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LIMIT THEOREMS FOR MEASURE-VALUED PROCESSES
OF THE LEVEL-EXCEEDANCE TYPE

Andriy Yurachkivsky
1

Abstract. Let, for each t ∈ T, ψ(t, ·) be a random measure on the Borel σ-algebra in R
d such

that Eψ(t,Rd)k < ∞ for all k and let ψ̂(t, ·) be its characteristic function. We call the function

ψ̃l(t1, . . . , tl; z1, . . . , zl) = E
∏l

j=1 ψ̂(tj , zj) of arguments l ∈ N, t1, t2 . . . ∈ T, z1, z2 . . . ∈ R
d the covaris-

tic of the measure-valued random function (MVRF) ψ(·, ·). A general limit theorem for MVRF’s in
terms of covaristics is proved and applied to functions of the kind ψn(t, B) = μ{x : ξn(t, x) ∈ B}, where
μ is a nonrandom finite measure and, for each n, ξn is a time-dependent random field.
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Introduction

Let (Ω,F ,P) be a probability space, (X,X ) and (S,S) be measurable spaces. An X ⊗ F|S-measurable
function ξ : X × Ω → S will be called an S-valued random relief on X. The argument ω ∈ Ω of this and other
functions will be usually omitted. If a measure μ on X is given, then a random relief ξ induces the random
measure

μξ(B) def= μ{x : ξ(x) ∈ B}
on S. In case S = R it is called the level-exceedance measure of the random field (in our terminology – relief) ξ.
In case S is arbitrary we will say that μξ is a random measure of the level-exceedance type.

A random relief depending additionally on a parameter (which may and will perform as a variable) will be
called varying. Such a relief induces, together with μ, a measure-valued random function (MVRF).

The goals of the article are to provide a tool for proving functional limit theorems for MVRF’s (this is
accomplished in Sect. 2) and to apply it to measure-valued processes of the level-exceedance type arising in
some model related to stochastic geometry (Sect. 3). Proofs of the theorems of Section 3 are placed to Section 4.
Section 1 contains some general theorems about random measures and measure-valued functions.

The theory of random measures and measure-valued processes is well developed [1–3,8,16]. But the existing
methods of this theory do not provide sufficiently general functional limit theorems for the processes we are
going to consider. Our approach is based on the use of the Fourier-Stieltjes transform of moment measure (more
precisely, some generalization of the latter). In these terms, we shall prove two functional analogues of Lévy’s
continuity theorem (see Thms. 2.3 and 2.4 below) and demonstrate their application.
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1. Universal constructions of measure-valued random functions

In what follows, B(X) signifies the σ-algebra of Borel sets in a topological space X ; B means B(R) (so that
B(Rd) = B⊗d), B+ stands for B(R+); Cb(X) is the set of all bounded continuous functions on X .

If (S,S) is a measurable space, then M+(S),M(S) and P(S) signify the collections of: all (finite) measures on
S, all signed measures on S and all probability measures on S, respectively. The σ-algebra in M+(S) generated
by the sets

HA
B = {m ∈ M+(S) : m(A) ∈ B}, A ∈ S, B ∈ B+,

will be denoted M(S). In case S is a topological space we equip M(S) with the topology generated by the sets{
q ∈ M(S) :

∫
fdq ∈ U

}
, where f and U range over Cb(S) and the collection of open sets in R, respectively.

In functional analysis, this topology is called ∗weak; in probability theory, its restriction to M+(S) is called,
somewhat loosely, the weak topology. The latter unlike the former is, under rather general assumptions, metris-
able ([17], Proposition 1.3.11; this result is attributed in [17] to Prokhorov, but what he did prove in [11] is
metrisability of weak convergence). We call a topological space S concordant if M(S) = B(M+(S)), where S
is the σ-algebra of Baire sets in S.

The following statement asserts that a random measure of the level-exceedance type is an M+-valued random
element.

Lemma 1.1. Let Y be a concordant topological space, (Ω,F) be a measurable space and υ be a function on
Ω × B(Y ) such that for any ω ∈ Ω υ(ω, ·) ∈ M+(Y ) and for any A ∈ B(Y ) υ(·, A) is F|B-measurable. Then
{ω : υ(ω, ·) ∈ D} ∈ F for all D ∈ B(M+(Y )).

Proof. By assumption this is true for all D = HA
B (A ∈ B(Y ), B ∈ B) and therefore, by the definition of M(Y ),

for all its elements. �

Remark 1.1. The class of concordant topological spaces is vast. Theorem A.2.6 in [2] asserts that it contains
all locally compact Polish spaces, in particular Rd. One can prove that it contains even all metric spaces. We
shall not use this fact.

Henceforth X and Y stand for B(X) and B(Y ), respectively. We remind that a measure is called diffuse if it
equals zero at each singleton.

Theorem 1.1. Let Y be a concordant separable complete metric space, (Ω,F) be a measurable space and Ψ be
an F|M(Y)-measurable map from Ω to P(Y ). Then for any separable complete metric space X and any diffuse
probability measure μ on X there exists an X ⊗ F|Y-measurable map ξ : X × Ω → Y such that Ψ = μξ.

We prove first a particular case of the theorem, formulating it in the autonomous notation.

Lemma 1.2. Let ν be a probability measure on the Borel σ-algebra of a separable complete metric space Z.
Then for any separable complete metric space X and any diffuse probability measure μ on X there exists a Borel
function f : X → Z such that ν = μ ◦ f−1.

Proof. By Lemma 4.1.1 in [4] there exists a Borel function g : X → [0, 1] such that g(x1) �= g(x2) as x1 �= x2.

Denote m = μ ◦ g−1, F (u) = m([0, u]) (= 0 as u < 0), F̃ (v) = sup{u ∈ [0, 1] : F (u) ≤ v}. For any u ∈ R,
μ(g−1{u}) = 0, because, by the choice of g, the set g−1{u} contains either one element or none and the measure
μ is, by assumption, diffuse. So F is continuous and therefore F

(
F̃ (v)

)
= v. But F

(
F̃ (v)

)
= m

(
F−1[0, v]

)
.

Consequently, m ◦F−1 = λ, where λ is the Lebesgue measure on B[0, 1]. Juxtaposing this with the definition of
m, we see that

μ ◦ (F ◦ g)−1 = λ. (1.1)

Skorokhod’s principle of a common probability space [13,14] asserts, in particular, existence of a Borel function
h : [0, 1] → Z such that ν = λ ◦ h−1. Comparing this with (1.1), we see that ν = μ ◦ (h ◦ F ◦ g)−1. �
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Proof of Theorem 1.1. For X = [0, 1] and μ = λ this is Theorem 1.2.1 in [15]. Consequently, there exists a
B[0, 1]⊗ F|Y-measurable map ζ : [0, 1]× Ω → Y such that for any B ∈ Y

ψ(B) = λ{z : ζ(z) ∈ B}. (1.2)

Evidently, for any B ⊂ Y and q ∈ [0, 1]X

q−1{z : ζ(z) ∈ B} = {x : ζ(q(x)) ∈ B}. (1.3)

Lemma 1.2 asserts existence of a Borel function f : X → [0, 1] such that μ◦ f−1 = λ. So, putting in (1.3) q = f ,
we get for any B ∈ Y

λ{z : ζ(z) ∈ B} = μ{x : ζ(f(x)) ∈ B}.
It remains, in view of (1.2), to set ξ = ζ ◦ f. �

Wishing to discern a measure valued-function and its value on a set, we use throughout the notation Ψ(t) =
ψ(t, ·), Υ(t) = υ(t, ·) which will not be explained further.

Corollary 1.1. Let Y be a concordant separable complete metric space and Ψ be a P(Y )-valued random function
on some set T given on some probability space. Then for any separable complete metric space X and any diffuse
probability measure μ on X there exists a Y -valued varying random relief ξ on X given on the same probability
space and such that for all t ∈ T and B ∈ Y

ψ(t, B) = μ{x : ξ(t, x) ∈ B}.

Let (S,S) be an arbitrary measurable space and Ψ be an M+(S)-valued random function on some infinite set
T. We denote

ψ l(t1, . . . , tl;A1, . . . , Al) = E
l∏

j=1

ψ(tj , Aj)

and call the R+ ∪ {∞}-valued function ψ of variables l ∈ N, t1, t2 . . . ∈ T (ti �= tj as i �= j), A1, A2 . . . ∈ S the
multiplex of Ψ. The likewise defined and denoted function on N × TN × SN (the equality ti = tj is allowed and
T may be finite) will be called the extended multiplex of Ψ. The multiplex (in both variants) can be identified
with the sequence

(
ψ l, l ∈ N

)
whose lth member is a function on T × Sl,T ⊂ T l. The short notation of this

sequence will be ψ.

Theorem 1.2. Let a separable complete metric space Y, an infinite set T and, for each l ∈ N, an R-valued
function Λl of variables t1 ∈ T, t2 ∈ T \ {t1}, . . . , tl ∈ T \ {t1, . . . , tl−1}, A1 ∈ Y, . . . , Al ∈ Y be given. Suppose
that these functions have the properties: (a) Λl(t1, . . . , tl;A1, . . . , Al−1, ·) ∈ M+(Y );

(b) for any permutation
(

1 . . . l
i1 . . . il

)
Λl(ti1 , . . . , til

;Ai1 , . . . , Ail
) = Λl(t1, . . . , tl;A1, . . . , Al);

(c) Λl(t1, . . . , tl;A1, . . . , Al−1, Y ) = Λl−1(t1, . . . , tl−1;A1, . . . , Al−1) (l > 1); (d) Λ1(t;Y ) = 1.
Then there exists a P(Y )-valued random function Υ on T such that Λ is its multiplex.

Proof. Properties (a)–(d) together with separability and completeness of Y imply, by Kolmogorov’s theorem,
existence of a Y -valued random function ζ on T such that for any l ∈ N, t1 ∈ T, t2 ∈ T \ {t1}, . . . , tl ∈
T \ {t1, . . . , tl−1} A1 ∈ Y, . . . , Al ∈ Y

P{ζ(t1) ∈ A1, . . . , ζ(tl) ∈ Al} = Λl(t1, . . . , tl;A1, . . . , Al). (1.4)
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Put

υ(t, A) =

{
1 if ζ(t) ∈ A,

0 otherwise.
(1.5)

Then υ(t, ·) is a random probability measure on Y and

υ l(t1, . . . , tl;A1, . . . , Al) = P{ζ(t1) ∈ A1, . . . , ζ(tl) ∈ Al}. (1.6)
�

Theorem 1.3. Let Y be a separable complete metric space, T be an infinite set and, for each l ∈ N,Λl be an
R-valued function on T l × Y l. Suppose that the functions Λl have properties (a)–(d) and one more property

Λl(t1, . . . , tl−1, tl−1;A1, . . . , Al) = Λl−1(t1, . . . , tl−1;A1, . . . , Al−2, Al−1 ∩Al). (1.7)

Then there exists a P(Y )-valued random function Υ on T such that Λ is its extended multiplex.

Proof. Let us construct ζ and Υ as in the proof of Theorem 1.2. Then equalities (1.4) and (1.6) hold for all
A1, . . . , Al ∈ Y and pairwise different t1, . . . , tl ∈ T. Besides that, by the construction of υ

υ l(t1, . . . , tl−1, tl−1;A1, . . . , Al) = υ l−1(t1, . . . , tl−1;A1, . . . , Al−2, Al−1 ∩Al).

This together with condition (1.7) shows that equalities (1.4) and (1.6) remain valid in case some of the points
t1, . . . , tl coincide. �
Remark 1.2. The analogue of Theorems 1.2 and 1.3 for the case when T is a singleton (so that MVRF becomes
simply random measure and multiplex becomes moment function [2,8,16,26]) was proved in [22]. It contains
one more condition and its proof based on convex analysis is by far more difficult.

Let (S,S) be an arbitrary measurable space. We call an M+(S)-valued random function Ψ on T momentable
if its extended multiplex assumes only finite values and determines the finite-dimensional distributions of Ψ.
Recalling the definition of the σ-algebra M(S), we see that the second demand is tantamount to the property
that the extended multiplex determines the probabilities P

{
Ψ(t1) ∈ HA1

B1
, . . . ,Ψ(tl) ∈ HAl

Bl

}
for all possible

l ∈ N, A1, . . . , Al ∈ S and pairwise different t1, . . . , tl ∈ T. But the relation Ψ(t) ∈ HA
B means that ψ(t, A) ∈ B.

So Ψ is momentable if and only if its extended multiplex is finite and determines the distributions of all the
vectors (ψ(t1, A1), . . . , ψ(tl, Al)), l ∈ N, tj ∈ T,Aj ∈ S (it may seem that we must add “ti �= tj as i �= j”, but,
obviously, this restriction in this context is redundant).

Denote Ξ(t) = ψ(t, S).

Lemma 1.3. Let Ψ be an M+(S)-valued random function on T such that for all k ∈ N and t1, . . . , tk ∈ T

∞∑
l=1

(
k∑

i=1

E Ξ(ti)l

)− 1
2l

= ∞. (1.8)

Then Ψ is momentable.

Proof. Let us take arbitrary positive numbers a1, . . . , ak and denote βi = ψ(ti, Ai), α =
∑k

i=1 aiβi. By Hölder’s
inequality

αl ≤
(

k∑
i=1

ai
l/(l−1)

)l−1 k∑
i=1

βl
i,

whence

Eαl ≤ kl−1 max
i
ai

l
k∑

i=1

E Ξ(ti)l.



LIMIT THEOREMS FOR MEASURE-VALUED PROCESSES OF THE LEVEL-EXCEEDANCE TYPE 295

Then (1.8) yields
∑

(Eαl)−1/2l = ∞. This means, by Carleman’s theorem ([12], Sect. II.12) that the distribution
of the random variable α (and, consequently, the value of Ee−α) is determined by its moments. And they, in
turn, are determined by the extended multiplex of Ψ. �

Corollary 1.2. Any probability-valued random function is momentable.

Corollary 1.3. Let Y be a separable complete metric space and Ψ be a P(Y )-valued random function on some
infinite set T. Then there exist a Markov kernel P = P (y,A) (y ∈ Y,A ∈ Y) and a Y -valued random function
ζ on T such that Ψ has the same finite-dimensional distributions as Υ, where

υ(t, A) = P (ζ(t), A). (1.9)

Proof. Setting in Theorem 1.3 Λ = ψ, where ψ is the extended multiplex of Ψ, we conclude from its proof that
ψ = υ, where υ(t, A) is defined by equality (1.5). And the last is a particular case (P (y,A) = IA(y)) of (1.9).
It remains to refer to Corollary 1.2. �

Remark 1.3. Corollary 1.3 sustains if the set T is finite. For the case when T is a singleton it was proved
in [22]. In this case (as well as for any finite T ) the representation (1.9) need not perform in its simplest form
(1.5).

2. The tool

We shall denote the characteristic function of a measure on B⊗d in the following manner:

m̂(z) =
∫

eizym(dy).

Here
∫

=
∫

Rd , z ∈ Rd is a row vector (and other vectors are meant as columns). Henceforth “measure-valued”
means “M+(Rd)-valued” and “probability-valued” means “P(Rd)-valued”.

We call the function

υ̃l(t1, . . . , tl; z1, . . . , zl) = E
l∏

j=1

υ̂(tj , zj) (2.1)

of variables l ∈ N, t1, t2 . . . ∈ T, z1, z2 . . . ∈ Rd the covaristic (the short term for covariance-characteristic
function) of a momentable MVRF Υ on T. This notion was introduced first for independent of t random
probability measures in [18,20], then for probability-valued random functions in [19] and at last, in the present
form, in [23] where the following statement was proved.

Theorem 2.1. The covaristic of a momentable MVRF determines its finite-dimensional distributions.

Let Υ be a momentable MVRF. Then, for each l, t1, . . . , tl, the function υl(t1, . . . , tl; ·, . . . , ·) induces a measure
on B⊗dl. This together with the definition of multiplex and Fubini’s theorem yields an equivalent form of
equality (2.1):

υ̃l(t1, . . . , tl; z1, . . . , zl) = υ̂l(t1, . . . , tl; z1, . . . , zl) ≡
∫
. . .

∫
exp

⎛⎝i l∑
j=1

zjyj

⎞⎠ υ l(t1, . . . , tl; dy1, . . . ,dyl). (2.2)

We shall identify the covaristic of a momentable MVRF Υ with the sequence
(
υ̃ l
)

whose lth member is defined
by (2.1).
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Theorem 2.2. Let T be an infinite set and, for l = 1, 2, . . . , Φl be a C-valued function on T l ×Rdl such that:
Φl(t1, . . . , tl; ·, . . . , ·) is positive definite,

lim
z1→0,...,zl→0

Φl(t1, . . . , tl; z1, . . . , zl) = 1

and for any permutation
(

1 . . . l
i1 . . . il

)
Φl(ti1 , . . . , til

; zi1 , . . . , zil
) = Φl(t1, . . . , tl; z1, . . . , zl). (2.3)

Suppose also that
Φ1(t; 0) = 1 (2.4)

and for any l ≥ 2, t1, . . . , tl, z1, . . . , zl

Φl(t1, . . . , tl; z1, . . . , zl−1, 0) = Φl−1(t1, . . . , tl−1; z1, . . . , zl−1). (2.5)

Then there exists a probability-valued random function Υ on T such that

υ̃ l(t1, . . . , tl; z1, . . . , zl) = Φl(t1, . . . , tl; z1, . . . , zl) (2.6)

for all l ∈ N, t1 ∈ T, t2 ∈ T \ {t1}, . . . , tl ∈ T \ {t1, . . . , tl−1}, z1, . . . , zl ∈ Rd.

Proof. Denote t = (t1, . . . , tl), z = (z1, . . . , zl). The first two assumptions imply, by the Bochner-Khinchin
theorem, existence of a probability measure P l(t; ·) on B⊗dl such that

Φl(t; z) =
∫

Rdl

eizyP l(t; dy). (2.7)

Denote
Λl(t1, . . . , tl;A1, . . . , Al) = P l(t;A1 × . . .×Al). (2.8)

Obviously, this function has property (a) from Theorem 1.2. Equality (2.3) shows that the sequence (Λl) has
property (b). Equalities (2.5), (2.7) and (2.8) yield property (c). Finally, (d) is immediate from (2.4), (2.7) and
(2.8). Then Theorem 1.2 asserts existence of a probability-valued random function Υ on T such that

P l(t;A1 × . . .×Al) = υ l(t;A1, . . . , Al).

Substituting this to (2.7) and taking to account (2.2), we arrive at (2.6). �

Remark 2.1. The analogue of Theorem 2.2 for the case when T is a singleton (so that MVRF becomes simply
random measure) was proved in [22]. It contains an extra condition, and its proof is more complicated.

Corollary 2.1. Let the conditions of Theorem 2.2 be fulfilled. Then for any separable complete metric space X
and any diffuse probability measure μ on X there exists an Rd-valued varying random relief Q on X such that

Φl(t1, . . . , tl; z1, . . . , zl) = E
l∏

j=1

∫
eizjQ(tj ,x)μ(dx). (2.9)

Proof. Corollary 1.1 asserts existence of a varying random relief Q such that υ(t, B) = μ{x : Q(t, x) ∈ B}.
Hence υ̂(t, z) =

∫
eizQ(t,x)μ(dx), which together with (2.1) and (2.6) yields (2.9). �
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Let Y be a metric space. We denote

F =
{
ϕ ∈ R

Y : ∀ y, y′ ∈ Y |ϕ(y)| ≤ 1 & |ϕ(y) − ϕ (y′) | ≤ dist (y, y′) ∧ 1
}

and equip M(Y ) with the bounded Lipschitz seminorm ‖q‖BL = sup
ϕ∈F

∣∣∫ ϕdq
∣∣ . The respective pseudometric will

be denoted dBL.

Lemma 2.1. Let Y be a separable complete metric space. Then: (1) dBL is a metric in M+(Y ); (2) the metric
space (M+(Y ), dBL) is complete; (3) the convergence in this metric space coincides with the weak one.

Proof. Since any finite measure is proportional to a probability measure, all the three statements are easy
consequences of the well-known similar properties of P+(Y ) (see, e.g., Thms. 2.3.8 and 2.3.9, Lem. 2.4.1 and
Cor. 2.4.3 in [6]). �

Remark 2.2. The second and the third statement of Lemma 2.1 do not carry over to the space M(Y ) !

We use the following notation of convergences: d−→ means weak convergence of finite-dimensional distribu-
tions of Rk-valued or Ck-valued random functions (whose argument may take values in a finite set as well as
in an infinite one); d−→ means the same for measure-valued functions. If α1, α2, . . . , α are R

k- or C
k-valued

càdlàg random processes such that α is continuous and φ(αn) d−→ φ(α) for any continuous in the locally uniform
topology functional φ on the Skorokhod space D, then we write αn

C−→ α. We say that a sequence (αn) is
relatively compact (r.c.) in C if each its subsequence contains, in turn, a subsequence convergent in the above
sense. This terminology carries over to measure-valued processes (MVP) with C instead of C in notation.

We also denote AL = {x ∈ Rd : |x| > L}. The choice of norm in Rd is, as will be seen from the conditions
where AL performs, inessential.

Theorem 2.3. Let (Ψn) be a sequence of MVP’s such that: for any l ∈ N, t1, . . . , tl ∈ R+, z1, . . . , zl ∈ Rd

ψ̃l
n(t1, . . . , tl; z1, . . . , zl) → U l(t1, . . . , tl; z1, . . . , zl); (2.10)

for any k ∈ N, s1, . . . , sk, t ∈ R+

∞∑
l=1

⎛⎝ k∑
j=1

U l(sj , . . . , sj ; 0, . . . , 0)

⎞⎠− 1
2l

= ∞, (2.11)

sup
n

E Ξn(t)k <∞; (2.12)

for any t ∈ R+

lim
z→0

U1(t; z) = U1(t; 0); (2.13)

for any t > 0, ε > 0 and z ∈ Rd

lim
L→∞

lim
n→∞ sup

s≤t
P{Ξn(s) > L} = 0, (2.14)

lim
L→∞

lim
n→∞ sup

s≤t
P{ψn(s,AL) > ε} = 0, (2.15)

lim
c→∞ lim

n→∞ sup
(v−c)+≤u<v≤t

P
{∣∣∣ψ̂n(u, z) − ψ̂n(v, z)

∣∣∣ > ε
}

= 0. (2.16)

Then U is the covaristic of some momentable MVP Ψ and Ψn
d−→ Ψ.
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Proof. Let T be an arbitrary countable dense set in R+. Theorem 2 [23] asserts that under conditions (2.10)–
(2.13) where t1, . . . , tl, s1, . . . , sk and t are taken from T there exists an MVRF Ψ on T such that the conclusion
of the theorem holds on T. Consequently, for any k ∈ N, t1, . . . , tk ∈ T and bounded continuous functional φ on
(M+(Rd))k

Eφ(Ψn(t1), . . . ,Ψn(tk)) → Eφ(Ψ(t1), . . . ,Ψ(tk)). (2.17)
To assert the same for arbitrary t1, . . . , tk ∈ R+ it suffices, in the light of Lemma 2.1, to show that for all
t > 0, ε > 0

lim
c→∞ lim

n→∞ sup
(v−c)+≤u<v≤t

P {‖Ψn(u) − Ψn(v)‖BL > ε} = 0. (2.18)

Indeed, relation (2.18) ensures uniform in any interval stochastic continuity of Ψ and thus allows to uniquely
extend Ψ to a stochastically continuous MVP on R+, thereupon (2.17) carries over, again due to (2.18), from
T to R+.

Let us equip F (defined for Y = Rd) with the metric

δ(f, g) =
∞∑

L=1

2−L max
|x|≤L

|f(x) − g(x)|.

Functions from F being uniformly bounded and equicontinuous, each sequence of its members contains a sub-
sequence converging uniformly on each compact set. So for any a > 0 there exists a finite a-mesh in F.

Let us fix f ∈ F, L ∈ N and a-mesh {g1, . . . , gr}.We choose g ∈ {g1, . . . , gr} such that δ(f, g) < a and, for each
j ∈ {1, . . . , r}, take a trigonometric polynomial pj such that sup|x|≤L |gj(x) − pj(x)| < a (the pj corresponding
to g will be written without subscript). Denote C = ‖g − p‖∞. Then for any finite measure m∫

|f − g|dm ≤ 2Lam
(
R

d
)

+ 2m(AL),
∫

|g − p|dm ≤ am
(
R

d
)

+ Cm(AL).

These inequalities together with the identity∫
fdm1 −

∫
fdm2 =

∫
(f − g)dm1 −

∫
(f − g)dm2 +

∫
(g − p)dm1 −

∫
(g − p)dm2 +

∫
pdm1 −

∫
pdm2

imply that

‖m1 −m2‖ ≤
2∑

i=1

((
2L + 1

)
ami

(
R

d
)

+ (C + 2)mi(AL)
)

+ max
1≤j≤r

∣∣∣∣∫ pjdm1 −
∫
pjdm2

∣∣∣∣ .
Setting m1 = Ψn(u), m2 = Ψn(v), we deduce (2.18) from (2.14)–(2.16). �

Corollary 2.2. Let the conditions of Theorem 2.3 be fulfilled. Then for all l ∈ N and z1, . . . , zl ∈ R
d(

ψ̂n(·, z1), . . . , ψ̂n(·, zl)
)

d−→
(
ψ̂(·, z1), . . . , ψ̂(·, zl)

)
.

Corollary 2.3. Let a sequence (Ψn) of probability-valued processes (PVP) satisfy conditions (2.10), (2.15),
(2.16) and let for any t ∈ R+

lim
z→0

U1(t; z) = 1. (2.19)

Then U is the covaristic of some PVP Ψ and Ψn
d−→ Ψ.

We denote Ξ∗
n(t) = supu≤t Ξn(u) and introduce the conditions:

RC. For any z the sequence
(
ψ̂n(·, z)

)
is r.c. in C .
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UI. For any t the sequence (Ξ∗
n(t)) is uniformly integrable.

Taking to account that condition RC entails (2.16) and that relative compactness in C of a sequence of
vector processes is a component-wise property ([7], VI.3.33), we can refine Corollary 2.2 as follows:

Corollary 2.4. Let conditions (2.10)–(2.15) and RC be fulfilled. Then the conclusion of Theorem 2.3 holds
and for all l ∈ N, z1, . . . , zl ∈ Rd(

ψ̂n(·, z1), . . . , ψ̂n(·, zl)
)

C−→
(
ψ̂(·, z1), . . . , ψ̂(·, zl)

)
.

Below, l.i.p. signifies the limit in probability.

Theorem 2.4. Let a sequence (Ψn) of MVP’s satisfy conditions (2.10)–(2.15), RC and UI. Suppose that the
characteristic function of the existing by Corollary 2.4 MVP Ψ such that Ψn

d−→ Ψ and ψ̃ = U satisfies, for
any t, the relation

l.i.p.
z→0

sup
u≤t

Re
(
ψ̂(u, 0) − ψ̂(u, z)

)
= 0. (2.20)

Then Ψn
C−→ Ψ.

Proof. In view of Corollary 2.4 it suffices to show that the sequence (Ψn) is r.c. in C.
We fix t and denote Sn(u, z) = Re

(
ψ̂n(u, 0) − ψ̂n(u, z)

)
, S∗

n(z) = supu≤t Sn(u, z), KL
n = supu≤t ψn(u,AL),

BR = {x : |x| < R} (in this proof, | · | is the sup-norm), fR(y) =
∫

BR
(1− eizy)dz. The jth component of y ∈ Rd

will be denoted yj .
Obviously,

fR(y) = (2R)d

⎛⎝1 −
d∏

j=1

sinRyj

Ryj

⎞⎠ ,

so that fR assumes only real nonnegative values and

fR(y) > 2d−1Rd as |y| > 2/R. (2.21)

By Fubini’s theorem and due to nonnegativeness of fR∫
BR

(
ψ̂n(u, 0) − ψ̂n(u, z)

)
dz =

∫
fR(y)ψn(u, dy) ≥

∫
AL

fR(y)ψn(u, dy),

whence, setting R = 2/L, we get with account of (2.21)∫
B2/L

Sn(u, z)dz ≥ 22d−1L−dψn(u,AL).

Consequently,

KL
n ≤ 21−2dLd

∫
B2/L

S∗
n(z)dz. (2.22)

The evident inequalities
0 ≤ S∗

n(z) ≤ Ξ∗
n(t) (2.23)

together with condition UI allow to apply to (2.22) consecutively Fubini’s and Fatou’s theorems, which results
in

lim
n→∞EKL

n ≤ 21−2dLd

∫
B2/L

lim
n→∞ES∗

n(z)dz. (2.24)
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Obviously, the functional φ(f) = supu≤t Re f(u) is continuous in the locally uniform topology and S∗
n(z) =

φ
(
ψ̂n(·, 0) − ψ̂n(·, z)

)
, Ξ∗

n(t) = φ
(
ψ̂n(·, 0)

)
. Then it follows from Corollary 2.4 that

(S∗
n(z),Ξ∗

n(t)) d−→ (S∗(z),Ξ∗(t)) ≡
(
φ
(
ψ̂(·, 0) − ψ̂(·, z)

)
, φ
(
ψ̂(·, 0)

))
,

whence on the strength of (2.23) and UI

S∗(z) ≤ Ξ∗(t), E Ξ∗(t) <∞ (2.25)

and lim
n→∞ ES∗

n(z) = ES∗(z). The last equality together with (2.24) yields

lim
n→∞EKL

n ≤ 2 sup
z∈B2/L

ES∗(z).

From (2.20) and (2.25) we deduce, by the dominated convergence theorem, that the right-hand side of the last
inequality tends to zero as L→ ∞. So

lim
L→∞

lim
n→∞P

{
sup
u≤t

ψn(u,AL) > ε

}
= 0

for any ε > 0. Now, relative compactness of (Ψn) in C follows from RC by Corollary 1 in [24]. �
Corollary 2.5. Let a sequence (Ψn) of PVP’s satisfy conditions (2.10), (2.15), (2.19) and RC and let the
characteristic function of the existing by Corollary 2.3 PVP Ψ such that Ψn

d−→ Ψ satisfy condition (2.20).
Then Ψn

C−→ Ψ.

Now, we are ready to apply the covaristics method. Another application – to empirical processes – was given
in [23].

3. A geometric model

We will study from this time on sequences of MVP’s of the level-exceedance type: Ψn = μξn , or, minutely,

ψn(t, B) = μ{x : ξn(t, x) ∈ B}, B ∈ B⊗d, (3.1)

where ξn is an Rd-valued varying random relief on X and μ is a nonrandom finite measure on X . Such processes
are usual in stochastic geometry, to mention especially the coverage problem [5] studying geometric character-
istics of k-multiple (k ∈ Z+) intersections of random sets. If this characteristic is measure, then we come to
(3.1), where ξn is a sum of indicators of arguments t, x and ω. If we ascribe, for physical or other reasons, to
each covering set its thickness, then ξn will be a finite linear combination of indicators. We may go farther and
assume that ξn is a sum of random “humps” and “hollows” which appear at random points of space and time,
changing afterwards their location, size and, perhaps, shape. We will consider a model where shapes are fixed.
It is described by the following assumptions.

A1. X = Rp.

A2. ξn(t, x) =
∑

k:τnk≤t

F
(

n1/p(x−ζnk−ηnk(t))
ρnk(t)

)
,

where F : X → Rd is a nonrandom Borel function; (τnk, k ∈ N) is a strictly increasing and a.s. tending to
infinity sequence of positive random variables; ζnk, ηnk(t) and ρnk(t) are random variables with values in X, X
and R+, respectively (if ρnk(t) = 0, then, as the subsequent assumptions A5 and (3.3) will show, the respective
summand equals zero for almost all x). All these random variables are given on a common probability space
(Ωn,Fn,Pn) (but in formulae we write P and E without subscript).
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A3. There exists a σ-algebra F0
n ⊂ Fn such that: (i) for all k ∈ N and t > 0 the random variables

τnk and ηnk(t) are F0
n-measurable; (ii) for any l ∈ N and positive numbers t1, . . . , tl the random vectors

(ζnk, ρnk(t1), . . . , ρnk(tl)), k ∈ N, are conditionally w.r.t. F0
n totally independent; (iii) for any k ∈ N and t > 0

ζnk and ρnk(t) are conditionally w.r.t. F0
n independent.

A4. For each k ζnk has a conditional w.r.t. F0
n distribution density hnk.

A5. The measure μ has a bounded density w.r.t. the Lebesgue measure.

Remark 3.1. Similar models were studied in [19,21]. They feature with milder probabilistic assumptions but
stricter geometric ones. In those models locations and sizes of “elementary reliefs” (the summands in A2) do
not depend on time: ηnk = 0, ρnk(t) = ρnk. The refusal from this assumption cardinally changes the emphasis
and drastically complicates the rationale.

We introduce the notation: E0 = E[· · · |F0
n] Rnk(t, A) = P{ρnk(t) ∈ A|F0

n} (the regular version),

bnk(t) = E0ρnk(t)p ≡
∞∫
0

rpRnk(t, dr), Nn(t) = #{k : τnk ≤ t}, Qn(t, x) =
1
n

Nn(t)∑
k=1

bnk(t)hnk(x− ηnk(t)),

Qn(t) = Qn(t, ·), ξn(t) = ξn(t, ·), C− = {z ∈ C : Re z ≤ 0}, ∫ =
∫

Rm (m will be determined by the context),
Ml =

∫
Xl · · · dμ⊗l ≡ ∫ · · · ∫ · · ·μ(dx1) . . . μ(dxl), M = M1. Then (3.1) yields

ψ̂n(t, z) = Meizξn(t). (3.2)

This formula, otherwise written, was already used in the proof of Corollary 2.1.

Theorem 3.1. Let, for each n ∈ N, an MVP Ψn be defined by equality (3.1) and assumptions A1–A5. Suppose
also that: ∫

|F (y)|dy <∞; (3.3)

for each k ∈ N there exists an F0
n-measurable random variable ϑnk such that

sup
x∈X

hnk(x) ≤ ϑnk; (3.4)

for each k there exists a B+ ⊗F0
n-measurable in (r, ω) ∈ R+ ×Ωn random function Dnk on R+ such that for all

x′, x′′ ∈ X

|hnk(x′) − hnk(x′′)| ≤ Dnk(|x′ − x′′|); (3.5)

for all t > 0, c > 0, ε > 0 and z ∈ Rd

sup
s≤t

P

⎧⎪⎨⎪⎩ 1
n

Nn(s)∑
k=1

ϑnk

∞∫
0

rpRnk(s, dr)
∫

|y|>cn1/p/r

| sin zF (y)|dy > ε

⎫⎪⎬⎪⎭→ 0, (3.6)

sup
s≤t

P

⎧⎨⎩ 1
n

Nn(s)∑
k=1

∞∫
0

rpRnk(s, dr)
∫

| sin zF (y)|Dnk

(
r|y|
n1/p

)
dy > ε

⎫⎬⎭→ 0, (3.7)

lim
L→∞

lim
n→∞ sup

s≤t
P

⎧⎨⎩
Nn(s)∑
k=1

ϑnkbnk(s) > nL

⎫⎬⎭ = 0; (3.8)
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for all l ∈ N, t1, . . . , tl ∈ R+ and s1, . . . , sl ∈ R

E
l∏

j=1

MeisjQn(tj) → Zl(t1, . . . , tl; is1, . . . , isl), (3.9)

lim
c1,...,cl∈R,
c1→0,...,cl→0

Z l(t1, . . . , tl; ic1, . . . , icl) = μ(X)l; (3.10)

for any z1, z2 ∈ C− and t > 0

lim
n→∞ sup

0≤t1≤t2≤t

∣∣∣∣∣∣E
2∏

j=1

MezjQn(tj) − Z2(t1, t2; z1, z2)

∣∣∣∣∣∣ = 0 (3.11)

and the function Z2(·, ·; z1, z2) is continuous. Then:
(1) there exists an R+-valued random varying relief Q on X such that for all l ∈ N, t1, . . . , tl ∈ R+ and
z1, . . . , zl ∈ C−

Z l(t1, . . . , tl; z1, . . . , zl) = E
l∏

j=1

MezjQ(tj); (3.12)

(2) Ψn
d−→ Ψ, where

ψ̂(t, z) = M exp
{
Q(t)

∫ (
eizF (y) − 1

)
dy
}
. (3.13)

Theorem 3.2. Let, for each n, an MVP Ψn be defined by equality (3.1) and assumptions A1–A5. Suppose that
conditions (3.3)–(3.10) and RC are fulfilled. Then Ψn

C−→ Ψ, where Ψ and Q are the same as in Theorem 3.1.

The comparison of conditions (3.9) and (3.10) with similar conditions (2.10) and (2.13) of Theorem 2.3
and Corollaries 2.2–2.5 reveals the gist of Theorems 3.1 and 3.2: they reduce the problem we solve for the
MVP’s Ψn ≡ μξn to a similar problem for the MVP’s μQn . The latter is much simpler, because so are the
reliefs Qn in comparison with the ξn’s and, besides, we do not impose on (Qn) the analogues of conditions
(2.15) and (2.16). Herein the sequences (ξn) and (Qn) are not asymptotically close in any customary sense.
Indeed, the discontinuities of ξn(·, x) need not be small, whereas the processes Qn(·, x) are, under rather general
assumptions, asymptotically continuous. It will be seen from the proof of Theorem 3.1 that Qn(t, x) is an
asymptotic equivalent (w.r.t. the proximity in probability) of E0ξn(t, x).

The proofs of both theorems will be adduced in Section 4. And our present goal is to prove three ancillary
statements facilitating the verification of their conditions.

Lemma 3.1. Let {hn} be a set of nonnegative Borel functions on Rp such that sup
n

∫
hn(x)dx <∞ and

sup
n

sup
|x−y|≤r

|hn(x) − hn(y)| <∞

for some r > 0. Then there exists a constant C such that for all n and x

hn(x) ≤ C. (3.14)

Proof. hn(x) =

( ∫
|y−x|<r

(hn(x) − hn(y))dy +
∫

|y−x|<r

hn(y)dy

)/ ∫
|y|<r

dy. �

Lemma 3.2. Let, for each n, Nn be a counting process with compensator Λn, and let the sequence (Λn/n) be
r.c. in C. Then so is (Nn/n).
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Proof. Denote N̆n = Nn − Λn. This is a local square integrable martingale such that for all v ≥ u ≥ 0〈
N̆n

〉
(v) −

〈
N̆n

〉
(u) ≤ Λn(v) − Λn(u) (3.15)

(equality is attained if Λn is continuous). This inequality and relative compactness of (Λn/n) in C imply, by
Propositions VI.3.26 and VI.3.9 in [7], that the sequence

(〈
N̆n/n

〉)
is r.c. in C, too. Then by Rebolledo’s

theorem ([7], VI.4.13) the sequence
(
N̆n/n

)
is r.c. in D. Hence, writing Nn = N̆n +Λn, we conclude by Lemma

VI.3.31 [7] that the sequence (Nn/n) is also r.c. in D. But all jumps of Nn/n are of size 1/n, so Proposition
VI.3.26 in [7] asserts that this sequence is r.c. in C, as well. �

To apply Theorem 3.2 one must be able to check condition RC. Since
∣∣∣ψ̂n(t, z)

∣∣∣ = 1, it is equivalent, by
Proposition VI.3.26 [7], to the relation

lim
c→0

lim
n→∞P

{
sup

(v−c)+<u<v≤t

∣∣∣ψ̂n(v, z) − ψ̂n(u, z)
∣∣∣ > ε

}
= 0, (3.16)

where t and ε are arbitrary positive numbers and z is an arbitrary row vector in Rd. The next statement reduces
it to simpler ones.

Henceforth, a stands for 1/p. Also, we denote Fnk(t, x) = F
(

na(x−ζnk−ηnk(t))
ρnk(t)

)
,

Fnk(t) = Fnk(t, ·),Φn(u, t) =
∑

τnk≤u

Fnk(t) (so that ξn(t) = Φn(t, t)).

Lemma 3.3. Let, for each n ∈ N, an MVP Ψn be defined by equality (3.1) and assumptions A1, A2 and A5.
Suppose also that for some z ∈ Rd, t > 0 and any ε > 0∫ ∣∣∣∣sin zF (y)

2

∣∣∣∣ dy <∞, (3.17)

lim
c→0

lim
n→∞ P

⎧⎨⎩ sup
(v−c)+<u<v≤t

∑
u<τnk≤v

ρnk(v)p > nε

⎫⎬⎭ = 0, (3.18)

lim
c→0

lim
n→∞ P

{
sup

(v−c)+<u<v≤t

∣∣∣MeizΦn(u,v) − MeizΦn(u,u)
∣∣∣ > ε

}
= 0. (3.19)

Then relation (3.16) holds for these z, t and all ε.

Proof. The identity

eizξn(v) − eizξn(u) = eizΦn(u,v)

⎛⎝exp

⎧⎨⎩iz
∑

u<τnk≤v

Fnk(v)

⎫⎬⎭− 1

⎞⎠+ eizΦn(u,v) − eizΦn(u,u)

together with (3.2) yields∣∣∣ψ̂n(v, z) − ψ̂n(u, z)
∣∣∣ ≤ ∑

u<τnk≤v

M
∣∣∣eizFnk(v) − 1

∣∣∣+ ∣∣∣MeizΦn(u,v) − MeizΦn(u,u)
∣∣∣ . (3.20)
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Let f denote the existing by assumption A5 Lebesgue density of μ. By the same assumption f is bounded.
Denote also σnk(t) = ζnk + ηnk(t). Then

M
∣∣∣eizFnk(v) − 1

∣∣∣ = 2M

∫ ∣∣∣∣sin(z2F
(
na(x− σnk(v))

ρnk(v)

))∣∣∣∣ f(x)dx

=
2ρnk(v)p

n

∫ ∣∣∣∣sin zF (y)
2

∣∣∣∣ f (σnk(v) +
ρnk(v)y
na

)
dy,

which jointly with (3.20)–(3.17) and boundedness of f implies (3.16). �

The first of three examples illustrates Theorem 3.1. Assumptions A1–A5 enter (maybe, in a sharpened form
stated explicitly) all of them. We consider also, for explanatory purposes, that μ(X) = 1.

Example 3.1. Let Rnk(t, A) = R(A), hnk(x) = hn(x), where R is a nonrandom measure and hn is a deter-
ministic function. Assume so far (further we shall demand more) that

lim
L→∞

lim
n→∞P{Nn(t) > nL} = 0 (3.21)

and the functions hn are equicontinuous:

lim
r→0

sup
n

sup
|x−y|≤r

|hn(x) − hn(y)| = 0. (3.22)

Then by Lemma 3.1 they are uniformly bounded. So, to verify condition (3.6) it suffices to show that for any
c > 0 ∫ ∞

0

rpR(dr)
∫
|y|>cna/r

|F (y)|dy → 0.

And this will follow from (3.3) and Lebesgue’s dominated convergence theorem applied twice if we demand that

b ≡
∫ ∞

0

rpR(dr) <∞. (3.23)

Relations (3.14) (a consequence of (3.22)), (3.21) and (3.23) imply (3.8) as well.
Denote Dn(r) = sup|x−y|≤r |hn(x) − hn(y)| (so that relation (3.5) holds automatically), δn(r) =∫ |F (y)|Dn (n−ar|y|) dy. Due to (3.22) (and hereon (3.14)) Dn (n−ar) → 0 for any r and the sequence (Dn) is

uniformly bounded, which together with (3.3), (3.23) and Lebesgue’s theorem applied twice yields∫ ∞

0

rpδn(r)R(dr) → 0.

Hence in view of (3.21) relation (3.7) follows.
To check (3.9)–(3.11) we assume that

ηnk(t) = g(τnk, (t− τnk)+), (3.24)

where g is a nonrandom Borel function. Then

Qn(t) =
b

n

∫ t

0

qn(τ, t− τ)dNn(τ),

where qn(τ, u) = qn(τ, u, ·), qn(τ, u, x) = hn(x − g(τ, u+)).
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We take an arbitrary bounded sequence (un) ∈ RN
+ and introduce (partly replicate) the notation: Λn – the

compensator of Nn, N̆n = Nn − Λn,

Q̃n(t) =
b

n

∫ t

0

qn(τ, t− τ)dΛn(τ), αn(t) =
1
n

∫ t

0

qn(τ, un − τ)dN̆n(τ).

The last process is a local square integrable martingale with quadratic characteristic

〈αn〉(t) =
1
n2

∫ t

0

qn(τ, un − τ)2d〈N̆n〉(τ) ≤ n−2C2Λn(t) (3.25)

(the inequality relies on (3.14) and (3.15)). So, if we demand that for any t

Λn(t)/n2 P−→ 0, (3.26)

then Lenglart’s inequality ([7], I.3.30)

P

{
sup
v≤t

|αn(v)| ≥ ε

}
≤ cε−2 + P{〈αn〉(t) ≥ c}

and (3.25) will imply that, for any bounded sequence (vn), αn(vn) P−→ 0. Setting vn = un, we get Qn(un) −
Q̃n(un) P−→ 0, whence by Lebesgue’s theorem

ME
∣∣∣ezQn(un) − ezQ̃n(un)

∣∣∣→ 0

for all z ∈ C−. This together with the evident inequality∣∣∣∣∣∣
l∏

j=1

MezjQn(tj) −
l∏

j=1

MezjQ̃n(tj)

∣∣∣∣∣∣ ≤
l∑

j=1

M
∣∣∣ezjQn(tj) − ezjQ̃n(tj)

∣∣∣ ,
where zj ∈ C−, shows that

sup
t1≤...≤tl≤t

∣∣∣∣∣∣E
l∏

j=1

MezjQn(tj) − E
l∏

j=1

MezjQ̃n(tj)

∣∣∣∣∣∣→ 0.

So, demanding that for any l ∈ N, s1, . . . , sl ∈ R, t ∈ R+ and z1, z2 ∈ C−

E
l∏

j=1

MeisjQ̃n(tj) → E
l∏

j=1

MeisjQ(tj) (3.27)

and

lim
n→∞ sup

t1≤t2≤t

∣∣∣∣∣∣E
2∏

j=1

MezjQ̃n(tj) − E
2∏

j=1

MezjQ(tj)

∣∣∣∣∣∣ = 0, (3.28)

where Q is some varying random relief, we guarantee the fulfilment of conditions (3.9)–(3.11). This ends the
theoretic part of the example which can be summarized as follows: if Rnk(t, ·) = R(·), hnk = hn, R and hn

are nonrandom, conditions (3.3), (3.21)–(3.24) (with nonrandom g) and (3.26)–(3.28) are fulfilled and, for each
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z ∈ C−, the random process MezQ(·) is stochastically continuous, then the second statement of Theorem 3.1
holds (whereas the first one is incorporated into the assumptions). It remains to illustrate the fulfilment of
conditions (3.27) and (3.28).

Assume that g is continuous and there exists a random process K such that

n−1Λn
C−→ K. (3.29)

Denote

B̃n(t, x) =
∫ t

0

hn(x− g(τ, t− τ))dΛn(τ)/n, Bn(t, x) =
∫ t

0

hn(x− g(τ, t− τ))dK(τ),

Bn(t) = Bn(t, ·) (likewise with ˜). It easily follows from (3.14), (3.29) and Theorem III.8.3 [12] that for any t

sup
u≤t

M
∣∣∣B̃n(u) −Bn(u)

∣∣∣ P−→ 0.

Hence, noting that: (1) Q̃n = bB̃n; (2) for any z ∈ C− and t > 0 the functions MezBn , n ∈ N, of argument
u ∈ [0, t] are equicontinuous, we conclude that relations (3.27) and (3.28) will hold if for all t ∈ R+ and s ∈ R

the sequence
(
MeisBn(t)

)
converges in probability to some limit f(s, t) and l.i.p.

c→0
f(c, t) = 1. Lévy’s continuity

theorem allows to re-formulate this assumption in the more visual form:

MeisBn(t) P−→ MeisB(t), (3.30)

where, for each t, B(t) ≡ B(t, ·) is a random function on X . This entails, together with (3.22), (3.29) and
continuity of g, relations (3.27) and (3.28) with Q(t) = bB(t).

Conditions (3.21) and (3.26) can be waived, once we have imposed (3.29). And this condition can, in turn,
be substituted by the demand that for any t n−1Λn(t) P−→ K(t), where K is a continuous process. Indeed, in
this case, as was shown in [10], supu≤t

∣∣n−1Λn(u) −K(u)
∣∣ P−→ 0 for all t, whence (3.29) follows.

Now, we will exemplify Theorem 3.2.

Example 3.2. Let assumptions A1 and A2 hold with

p = 1, F = νI[0, 1], ρnk(t) = 1, (3.31)

where ν is a fixed d-dimensional vector. Then Fnk(t, x) = νI[σnk(t), σnk(t)+1/n](x) and, consequently, for any
s ≥ u ≥ 0

MeizΦn(u,s) = 1 +
Nn(u)∑
m=1

(
eizν − 1

)m ∑
1≤k1<...<km≤Nn(u)

ϕn
km

(s), (3.32)

where km = (k1, . . . , km) ,

ϕn
km

(s) = μ

⎛⎝ m⋂
j=1

[
σnkj (s), σnkj (s) + 1/n

]⎞⎠ . (3.33)

Denote αn
km

(s) = max
1≤j≤m

σnkj (s), β
n
km

(s) = min
1≤j≤m

σnkj (s) + 1/n,

In
km

(s) = I
{
αn

km
(s) < βn

km
(s)
}
, χn

kk′ (s) = I {|σnk(s) − σnk′ (s)| < 1/n} . Obviously,

In
km

(s) ≤
∏

1≤i<j≤m

χn
kikj

(s) (3.34)
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and the intersection of
[
σnkj (s), σnkj (s) + 1/n

]
, j = 1, . . . ,m, equals either

[
αn

km
(s), βn

km
(s)
]

(if this interval
is nonvoid) or ∅ (otherwise). So, assuming A5, we can rewrite (3.33) in the form

ϕn
km

(s) = In
km

(s)
∫ βn

km
(s)

αn
km

(s)

f(x)dx,

whence
ϕ̇n

km
(s) = In

km
(s)
(
f
(
βn
km

(s)
)
β̇n
km

(s) − f
(
αn

km
(s)
)
α̇n

km
(s)
)

(3.35)

provided the derivatives on the right-hand side exist.
Suppose further that

ηnk(t) = t− τnk (3.36)

and f satisfies the Lipschitz condition
|f(x) − f(y)| ≤ C0|x− y| (3.37)

with some constant C0. Then σnkj (s) − σnk1(s) = ζnkj − ζnk1 − τnkj + τnk1 , α
n
km

(s) = s+ max
1≤j≤m

(
ζnkj − τnkj

)
,

βn
km

(s) = s + min
1≤j≤m

(
ζnkj − τnkj

)
+ 1/n as s > τnkm . These equalities together with (3.35), (3.34) and (3.37)

yield for v ≥ u

∣∣ϕn
km

(v) − ϕn
km

(u)
∣∣ ≤ C0(v − u)

n

m∏
j=2

I

{∣∣ζnkj − ζnk1 − τnkj + τnk1

∣∣ < 1
n

}
· (3.38)

Assume the following:
A6. The random variables ζnk, k ∈ N, are independent of τnk, k ∈ N, and of each other.
A7. Each ζnk has a distribution density hn, the same for all k.

Due to (3.36) and nonrandomness of ρnk these assumptions entail A3 and A4 (one can take for F0
n the σ-algebra

generated by τnk, k ∈ N).
Let Gnl denote the σ-algebra generated by ζnl and τnk, k ∈ N. Then: assumption A6 implies that for any

k1 < . . . < km and Gnk1 -measurable random variables �2, . . . �m

E

⎛⎝ m∏
j=2

I

{∣∣ζnkj −�j

∣∣ < 1
n

}∣∣∣∣∣∣Gnk1

⎞⎠ =
m∏

j=2

P

{∣∣ζnkj −�j

∣∣ < 1
n

∣∣∣∣Gnk1

⎫⎬⎭ ;

assumptions A6 and A7 yield

P
{∣∣ζnkj −�j

∣∣ < 1/n
∣∣Gnk1

}
=
∫ �j+1/n

�j−1/n

hn(x)dx.

Supposing furthermore (3.14), we get from (3.38) and the last two equalities

E0 sup
(v−c)+<u<v≤t

∣∣ϕn
km

(v) − ϕn
km

(u)
∣∣ ≤ C0c(2C)m−1n−m.

And this together with (3.32) implies that

E0 sup
(v−c)+<u<v≤t

∣∣∣MeizΦn(u,v) − MeizΦn(u,u)
∣∣∣ ≤ C0c

2C

Nn(t)∑
m=1

(
Nn(t)
m

)(
4C
n

)m

=
C0c

2C

((
1 +

4C
n

)Nn(t)

− 1

)
.
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So, postulating additionally (3.21), we provide (3.19). Condition (3.17) is in our case trivial, and condition (3.18)
for ρnk = 1 combined with (3.21) is tantamount to relative compactness of (Nn/n) in C .

Now, taking to account that this example is a particular case of the previous one, we write down the complete
list of assumptions: A1, A2, A5–A7, (3.22) (=⇒(3.14)), (3.29) (=⇒(3.21)), (3.30) with

Bn(t, x) =
∫ t

0

hn(x− t+ τ)dK(τ),

(3.31), (3.36), (3.37). If these assumptions are valid, then all the conditions of Lemmas 3.1–3.3 and Theo-
rem 3.2 are fulfilled and therefore the conclusion of the theorem holds true. Since in our case eizF (y) − 1 =(
eizν − 1

)
I[0,1](y), equality (3.13) acquires the more concrete form

ψ̂(t, z) =
∫

exp
{
bB(t, x)

(
eizν − 1

)}
μ(dx). (3.39)

So Ψ(t) is a mixture (averaging in the spatial variable x) of Poisson distributions on the lattice νZ+.

Example 3.3. Let ηnk(t) = 0 and

ρnk(t) = ρ0
nkT (t− τnk) , (3.40)

where the ρ0
nk’s are positive random variables and T is a nonrandom positive increasing continuous function.

Then denoting γnk(x) = na(x− ζnk)/ρ0
nk, we can write for v ≥ u ≥ 0 and k ≤ Nn(u)

M
∣∣∣e2izFnk(v) − e2izFnk(u)

∣∣∣ = 2
∫ ∣∣∣∣sin z(F ( γnk(x)

T (v − τnk)

)
− F

(
γnk(x)

T (u− τnk)

))∣∣∣∣ f(x)dx

=
2
n

(
ρ0

nk

)p ∫ ∣∣∣∣sin z(F ( y

T (v − τnk)

)
− F

(
y

T (u− τnk)

))∣∣∣∣ f (ζnk +
ρ0

nky

na

)
dy,

whence, since f is bounded,

M
∣∣∣e2izΦn(u,v) − e2izΦn(u,u)

∣∣∣ ≤ C

n
max

k≤Nn(u)

∫ ∣∣∣∣sin z(F ( y

T (v − τnk)

)
− F

(
y

T (u− τnk)

))∣∣∣∣ dy ∑
k≤Nn(u)

(
ρ0

nk

)p
with some constant C. So, demanding that for any t > 0 and z ∈ Rd

lim
L→∞

lim
n→∞ P

⎧⎨⎩
Nn(t)∑
k=1

(
ρ0

nk

)p
> nL

⎫⎬⎭ = 0 (3.41)

and

lim
c→0

sup
(v−c)+<u<v≤t

∫ ∣∣∣∣sin z(F ( y

T (v)

)
− F

(
y

T (u)

))∣∣∣∣ dy = 0, (3.42)

we guarantee the fulfilment of condition (3.19) for all t, ε and z. Condition (3.18) will be fulfilled, too, as
equality (3.40) shows, if we demand additionally that the sequence (Nn/n) be r.c. in C. And this is, by
Lemma 3.2, a consequence of (3.29). So conditions (3.3), (3.29), (3.41) and (3.42) imply (3.17) – (3.19) and
therefore, by Lemma 3.3, RC.
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Assume also A7 and a sharpened form of both A3 and A6:
A8. The random variables ζnk, ρ

0
nj , k, j ∈ N, are independent of τnk, k ∈ N, and of each other.

Suppose that the distribution of ρ0
nk does not depend on n and k. Then

Rnk(t, A) = R0(A/T (t− τnk)), (3.43)

bnk(t) = b0 T (t− τnk) and

Qn(t, x) = b0 hn(x)
∫ t

0

T (t− τ)dNn(τ)/n, (3.44)

where R0(A) = P
{
ρ0

nk ∈ A
}
, b0 = E

(
ρ0

nk

)p
. So, it is natural to demand instead of (3.23) that

b0 ≡
∫ ∞

0

rpR0(dr) <∞. (3.45)

The last condition together with (3.14) and (3.21) implies, obviously, (3.8).
For all t ≥ s ≥ 0 and k ≤ Nn(s) we have, since T increases, T (s− τnk) ≤ T (t). Consequently, the left-hand

side of (3.6) does not exceed

P

{
T (t)pNn(t)

∫ ∞

0

rpR0(dr)
∫

|F (y)|I
{
|y| > cna

T (t)r

}
dy > nε

}
,

which together with (3.3), (3.14), (3.21) and (3.45) yields, in the same way as in Example 3.1, relation (3.6).
Likewise (3.7) follows from these conditions and the assumption that T increases.

Finally, assume (3.29) and

A9. The functions hn regarded as random variables on the probability space (X,X , μ) converge in distribu-
tion to some function h.

Then equality (3.44) where the function T is, by assumption, continuous shows that relations (3.9), (3.10) and
(3.12) with

Q(t, x) = b0 h(x)
∫ t

0

T (t− τ)dK(τ) (3.46)

hold for all values of the free variables.
As was noted above, condition (3.29) entails (3.21). This allows us to replace condition (3.41) with the

following one:

∀m ∈ N lim
L→∞

lim
n→∞P

{
mn∑
k=1

(
ρ0

nk

)p
> nL

}
= 0. (3.47)

The ultimate list of assumptions is: A1, A2, A5, A7–A9, ηnk(t) = 0, (3.3), (3.22), (3.29), (3.40) (with the
subsequent explanations), (3.42), (3.43) and (3.47). If they are valid, then the conclusion of Theorem 3.2 holds
true with Q given by (3.46).

Remark 3.2. The model considered in Example 3.3 is a slight modification of the crystallization model studied
by Kolmogorov [9]. In the latter, the rate of growth is at any instant the same for all crystals, whereas in the
former it depends on the age of a crystal. Both cases are physically possible [25].

Remark 3.3. Rather general sufficient conditions for RC in a simpler but still meaningful model where ηnk = 0
and ρnk does not depend on time were obtained in [19,21,24].
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4. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. We will consider that μ(X) = 1 and t1 ≤ . . . ≤ tl, which, of course, does not diminish
generality.

1◦. Denote Φl(t1, . . . , tl; s1, . . . , sl) = Zl(t1, . . . , tl; is1, . . . , isl). Conditions (3.9) and (3.10) imply that the
function Φ of variables l ∈ N, t1 ∈ R+, t2 ∈ R+ \ {t1}, . . . , tl ∈ R+ \ {t1, . . . , tl−1}, s1 ∈ R, . . . , sl ∈ R satisfies all
the conditions of Theorem 2.2 which therefore asserts existence of a P(R)-valued process Υ such that equality
(2.6) holds for all values of the variables. By assumption A5 the measure μ is diffuse. Then Theorem 1.1 asserts
existence of an R-valued varying random relief Q on X such that, for all B ∈ B,

υ(t, B) = μ{x : Q(t, x) ∈ B},

or, the same, υ̂(t, s) = MeisQ(t) for any s ∈ R. Hence and from the definition of covaristic (formula (2.1)) we
obtain

υ̃ l(t1, . . . , tl; s1, . . . , sl) = E
l∏

j=1

MeisjQ(tj).

This together with (2.6) proves the first statement of the theorem.
2◦. Regarding Qn(·) (here the dot marks the place for t) as a random process given on the probability space

(XN ⊗ Ωn,X⊗N ⊗ Fn, μ
⊗N ⊗ Pn), we see that relation (3.9) with right-hand side given by (3.12) asserts weak

convergence of the finite-dimensional distributions of these processes to those of Q(·). Hence, taking to account
nonnegativeness of all the Qn’s (and therefore Q), we deduce that for all l ∈ N, t1, . . . , tl ∈ R+, z1, . . . , zl ∈ C−

E
l∏

j=1

MezjQn(tj) → E
l∏

j=1

MezjQ(tj). (4.1)

3◦. Denote G(y, z) = eizF (y) − 1, g(z) =
∫
G(y, z)dy (the integral converges due to (3.3), and its value

belongs to C−, because cos zF (y) − 1 ≤ 0). Then equality (3.12) shows that the covaristic of the MVP Ψ with
characteristic function (3.13) is given by the formula

ψ̃l(t1, . . . , tl; z1, . . . , zl) = Zl(t1, . . . , tl; g(z1), . . . , g(zl)).

Herein lim
z→0

Z1(t; g(z)) = 1 because of (3.12) and nonnegativeness of Q. So, to deduce the second statement from

Corollary 2.3 and Theorem 2.1 it suffices to check the three conditions: (2.10) with

U l(t1, . . . , tl; z1, . . . , zl) = Zl(t1, . . . , tl; g(z1), . . . , g(zl)),

(2.15) and (2.16). In view of (4.1) and (3.12) condition (2.10) with this U is tantamount to the relation

ψ̃l
n(t1, . . . , tl; z1, . . . , zl) − E

l∏
j=1

Meg(zj)Qn(tj) → 0.

Having in mind verification of the other conditions, too, we will prove in items 4◦−11◦ even more:

sup
t1≤...≤tl≤t

∣∣∣∣∣∣ψ̃l
n(t1, . . . , tl; z1, . . . , zl) − E

l∏
j=1

Meg(zj)Qn(tj)

∣∣∣∣∣∣→ 0. (4.2)
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The notation χn

MlP
⇒ 0, where χ1, χ2 . . . are random functions on [0, t]l ×X l, will mean that, for any ε > 0,

lim
n→∞ sup

t1≤...≤tl≤t
MlP{|χn| > ε} = 0.

In case the χn’s do not depend on x1, . . . , xl we write
P
⇒ .

4◦. Let us fix l, z1, . . . , zl and denote

Sn = exp

⎛⎝ l∑
j=1

g(zj)Qn(tj , xj)

⎞⎠ , ξnj = ξn(tj , xj),

Hn = E0
l∏

j=1

eizjξnj . (4.3)

By construction
|Sn| ≤ 1, |Hn| ≤ 1. (4.4)

Because of (3.2)
l∏

j=1

ψ̂n(tj , zj) = Ml
l∏

j=1

eizjξnj ,

which together with the definition of the covaristic and formula (4.3) yields

ψ̃l
n(t1, . . . , tl; z1, . . . , zl) = MlEHn.

And this jointly with (4.4) shows that relation (4.2) is equivalent to

|Hn − Sn|
MlP
⇒ 0. (4.5)

5◦. We introduce the notation: ρnkj = ρnk(tj) (likewise ηnkj , bnkj , Rnkj(·)), Fnkj = F
(

na(xj−ζnk−ηnkj)
ρnkj

)
≡

Fnk(tj , xj) (recall that a = 1/p),
∏
k

=
Nn(tl)∏
k=1

(the same for sums), Jnk = {j ∈ {1, . . . , l} : tj ≥ τnk} ≡ {j ∈
{1, . . . , l} : k ≤ Nn(tj)}, #J – the number of members in a finite set J,

∑
J(2)

=
∑

J⊂Jnk:#J≥2

(the same for max),

Gnkj = eizjFnkj − 1 ≡ G

(
na(xj − ζnk − ηnkj)

ρnkj
, zj

)
,

wnk =
∑

j∈Jnk

E0Gnkj , ΓJ
nk = E0

∏
j∈J

|Gnkj |. Obviously, for any summands

∑
k

∑
j∈Jnk

· · · =
l∑

j=1

Nn(tj)∑
k=1

· · · (4.6)

By assumption A2 ξnj =
Nn(tj)∑

k=1

Fnkj , whence

l∏
j=1

eizjξnj =
∏
k

∏
j∈Jnk

(1 +Gnkj).
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This together with A3 (i, ii) yields another form of equality (4.3):

Hn =
∏
k

⎛⎝1 + wnk +
∑
J(2)

E0
∏
j∈J

Gnkj

⎞⎠ . (4.7)

Obviously, for an arbitrary natural number m and any complex numbers c1, . . . , cm, d1, . . . , dm such that
|c1| ≤ 1, . . . , |cm| ≤ 1 the inequality∣∣∣∣∣

m∏
k=1

ck −
m∏

k=1

dk

∣∣∣∣∣ ≤
m∑

k=1

(
|ck − dk|

m∏
i=k+1

|di|
)

(4.8)

holds. Setting m = Nn(tl), ck = E0
∏

j∈Jnk

eizjFnkj (this is the kth factor in (4.7)), dk = 1 + wnk, we get

∣∣∣∣∣Hn −
∏
k

(1 + wnk)

∣∣∣∣∣ ≤ VnWn,

where Vn =
∑
k

∑
J(2)

ΓJ
nk and

Wn =
∏
k

e|wnk|. (4.9)

Now, our goal is to establish the relation∣∣∣∣∣Hn −
∏
k

(1 + wnk)

∣∣∣∣∣ MlP
⇒ 0. (4.10)

It will be achieved if we show that

Vn

MlP
⇒ 0 (4.11)

and
lim

L→∞
lim

n→∞ sup
t1≤...≤tl≤t

MlP
{
Wn > eL

}
= 0. (4.12)

The proof of (4.11) is the subject of the next four items.
6◦. Let us fix c > 0, denote

γc
nkj = |Gnkj |I{|xj − ηnkj − ζnk| > c}, IJc

nk = I

{
max
i,j∈J

|xi − ηnki − (xj − ηnkj)| > 2c
}
,

V c
n =

∑
n

∑
J(2)

IJc
nk ΓJ

nk (4.13)

and show that
sup

t1≤...≤tl≤t
MlV c

n
P−→ 0. (4.14)

Obviously, for any y, y1, . . . , yl ∈ X and nonvoid set J ⊂ {1, . . . , l} the inequality

I

{
max
i,j∈J

|yi − yj| > 2c
}

≤
∑
j∈J

I{|yj − y| > c}
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holds. Setting yj = xj − ηnkj , y = ζnk and taking to account that

|Gnkj | ≤ 2, (4.15)

we get, for J ⊂ Jnk such that #J ≥ 2,

MlIJc
nk ΓJ

nk ≤ 2#J−1
∑
j∈J

ME0γc
nkj . (4.16)

By assumptions A3 (i, iii) and A4 for any k ∈ N, s ≥ τnk, x ∈ X and bounded Borel function ϕ : X×R+ → C

E0ϕ(x − ηnk(s) − ζnk, ρnk(s)) =
∫ ∞

0

Rnk(s, dr)
∫
ϕ(x − ηnk(s) − y, r)hnk(y)dy.

Hence, taking ϕ(x, r) = g(θx/r)I{|x| > c}, where g : X → C is a bounded Borel function and θ is a positive
parameter, and using the identity∫

|y0−y|>c

g

(
θ(y0 − y)

r

)
f(y)dy =

(r
θ

)p
∫
|y|>cθ/r

g(y)f
(
y0 − ry

θ

)
dy,

we get

E0g

(
θ(x − ηnk(s) − ζnk)

ρnk(s)

)
I{|x− ηnk(s) − ζnk| > c} =

θ−p

∫ ∞

0

rpRnk(s, dr)
∫
|y|>cθ/r

g(y)hnk

(
x− ηnk(s) − ry

na

)
dy. (4.17)

Setting here θ = na, g = |G(·, zj)|, x = xj , s = tj (j ∈ Jnk), we obtain with account of (3.4)

E0γc
nkj ≤ 2αc

nkj , (4.18)

where

αc
nkj =

ϑnk

n

∫ ∞

0

rpRnkj(dr)
∫
|y|>cna/r

∣∣∣∣sin zjF (y)
2

∣∣∣∣ dy. (4.19)

Noting that αc
nkj does not depend on x1, . . . , xl, we get from (4.13), (4.16) and (4.18)

MlV c
n ≤

∑
k

∑
J⊂Jnk

2#Jαc
nkj . (4.20)

Obviously, for any finite set M and numbers uj , j ∈M, the equality∑
J⊂M

∑
j∈J

uj = 2#M−1
∑
j∈M

uj

holds. Consequently, for any nonnegative numbers aJ , where J ranges over the subsets of {1, . . . , l},
∑

k

∑
J⊂Jnk

aJ

∑
j∈J

αc
nkj ≤ 2l−1 max

J
aJ

∑
k

∑
j∈Jnk

αc
nkj

(4.6)
= 2l−1 max

J
aJ

l∑
j=1

Nn(tj)∑
k=1

αc
nkj , (4.21)

which together with (4.20), (4.19) and (3.6) proves (4.14).
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7◦. Let us denote ιcnk = max
J(2)

(
1 − IJc

nk

)
, En = {k : #Jnk ≥ 2}, V c

n =
∑
k

∑
J(2)

(
1 − IJc

nk

)
ΓJ

nk, so that

Vn = V c
n + V

c

n, (4.22)

and show that

MlV
c

n ≤ 22l−1 max
k∈En

Mlιcnk ·
l∑

j=1

Nn(tj)∑
k=1

α0
nkj . (4.23)

Obviously,

V
c

n ≤
∑

k

ιcnk

∑
∅
=J⊂Jnk

ΓJ
nk (4.24)

and |Gnkj | = γ0
nkj . From the last equality, (4.15) and (4.18) we have ΓJ

nk ≤ 2#Jα0
nkj for an arbitrary j ∈ J.

Consequently,

ΓJ
nk ≤ 2l

∑
j∈J

α0
nkj for J �= ∅.

The variables x1, . . . , xl do not enter, as is seen from (4.19), the right-hand side of this inequality. So, applying
Ml to both sides of (4.24), we get

MlV
c

n ≤ 2l max
k∈En

Mlιcnk ·
∑

k

∑
∅
=J⊂Jnk

∑
j∈J

α0
nkj .

Now, (4.23) follows from (4.21).
8◦. Let f denote the existing by assumption A5 density of μ. By the same assumption

f(x) ≤ C (4.25)

for some constant C. Let us show that for any k ∈ En

Mlιcnk ≤ 2p−1cpl(l − 1)C
∫
|y|<1

dy. (4.26)

Obviously,

ιcnk = I

{
min

i,j∈Jnk,i
=j
|xi − ηnki − (xj − ηnkj)| ≤ 2c

}
.

So

Mlιcnk ≤
∑

1≤i<j≤l

μ⊗l
(
A

(c)
ij (ηnki, ηnkj)

)
, (4.27)

where A(c)
ij (y′, y′′) = {(x1, . . . , xl) : |xi − y′ − (xj − y′′)| ≤ 2c}. The evident equalities

μ⊗l
(
A

(c)
ij (y′, y′′)

)
=

∫∫
|xi−xj|<2c

f(xi + y′)f(xj + y′′)dxidxj = 2p

∫∫
|y|<c

f(x+ y + y′)f(x− y + y′′)dxdy
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and inequality (4.25) show that

μ⊗l
(
A

(c)
ij (y′, y′′)

)
≤ 2pC

∫
|y|<c

dy
∫
f(x+ y + y′)dx ≡ (2c)pC

∫
|y|<1

dy,

which together with (4.27) proves (4.26).
9◦. From (4.19) we have

Nn(tj)∑
k=1

α0
nkj ≤ |zj|

n

∫
|F (y)|dy

Nn(tj)∑
k=1

ϑnkbnk(tj),

whence because of (4.23) and (4.26)

lim
c→0

lim
n→∞ sup

t1≤...≤tl≤t
P
{

MlV
c

n > ε
}

= 0

for any ε > 0. This relation together with (4.14) and (4.22) implies that

MlVn

P
⇒ 0 (4.28)

and, consequently, for any r > 0
sup

t1≤...≤tl≤t
E
(
r ∧ MlVn

)→ 0. (4.29)

Let � be an arbitrary nonnegative measurable random function on X l; ε and r be arbitrary positive numbers.
Then the evident inequalities

I
{
Ml� > r

}
MlI{� > ε} ≤ I

{
Ml� > r

}
,

I
{
Ml� ≤ r

}
MlI{� > ε} ≤ ε−1I

{
Ml� ≤ r

}
Ml�

show that
MlP{� > ε} ≤ P

{
Ml� > r

}
+ ε−1E

(
r ∧ Ml�

)
. (4.30)

Putting � = Vn, we deduce (4.11) from (4.28) and (4.29).
10◦. Let us prove (4.12), where Wn is defined by (4.9). Recall that wnk =

∑
j∈Jnk

E0Gnkj .
Denote

κnk =
1
n

∑
j∈Jnk

g(zj)bnkjhnk(xj − ηnkj)

(g was defined in item 3◦). Setting in (4.17) θ = na, g = G(·, zj), x = xj , s = tj (j ∈ Jnk), c = 0, we get

E0Gnkj =
1
n

∫ ∞

0

rpRnkj(dr)
∫
G(y, zj)hnk

(
xj − ηnkj − ry

na

)
dy,

which together with (3.5) and the definition of G (item 3◦) yields

|wnk − κnk| ≤ 1
n

∑
j∈Jnk

βnk(tj , zj), (4.31)

where

βnk(s, z) = 2
∫ ∞

0

rpRnk(s, dr)
∫ ∣∣∣∣sin zF (y)

2

∣∣∣∣Dnk

(
r|y|
na

)
dy. (4.32)

By the definition of κnk and condition (3.4)

|κnk| ≤ Cϑnk

n

∑
j∈Jnk

bnkj , (4.33)



316 A. YURACHKIVSKY

where C = maxj≤l |g(zj)| (<∞ by condition (3.3)). This jointly with (4.6) and (4.31) implies that
∑

k |wnk| ≤
(C + 1)Tn/n, where

Tn =
l∑

j=1

Nn(tj)∑
k=1

(ϑnkbnk(tj) + βnk(tj , zj)). (4.34)

This quantity does not depend on x1, . . . , xl, so Ml
∑

k |wnk| ≤ (C + 1)Tn/n, too. Then from (4.9) and (4.30)
we have for any L, r > 0

sup
t1≤...≤tl≤t

MlP
{
Wn > eL

}
= sup

t1≤...≤tl≤t
MlP

{∑
k

|wnk| > L

}
≤ sup

t1≤...≤tl≤t
P

{
Tn >

rn

C + 1

}
+
r

L
. (4.35)

Equality (4.34) shows us that for any σ > 0

sup
t1≤...≤tl≤t

P{Tn > σ} ≤
l∑

j=1

⎡⎣sup
tj≤t

P

⎧⎨⎩
Nn(tj)∑

k=1

ϑnkbnk(tj) >
σ

2l

⎫⎬⎭+ sup
tj≤t

P

⎧⎨⎩
Nn(tj)∑

k=1

βnk(tj , zj) >
σ

2l

⎫⎬⎭
⎤⎦ ,

which together with (4.35), (4.32) and (3.7) yields

lim
L→∞

lim
n→∞ sup

t1≤...≤tl≤t
MlP

{
Wn > eL

} ≤
l∑

j=1

lim
L→∞

lim
n→∞ sup

tj≤t
P

⎧⎨⎩
Nn(tj)∑

k=1

ϑnkbnk(tj) >
neL

2l(C + 1)

⎫⎬⎭ ·

Now, (4.12) ensues from (3.8).
Once relations (4.11) and (4.12) together implying (4.10) have been proved, it remains (recall that we are

proving (4.5)) to show that ∏
k

(1 + wnk) − Sn

MlP
⇒ 0. (4.36)

11◦. Writing, for arbitrary positive ε and L,

MlP

{
Wn

∑
k

|wnk − κnk| > ε

}
≤ MlP

{
Wn > eL

}
+ MlP

{∑
k

|wnk − κnk| > e−Lε

}
,

we deduce from (4.12), (4.31), (4.32) and (3.7) (the details are the same as in the previous item) that

Wn

∑
k

|wnk − κnk|
MlP
⇒ 0. (4.37)

Obviously, Sn =
∏

k eκnk . Noting that Re g(zj) ≤ 0, bnkj ≥ 0, hnk(x) ≥ 0, we see that Re κnk ≤ 0. Then,
putting in (4.8) m = Nn(tl), ck = eκnk , dk = 1 + wnk and taking to account (4.9), we get∣∣∣∣∣Sn −

∏
k

(1 + wnk)

∣∣∣∣∣ ≤Wn

∑
k

|eκnk − 1 − wnk| . (4.38)

According to the maximum principle for analytic functions

sup
z∈C−

∣∣∣∣ez − 1 − z

z2

∣∣∣∣ = sup
s∈R

∣∣∣∣eis − 1 − is

s2

∣∣∣∣ ·
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Hence, writing by Euler’s and Taylor’s formulae

eis = 1 + is− (cos θ1s+ i sin θ2s)s2/2,

we get |eκnk − 1 − κnk| ≤ |κnk|2, which together with (4.33) and (4.6) yields

∑
k

|eκnk − 1 − κnk| ≤ C2

n2

⎛⎝ l∑
j=1

Nn(tj)∑
k=1

ϑnkbnk(tj)

⎞⎠2

.

Noting that the right-hand side of this inequality does not exceed

C2l

n2

l∑
j=1

⎛⎝Nn(tj)∑
k=1

ϑnkbnk(tj)

⎞⎠2

,

we deduce (4.36) from (4.38), (4.37) and (3.8).
12◦. Let us check condition (2.15) (the set AL was defined before Theorem 2.3).
Denote κn(s) = |ξn(s, ·)|, κ0

n(s) = E0κn(s). Then

ψn(s,AL) = MI{κn(s) > L}, Eψn(s,AL) = MP{κn(s) > L},

so (2.15) will follow from Chebyshev’s inequality if we show that

lim
r→∞ lim

n→∞ sup
s≤t

MP{κn(s) > r} = 0.

Writing P{κ > r} ≤ E
(
I
{
κ0

n ≤ C
}

E0I{κn > r} + I
{
κ0

n > C
}) ≤ r−1Eκ0

nI
{
κ0

n ≤ C
}

+ P
{
κ0

n > C
} ≤

C/r + P
{
κ0

n > C
}

and then, on the basis of (4.30),

MP{κ0
n > C} ≤ P{Mκ0

n > L} + L/C,

we reduce the task to the proof of the relation

lim
L→∞

lim
n→∞ sup

s≤t
P
{
Mκ0

n(s) > L
}

= 0. (4.39)

By assumptions A1 and A3 (i)

κ0
n(s) ≤

Nn(s)∑
k=1

εnk(s), (4.40)

where εnk(s) = εnk(s, ·), εnk(s, x) = E0
∣∣∣F (na(x−ζnk−ηnk(s))

ρnk(s)

)∣∣∣ . Taking in (4.17) g = |F |, θ = na, c = 0, we get

εnk(s, x) =
1
n

∫ ∞

0

rpRnk(s, dr)
∫

|F (y)|hnk

(
x− ηnk(s) − ry

na

)
dy,

which together with (4.40) and (3.4) yields

Mκ0
n(s) ≤ 1

n

Nn(s)∑
k=1

ϑnkbnk(s)
∫

|F (y)|dy.
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Now, (4.39) emerges from (3.3) and (3.8).
13◦. Let us check condition (2.16).
Denote δn(u, v) = ψ̂n(u, z)− ψ̂n(v, z), t = (t1, t2). Writing, for z1, z2 ∈ C,

|z1 − z2|2 = z1z1 − z1z2 − z2z1 + z2z2,

setting z1 = ψ̂n(v, z) (so that z1 = ψ̂n(v,−z)), z2 = ψ̂n(u, z) and recalling the definition of covaristic, we become
convinced that

E|δn(u, v)|2 = ψ̃2
n(v, v; z,−z)− ψ̃2

n(v, u; z,−z)−
(
ψ̃2

n(u, v; z,−z)− ψ̃2
n(u, u; z,−z)

)
.

So it suffices to show that for any t > 0, z1, z2 ∈ Rd

lim
c→0

lim
t′,t′′∈[0,t]2,
|t′−t′′|<c

∣∣∣ψ̃2
n (t′; z1, z2) − ψ̃2

n (t′′; z1, z2)
∣∣∣ = 0. (4.41)

Writing on the basis of (4.2) and (3.11)

sup
t∈[0,t]2

∣∣∣ψ̃2
n(t1, t2; z1, z2) − Z2(t1, t2; g(z1), g(z2))

∣∣∣→ 0,

we deduce (4.41) from the assumed continuity of Z2(·, ·; z1, z2) and Cantor’s theorem. �
Proof of Theorem 3.2. The only distinction of the assumptions of this theorem from those of Theorem 3.1 is
that condition (3.11) is substituted by RC. Noting that: firstly, (3.11) was used in the previous proof only
for verification of condition (2.16); secondly, relation (2.19) with U1 = Eψ̂ and relation (2.20) are immediate
from (3.13) and (3.3), we deduce the desired conclusion from Corollary 2.5. �

References
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