
ESAIM: PS 15 (2011) 340–357 ESAIM: Probability and Statistics

DOI: 10.1051/ps/2010005 www.esaim-ps.org

EXPANSIONS FOR REPEATED INTEGRALS OF PRODUCTS
WITH APPLICATIONS TO THE MULTIVARIATE NORMAL
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Abstract. We extend Leibniz’ rule for repeated derivatives of a product to multivariate integrals of a
product. As an application we obtain expansions for P (a < Y < b) for Y ∼ Np(0, V ) and for repeated
integrals of the density of Y . When V −1y > 0 in R3 the expansion for P (Y < y) reduces to one given
by [H. Ruben J. Res. Nat. Bureau Stand. B 68 (1964) 3–11]. in terms of the moments of Np(0, V −1).
This is shown to be a special case of an expansion in terms of the multivariate Hermite polynomials.
These are given explicitly.
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1. Introduction and summary

Expansions of the multivariate normal density are commonly used in statistical theory and its applications.
One most common use is to compute multinormal probabilities, for example, rectangular and orthant multinor-
mal probabilities arising in the multivariate probit model, the multivariate ordinal response model, multivariate
paired comparisons and Thurstonian models for rankings; such probabilities also arise in almost every area
of science, engineering and medicine. Many of the known procedures for computing multinormal probabilities
are based on series truncations. Another common use is to find the approximate distribution of a specified
statistic. The exact distribution of a statistic is often too complicated even when the data are multinormal.
Examples include distributions of the eigenvalues and eigenvectors of the sample covariance matrix for a normal
population.

The calculation of multinormal probabilities is one reason why we need expansions for repeated integrals of
products of univariate and multivariate normal densities. The need for such expansions arises in many other
areas too. We mention five applications:

• in the calculation of moments of truncated normal distribution [2];
• in the expression of the non-central t density [2];
• in the posterior distribution of a Poisson variate with chi–squared prior for the squared mean parameter

of the Poisson variate [2];
• in the calculation of shape distributions [3,8];
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• in directional statistics with respect to computing the mean resultant length of the spherically projected
normal distribution [10].

Each of these applications involves explicitly repeated integrals of products of univariate and multivariate normal
densities. We refer the readers to the cited references for further details.

There is a large literature on expansions for the multivariate normal distribution. We refer the readers to
Tong [14], von Rosen ([15], Sects. 3 and 4), Kotz et al. ([6], Chap. 45), Kotz and Nadarajah ([7], Chap. 6),
Kollo and von Rosen ([5], Chap. 1, p. 152) and Kollo and von Rosen ([5], Chap. 3) for comprehensive reviews.
Further motivation for expansions of the multivariate normal can be found in these references.

The aim of this paper is to provide expansions based on an extension of Leibniz’ rule. The results are
organised as follows. In Section 2 we extend Leibniz’ rule for differentiating a product to obtain an expansion
for repeated integrals of a product of q functions φ1(y) . . . φq(y) from Cp to C, the complex numbers, in terms of
the repeated integrals of φ1 and the derivatives of φ2, . . . , φq. For example, if q = 2 and φ1(y) = 1 and φ2 is the
density of a random variable Y in Rp for R, the reals, this gives 2p Taylor series expansions for P (x < Y < y)
in powers of y − x. These expansions are given in Section 3 together with expansions about zero. In Section 4
we take φ1(y) = exp(y′z) and φ2 = φV , the density of Y ∼ Np(0, V ). We obtain expansions in inverse powers of
z = V −1μ for the 2p probabilities P (Yj > or < μj , 1 ≤ j ≤ p) in terms of the multivariate Hermite polynomials
and the moments of Np(0, V −1). These polynomials and moments are given in the appendix. The special case
P (Y < μ) for z > 0 was obtained by [11].

We use the following notation: N = {0, 1, 2, . . .}, Z = {. . . ,−1, 0, 1, . . .}, C is the closure of C, that is, it
includes all points at ∞. For y in C and λ in N ,

(y)λ = y(y − 1) · · · (y − λ+ 1) = Γ(y + 1)/Γ(y − λ+ 1)

and
(

y
λ

)
= (y)λ/λ! the binomial coefficient, so

(−y
λ

)
= (−1)λ

(
y − 1 + λ

λ

)
. (1.1)

Fix y0 in C
p
. For y, z in C

p
, λ in Np and v in Zp set

yz =
p∏

j=1

y
zj

j , (y)λ =
p∏

j=1

(yj)λj ,

(
y

λ

)
=

p∏
j=1

(
yj

λj

)
,

λ! =
p∏

j=1

λj !, Γ(y) =
p∏

j=1

Γ(yj), ∂v
y =

p∏
j=1

∂vj
yj
,

where ∂y = ∂/∂y, ∂−1
y =

∫ y

y0
dy = (−1)p

∫ y0

y
dy, so ∂−1

yj
=
∫ yj

y0
dyj , y × z = (y1z1, . . . , ypzp)′, Rez =

(Rez1, . . . ,Rezp)′, |v| =
∑p

1 vj and (−)V = (−1)|V |. In Np, 1 is the vector of 1’s and 0 is the vector of
0’s. For φ : Cp → C a given function,

Hλ(y) = φ(y)−1(−∂y)λφ(y). (1.2)

For y, z in Rp, signy = (signy1, . . . , signyp)′, m(y, z) = (m(y1, z1), . . . ,m(yp, zp))′ for m = min or max, y < z
means yj < zj for 1 ≤ j ≤ p, y ≤ z means yj ≤ zj for 1 ≤ j ≤ p,

∑
λ sums over λ in Np. We shall also denote

φ
(λ)
j (y) = ∂λ

yφj(y) for j = 1, 2, . . . , q.
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2. Leibniz’ rule for integrals

Theorem 2.1 extends Leibniz’ rule for the product of q functions.

Theorem 2.1. Leibniz’ rule for differentiating a product can be written

∂v
yφ1(y)φ2(y) =

∑
λ

(
v

λ

)
φ

(v−λ)
1 (y)φ(λ)

2 (y) (2.1)

for v in Np, where {φn} are functions from Cp to C and y ∈ Cp. Repeated application of (2.1) implies for v
in Np

∂v
y

q∏
n=1

φn(y) =
v∑
λ

v!
q∏

n=1

φ(λn)
n (y)/λn!, (2.2)

or equivalently

∂v
y

q∏
n=1

φn(y) =
∑
λ2

· · ·
∑
λq

(v)λ1φ
(λ1)
1 (y)

q∏
n=2

φ(λn)
n (y)/λn!, (2.3)

where
∑v

λ sums over λ1, . . . , λq ∈ Np such that v =
∑q

n=1 λn. Both (2.1) and (2.3) hold as asymptotic
expansions for v in Zp provided that for {λn} of (2.3) with

(
v
λ

) �= 0 and 1 ≤ j ≤ p,

if vj < 0 then
q∏

n=1

φ(λn)
n (y) → 0 (2.4)

as yj → y0j.

Proof. Suppose first p = 1. Integrating by parts if φ2(y)∂−1
y φ1(y) → 0 as y → y0 then ∂−1

y φ1(y)φ2(y) =

φ2(y)∂−1
y φ1(y) − ∂−1

y {φ(1)
2 (y)∂−1

y φ1(y)} which we write as I = A + I B on φ1 φ2, where Iy = ∂−1
y , Ay = ∂−1

1y ,

By = −∂2y∂
−1
1y and ∂ny is ∂y acting on φn only. So, if φ(n−1)

2 (y)∂−n
y φ1(y) → 0 as y → y0 for 1 ≤ n ≤ m then

I = A

m−1∑
n=0

Bn + I Bm on φ1φ2

= A(1 −B)−1 if m = ∞ and I Bmφ1φ2 → 0 as m→ ∞.

So, for v = −n < 0, since A and B commute, (2.4) at q = 2 implies

∂vφ1φ2 = Inφ1φ2 = An(1 −B)−nφ1φ2 = An
∑

λ

(−n
λ

)
(−B)λφ1φ2,

which is equal to the right hand side of (2.1) at y. So, (2.1) holds for v in Zp provided that for 1 ≤ j ≤ n,
(I Bm)jφ1φ2 → 0 as m → ∞. If we only seek asymptotic expansions and are not primarily interested in
convergence, we may ignore this condition.

For p ≥ 1, (2.1) now follows from ∂v
y =

∏p
j=1 ∂

vj
yj . Replacing φ2 by φ2 · · ·φq and applying (2.2) with v = λ,

we obtain (2.3) for v in Zp. �
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Note 2.1. By reversal of order in integration for m ≥ 1 in Np,

∂−m
y φ1(y) =

∫ y

y0

(y − x)m−1φ1(x)dx/(m− 1)! (2.5)

or equivalently (−∂y)−mφ1(y) =
∫ y0

y
(x−y)m−1φ1(x)dx/(m−1)! so (2.1) with v = −n and (1.1) imply for n ≥ 0

in Np,

n!

(∫ y

y0

dy

)n+1

φ1(y)φ(y) =
∫ y

y0

(y − x)nφ1(x)φ(x)dx

=
∑

λ

(−)|λ|φ(λ)(y)(λ!)−1

∫ y

y0

(y − x)n+λφ1(x)dx

= φ(y)
∑

λ

Hλ(y)(λ!)−1

∫ y

y0

(y − x)n+λφ1(x)dx

for Hλ(y) of (1.2).

Note 2.2. It should be possible to extend (2.1) and (2.3) to v in Cp using

φ
(v)
1 (y) = (2πi)−pΓ(v + 1)

∫
(y − x)−v−1φ1(x)dx,

where xj is integrated along a contour in C around yj . For vj in {−1,−2, . . .}, one would use (2.5) instead.

Note 2.3. Now suppose that the derivatives of φ2, . . . , φn, {φ(λ)
n (y), n ≥ 2, λ in Np}, are each bounded near

y = y0. Then (2.4) holds if for λ ≤ v and 1 ≤ j ≤ p

if
(
v

λ

)
�= 0 and vj < 0 then φ(λ)

1 (y) → 0 as y → y0. (2.6)

This holds if v ≤ −1 and the right hand side of (2.5) is bounded near y = y0 for m ≥ 1. For v in Zp set
J = {1 ≤ j ≤ p : vj < 0} and K = {1 ≤ j ≤ p : vj ≥ 0}. Then nj = −λj − 1 ≥ 0 for j in J if λj ≥ vj

by (2.5). So,

{λj ≤ vj < 0, j ∈ J} and {λj > 0, j ∈ K} (2.7)

implies

φ
(λ)
1 (y) =

∏
j∈J

∫ yj

y0

(yj − xj)njφ
(λK)
1 (x)dxj/nj !, (2.8)

where xk = yk for k in K and φ
(λK)
1 (x) =

∏
k∈K ∂λk

xk
φ1(x). So, (2.6) holds if (2.7) implies that the right hand

side of (2.8) is bounded near y = y0. This illustrates the purely notational difficulty of applying (2.1) for v in
Zp as opposed to the cases v ≥ 0 or v ≤ −1.

We now set q = 2, φ = φ2 and fix z in Cp.
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Example 2.1. Take φ1(y) = 1 and y0 in Cp. By (2.5), ∂−m
y 1 = (y − y0)m/m! for m ∈ Np, so by (2.1), for n

in Np

∂−n
y φ(y) =

(∫ y

y0

dy

)n

φ(y) =
∑

λ

(−n
λ

)
φ(λ)(y)(y − y0)n+λ/(n+ λ)!

= (n− 1)!−1φ(y)
∑

λ

Hλ(y)(y − y0)n+λ(n+ λ)−1/λ! (2.9)

if also n ≥ 1. If we compare this with

∂−n
y φ(y) =

(∫ y

y0

dy

)n

φ(y) =
∑

λ

φ(y0)(y − y0)λ+n/(λ+ n)!

obtained by expanding φ(y) about y0 and multiplying by ∂n
y , we obtain the identity

λ∑
j=0

(−)j/{(n+ j)!(λ − j)!} =
λ∑

k=0

(−)λ−k/{k!(λ+ n− k)!} = 1/{(λ+ n)λ!(n− 1)!}

which we have not managed to prove directly. To state the extension of (2.1) to general v in Zp, one uses

φ
(v−λ)
1 (y) = I(λk = vk for k ∈ K)

∏
j∈J

(yj − y0j)mj/mj !,

where now m = λ− v, J = {1 ≤ j ≤ p : mj > 0} and K = {1 ≤ j ≤ p : mj ≤ 0}.
Example 2.2. Take φ1(y) = exp(y′z), where z1, . . . , zp �= 0. For p = 1, n ∈ Z and −∞ ≤ y0 Rez <∞,

∂−n
y exp(yz) = z−n exp(yz)An(z(y − y0)),

where

An(h) =
{

1 − exp(−h)
∑n

j=0 h
j/j!, for n > 0 and h finite,

1, for n ≤ 0 or Reh = ∞.

So, for p ≥ 1, n in Zp and −∞ ≤ y0 × Rez <∞,

∂n
y exp(y′z) = z−n exp(y′z)An(z × (y − y0)),

where

An(h) =
p∏

j=1

Anj (hj). (2.10)

So, (∫ y

y0

dy

)n

φ(y) exp(y′z) = exp(y′z)
∑

λ

(−n
λ

)
ψ(λ)(y)z−n−λAn+λ(z × (y − y0))

= φ(y) exp(y′z)
∑

λ

(
n− 1 + λ

λ

)
Hλ(y)z−n−λAn+λ(z × (y − y0))

(2.11)
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or equivalently, for n in Zp

∂n
y φ(y) exp(y′z) = exp(y′z)

∑(
n

λ

)
φ(λ)(y)zn−λA−n+λ(z × (y − y0)).

So, for finite h

An(h) = O(exp(−h)hn+1)

⎧⎨
⎩

= 0, if h = 0,
→ 0, as h→ ∞ in Cp,
= O(hn+1), as n→ ∞ in Np,

and An(h) is not defined if for some j, 1 ≤ j ≤ p, nj > 0 and Rehj = −∞. In particular, for n and v in Np

and y0 = −∞× Rez,

(∫ y

y0

dy

)n

φ(y) exp(y′z) =
∑

λ

(−n
λ

)
φ(λ)(y)z−n−λ exp(y′z) (2.12)

and (∫ y

y0

dy

)n

(−∂y)γφ(y) exp(y′z) = exp(y′z)
∑

λ

(−)λ

(−n
λ

)
z−n−λ(−∂y)γ+λφ(y)

= exp(y′z)
∑

λ

z−1−λ(−∂y)γ+λφ(y) if n = 1.

Further formulae may be obtained by transforming (2.12). For example, multiplying (2.12) by ∂m
z for m in Np,

(∫ y

y0

dy

)n

φ(y) exp(y′z)ym =
∑

λ

(−n
λ

)
φ(λ)(y)

∑
k

z−n−λ+m−2k(−n− λ)k exp(y′z)

= φ(y) exp(y′z)zm−n
∑

j

z−jcjmn(y), (2.13)

where

cjmn(y) =
∑

k

(−)k

(
m

k

)(
n− 1 + j − k

j − k

)
Hj−2k(y)/(j − 2k)! = cj

say. So, c0 = 1 and if p = 1 then

c1 = nH1,

c2 =
(
n+ 1

2

)
H2/2 −mn,

c3 =
(
n+ 2

3

)
H3/3!−m

(
n+ 1

2

)
H1,

c4 =
(
n+ 3

4

)
H4/4!−m

(
n+ 2

3

)
H2/2 +

(
m

2

)(
n+ 1

2

)
,

where Hr = Hr(y).
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Note 2.4. Note that (2.12) and (2.13) remain good as asymptotic expansions in inverse powers of z for y0 finite
if sign(y − y0) = signz. For, if p = 1 and h = z(y − y0) then z−n exp(yz)(1 − An(h)) is exponentially small as
|z| → ∞ for fixed y − y0 �= 0.

Example 2.3. Take φ1(y) = yz and y0 finite. Set

Bv(y, z) = ∂v
yy

z =
p∏

j=1

∂vj
yj
y

zj

j =
p∏

j=1

Bvj (yj , zj).

So, Bv(y, z) = yz−v(z)v if v ≥ 0 and if n = −v > 1 then

Bv(y, z) = yz+n/(z + n)n −
n∑

k=1

yz+k
0 (y − y0)n−k/{(z + k)k(n− k)!},

∂v
yy

zφ(y) =
∑

λ

(
v

λ

)
Bv−λ(y, z)φ(λ)(y).

Now fix v0 in Np and take φ2(y) = (−∂y)v0φ(y). Then

∂v
y{yz(−∂y)v0φ(y)} =

∑
λ

(−)λ

(
v

λ

)
Bv−λ(y, z)Hv0+λ(y)φ(y)

for Hλ(y) of (1.2).

3. Multivariate rectangle probabilities

Theorem 3.1 provides various Taylor series expansions for P (a < Y < b) in powers of b − a, for a random
variable Y in Rp.

Theorem 3.1. Suppose Y is a random variable in Rp with density φ and distribution Φ. For a < b in Rp,

P (a < Y < b) = (−)qG(y, y − y0), (3.1)

where

q =
p∑

j=1

I(yj < y0j), a = min(y0, y), b = max(y0, y) (3.2)

and

G(y, h) = φ(y)
∑

λ

Hλ(y)hλ+1/(λ+ 1)! (3.3)

for Hλ(y) of (1.2).

Proof. The Taylor series expansion in (3.1) follows by (2.9) with n = 1. �

There are 2p choices for (y0) since (y0j , yj) = (aj , bj) or (bj , aj). Corollary 3.1 considers some of these choices.
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Corollary 3.1. If (y0, y) = (a, b) then (3.1) gives

P (a < Y < b) = φ(b)
∑

λ

Hλ(b)(b − a)λ+1/(λ+ 1)!.

If (y0, y) = (b, a) then (3.1) gives

P (a < Y < b) = φ(a)
∑

λ

Hλ(a)(a− b)λ+1/(λ+ 1)!.

Note 3.1. If Y is symmetric, that is if P (Y < y) = P (−Y < y) or φ(−y) = φ(y), then (−)λHλ(−y) = Hλ(y)
and for |λ| odd Hλ(0) = 0 which makes expansions in {Hλ(0)} attractive using

∑
λ

c(λ)Hλ(0) =
∞∑

r=0

2r∑
λ

c(λ)Hλ(0).

If also Y ∼ Np(0, V ) then by Theorem A.2 in the appendix

Hλ(0) = E(iW )λ, (3.4)

where W ∼ Np(0, V −1) and i =
√−1.

Corollaries 3.2 and 3.3 considers a rectangular decomposition, where a and b satisfy

ajbj = 0 (3.5)

for 1 ≤ j ≤ p. Any rectangle in Rp can be decomposed as sums and differences of 2p rectangles satisfying (3.5),
since for p = 1, [a, b] = [a, 0) + [0, b] if a < 0 < b, [a, b] = [0, b] − (0, a) if 0 < a < b and [a, b] = [a, 0] − (b, 0] if
a < b < 0. The corollaries use this fact to establish representations for P (a < Y < b).

Corollary 3.2. Suppose (3.5) holds. Then, taking y = 0 and y0 = aj if aj �= 0 and y0 = bj if bj �= 0, (3.1)
gives

P (a < Y < b) = (−)p−QG(0, y0) = (−)p−Qφ(0)
∑

λ

Hλ(0)yλ+1
0 /(λ+ 1)!, (3.6)

where Q =
∑{I(aj > 0) + I(bj > 0)}.

Corollary 3.3. Under the assumptions of Corollary 3.2,

P (a < Y < b) =
p∏

j=1

(Bj −Aj) (3.7)

with X1 . . . Xp replaced by F (x) = G(0, x), where xj = aj for Xj = Aj and xj = bj for Xj = Bj.

Proof. First suppose 0 < a < b. Then [a, b] =
∏p

1{[0, bj] − [0, aj)} =
∏p

1(Bj − Aj) say, so P(a < Y < b) =∑
(−)RP (0 < Y < B) summed over the 2p possibilities Bj = aj or bj, where R is the number of {aj} in B.

So, (3.6) holds with Q = p and so (3.7) holds. Now suppose a1 < 0 < b1 and 0 < aj < bj for 2 ≤ j ≤ p. Then

[a, b] = ([a1, 0] + (0, b1]) ×
p∏
2

{[0, bj) − [0, aj)}
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so P (a < Y < b) =
∑

(−)SP (A < Y < B) summed over the 2p possibilities (A1, B1) = (a1, 0) or (0, b1) and
(Aj , Bj) = (0, aj) or (0, bj) for 2 ≤ j ≤ p, and S is the number of (Aj , Bj) = (0, aj) for j ≥ 2. The choice
(A1, B1) = (0, b1) gives S = R and the same contribution as for 0 < a < b. A typical term with (A1, B1) = (a1, 0)
is

(a1, 0) ×
S+1∏

2

(0, aj) ×
p∏

S+2

(0, bj).

This gives y0j = aj for j ≤ S + 1 and y0j = bj for j > S + 1, so p−Q = 1 in (3.6). This change in sign cancels
with the change in sign from replacing +[a1, 0) in the previous case by −[0, a1). So, (3.7) still holds. A similar
cancelation of sign change takes place if a1 < b1 < 0. (For example, if p = 1 then P (a < Y < b) = P (a < Y <
0) − P (b < Y < 0), P (a < Y < 0) = (−)1−QF (a) with Q = 0 and P (b < Y < 0) = (−)1−QF (b) with Q = 0.)
So, (3.6) holds for a1 < b1. Similarly, it holds for aj < bj, 2 ≤ j ≤ p. This completes the proof of (3.7). �
Example 3.1. For p = 1, 2, 3, (3.7) reduces to

P (a < Y < b) = F (b) − F (a),

P (a < Y < b) = F (b) − F (b1, a2) − F (a1, b2) + F (a),

and

P (a < Y < b) = F (b) − F (b1, b2, a3) − F (b1, a2, a3) − F (a1, b2, b3) + F (a1, a2, b3)
+F (a1, b2, a3) + F (b1, a2, a3) − F (a),

respectively.

4. Multivariate normal probabilities

Theorem 4.1 provides expansions for P (a < Y < b), Y ∼ Np(0, V ) in terms of multivariate Hermite polyno-
mials.

Theorem 4.1. Suppose Y ∼ Np(0, V ) with det V �= 0, density φ and distribution Φ. Fix z in Rp with
z1 . . . zp �= 0 and set μ = V z. Then

P (a < Y < b) = (−)qφ(y − μ)
∑

λ

Hλ(y)z−1−λA1+λ(h) = (−)qF (y, y0, z) (4.1)

say for q of (3.2), for An of (2.10) and for h = z × (y − y0) in (−∞,∞], where a + μ = min(y0, y) and
b + μ = max(y0, y). Furthermore, {Hλ(y)} are the multivariate Hermite polynomials given explicitly in the
appendix.

Proof. Note φ(y) exp(y′z) = φ(y − μ)α, where α = exp(μ′V −1μ) = exp(z′V z). Dividing (2.11) by α gives for n
in Zp and y0 − μ = y − μ0(∫ y

y0

dy

)n

φ(y − μ) =

(
−
∫ μ

μ0

dμ

)n

φ(μ− y) =

(∫ μ0

μ

dμ

)n

φ(μ− y)

= φ(y − μ)
∑

λ

(
n− 1 + λ

λ

)
Hλ(y)z−n−λAn+λ(h).

Set n = 1 to obtain the result. �



EXPANSIONS FOR REPEATED INTEGRALS OF PRODUCTS 349

As in Section 3 we can choose (y0, y) to satisfy a + μ = min(y0, y) and b + μ = max(y0, y) in 2p ways so
that (4.1) gives 2p expansions. Two examples of this are illustrated in Corollary 4.1.

Corollary 4.1. If (y0, y) = (a+ μ, b+ μ) then (4.1) gives

P (a < Y < b) = φ(b)
∑

λ

Hλ(b + V z)z−1−λA1+λ((b− a) × z).

If (y0, y) = (b+ μ, a+ μ) then (4.1) gives

P (a < Y < b) = (−)qφ(a)
∑

λ

Hλ(a+ V z)z−1−λA1+λ((a− b) × z).

We now apply the rectangle decomposition of Section 3 with a and b replaced by a+μ and b+μ, respectively.
That is, we decompose [a, b] into sums and differences of 2p rectangles [a, b] such that (aj +μj)(bj +μj) = 0 for
1 ≤ j ≤ p, and see how Corollaries 3.2 and 3.3 change.

Corollary 4.2. Suppose (aj + μj)(bj + μj) = 0 for 1 ≤ j ≤ p. Taking y = 0 and y0j = aj + μj if aj + μj �= 0
and y0j = bj + μj if bj + μj �= 0, we see (4.1) gives

P (a < Y < b) = (−)QF (0, y0, z),

where

Q =
p∑

j=1

{I(aj + μj > 0) + I(bj + μj > 0)}.

Corollary 4.3. Under the assumptions of Corollary 4.2,

P (a < Y < b) = (−)qφ(μ)
∑

λ

Hλ(0)z−1−λA1+λ(a, b)

= (−)qφ(μ)
∞∑

r=0

(−)r
2r∑
λ

EWλz−1−λA1+λ(a, b), (4.2)

where W ∼ N(0, V −1) and

A1+λ(a, b) =
p∏

j=1

(Bj −Aj)

at X1 . . .Xp = A1+λ(−z × (x+ μ)) for xj = aj if Xj = Aj and xj = bj if Xj = Bj.

Proof. Note from (4.1) that

F (x) = (−)qF (0, x+ V z, z) = (−)qφ(μ)
∞∑

r=0

(−)r
2r∑
λ

EWλz−1−λA1+λ(h)

provided h = −z × (x+ μ) is in (−∞,∞]. So, (3.7) can be written in the form (4.2). �
Example 4.1. For p = 1, A1+λ(a, b) = A1+λ(−bz − V z2) − A1+λ(−az − V z2). For p = 2, A1+λ(a, b) =∑4

1(−)jA1+λ(−z × (xj + μ)), where x2 = a, x4 = b, x1 = (b1, a2)′ and x3 = (a1, b2)′.
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Note 4.1. If b − a is small, it may be more accurate to use one of the 2p expansions (3.1) or (4.1) rather
than (3.7) with F (x) = G(0, x) or (4.2).

The expansion (4.1) and derived expressions such as (4.2) are remarkable in that z is any element in Rp

with non-zero components. The proviso to this is that h > −∞ in A1+λ(h). So, in (4.2) zj > 0 if aj = −∞
and zj < 0 if bj = ∞. See Corollary 4.4 for examples. Some further particular cases of (4.1) are considered by
Corollary 4.5.

Corollary 4.4. Taking a = −∞ in (4.2), for z > 0

Φ(b) = P (Y < b) = (−)qφ(μ)
∑

λ

Hλ(0)z−1−λA1+λ(−∞, b),

where

A1+λ(−∞, b) = A1+λ(−bz − V z2) − 1 if p = 1,

= 1 +A1+λ(−z × (b + μ)) −
2∑

j=1

A1+λ(−zj(bj + μj)) if p = 2 (4.3)

and so on, while for z < 0

Φ(−a) = P (a < Y ) = (−)qφ(μ)
∑

λ

Hλ(0)z−1−λA1+λ(a,∞),

where A1+λ(a,∞) = 1−A1+λ(−az−V z2) if p = 1, A1+λ(a,∞) is equal to the right hand side of (4.3) at b = a
if p = 2, and so on. In particular, for p = V = 1 we have by (3.4)

Φ(x) = φ(x)z−1
∞∑

r=0

(−z2)−rcrA
∗
1+2r, (4.4)

where

cr = E(N(0, 1))2r = (2r)!2−rr! = 1.3 . . . (2r − 1) (4.5)

and

A∗
n =

{
1 −An(−xz − z2), if z > 0,
An(xz − z2) − 1, if z < 0

= {1 −An(−x|z| − z2)}signz,

so the right hand side of (4.4) is symmetric about z = 0. For z = −x this gives the well known expansion

Φ(x) = φ(x)|x|−1
∞∑

r=0

(−x2)−rcr (4.6)

for x < 0.

Note 4.2. The relative error in (4.6) is ∼ 10% at x = −3 and ∼ 1% at x = −6 if we truncate when

|(r + 1)st term| > θ|rth term|, where θ = 1 or 0.5. (4.7)

Table 1 gives the relative error of (4.4) for selected values of Φ(x) and z + x truncating in the same way. The
x values are taken from Table 1.2 of [9]. The values of Φ(x) were computed using NAG.
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Table 1. Relative error of (4.4) truncating as in (4.7).

θ = 1 θ = 0.5
x Φ(x) z + x Relative error r Relative error r

−1.28155 0.1 −0.1 −53% 1 −53% 1
0 −46% 1 −46% 1

0.1 −48% 1 −48% 1
−2.32635 0.01 −0.1 35% 2 17% 1

0 −6% 3 −7% 1
0.1 −30% 3 −31% 1

−3.09023 0.001 −0.1 35% 4 36% 2
0 −0.66% 5 1.1% 2

0.1 −34% 5 −34% 3
−3.71902 0.0001 −0.1 40% 7 39% 3

0 −0.0075% 7 −0.19% 3
0.1 −40% 7 −40% 4

−4.74342 10−6 −0.1 50% 11 50% 5
0 −0.0001% 11 0.0003% 6

0.1 −50% 12 −50% 6
−5.99781 10−9 −0.1 62% 17 62% 9

0 0.000001% 18 −0.00001% 9
0.1 −62% 19 −62% 9

Corollary 4.5. Putting y0 = −∞× z and x = y − μ in (4.1) gives

P ((Y − x) × signz < 0) = (−)qφ(x)
∑

λ

Hλ(x+ V z)z−1−λ, (4.8)

where q =
∑p

j=1 I(zj < 0). In particular,

Φ(x) = P (Y < x) = φ(x)
∑

λ

Hλ(x + V z)z−1−λ if z > 0

and since −Y and Y have the same distribution,

Φ(−x) = P (Y > x) = (−)qφ(x)
∑

λ

Hλ(x+ V z)z−1−λ if z < 0.

These can also be written as

Φ(y − V z)/φ(y − V z) =
∑

λ

Hλ(y)z−1−λ if z > 0

and

Φ(−y + V z)/φ(−y + V z) = (−)q
∑

λ

Hλ(y)z−1−λ if z < 0,
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respectively. Putting z = −V −1x in (4.8) gives

(−)qP ((Y − x) × sign z < 0) = φ(x)
∑

λ

Hλ(0)z−1−λ = φ(x)
∞∑

r=0

(−)r
2r∑
λ

EWλz−1−λ (4.9)

by (3.4). In particular, if z = V −1μ > 0,

Φ(−μ) = φ(μ)
∑

λ

Hλ(0)z−1−λ, (4.10)

an expansion given by [11], while if z = V −1μ < 0,

Φ(μ) = (−)qφ(μ)
∑

λ

Hλ(0)z−1−λ.

All of the expansions in Corollary 4.5 reduce to (4.6) if p = V = 1. The expansions with y = 0 can be used to
give upper and lower bounds: see Savage (1962) for some examples using the terms r = 0, 1 in (4.9).

Note 4.3. Suppose that

zj

{
> 0, for j in J ,
< 0, for j in K, (4.11)

where J ∪K = {1, . . . , p}. Set

(Y ∗
j , x

∗
j , z

∗
j ) =

{
(Yj , xj , zj), for j in J ,
−(Yj , xj , zj), for j in K

and V ∗ = covY ∗. Then the left hand side of (4.8) is P (Y ∗ < x∗), (V z)∗ = V ∗z∗, φV = φ satisfies φV (x) =
φV ∗(x∗) and Hλ(x, V ) = Hλ(x) satisfies (−)λ∗

Hλ(x∗, V ∗) = Hλ(x, V ), where λ∗ =
∑p

j=1 λj I(zj < 0). So, (4.8)
gives: for z∗ > 0

P (Y ∗ < x∗) = φV ∗(x∗)
∑

λ

Hλ(x∗ + V ∗z∗, V ∗) (z∗)−1−λ

which is just the ∗ version of (4.8) for z > 0. Conversely, we could have obtained (4.8) from the case z > 0.

Steck [13] commented that the condition z > 0 in (4.10) “appears to be a severe one”. We now show how to
remove this condition in order to find an expansion for Φ(x) for almost any x in Rp.

Note 4.4. Suppose z = −V −1x satisfies z1 . . . zp �= 0. Define J , K by (4.11). Let q be the number of elements
in K. Decompose (−∞, x) as

∏
j∈J (−∞, xj) ×

∏
k∈K(−∞, xk). Then

Φ(x) = P (Y < x) = C
∏
k∈K

(Bk −Ak), (4.12)

where

C
∏
k∈K

Xj = P (Yj < xj for j ∈ J, Yk > x∗k for k ∈ K)
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and x∗k = −∞ if Xk = Bk and x∗k = xk if Xk = Ak. The last of the 2q terms in (4.12) is

(−)qC
∏
k∈K

Ak = (−)qP (Yj < xj for j ∈ J, Yk > xk for k ∈ K)

= φ(x)
∑

λ

Hλ(0)z−1−λ by (4.9).

The other 2q − 1 terms are of the form ±P (Y ∗
j > or < x∗j , 1 ≤ j ≤ r), where r < p and Y ∗ ∼ Nr(0, V ∗) say.

These can all be dealt with in the same way. So, by repeated application of (4.9) the dimension is reduced from
p to 1.

Example 4.2. Suppose p = 2 and z1 < 0 < z2. Then Φ(x) = P (Y2 < x2)− P (Y1 > x1, Y2 < x2) is the sum of
Φ1(x2V

−1/2
22 ) and the right hand side of (4.9), where Φ1 is Φ for N(0, 1).

Example 4.3. Suppose p = 2 and z < 0. Then Φ(x) is the sum of 1−P1 −P2 and the right hand side of (4.9),
where Pj = P (Yj > xj) = Φ1(−xjV

−1/2
jj ).

Example 4.4. Suppose p = 3 and z1 < 0 < z2, z3. Then Φ(x) is the sum of P (Y2 < x2, Y3 < x3) and the right
hand side of (4.9).

Example 4.5. Suppose p = 3 and z1, z2 < 0 < z3. Then Φ(x) is the sum of P (Y3 < x3)−
∑2

1 Pj and the right
hand side of (4.9), where Pj = P (Yj > xj , Y3 < x3).

We end this section with some explicit formulas for ∂−n
y φ(y) and ∂n

y Φ(y).

Example 4.6. Suppose p = V = 1. Then

∫ y

y0

(y − x)φ(x)dx =
(∫ y

y0

dy
)2

φ(y)

= φ(y) − φ(y0) + y{Φ(y)− Φ(y0)}
= φ(y) + yΦ(y) if y0 = −∞.

For, the left and right hand sides are equal at y = y0 and so are their partial derivatives with respect to y.
Similarly,

2

(∫ y

y0

dy

)3

φ(y) = yφ(y) − 2yφ(y0) + y0φ(y0) + (1 + y2){Φ(y) − Φ(y0)}

= yφ(y) + (1 + y2)Φ(y) if y0 = −∞.

More generally, for r ≥ 0

r!

(∫ y

y0

dy

)r+1

φ(y) = ar−1(y){φ(y) − φ(y0)} + br−1(y, y0)φ(y0)

+H+
r (y){Φ(y) − Φ(y0)} (4.13)

= ar−1(y)φ(y) +H+
r (y)Φ(y) if y0 = −∞,

where H+
r (y) is Hr(y) with all signs made positive:

H+
r (y) =

∑
{yr−2j(r)2j2−j/j! : 0 ≤ j ≤ r/2}
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and aj and bj are polynomials of degree j. For, differentiating (4.13) gives

rH+
r−1(y) = ∂yH

+
r (y), rar−2(y) = (∂y − y)ar−1(y) +H+

r (y),

and

−rar−2(y) + rbr−2(y, y0) = ∂y(−ar−1(y) + br−1(y, y0)).

Now apply induction. The last equation gives the recursive formula for br:

br(y, y0) = (r + 1)
∫ y

y0

{br−1(y, y0) − ar−1(y)}dy + ar(y) − ar(y0).

It would be interesting to know if (4.13) can be extended to p > 1.

Example 4.7. Set ΦV (y) = Φ(y), φV (y) = φ(y), partition y′ = (y′, y′0), and similarly V is a 2×2 block matrix.
Set M12 = V12V

−1
22 and V1·2 = V11 − V12V

−1
22 V21. Since Y1/Y2 ∼ N (M12Y2, V1·2),

ΦV (y) =
∫ y2

dy2φV22 (y2)ΦV1·2(y1 −M12y2).

Now suppose p = 2. Then

∂y2ΦV (y) = φV22(y2)ΦV1·2 (y1 −M12y2),

∂2
y2

ΦV (y) = φ
′
V22

(y2)ΦV1·2(y1 −M12y2) −M12φV22 (y2)φV1·2 (y1 −M12y2),

and so on.

Acknowledgements. The authors would like to thank the Editors-in-Chief, the Associate Editor and the two referees for
carefully reading the paper and for their comments which greatly improved the paper.

A. The multivariate hermite polynomials

Suppose Y ∼ Np(0, V ), and det V �= 0. Then φ(y) = (2π)−p/2(detV )−1/2 exp(−y′V −1y/2) and {Hλ(y)} are
the multivariate Hermite polynomials. They can be obtained iteratively from

Hλ+ej (y) = (xj + ∂yj )Hλ(y), H0(y) = 1, (A.1)

where ej is the jth unit vector in Rp and x = V −1y. However, an explicit form is easily given by using the dual
form

Hα1...αr (y) = φ(y)−1Dα1 . . . Dαrφ(y) for D = −∂/∂y
= Hλ(y) for |λ| = r and λj the number of j’s in {α1, . . . αr}.

Set x = V −1y and (V ij) = V −1. By (A.1),

Hα1...αr (y) = (xαr +Dαr )Hα1...αr−1(y),
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so

Hα1(y) = xα1 , H
α1α2(y) = xα1xα2 − V α1α2 ,

Hα1α2α3(y) = xα1xα2xα3 −
3∑
xα1V

α2α3 ,

Hα1...α4(y) = xα1 . . . xα4 −
6∑
xα1xα2V

α3α4 +
3∑
V α1α2V α3α4 ,

where
∑j sums over all j permutations of α1 . . . αr giving distinct terms. Comparing these with the univariate

Hermite polynomials:

Hr(x) =
∑

{(−)j−1R(r, j)xr−2 j : 0 ≤ j ≤ r/2},

where R(r, j) = (r)2j2−j/j!, we see the following result.

Theorem A.1. With the notation as above,

Hα1...αr (y) =
∑

{(−)j−1

R(r,j)∑
xα1 . . . xαr−2jV

β1β2 . . . V β2j−1β2j : 0 ≤ j ≤ r/2},

where βk = αr−2j+k. Setting y = 0 gives

(−)rHα1...α2r (0) =
cr∑
V α1α2 . . . V α2r−1α2r (A.2)

for R(2r, r) = cr of (4.5).

Barndorff-Nielsen and Pederson [1] gave expressions for Hα1...αr (y) for p = 2 and r ≤ 6 without recognising
the general form (A.2). For a formal proof of (A.2) see Withers [16].

Theorem A.2. If W ∼ Np(0, V −1) then Hλ(y) = E(iW )λ exp(iy′W ), Hλ(0) = E(iW )λ, Hα1...αr (y) =
E(iWα1) . . . (iWαr ) exp(iy′W ) and Hα1...αr (0) = irEWα1 . . .Wαr .

Proof. Simply note that φ(0)−1φ(y) = E exp(iy′W ) for i =
√−1. �

It follows from Theorem A.2 that EWα1 . . .Wα2r is equal to the right hand side of (A.2), as given by
Corollary 1.1 of Withers [17]. Some of Withers [17] results are duplicated in Holmquist [4].

Theorem A.3. Suppose W ∼ Np(0, V −1). Set μ = V z. For n ∈ Rp, φ(y − μ)−1∂n
y φ(y − μ) = E(z −

iW )n exp(iy′W ). Specialising to n in Np, Hn(μ) = E(z − iW )n.

Proof. By (2.11) for y0 = −∞× z,

φ(y − μ)−1∂n
y φ(y − μ) = zn

∑
λ

(
n

λ

)
Hλ(y)(−z)−λ

= zn
∑

λ

(
n

λ

)
E(−iW × z−1)λ exp(iy′W )

= znE(1 − iW × z−1)n exp(iy′W )
= E(z − iW )n exp(iy′W ).

The result follows. �
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We now show how to convert a sum
∑r

λ to its dual.

Note A.5. Let
∑p,r

α denote summation over α1, . . . , αr in {1, . . . , p}. Then

p,r∑
α

yα1 . . . yαr = (1′y)r = r!
r∑
λ

yλ/λ!.

So, we can write

zn
∑

λ

(
n

λ

)
Hλ(y)(−z)−λ

= zn
∞∑

r=0

r∑
λ

(n)λHλ(y)(−z)−λ/λ!

= zn
∞∑

r=0

(r!)−1

p,r∑
α

(n)λαH
α1...αr(y)(−zα1)

−1 . . . (−zαr)
−1,

where λα = eα1 + . . .+ eαr , and ej is as in (A.1). More generally,

p,r∑
α

f(α)yα1 . . . yαr = r!
r∑
λ

f(λ)yλ/λ!

if either f(α) = f(λα) or f(α) is symmetric and f(λ) = f(αλ), where αλ = (1λ1 , . . . , pλp)′ and jλj = (j, . . . , j)
has dimension λj . For example, we can write G in (3.3), (3.6) as

G(y, h) = h1φ(y)
∞∑

r=0

r∑
λ

Hλ(y)hλ/{(λ+ 1)1λ!}

= h1φ(y)
∞∑

r=0

(r!)−1

p,r∑
α

Hα1...αr (y)hα1 . . . hαr(λα + 1)−1

and Ruben’s expansion, (4.10), as:

Φ(−μ) = φ(μ)z−1
∞∑

r=0

(−)r(r!)−1

p,2r∑
α

λα!EWα1 . . .Wα2rz
−1
α1
. . . z−1

α2r

for z = V −1μ > 0.
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