1 − εn)x

]
+ P

{
|Δn|/Vn ≥ x(εn − 1) + x τn

}
+ P

{
|δn| ≥ εn/4

}
≤ P

[
Sn/Vn ≥ (1 − εn)x

]
+ P

{
|Δn|/Vn ≥ x εn/2

}
+ P

{
|δn| ≥ εn/4

}
≤ P

[
Sn/Vn ≥ (1 − εn)x

]
+ 5

√
2(n+ 2) e−ηmin{nε2n,

√
nεnx},
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where η > 0 is a constant depending only on σ2
1 and c0. This proves the upper bound of (1.11). Similarly, for

the lower bound of (1.11)

P (Sn/Vn ≥ (1 + εn)x) ≤ P (Tn ≥ x) + P
{
|Δn|/Vn ≥ x (1 + εn) − x τ ′n (1 + δn)1/2

}
≤ P (Tn ≥ x) + P

{
|Δn|/Vn ≥ x (1 + εn) − x τ ′n (1 + εn/4)1/2

}
+ P (|δn| ≥ εn/4)

≤ P (Tn ≥ x) + P
{
|Δn|/Vn ≥ x (1 + εn) − x (1 + 1/(n− 1)) (1 + εn/8)

}
+ P (|δn| ≥ εn/4) ≤ P (Tn ≥ x) + P (|Δn|/Vn ≥ x εn/2) + P (|δn| ≥ εn/4)

≤ P (Tn ≥ x) + 5
√

2(n+ 2) e−ηmin{nε2n,
√
nεnx}.

The proof of Theorem 1.2 is now complete.

Proof of Theorem 1.1. Theorem 1.1 follows from (1.9)–(1.10) and Theorem 1.2 by a suitable choice of εn,
together with some routine calculations. Indeed, by the central limit theorem for Tn (see, e.g., Thm. 3.1, [16]),
the result (1.8) is obvious when 0 ≤ x ≤ 1. In order to prove (1.8) for x ∈ [1, o(n1/6)), we choose εn =
max{ε′nx/

√
n, n−1/8}, where ε′n is a sequence of constants satisfying ε′n → ∞ and ε′nx

3/
√
n → 0 for x ∈

[1, o(n1/6)). It is readily to see that

min{nε2n,
√
nεnx} ≥ √

nεn x ≥ max{ε′nx2, n3/8 x},

and hence uniformly in x ∈ [1, o(n1/6)),

n e−ηmin{nε2n,
√
nεnx} = o

[
1 − Φ(x)

]
, (2.10)

when n is sufficiently large, where we have used a well-known fact: for x > 0,

1√
2π

(
1
x
− 1
x3

)
e−x

2/2 ≤ 1 − Φ(x) ≤ 1√
2π

1
x

e−x
2/2.

The meaning of (2.10) is that for all sequence un with un = o(n1/6)

lim
n→∞ sup

x∈[1,un]

n e−ηmin{nε2n,
√
nεnx}/(1 − Φ(x)) = 0.

On the other hand, it follows from (1.10) that

P
[
Sn/Vn ≥ (1 − εn)x

] ≤
{

1 − Φ
[
(1 − εn)x

]}[
1 +O(1)x3/

√
n
]

≤ [
1 − Φ(x)

] {
1 +

|Φ[
(1 − εn)x

] − Φ(x)|
1 − Φ(x)

}[
1 +O(1)x3/

√
n
]

=
[
1 − Φ(x)

] [
1 + o(1)

]
, (2.11)

where we have used the result:

|Φ[
(1 − εn)x

] − Φ(x)| ≤ εn x e−(1−εn)2x2/2 = o
[
1 − Φ(x)

]
,

uniformly in [1, o(n1/6)), since εn x2 ≤ ε′nx3/
√
n = o(1).

By virtue of (2.10)–(2.11) and the upper bound of (1.11), we obtain P (Tn ≥ x) ≤ [
1 − Φ(x)

]
[1 + o(1)].

Similarly we have P (Tn ≥ x) ≥ [
1 − Φ(x)

]
[1 + o(1)]. This proves (1.8).



CRAMÉR TYPE MODERATE DEVIATIONS FOR STUDENTIZED U-STATISTICS 173

In a similar matter, by choosing εn = max{n−1/8, ε′n} where ε′n is a sequence of constants such that ε′n → 0
so slowly that nε′2n /x

2
n → ∞, we have

n = o(1)e0.5ηmin(nε2n,
√
nεnx),

x2 = o(min(nε2n,
√
nεnx))

and therefore

ne−ηmin(nε2n,
√
nεnx) = o(1)e−x

2/4,

which together with (1.11) and (1.9) proves (1.7).
The proof of Theorem 1.2 is now complete.

3. Proof of proposition 2.1

In this section, we give the proof of Proposition 2.1. Lemma 3.1 is interesting in itself as it provides an
exponential bound for martingale difference under finite moment conditions.

Lemma 3.1. Let {ξi,Fi, i ≥ 1} be a sequence of martingale difference with Eξ2i <∞ and put d2
i = E(ξ2i |Fi−1).

Then

P

( |∑n
i=1 ξi|

(
∑n
i=1(ξ

2
i + 2d2

i + 3Eξ2i ))1/2
≥ x

)
≤

√
2 exp(−x2/8) (3.1)

for all x > 0.

Proof. We first show that
ex−x

2 ≤ 1 + x1{x≥−1/2} (3.2)
for all x ∈ R.

It is easy to see that (3.2) holds for x < −1/2. For x ≥ −1/2 let f(x) = x− x2 − ln(1 + x). Observe that

f ′(x) = 1 − 2x− 1
1 + x

=
−x(1 + 2x)

1 + x⎧⎨
⎩

> 0 for − 1/2 < x < 0,
= 0 for x = 0,
< 0 for x > 0.

Therefore f achieves maximum at x = 0, that is, f(x) ≤ f(0) = 0 for x > −1/2. This proves (3.2).
It follows from (3.2) that for t ∈ R

E
(

exp(tξi − t2(ξ2i + 2d2
i ))|Fi−1

)
= e−2t2d2iE

(
exp(tξi − t2ξ2i )|Fi−1

)
≤ e−2t2d2i

(
1 + E(tξi1{tξi≥−1/2}|Fi−1)

)
= e−2t2d2i

(
1 − E(tξi1{tξi<−1/2}|Fi−1)

)
≤ e−2t2d2i

(
1 + 2E((tξi)2|Fi−1)

)
≤ 1.

This shows that
{

exp
(
t
∑i

j=1 ξj − t2
∑i

j=1(ξ
2
j + 2d2

j)
)
,Fi, i ≥ 1

}
is a super-martingale and hence

E exp

⎛
⎝t n∑

j=1

ξj − t2
n∑
j=1

(ξ2j + 2d2
j)

⎞
⎠ ≤ 1. (3.3)
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By (3.3) and Theorem 2.1 of,

E exp

(
a|∑n

i=1 ξi|
(2

∑n
i=1(ξ

2
i + 2d2

i + 3Eξ2i ))
1/2

)
≤ √

2 exp(a2) (3.4)

for all a > 0. Letting a = x/(2
√

2) together with Markov’s inequality yields

P

( |∑n
i=1 ξi|

(
∑n

i=1(ξ
2
i + 2d2

i + 3Eξ2i ))1/2
≥ x

)
≤ e−ax/

√
2E exp

(
a|∑n

i=1 ξi|
(2

∑n
i=1(ξ

2
i + 2d2

i + 3Eξ2i ))
1/2

)

≤
√

2 exp(−ax/
√

2 + a2) =
√

2 exp(−x2/8).

This proves (3.1). �

Lemma 3.2. Let {ξi, i ≥ 1} be independent random variables with zero means and finite variances. Put

Sn =
n∑
i=1

ξi, V
2
n =

n∑
i=1

ξ2i , B
2
n =

n∑
i=1

Eξ2i .

Then

P
(
|Sn| ≥ x(V 2

n + 5B2
n)

1/2
)
≤

√
2 exp(−x2/8) for x > 0 (3.5)

and

ES2
nI(|Sn| ≥ x(Vn + 4Bn)) ≤ 23B2

ne
−x2/4 (3.6)

Proof. Result (3.5) follows from (3.1) directly because E(ξ2i |Fi−1) = Eξ2i by independence of random variables.
When 0 < x < 3, we have 23e−x

2/4 ≥ 1 and ES2
nI(|Sn| ≥ x(Vn + 4Bn)) ≤ ES2

n = B2
n and hence (3.6) holds.

When x > 3, let {ηi, 1 ≤ i ≤ n} be an independent copy of {ξi, 1 ≤ i ≤ n}. Set

S∗
n =

n∑
i=1

ηi, V
∗2
n =

n∑
i=1

η2
i .

By the Chebyshev inequality,

P (|S∗
n| ≤ 2Bn, V ∗2

n ≤ 4B2
n) ≥ 1 − P (|S∗

n| > 2Bn) − P (V ∗2
n > 4B2

n) ≥ 1 − 1/4 − 1/4 = 1/2.

Noting that

{|Sn| ≥ x(4Bn + Vn), |S∗
n| ≤ 2Bn, V ∗2

n ≤ 4B2
n}

⊂ {|Sn − S∗
n| ≥ x(4Bn +

(
n∑
i=1

(ξi − ηi)2)1/2 − V ∗
n

)
− 2Bn, |S∗

n| ≤ 2Bn, V ∗2
n ≤ 4B2

n}

⊂ {|Sn − S∗
n| ≥ x(2Bn +

(
n∑
i=1

(ξi − ηi)2)1/2
)

− 2Bn, |S∗
n| ≤ 2Bn}

⊂ {|Sn − S∗
n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

, |S∗
n| ≤ 2Bn},
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we have

ES2
nI(|Sn| ≥ x(Vn + 4Bn)) =

ES2
nI(|Sn| ≥ x(Vn + 4Bn))I(|S∗

n| ≤ 2Bn, V ∗2
n ≤ 4B2

n)
P (|S∗

n| ≤ 2Bn, V ∗2
n ≤ 4B2

n)

≤ 2ES2
nI

⎛
⎝|Sn − S∗

n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

, |S∗
n| ≤ 2Bn

⎞
⎠

≤ 4E(Sn − S∗
n)

2I

⎛
⎝|Sn − S∗

n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

, |S∗
n| ≤ 2Bn

⎞
⎠

+4ES∗2
n I

⎛
⎝|Sn − S∗

n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

, |S∗
n| ≤ 2Bn

⎞
⎠

[by the fact that S2
n ≤ 2(Sn − S∗

n)2 + 2S∗2
n ]

≤ 4E(Sn − S∗
n)

2I

⎛
⎝|Sn − S∗

n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

⎞
⎠

+16B2
nP

⎛
⎝|Sn − S∗

n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

⎞
⎠ . (3.7)

Let {εi, 1 ≤ i ≤ n} be a Rademacher sequence independent of {ξi, 1 ≤ i ≤ n} and {ηi, 1 ≤ i ≤ n}. Noting
that {ξi − ηi, 1 ≤ i ≤ n} is a sequence of independent symmetric random variables, {εi(ξi − ηi), 1 ≤ i ≤ n} and
{ξi − ηi, 1 ≤ i ≤ n} have the same joint distribution. It is known that

P

(
|
n∑
i=1

aiεi| ≥ x(
n∑
i=1

a2
i )

1/2

)
≤ 2e−x

2/2 (3.8)

for any real numbers {ai}. Hence with Y = |∑n
i=1 aiεi|/

(∑n
i=1 a

2
i

)1/2

(
n∑
i=1

a2
i

)−1

E

(
n∑
i=1

aiεi

)2

I

(
|
n∑
i=1

aiεi| ≥ x(
n∑
i=1

a2
i )

1/2

)
= EY 2I(Y ≥ x)

= x2P (Y ≥ x) + 2
∫ ∞

x

tP (Y ≥ t)dt

≤ 2x2e−x
2/2 + 4

∫ ∞

x

te−t
2/2dt

= 2(2 + x2)e−x
2/2 ≤ 2.4e−x

2/4 (3.9)

for x > 3. Thus by (3.8) and (3.9) for x > 3

P (|Sn − S∗
n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

) ≤ 2e−x
2/2 ≤ 0.22e−x

2/4 (3.10)
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and

E(Sn − S∗
n)

2I(|Sn − S∗
n| ≥ x

(
n∑
i=1

(ξi − ηi)2
)1/2

)I(|S∗
n| ≤ 2Bn) = E

(
n∑
i=1

εi(ξi − ηi)

)2

I

(
|
n∑
i=1

εi(ξi − ηi)|

≥ x(
n∑
i=1

(ξi − ηi)2)1/2
)

≤ 2.4e−x
2/4E

∑
i=1

(ξi − ηi)2

= 4.8B2
ne

−x2/4. (3.11)

This proves (3.6) by (3.7), (3.10) and (3.11). �

In the following two lemmas we continue to use the notations given in Section 2.

Lemma 3.3. Assume σ2
1 = 1. Then for all y > 0,

P
(
|Sn| ≥ y(Vn +

√
5n)

)
≤ 2e−y

2/8 (3.12)

and
P

(
V 2
n ≤ n/2

) ≤ e−η0 n. (3.13)
where η0 = 1/(32a2

0) and a0 satisfied

Eg(X1)2I{|g(X1)| ≥ a0} ≤ 1/4. (3.14)

Proof. Recall Eg(X1) = 0 and Eg(X1)2 = 1. (3.12) is a special case of (3.5). We next prove (3.13). Let
Yk = g(Xk)I(|g(Xk)|≤a0). Since e−x ≤ 1 − x+ x2/2 for x > 0, we have with t = 1/(4a2

0)

P (V 2
n ≤ n/2) ≤ P

( n∑
k=1

Y 2
k ≤ n/2

)

≤ etn/2Ee−t
∑ n

k=1 Y
2

k = etn/2(Ee−tY
2
1 )n

≤ etn/2
(
1 − tEY 2

1 + t2EY 4
1 /2

)n
≤ etn/2

(
1 − (3/4)t+ t2a2

0/2
)n

≤ exp
(
− (t/4 − t2a2

0/2)n
)

= exp
(
− n

32a2
0

)
,

as desired. �
Lemma 3.4. Assume σ2

1 = 1. Then, for all y ≥ 0,

P
[
Λ2
n ≥ a0 y

2 n (7V 2
n + 11n)

] ≤ √
2n e−y

2/8 (3.15)

where a0 = 2(c0 + 4), and

P

⎡
⎣
∣∣∣∣∣∣

∑
1≤i<j≤n

ψ(Xi, Xj)

∣∣∣∣∣∣ ≥ a1 y
2
√
n (V 2

n + 106n)1/2

⎤
⎦ ≤ √

2 (n+ 2) e−y
2/8, (3.16)

where a2
1 = 46(c0 + 4).
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Proof. First prove (3.15). Note that, given Xi, W
(i)
n is a sum of i.i.d. random variables with zero means. It

follows from (3.5) that

P
{
|W (i)

n | ≥ y
[
V (i)2
n + 5(n− 1)τ2(Xi)

]1/2
}
≤

√
2e−y

2/8 (3.17)

where V (i)2
n =

∑n
j=1
j �=i

ψ2(Xi, Xj) and τ2(x) = E(ψ2(X1, Xj)|Xj = x). Note that ψ2(x1, x2) ≤ 2(c0 + 4)[1 +

g2(x1) + g2(x2)]. We have

V (i)2
n + 5(n− 1)τ2(Xi) ≤ 2(c0 + 4)

[
11n+ 6n g2(Xi) +

n∑
i=1

g2(Xi)

]
.

This, together with (3.17) and the fact that

n∑
i=1

[
11n+ 6n g2(Xi) +

n∑
i=1

g2(Xi)
]

= n (7V 2
n + 11n),

yields that

P
[
Λ2
n ≥ a0 y

2 n (7V 2
n + 11n)

]
≤

n∑
i=1

P
{
|W (i)

n | ≥ y
[
V (i)2
n + 5(n− 1)τ2(Xi)

]1/2
}

≤
√

2n e−y
2/8,

as required.
We next prove (3.16). Let Fj = σ(Xi, i ≤ j) and rewrite

∑
1≤i<j≤n

ψ(Xi, Xj) =
n∑
j=2

Yj ,

where Yj =
∑j−1

i=1 ψ(Xi, Xj). Then {Yj,Fj , j ≥ 2} is a martingale difference sequence. By (3.1), we have

P

⎛
⎜⎝

∣∣∣∣∣∣
n∑
j=2

Yj

∣∣∣∣∣∣ ≥ y

⎧⎨
⎩

n∑
j=2

[
Y 2
j + 3EY 2

j + 2E(Y 2
j |Fj−1)

]⎫⎬⎭
1/2

⎞
⎟⎠ ≤

√
2 e−y

2/8. (3.18)

Note that EY 2
j ≤ (j − 1)Eh2(X1, X2) ≤ 3(j − 1) by (1.6) and Eg2(X1) = 1. The result (3.16) follows if we

prove

P
[
T 2

1n ≥ a2 y
2 n (V 2

n + n)
]
≤ √

2n e−y
2/8, (3.19)

where T 2
1n =

∑n
j=2 Y

2
j and a2 = 14(c0 + 4), and

P
[
T 2

2n ≥ a3 y
2 n (V 2

n + 50n)
]
≤ √

2 e−y
2/4, (3.20)

where T 2
2n =

∑n
j=2 E(Y 2

j |Fj−1) and a3 = 16(c0 + 4).
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We only prove (3.20). The proof of (3.19) is similar to (3.15). We omit the details. Without loss of generality,
assume y ≥ 1. Otherwise (3.20) is obvious. Write V ′

j = Vψ,j +4(j−1)1/2τ(Xj), where V 2
ψ,j =

∑j−1
i=1 ψ

2(Xi, Xj).
Observe that

P
{
T 2

2n ≥ 2y2
[
4n

n∑
j=2

τ2(Xj) + 64n2Eτ2(X1)
]} ≤ P

{ n∑
j=2

E
[
Y 2
j I(|Yj | ≤ y V ′

j )|Fj−1

]

≥ y2
[
4n

n∑
j=2

τ2(Xj) + 64n2Eτ2(X1)
]}

+ P
{ n∑
j=2

E
[
Y 2
j I(|Yj | > y V ′

j )|Fj−1

]

≥ y2
[
4n

n∑
j=2

τ2(Xj) + 64n2Eτ2(X1)
]}

:= J1 + J2. (3.21)

Note that

J1 ≤ P

⎧⎨
⎩

n∑
j=2

y2E
[
V ′2
j |Fj−1

] ≥ y2

⎡
⎣4n

n∑
j=2

τ2(Xj) + 64n2Eτ2(X1)

⎤
⎦

⎫⎬
⎭

= P

⎧⎨
⎩

n∑
j=2

j−1∑
i=1

2τ2(Xi) + 32
n∑
j=2

(j − 1)Eτ2(X1) ≥ 4n
n∑
j=2

τ2(Xj) + 64n2Eτ2(X1)

⎫⎬
⎭

= 0 (3.22)

and that (recall y ≥ 1)

J2 ≤ 1
64y2n2Eτ2(X1)

n∑
j=2

E
[
Y 2
j I(|Yj | > yV ′

j )
]

=
1

64y2n2Eτ2(X1)

n∑
j=2

E
{
E

[
Y 2
j I(|Yj | > yV ′

j )|Xj

]}

≤ 16
64y2n2Eτ2(X1)

n∑
j=2

E
[
j τ2(X1)

]
e−y

2/4 by (3.6)

≤ e−y
2/4. (3.23)

The result (3.20) now follows from (3.21)–(3.23) and the fact that

4n
n∑
j=2

τ2(Xj) + 64n2Eτ2(X1) ≤ 8(c0 + 4)n(50n+ V 2
n ),

as τ2(x) ≤ 2(c0 + 4)[2 + g(x)]. This also completes the proof of Lemma 3.4. �

We are now ready to prove Proposition 2.1. Without loss of generality, assume σ2
1 = 1. Otherwise, consider

h/σ1 in the place of h. We only prove (2.8). The proof of (2.9) is given in a similar manner except we use (3.16)
in the place of (3.15).
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By (3.12) and (3.13), for any x > 0

P (|Sn| ≥ 5xVn) ≤ P (V 2
n ≤ n/2) + P

[|Sn| ≥ x(Vn +
√

5n
]

≤ 2e−x
2/8 + e−η0n.

By (3.15) and (3.13), for any x > 0,

P (Λn ≥ √
7a0 + 22x

√
nVn) ≤ P (V 2

n ≤ n/2) + P
[
Λ2
n ≥ a0 x

2 n (7V 2
n + 11n)

]
≤

√
2n e−x

2/8 + e−η0n.

These facts imply that, for any y > 0,

P (|δn| ≥ y) ≤ 2P (|Sn| ≥
√
y(n− 2)Vn/3) + 2P (Λn ≥ y(n− 2)Vn/4) + P (Λn ≥ √

y (n− 2)Vn/
√

3)

≤ 2
√

2(n+ 1)e−δ
′
0yn + 2

√
2ne−δ

′′
0 y

2 n + 5e−η0n

≤ 4
√

2(n+ 2) exp(−δ0 nmin{1, y, y2}),

where δ0, δ′0 and δ′′0 are constants depending only on σ2
1 and c0. This proves (2.8) and hence completes the

proof of Proposition 2.1.
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