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LARGE DEVIATIONS FOR DIRECTED PERCOLATION
ON A THIN RECTANGLE

Jean-Paul Ibrahim
1,2

Abstract. Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005)
325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)],
we prove large deviation properties for a last-passage percolation model in Z

2
+ whose paths are close

to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite
moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005)
325–337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105–112 (electronic)],
on an embedding in Brownian paths and the KMT approximation. The study of the subexponential
case completes the exposition.
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Introduction

Random matrix theory has developed extensively in the last several decades following the pioneering results
by E. Wigner in the fifties. Gaussian models attracted a lot of attention, among them the Gaussian Unitary
Ensemble (GUE). In this example, the knowledge of the joint distribution of the eigenvalues allowed for a
rather complete understanding of both their global and local behaviors. In particular, the limiting behavior
of the largest eigenvalue gave rise to the famous Tracy-Widom distribution [15, 21, 30]. Several random growth
models, such as the longest increasing subsequence and the corner growth models, have been shown to develop a
similar behavior relying on a common determinantal structure [16,18]. In particular, the last-passage percolation
or so-called corner growth model (see below for a precise description) has been deeply studied by Johansson
in [16]. For geometric or exponential random variables (the only cases leading to a determinantal description),
Johansson established both fluctuations and large deviation asymptotics similar to the ones for the GUE random
matrix model. Following the recent investigations by Baik and Suidan [1] and Bodineau and Martin [5] at the
level of fluctuations, the present paper deals with large deviations for the random growth model for more
general random variables but on rectangles such that one side is asymptotically negligible with respect to the
other at a given rate. The main results concern Gaussian random variables and random weights having a finite
moment-generating function. Somewhat surprisingly, the rate may be shown to be larger than the one for the
fluctuations. The comparison method used in this work is basically inspired from [1] and [5] and relies similarly
on an embedding in Brownian paths.
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Recall first the basic corner growth model under study. It can be described as directed paths in the lattice
Z

2
+ going from (1, 1) to (N, k) ∈ Z

2
+ where only up and right steps are allowed. More precisely, denoting by

Π(N, k) the set of all such paths, a path π ∈ Π(N, k) is called an up/right path and is defined as a collection
of sites {(il, jl)}N+k−1

l=1 satisfying (i1, j1) = (1, 1), (iN+k−1, jN+k−1) = (N, k) and (il+1, jl+1) − (il, jl) is either
(1, 0) or (0, 1). The main random variable under consideration is the last-passage time defined by

G(N, k) = max
π∈Π(N,k)

⎧⎨
⎩
∑

(i,j)∈π

X
(j)
i

⎫⎬
⎭

where the X
(j)
i ’s are i.i.d. random variables. As an alternate description, set U(N, k) as the subset of R

k+1
+

given by
U(N, k) =

{
u = (u0, u1, . . . , uk) ∈ R

k+1
+ ; 0 = u0 ≤ u1 ≤ . . . ≤ uk = N

}
.

Then

G(N, k) = sup
u∈U(N,k)

{
k∑

r=1

[
S

(r)
�ur� − S

(r)
�ur−1�−1

]}

where S
(r)
m =

∑m
i=1 X

(r)
i with the convention S

(r)
−1 = S

(r)
0 = 0. This follows from the fact that U(N, k) ≡ Π(N, k)

when u ∈ Z
k+1
+ . Actually, every u ∈ U(N, k) ∩ Z

k+1
+ maps to a unique path π ∈ Π(N, k) whose ith up-jump

occurs on ui. On the other hand, each path π is characterized by its up-step sites. It will be more appropriate
to adopt the second form of G(N, k) in order to compare it later with the Brownian last-passage percolation
model.

1. Results

Having introduced the model, recall briefly some of its properties established by Johansson in [16] in the
particular case of geometric or exponential distributions. The key of the results in this case relies on the explicit
description of the last-passage time distribution G(N, k). When weights are i.i.d. geometric with parameter
q ∈ (0, 1), we have

P[G(N, k) ≤ t] =
1

ZN,k

∑
h∈Nk

max{hi}≤t+k−1

∏
1≤i<j≤k

(hi − hj)2
k∏

i=1

(
hi + N − k

hi

)
qhi ,

where N ≥ k and ZN,k is the normalizing constant. Using results from logarithmic potential theory, Johansson
described in [16] the large deviation behaviors of G(N, k) when k and N are of the same order. Namely, he
obtained that, for γ ≥ 1, there exist two rate functions i(ε) and l(ε) such that for any ε > 0,

lim
k→∞

1
k

log P[G([γk], k) ≥ k(ω(γ, q) + ε)] = −i(ε) (1.1)

and

lim
k→∞

1
k2

log P[G([γk], k) ≤ k(ω(γ, q) − ε)] = −l(ε). (1.2)

The functions l(x) and i(x) are positive for every x > 0 and

ω(γ, q) := lim
k→∞

1
k

E[G([γk], k)] =
(1 +

√
γq)2

1 − q
− 1.
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Using the asymptotics of the Meixner orthogonal polynomial ensemble, Johansson [16] further established
the fluctuations of G(N, k) at the Tracy-Widom GUE rate. He proved that for γ ≥ 1 and s ∈ R,

lim
k→∞

P

[
G([γk], k) − kω(γ, q)

σ(γ, q)k1/3
≤ s

]
= FTW

2 (s),

where

σ(γ, q) =
q1/6γ−1/6

1 − q
(
√

γ +
√

q)2/3(1 +
√

γq)2/3

and FTW
2 (s) is the distribution function of the Tracy-Widom law (see [30]). Replacing geometric weights with

exponential ones gives similar results since an exponential distribution can be seen as the limit of a rescaled
geometric one. See [16] for the precise formulas.

Recently, Bodineau and Martin [5] and Baik and Suidan [1] studied the same model when paths are close to
the axis, i.e. k = o(Nα) for some α < 1, but allowing more general distributions. The authors used a coupling
with the Brownian trajectories through the following Brownian last-passage percolation. Letting (B(r)

t )r≥1 be
a sequence of independent Brownian motions, set

L(N, k) = sup
u∈U(N,k)

{
k∑

r=1

[
B(r)

ur
− B(r)

ur−1

]}
.

It has been proved in [2,14,23] that L(1, k) has the same distribution as the largest eigenvalue of a k×k rescaled
GUE random matrix. As a consequence of the fluctuation result for the GUE model, it follows that

k1/6
[
L(1, k) − 2

√
k
]

d−→ Θ,

where Θ is a random variable having the distribution function FTW
2 (s). Using this result and a comparison

between the continuous model with Brownian paths and the discrete one with random weights, the authors of [1]
and [5] deduced fluctuation properties of the corner growth model for rather general random variables. However,
the embedding in the Brownian paths requires to restrict the paths on small rectangles. For example, in [5],
the discrete and the continuous models were coupled using the Komlós-Major-Tusnády (KMT) approximation
which couples random walks with Brownian motion. The authors proved that if the weights satisfy E|X(j)

i |p < ∞
for some p > 2, setting μ = EX

(j)
i and σ2 = var(X(j)

i ), then for all α < 6
7 (1

2 − 1
p ),

G(N, 
Nα�) − Nμ − 2σN
1+α

2

σN
1
2−α

6

d−→ Θ.

If the random variables X
(j)
i have all moments, i.e. p = ∞, then α is lower than 3/7. This is true when the

weights are Gaussian or are bounded for example. It is not known how optimal this rate could be: the authors
in [5] think that such a result might hold, for some independence reasons, when α < 3/4. However, they do
not give a complete proof. In [1], the authors compared the discrete and continuous model via the Skorokhod
embedding theorem in order to obtain almost the same results. Lately, Suidan in [29] produced another proof
of the last theorem when the variables have a third moment. He compared two discrete directed percolation
models using a theorem of Chatterjee [8]. The fluctuation properties for the first (with geometric distribution)
lead him to similar ones for the second.

In this paper, we follow the comparison methods of [5] and [1] to establish large deviations limit theorems
for directed percolation models on thin rectangles. The results mainely concern Gaussian weights and random
weights with finite moment-generating function aroud zero. We rely similarly on the corresponding results for
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the Brownian percolation model. Namely, as a consequence of the GUE random matrix interpretation [14, 23],
for all ε > 0,

lim
k→∞

1
k

log P

[
L(1, k) ≥ 2

√
k(1 + ε)

]
= −JGUE(ε) (1.3)

and
lim

k→∞
1
k2

log P

[
L(1, k) ≤ 2

√
k(1 − ε)

]
= −IGUE(ε). (1.4)

The two functions JGUE(x) and IGUE(x) are both positive for every positive x. JGUE can be computed explicitly
(see [3]) as

JGUE(ε) = 4
∫ ε

0

√
x(x + 2) dx.

To the best of our knowledge, there is no explicit form for IGUE. This function appears in the logarithmic poten-
tial theory and it represents physically the minimal potential energy of charges on a one-dimension conductor
exposed to an external field (see [25]). In this work, we do not need the explicit form of IGUE. However, its
continuity, proved at the end of Section 2, will be necessary for the proof.

The following three theorems are the main results of this paper. Despite some similarity in their proofs, the
second one requires more work. One surprising feature is that the rate α in the Gaussian case can be taken
arbitrary less than 1 (compared to α < 3/7 for the fluctuation result).

Throughout the article, k and N are two integers and N depends on k, i.e. N = N(k) := Nk. We assume
further that k = o(Nk) and we let k goes to infinity. For simplicity, we write N instead of Nk throughout the
proofs.

Theorem 1.1. Assume that the variables (X(j)
i )∞i,j=1 are i.i.d. standard normal random variables. Assume

further that k = o( Nk

log Nk
). Then, for all ε > 0,

lim
k→∞

1
k

log P

[
G(Nk, k) ≥ 2

√
Nkk(1 + ε)

]
= −JGUE(ε).

On the left of the mean, we have for k = o(N
1
2
k ),

lim
k→∞

1
k2

log P

[
G(Nk, k) ≤ 2

√
Nkk(1 − ε)

]
= −IGUE(ε).

In the second statement, we replace Gaussian variables with weights having finite exponential moments.
Loosing the Gaussian assumption will complicate the coupling and reduce the size of the rectangles. We denote
by X a random variable having the common law of the i.i.d. variables in the sequence (X(j)

i )∞i,j=1.

Theorem 1.2. Assume that the variables (X(j)
i )∞i,j=1 are i.i.d. random variables such that EX = 0 and EX2 =

1. Assume further that there exit μ0 > 0 such that for all μ < μ0,

E exp (μ|X |) < +∞. (1.5)

If k = o( Nk

(log Nk)2 ), then for all ε > 0,

lim
k→∞

1
k

log P

[
G(Nk, k) ≥ 2

√
Nkk(1 + ε)

]
= −JGUE(ε).

Similarly, if k = o(N
1
3
k ), for all ε > 0,

lim
k→∞

1
k2

log P

[
G(Nk, k) ≤ 2

√
Nkk(1 − ε)

]
= −IGUE(ε).
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The proof of Theorem 1.2 relies on the Komlós-Major-Tusnády approximation for sums of i.i.d centered
random variables with finite exponential moments, see [17]. The following theorem deals with a particular class
of subexponential weights. We make use of the Skorokhod embedding theorem to obtain this result.

Theorem 1.3. Assume that the variables (X(j)
i )∞i,j=1 are i.i.d. random variables satisfying EX = 0 and EX2 =

1. Furthermore, assume that there exit μ > 0 and 0 < γ < 1 such that

E exp (μ|X |γ) < +∞. (1.6)

If k = o(Nα
k ) with α < γ

2γ+2 , then, for all ε > 0,

lim
k→∞

1
k

log P

[
G(Nk, k) ≥ 2

√
Nkk(1 + ε)

]
= −JGUE(ε).

Similarly, if k = o(Nα
k ) with α < γ

5γ+4 , for all ε > 0,

lim
k→∞

1
k2

log P
[
G(Nk, k) ≤ 2

√
Nkk(1 − ε)

]
= −IGUE(ε).

The results in Theorem 1.3 cover in particular the examples of Weibull and Lévy distributions. Notice that
in Theorem 1.3 we can take γ ≥ 1. However, the result is worthless because of Theorem 1.2. Actually, the KMT
approximation is more efficient than the Skorokhod embedding theorem for i.i.d. random variables with finite
exponential moments.

Let us notice here that if the weights have a finite pth moment with p ≥ 2, we still obtain the same deviation
results but for k = o(log Np−1). In this case, we use again the KMT approximation for random weights with
finite pth moment, see [17, 26].

It should be noted also that the previous results hold for geometric and exponential weights as soon as
k = o(Nk), with the same GUE rate functions. This is a consequence of the large deviations (1.1) and (1.2) and
the fact that the Laguerre ensemble converges to the GUE on the scaling k = o(Nk). The reader can see [16]
and [19] for rigorous results.

Non-asymptotic bounds for the preceding models can be deduced from the previous theorems proofs. The
rectangle width for small deviations matches in this case the fluctuation results. For this we use analogous
deviation inequalities to the right of the mean obtained for the largest eigenvalue of the GUE, see [19]. To the
left of the mean, we use recent deviation results for the largest eigenvalue of the GUE obtained by Ledoux and
Rider [20].

Theorem 1.4. Assume that the variables (X(j)
i )∞i,j=1 are i.i.d. standard normal random variables, and that

k = Nα
k with α < 3

7 . Then, there exists a positive constant Cα depending only on α such that, for all 0 < ε < 1,

P

[
G(N, k) ≥ 2

√
Nk(1 + ε)

]
≤ Cα exp

(
−kε3/2

Cα

)
· (1.7)

On the left of the mean, we have

P

[
G(N, k) ≤ 2

√
Nk(1 − ε)

]
≤ Cα exp

(
−k2ε3

Cα

)
· (1.8)

In the Gaussian case, large deviation inequalities for large ε > 1 hold for the optimal rate α = 1 using some
concentration arguments. We refer to [19] for the results and the proofs. For random weights with finite moment-
generating function, we have similar results.
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Theorem 1.5. Assume that the variables (X(j)
i )∞i,j=1 are i.i.d. random variables such that EX = 0 and EX2 =

1. Assume further that there exit μ0 > 0 such that for all μ < μ0,

E exp (μ|X |) < +∞. (1.9)

If k = Nα
k with α < 3

7 , then there exists a positive constant Cα depending α and the distribution of X such that,
for all 0 < ε < 1,

P

[
G(Nk, k) ≥ 2

√
Nkk(1 + ε)

]
≤ Cα exp

(
−kε3/2

Cα

)
· (1.10)

Similarly, if k = Nα
k with α < 1

3 , then

P

[
G(Nk, k) ≤ 2

√
Nkk(1 − ε)

]
≤ Cα exp

(
−k2ε3

Cα

)
· (1.11)

As the reader can notice, if X satisfies the condition (1.6), the same exponential inequalities as in Theorem 1.5
can be obtained. In this case, the positive constant will depend on α, μ and γ. A smaller α will be also necessary.
The precise calculations are left to the reader.

We strongly believe that the preceding results hold on a wider rectangle. However, the method used here
does not allow us to improve the rectangle width. Theorem 1.1 will be proved in Section 2 while Theorem 1.2
will be proved in Section 3. The case of the subexponential weights given in Theorem 1.3 will be discussed in
Section 4. Theorem 1.4 and Theorem 1.5 will be addressed in Section 5 on the basis of the preceding results
and proofs.

2. Proof of Theorem 1.1

Throughout the rest of the paper, we write N instead of Nk for simplicity. As claimed before, to prove
Theorem 1.1, we compare G(N, k) and L(N, k). To do so, let for any ε > 0,

A =
{
G(N, k) ≥ 2

√
Nk(1 + ε)

}
and

B =
{∣∣G(N, k) − L(N, k)

∣∣ ≥ 2
√

Nk(ε − ε1)
}

where 0 < ε1 < ε. Clearly,

P[A] ≤ P

[
L(N, k) ≥ 2

√
Nk(1 + ε1)

]
+ P[B] (2.1)

and
P[A] ≥ P

[
L(N, k) ≥ 2

√
Nk(1 + 2ε − ε1)

]
− P[B]. (2.2)

Moreover, for every η > 0,

P

[
L(N, k) ≥ 2

√
Nk(1 + η)

]
= P

[
L(1, k) ≥ 2

√
k(1 + η)

]
(2.3)

as a consequence of the Brownian scaling
√

NL(1, k) d= L(N, k). To evaluate P[B], we couple G(N, k) and
L(N, k) by letting X

(j)
i = B

(j)
i − B

(j)
i−1 for all i, j ≥ 1 so that the sequence (X(j)

i )∞i,j=1 is i.i.d. with standard
normal distribution. When comparing G(N, k) and L(N, k), it is obvious that most of the variables will vanish.
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More precisely, repeating the computation done by Bodineau and Martin in Section 2 of [5], we get, by letting
B

(r)
−1 = 0,

∣∣G(N, k) − L(N, k)
∣∣ =
∣∣∣∣∣ sup
u∈U(N,k)

k∑
r=1

[
S

(r)
�ur� − S

(r)
�ur−1�−1

]
− sup

u′∈U(N,k)

k∑
r=1

[
B

(r)

u′
r

− B
(r)

u
′
r−1

]∣∣∣∣∣
≤ sup

u∈U(N,k)

k∑
r=1

[∣∣∣S(r)
�ur� − B

(r)
�ur�
∣∣∣+ ∣∣S(r)

�ur−1�−1 − B
(r)
�ur−1�−1

∣∣∣
+
∣∣∣B(r)

�ur� − B(r)
ur

∣∣∣+ ∣∣∣B(r)
�ur−1�−1 − B(r)

ur−1

∣∣∣]

≤ 2
k∑

r=1

(
max

i=1,...,N

∣∣∣S(r)
i − B

(r)
i

∣∣∣)+ 2
k∑

r=1

(
sup

0≤s,t≤N
|s−t|<2

∣∣∣B(r)
s − B

(r)
t

∣∣∣). (2.4)

Denote by Yk and Zk respectively the two terms on the right-hand side of the last line in (2.4). Then we have,

P[B] ≤ P

[
Yk + Zk ≥ 2

√
Nk(ε − ε1)

]
≤ P

[
Yk ≥

√
Nk(ε − ε1)

]
+ P

[
Zk ≥

√
Nk(ε − ε1)

]
. (2.5)

Of course, Yk = 0 in this Gaussian example, but (2.5) will be used below for more general variables. Applying
the Markov inequality gives for all λ > 0,

P

[
Zk ≥

√
Nk(ε − ε1)

]
≤ E
[
exp
(
λZ2

k

)] · exp
(− λ(ε − ε1)2Nk

)

≤ E

⎡
⎣exp

⎛
⎝4λk

(
sup

0≤s,t≤N
|s−t|<2

∣∣∣B(1)
s − B

(1)
t

∣∣∣
)2
⎞
⎠
⎤
⎦

k

exp
(− λ(ε − ε1)2Nk

)

≤
⎛
⎝∫ ∞

0

8λku exp
(
4λku2

)
P

[
sup

0≤s,t≤N
|s−t|<2

∣∣∣B(1)
s − B

(1)
t

∣∣∣ ≥ u

]
du

⎞
⎠

k

exp
(− λ(ε − ε1)2Nk

)
.

(2.6)

However, for every u ≥ 0,

P

[
sup

0≤s,t≤N
|s−t|<2

|B(1)
s − B

(1)
t | ≥ u

]
≤

N−3∑
i=0

P

[
sup

i≤t≤i+3
Bt − inf

i≤t≤i+3
Bt ≥ u

]

≤ NP

[
sup

0≤t≤3
|Bt| ≥ u/2

]
.

By the Brownian motion reflection principle (see for example [24]), sup0≤t≤a Bt
d= |Ba|. Thus,

P

[
sup

0≤s,t≤N
|s−t|<2

∣∣∣B(1)
s − B

(1)
t

∣∣∣ ≥ u

]
≤ C1NP

[
B3 ≥ u/2

]

≤ C1N exp
(
− u2

C1

)
· (2.7)
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where C1 is a numerical positive constant. Now, insert (2.7) in the integral in (2.6) and choose λ = c
k were c is

a positive constant smaller than 2
C1

. Then we get for some constant C2 > 0,

P

[
Zk ≥

√
Nk(ε − ε1)

]
≤ C2 exp

(
k log N

C2

)
exp
(
− (ε − ε1)2N

C2

)
· (2.8)

The last bound leads to the condition k = o(N/ logN). Combining (2.1), (2.2), (2.3) and (2.8) then leads to

P[A] ≤ P

[
L(1, k) ≥ 2

√
k(1 + ε1)

]
+ C2 exp

(
− (ε − ε1)2N − k log N

C2

)
(2.9)

and

P[A] ≥ P

[
L(1, k) ≥ 2

√
k(1 + 2ε − ε1)

]
− C2 exp

(
− (ε − ε1)2N − k log N

C2

)
· (2.10)

Dividing (2.9) by e−kJGUE(ε1) and (2.10) by e−kJGUE(2ε−ε1), taking their logarithm and then dividing the results
by k, we get for α < 1

2 ,

1
k

log
(

P[A]
e−kJGUE(ε1)

)
≤ 1

k
log
(

P[L(1, k) ≥ 2
√

k(1 + ε1)]
e−kJGUE(ε1)

+ gk(ε1, ε)
)

(2.11)

and
1
k

log
(

P[A]
e−kJGUE(2ε−ε1)

)
≥ 1

k
log
(

P[L(1, k) ≥ 2
√

k(1 + 2ε − ε1)]
e−kJGUE(2ε−ε1)

− g′k(ε1, ε)
)

(2.12)

where

gk(ε1, ε) = C2 exp
(
− (ε − ε1)2N

C2
+ k

(
log N

C2
+ JGUE(ε1)

))
and

g′k(ε1, ε) = C2 exp
(
− (ε − ε1)2N

C2
+ k

(
log N

C2
+ JGUE(2ε − ε1)

))
,

are two positive functions. Moreover, for k large enough, gk(ε1, ε) and g′k(ε1, ε) are negligible with respect to
e−ηk for every η > 0 since k = o(N/ logN). Thus, using (1.3), a straightforward computation shows that the
right-hand sides of (2.11) and (2.12) both converge to zero when k → ∞. In other words, for k = o(N/ logN)
and ε1 < ε,

lim sup
k→∞

1
k

log P[A] ≤ −JGUE(ε1) (2.13)

and
lim inf
k→∞

1
k

log P[A] ≥ −JGUE(2ε − ε1). (2.14)

Finally, notice that JGUE(ε) is a continuous function of ε > 0. It therefore follows from (2.13) and (2.14) that
for every ε > 0,

lim
k→∞

1
k

log P

[
G(N, k) ≥ 2

√
Nk(1 + ε)

]
= −JGUE(ε).

The proof of the large deviation formula on the left of the mean is similar. Set now, for all ε > 0 and ε1 < ε,

E =
{

G(N, k) ≤ 2
√

Nk(1 − ε)
}
.

By the same arguments as before, we get

P[E] ≤ P

[
L(N, k) ≤ 2

√
Nk(1 − ε1)

]
+ P[B] (2.15)
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and
P[E] ≥ P

[
L(N, k) ≤ 2

√
Nk(1 − 2ε + ε1)

]
− P[B]. (2.16)

Furthermore, by (1.4),

lim
k→∞

1
k2

log
(

P[L(1, k) ≤ 2
√

k(1 − ε1)]
e−k2IGUE(ε1)

)
= 0 (2.17)

and

lim
k→∞

1
k2

log
(

P[L(1, k) ≤ 2
√

k(1 − 2ε + ε1)]
e−k2IGUE(2ε−ε1)

)
= 0. (2.18)

Using the same upper bound on P[B] and combining (2.15), (2.16), (2.17) and (2.18), one can easily deduce
that, for k = o(N1/2) and ε1 < ε,

lim sup
k→∞

1
k2

log P[E] ≤ −IGUE(ε1)

and
lim inf
k→∞

1
k2

log P[E] ≥ −IGUE(2ε − ε1).

At this stage, let us assume that IGUE(ε) is a continuous function of ε. Then, for k = o(N1/2),

lim
N→∞

1
k2

log P

[
G(N, k) ≤ 2

√
Nk(1 − ε)

]
= −IGUE(ε),

which is the result.
We are left with the proof of the continuity of IGUE(ε). Set M((−∞, t]), the set of all probability measures

on (−∞, t] when t ∈ R. For a given distribution μ ∈ M((−∞, t]), define the corresponding potential energy, as
in [25], by

Iμ(t) = 2
∫ t

−∞
x2dμ(x) −

∫ t

−∞

∫ t

−∞
log |x − y|dμ(x)dμ(y).

The minimal energy
I(t) = inf

μ∈M((−∞,t])
Iμ(t)

precisely allows us to compute the rate function IGUE via the formula IGUE(ε) = I(1 − ε) − I(∞). The last
equality could be found in [11]. For t ≥ 1, I(t) is a constant function, the extremal measure is the so-called
semi-circular law supported on [−1, 1] and the energy I(t) = log (2) + 3/4, (cf. [4, 25]). For each t ∈ R, there
is a unique measure νt ∈ M((−∞, t]), with no mass point, achieving the infimum (cf. [25]). Furthermore, νt

is compactly supported and the corresponding energy is finite. Since I(t) is an infimum and a non-increasing
function of t, for any η > 0,

I(t) ≤ I(t − η) ≤ Iνt(t − η)
ν2

t ((−∞, t − η])
· (2.19)

It is obvious that the right-hand side of (2.19) converges to I(t) when η converges to zero. This proves the
left-continuity of I(t).

To show the right-continuity, notice that by a simple change of variable,

I(t) = inf
μ∈M((−∞,t+η])

Iη
μ(t)

where

Iη
μ(t) = 2

∫ t+η

−∞
(x − η)2dμ(x) −

∫ t+η

−∞

∫ t+η

−∞
log |x − y|dμ(x)dμ(y).
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Consequently,

I(t) − I(t + η) ≤ Iη
νt+η

(t) − I(t + η)

≤ 2η2 + 4η

∫ t+η

−∞
|x| dνt+η(x). (2.20)

For |x| ≥ |y|, we have log |x − y| ≤ log |2x|. Moreover, there is a positive constant C3 such that |x| ≤ C3(2x2 −
2 log |2x|). In view of (2.20), a straightforward calculation leads to

I(t) − I(t + η) ≤ 2η2 + 4η C3I(t). (2.21)

Since I(t) is finite, the right-hand side of (2.21) converges to zero when η → 0. Thus, the continuity of I(t) is
proved, and that of IGUE(ε) as well. The proof of Theorem 1.1 is now complete.

3. Exponential-tailed distribution and the KMT approximation

In this section, we replace the standard normal variables with weights having a finite moment-generating
function around zero. When comparing G(N, k) to the Brownian last-passage percolation model, Yk will not
vanish as in the Gaussian case where the coupling was “perfect”. In the non-Gaussian case, a new coupling is
required, and the things become more complicated. Following [5], we make use of the KMT approximation: a
powerful tool to couple a partial sum of i.i.d. random variables and a Wiener process, both constructed on the
same probability space. The KMT approximation was first introduced in 1975 by Komlós, Major and Tusnády
in their famous work [17]. The basic version deals with a partial sum of i.i.d. random variables reconstructed
in a way to be ”close” to a partial sum of i.i.d. standard normal random variables. Later versions of this strong
approximation do not require a common distribution, see [26]. The reader can also consult [9] for a complete
survey.

Let (Xi)i≥1 be a sequence of independent random variables and denote by SN the corresponding partial sum.
Let (Bt)t≥0 be a Brownian motion built on the same probability space. The following theorem is an immediate
consequence of Theorem 1 in [17].

Theorem 3.1 (Komlós-Major-Tusnády). Assume that EX1 = 0 and EX2
1 = 1. Assume further that there exit

μ0 > 0 such that for all μ < μ0,
E exp (μ|X1|) < +∞.

Then for every N ≥ 1, the sequence (Xi)i≥1 and the Brownian motion (Bt)t≥0 can be constructed in such a
way that for all x > 0,

P
[

max
i=1,...,N

∣∣Si − Bi

∣∣ > Θ log N + x
] ≤ C exp (−θx).

The positive constants Θ, C and θ depend only on the distribution of X1 and θ can be taken as large as desired
by choosing Θ large enough.

We now establish, with this tool, Theorem 1.2. According to the notation and the steps in Section 2, recall
from (2.4) that

|G(N, k) − L(N, k)| ≤ Yk + Zk.

We control Zk as in (2.8) and we want Yk to be as small as possible. To this purpose, we construct the sequence
(X(j)

i )∞i,j=1 and the independent Brownian motions (B(r)
t )t≥0 in the sense of Theorem 3.1. By the Markov

inequality, we have for all ε > 0, ε1 < ε and λ > 0,

P

[
Yk ≥

√
Nk(ε − ε1)

]
≤ E
[
exp
(
λYk

)] · exp
(
− λ(ε − ε1)

√
Nk
)

≤ E

[
exp
(
2λ max

i=1,...,N

∣∣∣S(1)
i − B

(1)
i

∣∣∣)]k exp
(
− λ(ε − ε1)

√
Nk
)

≤
(∫ ∞

0

2λ exp
(
2λu
) · P

[
max

i=1,...,N

∣∣∣S(1)
i − B

(1)
i

∣∣∣ ≥ u
]
du

)k

exp
(
− λ(ε − ε1)

√
Nk
)
.
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In order to apply Theorem 3.1, we make the simple variable change t = s − Θ log N and we choose λ < θ/2.
Therefore, there exist two positive constant c4 and C4 such that,

P

[
Yk ≥

√
Nk(ε − ε1)

]
≤ C4 exp

(
− (ε − ε1)

√
Nk − k log N

C4

)
· (3.1)

Now, putting (2.1), (2.2), (2.8) and (3.1) together gives

P[A] ≤ P

[
L(N, k) ≥ 2

√
Nk(1 + ε1)

]
+ C5 exp

(
− (ε − ε1)2N − k log N

C5

)

+ C5 exp
(
− (ε − ε1)

√
Nk − k log N

C5

)
(3.2)

and

P[A] ≥ P

[
L(N, k) ≥ 2

√
Nk(1 + 2ε − ε1)

]
− C5 exp

(
− (ε − ε1)2N − k log N

C5

)

− C5 exp
(
− (ε − ε1)

√
Nk − k log N

C5

)
· (3.3)

On the left of the mean, we have

P[E] ≤ P

[
L(N, k) ≤ 2

√
Nk(1 − ε1)

]
+ C5 exp

(
− (ε − ε1)2N − k log N

C5

)

+ C5 exp
(
− (ε − ε1)

√
Nk − k log N

C5

)
(3.4)

and

P[E] ≥ P

[
L(N, k) ≤ 2

√
Nk(1 − 2ε + ε1)

]
− C5 exp

(
− (ε − ε1)2N − k log N

C5

)

− C5 exp
(
− (ε − ε1)

√
Nk − k log N

C5

)
· (3.5)

Proceeding like in Section 2, we divide (3.2) by e−kJGUE(ε1), (3.3) by e−kJGUE(2ε−ε1), (3.4) by e−k2IGUE(ε1)

and (3.5) by e−k2IGUE(2ε−ε1). To handle the remaining parts when k → ∞, we take k negligible with respect
to N . On the right of the mean, we need k = o

(
N

(log N)2

)
and on the left, we take k = o(N1/3). Finally we

conclude as in section 2 using the continuity of JGUE and IGUE.

4. Subexponential weights and the Skorokhod embedding

In this section, we consider a particular category of subexponential weights such that E exp (μ|X |γ) is finite
for some μ > 0 and γ ∈ (0, 1). We say that these variables have a Weibull-like tails because of the similarity
with the right-tail of the Weibull distribution with a shape parameter lower than 1. Such weights are considered
to be heavy-tailed and then, do not have finite moment-generating functions. However, G(N, k) still satisfies
an LDP principle on a very thin rectangle. The precise definition of a subexponential distribution and large
deviations for a partial sum of i.i.d. such weights can be found in [22].

We do not know a KMT strong approximation version for random variables satisfying the moment condition
above. We therefore follow [1] by using the Skorokhod embedding theorem instead. The Skorokhod embedding
theorem is another tool to couple a sum of i.i.d. random variables with a Brownian motion, see (cf. [6, 27, 28])
for more details concerning this theorem.
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Theorem 4.1 (Skorokhod). Let (Bt)t≥0 be a standard one-dimensional Brownian motion and X a real valued
random variable satisfying EX = 0 and EX2 = 1. Then, there is a stopping time T for the Brownian motion
such that BT

d= X and ET = 1.

An immediate consequence of this theorem allows to embed sums of real independent random variables into
the Brownian motion. Applying the strong Markov property to the Brownian motion, Theorem 4.1 yields the
following classical corollary.

Corollary 4.2. Let X1, X2, . . . , XN , . . . be i.i.d. satisfying EX1 = 0, EX2
1 = 1 and set SN = X1+X2+· · ·+XN ,

N ≥ 1. There is a sequence of i.i.d. stopping times τ0 = 0, τ1, . . . , τN , . . . such that

SN
d= Bτ1+···+τN

and (Bτ1+···+τN+1 −Bτ1+···+τN )N≥0 is a sequence of i.i.d. random variables having the same distribution as X1.

In our context, an application of the last corollary allows to claim that there exists i.i.d. stopping times
for the Brownian motion τ0 = 0, τ1, . . . , τN , . . . such that Eτ1 = 1 and S

(r)
i

d= B
(r)
τ1+···+τi

for i ≥ 1 and r ≥ 1.
Consequently, choose

X
(r)
i = B

(r)
τ1+···+τi

− B
(r)
τ1+···+τi−1

,

in order to have
S

(r)
i = B

(r)
τ1+···+τi

a.s.

Thus, for any t ≥ 0,

P

[
max

i=1,...,N

∣∣∣S(1)
i − B

(1)
i

∣∣∣ ≥ t
]

= P

[
max

i=1,...,N

∣∣∣B(1)
τ1+...+τi

− B
(1)
i

∣∣∣ ≥ t; max
i=1,...,N

∣∣∣∣∣
i∑

l=1

(τl − 1)

∣∣∣∣∣ ≥ tβ

]

+ P

[
max

i=1,...,N

∣∣∣B(1)
τ1+...+τi

− B
(1)
i

∣∣∣ ≥ t; max
i=1,...,N

∣∣∣∣∣
i∑

l=1

(τl − 1)

∣∣∣∣∣ < tβ

]
.

Hence

P

[
max

i=1,...,N

∣∣∣S(1)
i − B

(1)
i

∣∣∣ ≥ t
]
≤ P

[
sup

0≤s,t≤N

|s−t|<Nβ

∣∣∣B(1)
s − B

(1)
t

∣∣∣ ≥ t

]

+P

[
max

i=1,...,N

∣∣∣∣∣
i∑

l=1

(τl − 1)

∣∣∣∣∣ ≥ tβ

]
. (4.1)

We evaluate each term of (4.1) separately. First,

P

[
sup

0≤s,t≤N

|s−t|<tβ

∣∣∣B(1)
s − B

(1)
t

∣∣∣ ≥ t

]
≤

N−tβ∑
i=0

P

[
sup

i≤t≤i+tβ+1

Bt − inf
i≤t≤i+tβ+1

Bt ≥ t

]

≤ NP

[
sup

0≤t≤tβ+1

|Bt| ≥ t/2

]
.

Applying the reflection principle as in Section 2, we get

P

[
sup

0≤s,t≤N

|s−t|<tβ

∣∣∣B(1)
s − B

(1)
t

∣∣∣ ≥ t

]
≤ 4NP

[
Btβ+1 ≥ t/2

]

≤ 4N exp
(
− t2−β

8

)
· (4.2)
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To find an upper bound for the second term on the right-hand side of (4.1), we need a connection between the
weight moments and those of the stopping times obtained by the Skorokhod embedding. Furthermore, we need
to control the sum of the independent stopping times to reach an exponentially decaying inequality. When the
weights are bounded for exemple, we can construct a stopping time with finite exponential moments. The sum
is then controlled by the Bernstein inequality.

However, when X only satisfies (1.6), the Skorokhod stopping time does not necessarily have a finite expo-
nential moment and thus the Bernstein inequality can not be applied. For example, in [10], Davis found the
best universal constant connecting the stopping time moments to those of the stopped Brownian motion. More
precisely, if (Bt)t>0 is a Brownian motion and τ is a stopping time, then there is a universal constant ap such
that, when 1 < p < ∞ and Eτp/2 < +∞,

apEτp/2 ≤ E|Bτ |p. (4.3)

Moreover, Davis proved that the best constant for p = 2n (n ∈ N
∗) is z∗2n

2n which is the smallest positive zero
of the Hermite polynomial of order 2n. In [7], this constant is shown to be O((2n)−n)). So unless X = Bτ is a
bounded variable, τ can not have finite exponential moments.

The constant above is universal but it could be sharpened for some particular stopping times. For example,
considering the stopping time of the Skorokhod representation [6, 28], Sawyer improved the constant ap and
established, in [27], the following inequality.

Theorem 4.3. Let X be a centered random variable such that

E exp (μ|X |γ) < +∞
for some γ > 0 and μ > 0, and let τ be the corresponding stopping time of the Skorokhod representation. Set
θ = γ

2+γ and ν = μ1−θ. Then,
E exp (ντθ) ≤ Φγ E exp (μ|X |γ),

for some positive constant Φγ depending only on γ.

Note that a similar exponential bound may be obtained from (4.3). However the cost is a worse constant μ.
Under the assumption (1.6) and in view of Theorem 4.3, the Bernstein inequality can not be applied to the
sum of the independent stopping times because θ = γ/(2 + γ) < 1. To avoid this obstacle, we introduce the
Fuk-Nagaev inequality [13] which requires less restrictive assumptions.

Theorem 4.4 (Fuk-Nagaev). Let X1, · · · , XN be a sequence of real i.i.d. random variables satisfying EX1 = 0
and EX2

1 = σ2. Then, for all x > 0 and y > 0,

P

[
max

1≤i≤N

∣∣∣ i∑
l=1

Xl

∣∣∣∣∣ ≥ x
]
≤ NP

[
|X1| > y

]
+ 2 exp

(
− x2

2(Nσ2 + xy/3)

)
· (4.4)

We refer to [12] for more detail on this inequality. Recall now the second term of the right-hand side of (4.1)
and consider the stopping times of the Skorokhod representation. Choosing x = tβ and y = tδ in Theorem 4.4
and applying Markov inequality to the first term of the right-hand side of (4.4), one has

P

[
max

i=1,...,N

∣∣∣∣∣
i∑

l=1

(τl − 1)

∣∣∣∣∣ ≥ tβ

]
≤ C6N exp

(
− νtθδ

C6

)
+ C6 exp

(
− t2β

C6 max {N, tβ+δ}
)
· (4.5)

Now, we apply Markov inequality to Yk as in Section 3 and we get for some λ > 0 and 0 < η < 1,

P

[
Yk ≥

√
Nk(ε − ε1)

]
≤ E
[
exp
(
λY η

k

)]
. exp

(− λ(ε − ε1)η(Nk)η/2
)

≤
(∫ ∞

0

2ηλuη−1e2λuη

P

[
max

i=1,...,N

∣∣∣S(1)
i − B

(1)
i

∣∣∣ ≥ u
]
du

)k

exp
(− λ(ε − ε1)η(Nk)η/2

)
.

(4.6)
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Inserting (4.1) and (4.5) in (4.6) and choosing λ very small yield the following constraints on η, β, δ and θ.⎧⎪⎨
⎪⎩

η < 2 − β

η < β − δ

η < θδ.

Straightforward computations lead us to choose β = 4γ+4
3γ+2 and δ = 2γ+4

3γ+2 since θ = γ
γ+2 . Consequently, we obtain

η < 2γ
3γ+2 . To get large deviation asymptotic formulas on the right and the left of the mean, we respectively

need α < η
2−η and α < η

4−η . This completes the proof of Theorem 1.3.

5. Small and large deviations inequalities

Non-asymptotic bound on the right and the left of the mean is an immediate consequence of the corresponding
bound for the GUE and the arguments developed in Sections 2 and 3. In particular, we use (cf. [19]) that there
exists a positive constant C7 such that, for any ε > 0,

P

[
L(1, k) ≥ 2

√
k(1 + ε)

]
≤ exp

(− kJGUE(ε)
) ≤ C7 exp

(
− k max (ε2, ε3/2)

C7

)
· (5.1)

On the left of the mean, deviation inequalities for the largest eigenvalue of the GUE for a given k are quite
more complicated to prove. Ledoux and Rider obtained in a recent paper [20], that the leftmost charge of the
largest eigenvalue of a large set of random matrices behaves like the left tail of the corresponding Tracy-Widom
law. More precisely, they get for all 0 < ε ≤ 1,

P

[
L(1, k) ≤ 2

√
k(1 − ε)

]
≤ C7 exp

(
− k2ε3

C7

)
· (5.2)

As we mentioned before, when ε > 1, we have Gaussian behavior for both left and right tails. This follows
from concentration arguments dealing with Lipschitz functions of independent standard normal variables. Once
more, two cases will be tackled: standard normal weights and finite exponential moments ones.

5.1. Standard normal variables

We now prove Theorem 1.4. Following the proof of Theorem 1.1 in Section 2, choose ε1 = ε
2 . Then, combin-

ing (2.9) and (5.1), for any ε > 0,

P[A] ≤ C8 exp
(
− k max (ε3/2, ε2)

C8

)
+ C8 exp

(
− ε2N − k log N

C8

)

where C8 > 0. In order to reach (1.10) when 0 < ε < 1, we need a positive constant C(α) > C8, depending only
on α, such that

Cα exp
(
− kε3/2

Cα

)
≥ C8 exp

(
− ε2N − k log N

C8

)
· (5.3)

Taking the logarithm of (5.3), Cα has to satisfy

log
C8

Cα
− kε3/2

(
Nε1/2

C8k
− log N

C8ε3/2
− 1

Cα

)
≤ 0. (5.4)

However, since P[A] ≤ 1, ε has to satisfy
kε3/2 ≥ 1. (5.5)
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Combining now (5.4) and (5.5), we finally get that Cα has to satisfy

log
C8

Cα
+

1
Cα

− N1− 4α
3 − Nα log N

C8
≤ 0. (5.6)

Hence Cα exists and satisfies (5.6) only if α < 3
7 . In that case, we make the reverse computation to conclude

that

P

[
G(N, k) ≥ 2

√
Nk(1 + ε)

]
≤ 2Cα exp

(−kε
3
2

Cα

)
·

We make the same computations for the left-tail upper bound. Here, Cα has to satisfy

log
C8

Cα
− k2ε2

(
N

C8k2
− log N

C8kε2
− ε

Cα

)
≤ 0,

which finally gives

log
C8

Cα
+

1
Cα

− N1−2α − Nα/3 log N

C8
≤ 0.

This proves Theorem 1.4.

5.2. Finite moment-generating function case

We finally prove Theorem 1.5. Choosing ε1 = ε
2 in (3.2) and taking into consideration (5.5), the inequalities

(5.1) and (5.2) imply that there exists a positive constant C9 depending on α and the distribution of X such
that, for all ε > 0,

P[A] ≤ C9 exp
(
− kε3/2

C9

)(
1 + exp

(
− N

1
2− α

6 −Nα log N−Nα

C9

)
+ exp

(
− N1−4α/3−Nα log N−Nα

C9

))

and

P[E] ≤C9 exp
(
− k2ε3

C9

)(
1 + exp

(
− N

1−3α
2 − 1
C9

)
+ exp

(
− N1−2α − N

α
3 − 1

C9

))
·

This means that we have a right-tail bound for α < 3/7 and a left-tail bound for α < 1/3. The proof is complete
and thus Theorem 1.5 is proved.
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