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KPZ FORMULA FOR LOG-INFINITELY DIVISIBLE MULTIFRACTAL
RANDOM MEASURES
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Abstract. We consider the continuous model of log-infinitely divisible multifractal random measures
(MRM) introduced in [1]. If M is a non degenerate multifractal measure with associated metric
ρ(x, y) = M([x, y]) and structure function ζ, we show that we have the following relation between the
(Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimρ

H with
respect to ρ of the same set: ζ(dimρ

H(K)) = dimH(K). Our results can be extended to all dimensions:
inspired by quantum gravity in dimension 2, we focus on the log normal case in dimension 2.
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1. Introduction

Multiplicative cascades are random measures that were introduced by Mandelbrot in [17] to model the energy
dissipation of a turbulent flow. This model, which arises as the limit of discrete random multipliers, has been the
object of numerous studies in probability theory (see for instance [15] for an account on the achieved results).
In the beautiful note [4], inspired by the work of [9], the authors related the Hausdorff dimension dimH of a
measurable set K to the Hausdorff dimension of the same set in the random metric induced by the multiplicative
cascade: this gave the so called KPZ formula in analogy with a similar formula in quantum gravity ([13]).

In this work, we derive a similar formula in the context of log-infinitely divisible multifractal random measures
(MRM) introduced by the authors in [1]. MRM are scale invariant generalisations of the log normal model
introduced in [16] (and rigorously defined mathematically by Kahane in [12]) and the log Poisson model studied
in [3]. MRM have been used as models of the energy dissipation in a turbulent flow (see [11]) and of the
volatility of a financial asset (see [2], [8]); as such, MRM are much more realistic models than multiplicative
cascades whose construction relies on a discrete dyadic decomposition of the unit interval. In particular, this
dyadic dependent construction entails that multiplicative cascades have non stationary increments which is not
the case of MRM.

The following note is organized as follows: Section 2 reminds the definition and main properties of MRM.
Section 3 reminds the background on Hausdorff dimensions needed in the proof of the main theorem. In
Section 4, we state the main theorem in dimension 1: Theorem 4.1. In Section 5, we give the 2-dimensional
analog for lognormal MRM and the exponential of the Gaussian free field (inspired by quantum gravity).
In Section 6, we give the detailed proof of Theorem 4.1: our proof follows in part the one given in [4] for

Keywords and phrases. Random measures, Hausdorff dimensions, multifractal processes
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multiplicative cascades. Nevertheless, the main estimates needed to carry out the proof are more difficult for
MRM and rely on the notion of stochastic scale invariance (see items 4. and 5. in Prop. 2.5 below). We think
that this notion introduced in [6] in the context of 3d turbulence plays a central role in our derivation of the
KPZ equation. Finally, in Section 7, we prove the theorems of Section 5.

Remark 1.1. At the time we write this article, we have not seen the work of Duplantier and Sheffield ([9])
which inspired the note [4]: we are therefore indirectly indebted to them. It seems that in [9] the authors prove
a result similar to our Theorem 5.2 (see below) using the theory of large deviations for Gaussian processes: it
would be interesting to compare their result with our theorem 5.2. In this article, we do not use large deviation
theory; we prove Theorem 5.2 by a straightforward adaptation of the proof of Theorem 4.1 (valid in dimension
1 for log infinitely divisible measures and in particular for log Gaussian measures).

2. Introductory background about MRM

The reader is referred to [1] for all the proofs of the results stated in this section.

Independently scattered infinitely divisible random measure. Let S+ be the half-plane

S+ = {(t, y); t ∈ R, y ∈ R
∗
+}

with which we associate the measure (on the Borel σ-algebra B(S+))

θ(dt, dy) = y−2dt dy.

The characteristic function of an infinitely divisible random variable X can be written as E[eiqX ] = eϕ(q), where
ϕ is characterized by the Lévy-Khintchine formula

ϕ(q) = imq − 1
2
σ2q2 +

∫
R∗

(eiqx − 1 − iq sin(x)) ν(dx)

and ν(dx) is the so-called Lévy measure. It satisfies
∫

R∗ min(1, x2) ν(dx) < +∞.
Following [1], we consider an independently scattered infinitely divisible random measure μ associated with

(ϕ, θ) and distributed on the half-plane S+ (see [18]). More precisely, μ satisfies:
1) For every sequence of disjoint sets (An)n in B(S+), the random variables (μ(An))n are independent and

μ

(⋃
n

An

)
=
∑
n

μ(An) a.s.;

2) for any measurable set A in B(S+), μ(A) is an infinitely divisible random variable whose characteristic
function is

E(eiqμ(A)) = eϕ(q)θ(A).

We stress the fact that μ is not necessarily a random signed measure. Let us additionnally mention that there
exists a convex function ψ defined on R such that for all non empty subset A of S+:

– ψ(q) = +∞, if E(eqμ(A)) = +∞,
– E(eqμ(A)) = eψ(q)θ(A) otherwise.

Let qc be defined as qc = sup{q ≥ 0;ψ(q) < +∞}. For any q ∈ [0, qc[, ψ(q) < +∞ and ψ(q) = ϕ(−iq).
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Multifractal Random Measures (MRM). We consider an independently scattered infinitely divisible ran-
dom measure μ associated with (ϕ, θ) such that qc > 1, namely that:

∃ε > 0, ψ(1 + ε) < +∞,

and ψ(1) = 0.

Definition 2.1 (Filtration Fl). Let Ω be the probability space on which μ is defined. Fl is defined as the
σ-algebra generated by {μ(A);A ⊂ S+, dist(A,R2 \ S+) ≥ l}.

Let us now define the function f : R+ → R by

f(l) =
{
l, if l ≤ T
T if l ≥ T.

The cone-like subset Al(t) of S+ is defined by

Al(t) = {(s, y) ∈ S+; y ≥ l,−f(y)/2 ≤ s− t ≤ f(y)/2}.

For forthcoming computations, we stress that θ(Al(t)) =
∫ +∞
l

f(y)y−2 dy < +∞ and, for l ≤ T , θ(Al(t)) =
ln(T/l) + 1.

Definition 2.2 (ωl(t) process). The process ωl(t) is defined as ωl(t) = μ(Al(t)).

Definition 2.3 (Ml(t) measure). For any l > 0, we define the measure Ml(dt) = eωl(t) dt, that is

Ml(I) =
∫
I

eωl(r) dr

for any Lebesgue measurable subset I ⊂ R.

Definition 2.4 (Multifractal random measure (MRM)). With probability one, there exists a limit measure (in
the sense of weak convergence of measures)

M(dt) = lim
l→0+

Ml(dt).

This limit is called the Multifractal Random Measure. The scaling exponent of M is defined by

∀q ≥ 0, ζ(q) = q − ψ(q).

Proposition 2.5 (Main properties of the MRM).

1. The measure M has no atoms in the sense that M({t}) = 0 for any t ∈ R.
2. The measure M is different from 0 if and only if there exists ε > 0 such that ζ(1 + ε) > 1; in that case,

E(M([0, t])) = t.
3. If ζ(q) > 1 then E[M([0, t])q] < +∞.
4. For any fixed λ ∈]0, 1] and l ≤ T , the two processes (ωλl(λt))0≤t≤T and (Ωλ + ωl(t))0≤t≤T have the

same law, where Ωλ is an infinitely divisible random variable independent from the process (ωl(t))0≤t≤T
and its law is characterized by E[eiqΩλ ] = λ−ϕ(q).
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5. For any λ ∈]0, 1], the law of the process (M([0, λt]))0≤t≤T is equal to the law of (WλM([0, t]))0≤t≤T ,
where Wλ = λeΩλ and Ωλ is an infinitely divisible random variable (independent of (M([0, t]))0≤t≤T )
and its characteristic function is

E[eiqΩλ ] = λ−ϕ(q).

6. If ζ(q) 
= −∞ then

E
[
M([0, t])q

]
= (t/T )ζ(q)E

[
M([0, T ])q

]
.

Proposition 2.6 (Main properties of the scaling exponent). If there is ε > 0 such that ζ(1+ε) > 1, the function
q ∈ [0, 1] �→ ζ(q) is continuous, strictly monotone increasing and maps [0, 1] onto [0, 1].

3. Hausdorff dimension

In this section, we just set out the minimal required background about the Hausdorff dimension to understand
our main result and its proof. We refer to [10] for an account on Hausdorff dimensions.

Definition 3.1. Let (X, d) be a metric space. If K ⊂ X and s ∈ [0,+∞[, the s-dimensional Hausdorff content
of K is defined by

CsH(K) = inf

{∑
i

rsi ; there is a cover of K by balls with radii ri > 0

}
.

Using the standard convention inf ∅ = +∞, the Hausdorff dimension of K is defined by

dimH(K) = inf {s ≥ 0;CsH(K) = 0} .

Lemma 3.2 (Frostman). Let (X, d) be a metric space.The s-capacity of a Borelian set K ⊂ X

Caps(K) = inf

⎧⎨
⎩
(∫

K×K
|y − x|−sγ(dx)γ(dy)

)−1

; γ is a Borel measure such that γ(K) = 1

⎫⎬
⎭

is linked to the Hausdorff dimension of K by the relation

dimH(K) = sup {s ≥ 0; Caps(K) > 0} .

4. KPZ formula in one dimension

If we define for x, y ∈ R, ρ(x, y) = M([x, y]), then P a.s. ρ is a random metric on R. The interval [0, T ] can
be seen as a metric space when it is equipped either with the Euclidean metric | · | or with the random metric
ρ. The main purpose of this paper is to establish a relation between the Hausdorff dimension of a measurable
set K ⊂ [0, T ] equipped with the Euclidean metric and its Hausdorff dimension with respect to the (random)
metric space ([0, T ], ρ).

Theorem 4.1. Assume there is ε > 0 such that ζ(1 + ε) > 1 and that for all q ∈ [0, 1] we have ψ(−q) < ∞.
Let K ⊂ [0, T ] be some deterministic and measurable nonempty set and δ0 its Hausdorff dimension with respect
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to the Euclidian metric. Then the Hausdorff dimension dimρ
H(K) of K with respect to the random metric ρ

coincides P a.s. with the unique solution δ in [0, 1] of the equation δ0 = ζ(δ).

Remark 4.2. We can see ρ as a strictly increasing function on [0, T ]: x→ ρ(0, x). By definition of dimρ
H , we

have P a.s.:

∀K ∈ B(ρ([0, T ])), dimρ
H(ρ−1(K)) = dimH(K).

Applying the above equality to ρ(K), we get an equivalent formulation to theorem 4.1: if K is some deterministic
measurable set, we get P a.s.:

ζ(dimH(ρ(K))) = dimH(K).

5. KPZ formula in 2 dimensions

In this section, inspired by the KPZ formula in continuum quantum gravity ([13]), we consider the natural
extension in dimension 2 of the results of the previous section in the log normal case (the results of Sect. 5.1
have analogs in all dimensions).

5.1. The log normal MRM measure in dimension 2

The log normal MRM in dimension 2 is the random measure M in R
2 defined formally by:

∀A ∈ B(R2), M(A) =
∫
A

eX(x)− 1
2 E[X(x)2]dx

where (X(x))x∈R2 is a “Gaussian field” whose covariance is given by:

E[X(x)X(y)] = γ2 ln+ R

|x− y| ·

where γ2 and R are two positive parameters. To give a rigorous meaning to M , one can use the theory of
Gaussian multiplicative chaos introduced by Kahane in [12] or it’s extension defined in [19]. In this framework,
the measure M is the multiplicative chaos associated with the function ln+ R

|x| and it can be defined almost
surely (see Ex. 2.3 in [19]) as the limit (in the space of Radon measures) as l goes to 0 of the random measures
Ml(dx) defined by:

∀A ∈ B(R2), Ml(A) =
∫
A

eXl(x)− 1
2 E[Xl(x)

2]dx

where (Xl(x))x∈R2 is as centered Gaussian field whose covariance is given by:

E[Xl(x)Xl(y)] =

⎧⎪⎨
⎪⎩
γ2 ln R

l + 2γ2

(
1 −

√
|y−x|
l

)
if |y − x| ≤ l,

γ2 ln+ R
|y−x| if |y − x| > l.

One can note the following scale invariance property for (Xl(x))x∈R2 : if λ ∈]0, 1] and l ≤ R, the two fields
(Xλl(λx))|x|≤R and (Ωλ + Xl(x))|x|≤R have the same law, where Ωλ is a centered Gaussian random variable
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independent from (Xl(x))x∈R2 and of variance γ2 ln 1
λ . By taking the limit as l goes to 0, we get the following

scale invariance for M : if λ ∈]0, 1], we have the following identity in law:

(M(λA))A⊂B(0,R)
(Law)

= λ2eΩλ− γ2

2 ln 1
λ (M(A))A⊂B(0,R). (5.1)

Taking the expectation in (5.1) to the power q ∈ [0, 1], we get:

E[M(B(0, λ))q ] =
(
λ

R

)ζ(q)
E[M(B(0, R))q]

with:

ζ(q) =
(

2 +
γ2

2

)
q − γ2

2
q2.

Finally, it is possible to extend naturally the notion of Hausdorff content (and Hausdorff dimension) on a metric
space (X, d) to a measurable space X equipped with a measure μ by (see also [5]):

CsH(K) = inf

{∑
i

μ(B(xi, ri))s; there is a cover of K by balls B(xi, ri) with radii ri > 0

}
.

With these extensions, we can state the following 2-dimensional analog to Theorem 4.1:

Theorem 5.1. Assume that γ2 < 4. Let K ⊂ B(0, R) be some deterministic and measurable nonempty set and
δ0 its Hausdorff dimension with respect to the Euclidian metric. Then the Hausdorff dimension dimM

H (K) of
K with respect to the random measure M coincides P a.s. with the unique solution δ in [0, 1] of the equation
δ0 = ζ(δ).

Proof. Just note that, in this setting, the Frostman lemma is unchanged if we define the capacity of M by the
following formula:

Caps(K) = inf

{(∫
K×K

(M(x, |y − x|))−sγ(dx)γ(dy)
)−1

; γ is a Borel measure such that γ(K) = 1

}
.

The proof is then a straightforward adaptation of the proof of Theorem 4.1. �

5.2. The exponential of the Gaussian Free Field

In this subsection, as an application of the previous subsection, we prove the KPZ formula for the exponential
of the Gaussian Free Field (GFF) in B(0, R): this corresponds in B(0, R) to the gravity measure considered
on a 2 dimensional surface in [7]. The GFF is an important object in Conformal Field theory since it has the
conformal invariance property and a spatial Markovian property (see [20]). Formally, the GFF (or Euclidian
bosonic massless free field) in B(0, R) is a “Gaussian Field” X with covariance given by:

E[XF (x)XF (y)] = GR(x, y),

where GR is the Green function of B(0, R) (see for example Chap. 2.4 in [14] for the definition and main
properties). Let the process Bt be Brownian motion starting from x under the measure P x and consider the
stopping time TR = inf{t ≥ 0, |Bt| = R}. If we denote pR(t, x, y) = P x(Bt ∈ dy, TR > t), we have:

GR(x, y) = π

∫ ∞

0

pR(t, x, y)dt.
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Note that for each t > 0, pR(t, x, y) is a continuous positive and positive definite kernel on B(0, R). Therefore,
we can define the GFF measure MF as multiplicative chaos ([12]) associated with the kernel γ2GR where γ2 < 4.
In this framework, MF is the almost sure limit (in the space of Radon measures) as l goes to 0 of the measure:

Ml,F = eXl,F (x)− 1
2 E[Xl,F (x)2]dx

where Xl,F is a Gaussian field with the following covariance:

E[Xl,F (x)Xl,F (y)] = γ2π

∫ +∞

l2
pR(t, x, y)dt.

We know have the following analog of Theorem 5.1:

Theorem 5.2. Assume that γ2 < 4 and r < R. Let K ⊂ B(0, r) be some deterministic and measurable
nonempty set and δ0 its Hausdorff dimension with respect to the Euclidian metric. Then the Hausdorff dimension
dimM

H (K) of K with respect to the random measure M coincides P a.s. with the unique solution δ in [0, 1] of
the equation δ0 = ζ(δ).

6. Proof of Theorem 4.1

Lemma 6.1. Let x < y ∈ R. If q ∈ [0, 1] then

E[ρ(x, y)q ] ≤ C(T, q)|x− y|ζ(q),

where C(T, q) is a positive constant only depending on T, q. As a consequence, if K, δ, δ0 are defined as in
Theorem 4.1, then a.s. ζ(dimρ

H(K)) ≤ δ0.

Proof. By stationarity of the measure M and Proposition 2.5, we have

E[ρ(x, y)q ] = E[M([x, y])q] = E[M([0, y − x])q] = |y − x|ζ(q)T−ζ(q)
E[M([0, T ])q].

So we can choose C(T, q) = T−ζ(q)
E[M([0, T ])q] < +∞.

Let α > 0 and q ∈ [0, 1] such that ζ(q) > δ0. There exists a covering of K by a countable family ([xn, yn])n
such that

∑
n |xn − yn|ζ(q) < α. Hence

E

[∑
n

ρ(xn, yn)q
]

=
∑
n

E
[
ρ(xn, yn)q

] ≤ C(T, q)
∑
n

|yn − xn|ζ(q) ≤ C(T, q)α.

By the Markov inequality, P
(∑

n ρ(xn, yn)
q ≤ C(T, q)

√
α
) ≥ 1−√

α. Put in other words,with probability 1−√
α,

we have a covering of K with balls whose ρ-radii satisfy
∑

n ρ(xn, yn)
q ≤ C(T, q)

√
α. Thus q ≥ dimρ

H(K) a.s.
and the lemma follows. �
Proposition 6.2. Let K, δ, δ0, dimρ

H(K) be as in Theorem 4.1 and let q ∈ [0, 1] be such that ζ(q) < δ0. Then
a.s. q ≤ dimρ

H(K), that is δ0 ≤ ζ(dimρ
H(K)).

Proof. Since ζ(q) < δ0, by the Frostman Lemma, there is a Borel probability measure γ0 supported by K such
that γ0(K) = 1 and ∫

[0,T ]2
|x− y|−ζ(q) γ0(dx) γ0(dy) < +∞.

Let us define, for any 0 < l < T , the measure on [0, T ]:

νl(dr) = eqωl(r)−ψ(q)(ln(T/l)+1) γ0(dr)
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and its associated metric on R:

∀x, y ∈ R, ρl(x, y) = νl([x, y]).

We now investigate the quantity:

φ(l, γ0) ≡ E

[ ∫
[0,T ]2

ρl(x, y)−q νl(dx) νl(dy)
]

=
∫

[0,T ]2
E

[
ρl(x, y)−qeqωl(x)+qωl(y)−2ψ(q)(ln(T/l)+1)

]
γ0(dx)γ0(dy)

= 2
∫
y≥x

E

[
ρl(0, y − x)−qeqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)

]
γ0(dx)γ0(dy)

by stationarity of the process ωl. To this purpose, we split the above integral in two terms as

φ(l, γ0) = 2
∫

0≤y−x<l
E

[
ρl(0, y − x)−qeqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)

]
γ0(dx)γ0(dy)

+2
∫
y−x≥l

E

[
ρl(0, y − x)−qeqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)

]
γ0(dx)γ0(dy)

≡ φ1(l, γ0) + φ2(l, γ0).

We first estimate φ1(l, γ0). Using the Jensen inequality and the decrease of the mapping x �→ x−q yields

φ1(l, γ0) =2
∫

0≤y−x<l
E

[(∫ y−x

0

eωl(r) dr
)−q

eqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)
]
γ0(dx)γ0(dy)

=
2e−2ψ(q)l2ψ(q)

T 2ψ(q)

∫
0≤y−x<l

E

[( ∫ y−x

0

eωl(r)−ωl(0)−ωl(y−x) dr
)−q]

γ0(dx)γ0(dy)

≤
∫

0≤y−x<l

2e−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|qE

[
e
∫

y−x
0 (qωl(0)+qωl(y−x)−qωl(r))

dr
y−x

]
γ0(dx)γ0(dy).

Given 0 ≤ x < y ≤ T such that y − x < l, define Ail ≡ Al(0) ∩ Al(y − x) 
= ∅. Each cone-like subset Al(r)
(0 ≤ r ≤ y− x) can be split into three terms as Al(r) = Agl (r) ∪Ail ∪Adl (r), where Agl (r) (resp. Adl (r)) denotes
the part of Al(r) located on the left (resp. right) of Ail . It is worth emphasizing that:

(ωdl (r))0≤r≤y−x = (μ(Adl (y − x) \Adl (y − x− r)) − ψ′(0)θ(Adl (y − x) \Adl (y − x− r)))0≤r≤y−x

is a right-continuous martingale, as well as (ωgl (r))0≤r≤y−x where:

ωgl (r) = μ(Agl (0) \Agl (r)) − ψ′(0)θ(Agl (0) \Agl (r)).

By using the fact that ψ′(0) < 0, we get:

qωl(0) + qωl(y − x) − qωl(r) = qωil + qμ(Adl (y − x) \Adl (r)) + qμ(Agl (0) \Agl (r))
≤ qωil + qωdl (y − x− r) + qωgl (r).
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Since (ωdl (r))r , (ωgl (r))r and wil = μ(Ail) are independent, the last expression is estimated as:

φ1(l, γ0) ≤
∫

0≤y−x<l

2e−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|q E[eqω
i
l ]E

[
sup

0≤r≤y−x
eqω

d
l (y−x−r)

]
E

[
sup

0≤r≤y−x
eqω

g
l (r)

]
γ0(dx)γ0(dy)

≤
∫

0≤y−x<l

2C2
q e−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|q E

[
eqω

i
l

]
E

[
eqω

d
l (y−x)

]
E

[
eqω

g
l (y−x)

]
γ0(dx)γ0(dy),

the last inequality resulting from the Doob inequality applied to the function x → ex (Cq is a constant only
depending on q). It remains to compute θ(Ail), θ(A

g
l (0)) and θ(Adl (y − x)). It is plain to see that

θ(Ail) = ln(T/l) + 1 − (y − x)/l, θ(Adl (y − x)) = θ(Agl (0)) = (y − x)/l,

in such a way that (we use that ψ(q) < 0 for all q in ]0, 1[):

φ1(l, γ0) ≤
∫

0≤y−x<l

2C2
q e

−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|q eψ(q)
(

ln(T/l)+1+(y−x)/l
)
e2(ψ(q) y−x

l −ψ′(0) y−x
l )γ0(dx)γ0(dy) (6.1)

≤ 2e−2ψ′(0)C2
q (eT )−ψ(q)

∫
0≤y−x<l

1
|y − x|ζ(q) γ0(dx)γ0(dy).

Let us now focus on φ2(l, γ0). In what follows, we make a change of variable u = Tr/(y − x):

φ2(l, γ0) = 2
∫
y−x≥l

E

[
eqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)( ∫ y−x

0
eωl(r) dr

)q
]
γ0(dx)γ0(dy)

=
∫
y−x≥l

2T q

|y − x|qE

[
eqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)( ∫ T

0
eωl((y−x)uT−1) du

)q
]
γ0(dx)γ0(dy).

We remind the reader of the following property: the process (ωl′α(αt))0≤t≤T has the same law as the process
(Ωα + ωl′(t))0≤t≤T , where α ∈]0, 1], l′ ≤ T and Ωα is an infinitely divisible random variable independent from
the process (ωl′(t))0≤t≤T such that E[eiqΩα ] = α−ϕ(q). In particular, choosing l′ = lT/(y−x) and α = (y−x)/T ,
the process

(
ωl
(
(y − x)t/T

))
0≤t≤T has the same law as the process (Ω(y−x)/T + ωlT/(y−x)(t))0≤t≤T . Plugging

this relation into the above estimate of φ2(l, γ0) yields

φ2(l, γ0) =
∫
y−x≥l

2T q

|y − x|qE

[
e
qΩ(y−x)/T +qω lT

y−x
(0)+qω lT

y−x
(T )−2ψ(q)(ln(T/l)+1)

( ∫ T
0

e
ω lT

y−x
(u)

du
)q

]
γ0(dx)γ0(dy)

=
∫
y−x≥l

2T ζ(q)

|y − x|ζ(q) E

[
e
qω lT

y−x
(0)+qω lT

y−x
(T )−2ψ(q)(ln( y−x

l )+1)

( ∫ T
0

e
ω lT

y−x
(u)

du
)q

]
γ0(dx)γ0(dy).

Thus it just remains to show that there exists C > 0 such that for all l′ in [0, T ]:

E

⎡
⎣eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)( ∫ T

0 eωl′ (u) du
)q

⎤
⎦ ≤ C.
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In the above inequality, we will restrict to the (non obvious) case l′ ∈ [0, T/4]. We have:

E

⎡
⎣eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)( ∫ T

0
eωl′(u) du

)q
⎤
⎦ ≤ E

⎡
⎣eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)( ∫ 3T/4

T/4
eωl′(u) du

)q
⎤
⎦ ·

It is worth mentioning that the sets Al′(0), Al′(T ) are disjoint. We then define

Bgl′ = Al′(0) \Al′(T/4)

Bdl′ = Al′(T ) \Al′(3T/4).

We stress that for any u in [T/4, 3T/4]:

Al′(u) ∩Bgl′ = ∅, Al′(u) ∩Bdl′ = ∅.

Using the relation θ(Bgl′ ) = θ(Bgl′) = ln(T/l′)+1−ln(4) and the independence of μ(Bgl′), μ(Bdl′ ), (μ(Al′ (u)))T/4≤u≤3T/4,
we get:

E

[
eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)( ∫ 3T/4

T/4 eωl′(u) du
)q

]
= e−2ψ(q)(ln(T/l′)+1)

E

[
eqμ(Bg

l′ )

]
E

[
eqμ(Bd

l′ )
]

× E

[
eqμ(Al′ (0)∩Al′(T/4))+qμ(Al′ (T )∩Al′ (3T/4))( ∫ 3T/4

T/4 eωl′(u) du
)q

]

= e−2 ln(4)ψ(q)
E

[
eqμ(Al′ (0)∩Al′(T/4))+qμ(Al′ (T )∩Al′(3T/4))( ∫ 3T/4

T/4 eωl′(u) du
)q

]
·

Let us denote Ag
l′(u),Ad

l′(u) the following sets for u ∈ [T/4, 3T/4]:

Ag
l′(u) = (Al′(0) ∩Al′(u)) \Al′(3T/4)

Ad
l′(u) = (Al′(T ) ∩Al′(u)) \Al′(T/4).

We have the following decompositions:

μ
(
Al′(0) ∩Al′(T/4)

)
= μ

(Ag
l′(T/4)

)
+ μ

(
Al′(0) ∩Al′(3T/4)

)
,

μ
(
Al′ (T ) ∩Al′(3T/4)

)
= μ

(Ad
l′(3T/4)

)
+ μ

(
Al′(T ) ∩Al′(T/4)

)
.

We also have for all u in [T/4, 3T/4]:

μ
(
Al′(u)

)
= μ

(Ag
l′(u)

)
+μ

(
Al′(0)∩Al′(3T/4)

)
+μ

(Ad
l′(u)

)
+μ

(
Al′(T )∩Al′(T/4)

)
+μ

(
Al′(u)\ (Al′(0)∪Al′(T )

)
.
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Therefore, we get:

E

⎡
⎣eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)( ∫ 3T/4

T/4
eωl′(u) du

)q
⎤
⎦ = e−2 ln(4)ψ(q)

E

⎡
⎣eqμ(Al′ (0)∩Al′(T/4))+qμ(Al′ (T )∩Al′(3T/4))( ∫ 3T/4

T/4
eωl′ (u) du

)q
⎤
⎦

= e−2 ln(4)ψ(q)
E

⎡
⎣ eqμ(Ag

l′ (T/4))+qμ(Ad
l′ (3T/4))( ∫ 3T/4

T/4 eμ(Ag

l′ (u))+μ(Ad
l′ (u))+μ(Al′ (u)\(Al′ (0)∪Al′(T ))) du

)q
⎤
⎦

≤ e−2 ln(4)ψ(q)
E

[
eqμ(Ag

l′ (T/4))−q infu μ(Ag

l′ (u))
]

× E

[
eqμ(Ad

l′ (3T/4))−q infu μ(Ad
l′ (u))

]
E

⎡
⎣ 1( ∫ 3T/4

T/4
eμ(Al′ (u)\(Al′ (0)∪Al′(T )) du

)q
⎤
⎦

= e−2 ln(4)ψ(q)
E

[
eq supu(μ(Ag

l′ (T/4))−μ(Ag

l′ (u)))
]

× E

[
eq supu(μ(Ad

l′ (3T/4))−μ(Ad
l′ (u)))

]
E

⎡
⎣ 1( ∫ 3T/4

T/4
eμ(Al′(u)\(Al′ (0)∪Al′(T )) du

)q
⎤
⎦

= e−2 ln(4)ψ(q)
E

[
eq supu(μ(Ag

l′ (T/4)\A
g

l′ (u)))
]

× E

[
eq supu(μ(Ad

l′ (3T/4)\Ad
l′ (u)))

]
E

⎡
⎣ 1( ∫ 3T/4

T/4
eμ(Al′ (u)\(Al′ (0)∪Al′(T )) du

)q
⎤
⎦ ·

The process
μ(Ag

l′ (T/4) \ Ag
l′(u)) − ψ′(0)θ(Ag

l′ (T/4) \ Ag
l′(u))

is a martingale for u in [T/4, 3T, 4] and we have θ(Ag
l′ (T/4)) bounded independently from l′. By applying

Doob’s inequality, there exists some constant C > 0 independent from l′ such that:

E

[
eq supu(μ(Ag

l′ (T/4)\A
g

l′ (u)))

]
≤ C.

Similarly, we have:

E

[
eq supu(μ(Ad

l′ (3T/4)\Ad
l′ (u)))

]
≤ C.

Therefore, we get:

E

[
eqωl′ (0)+qωl′(T )−2ψ(q)(ln(T/l′)+1)( ∫ 3T/4

T/4 eωl′(u) du
)q

]
≤ CE

[
1( ∫ 3T/4

T/4 eμ(Al′ (u)\(Al′(0)∪Al′(T )) du
)q
]
·

Since ψ(−q) <∞, by using the same argument than the proof of theorem 3 (Moments of negative orders) in [3],
one can show that:

sup
l′

E

[
1( ∫ 3T/4

T/4 e
μ

(
Al′(u)\(Al′ (0)∪Al′(T )

)
du
)q
]
<∞.
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To sum up, gathering the estimates of φ1(l, γ0) and φ2(l, γ0), we have proved the existence of some constant
C > 0 such that:

φ(l, γ0) ≤ C

∫
[0,T ]2

1
|y − x|ζ(q) γ0(dx)γ0(dy) < +∞.

Let us now define the measure ν(dt) = liml→0+ νl(dt) (see Lemma 6.3 below). From Lemma 6.3 and the Fatou
lemma, we obtain

E

[∫
[0,T ]2

ρ(x, y)−q ν(dx) ν(dy)

]
≤ E

[
lim inf
l→0+

∫
[0,T ]2

ρl(x, y)−q νl(dx) νl(dy)

]

≤ lim inf
l→0+

E

[ ∫
[0,T ]2

ρl(x, y)−q νl(dx) νl(dy)

]

≤ C

∫
[0,T ]2

1
|y − x|ζ(q) γ0(dx)γ0(dy) < +∞.

As a consequence, P a.s. the integral
∫
[0,T ]2

ρ(x, y)−q ν(dx) ν(dy) is finite. We complete the proof with the
Frostman Lemma. �

Lemma 6.3. Assume that we are given q ∈ [0, 1[ such that

∫
[0,T ]2

γ0(dx)γ0(dy)
|y − x|ζ(q) < +∞.

We consider, for any l > 0, the measure on [0, T ]:

νl(dt) = eqωl(t)−ψ(q)
(

ln(T/l)+1
)
γ0(dt).

Then the weak limit (in the sense of measures)

ν(dt) = lim
l→0+

νl(dt)

exists P-a.s., is finite, supported by K P-a.s., and we have

∫
[0,T ]2

ρ(x, y)−q ν(dx) ν(dy) ≤ lim inf
l→0+

∫
[0,T ]2

ρl(x, y)−q νl(dx) νl(dy).

Proof. According to the proof of Proposition 6.2, we have

φ(l, γ0) ≤ C

∫
[0,T ]2

γ0(dx)γ0(dy)
|y − x|ζ(q) < +∞.

Furthermore, ρl(x, y) ≤ ρl(0, T ) for any 0 ≤ x ≤ y ≤ T , in such a way that

E[νl(A)2ρl(0, T )−ζ(q)] ≤ φ(l, γ0) ≤ C

∫
[0,T ]2

γ0(dx)γ0(dy)
|y − x|ζ(q) < +∞
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for any Lebesgue measurable subset A of [0, T ]. Moreover, if the Lebesgue measure of A is strictly positive then
the Hölder inequality yields

E[νl(A)2/(1+ζ(q))] ≤ E[νl(A)2Ml([0, T ])−ζ(q)]1/(1+ζ(q))E[Ml([0, T ])]ζ(q)/(1+ζ(q))

≤ C′
∫

[0,T ]2

γ0(dx)γ0(dy)
|y − x|ζ(q) < +∞. (6.2)

We remind the reader that (νl(A))l is martingale for any Lebesgue measurable subset A of [0, T ]. From (6.2),
this martingale is bounded in L1+ε for some ε > 0. As a consequence, it converges P-a.s. towards a limit
denoted by ν(A) as l → 0. It is readily seen that ν is a measure on [0, T ] P-a.s. Since νl(Kc) = 0, it is clear
that ν(Kc) = 0 P-a.s.

Finally, E[ν([0, T ])] = liml→0 E[νl([0, T ])] = γ0([0, T ]) ≥ 1. Moreover {ν([0, T ]) > 0} is an event of the
asymptotic σ-field generated by the random variables (νl(A))l and has therefore probability 0 or 1. As a
consequence, the event {ν([0, T ]) > 0} has probability 1.

The last inequality of the lemma results from Lemma 6.4 below and the weak convergence of measures. �

Lemma 6.4. P a.s., the metric (ρl)l uniformly converges towards the metric ρ as l → 0, that is

P a.s., lim
l→0

sup
0≤x≤y≤T

|ρl(x, y) − ρ(x, y)| = 0.

Proof. The mapping x �→ ρ(0, x) is continuous because of the non-degeneracy of ρ (see Prop. 2.5). Moreover,
for each l > 0, the mapping x �→ ρl(0, x) is increasing and the sequence (ρl(0, x) converges pointwise P a.s.
towards ρ(0, x) (see Def. 2.4). The uniform convergence then results from the Dini theorem. �

7. Proof of theorem 5.2

Let r < R. We choose δ > 0 such that r + δ < R. With the notations of Section 5.1, one can see that there
exists two positive constants cr,δ, Cr,δ such that for all x, y ∈ B(0, r + δ) we have (independently of l and x, y):

E[Xl(x)Xl(y)] + cr,δ ≤ E[Xl,F (x)Xl,F (y)] ≤ E[Xl(x)Xl(y)] + Cr,δ. (7.1)

Proof of : ζ(dimMF

H (K)) ≤ dimH(K).
The inequality (7.1) and the classical Corollary 6.2 in [19] imply the existence for q ∈ [0, 1] of Cq,r,δ > 0 such

that:

∀B(xi, ri) ⊂ B(0, r + δ), E[MF (B(xi, ri))q] ≤ Cq,r,δr
ζ(q)
i .

We conclude by using the same argument than in the proof of Theorem 4.1.
Proof of ζ(dimMF

H (K)) ≥ dimH(K).
Suppose ζ(q) < dimH(K). Following the notations of Section 6 (proof of Thm. 4.1), we consider a measure

γ0 supported by K such that γ0(K) = 1 and

∫
[0,T ]2

|x− y|−ζ(q) γ0(dx) γ0(dy) < +∞.
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The inequality (7.1) and the classical corollary 6.2 in [19] imply the existence of some constant Cq,r,δ > 0 such
that for all x, y ∈ B(0, r) with |y − x| ≤ δ:

E

⎡
⎣
(∫

B(x,|y−x|)
eXl,F (z)− 1

2 E[Xl,F (z)2]dz

)−q
eqXl,F (x)+qXl,F (y)− q2

2 E[Xl,F (x)2]− q2

2 E[Xl,F (y)2]

⎤
⎦ ≤

Cq,r,δE

⎡
⎣(∫

B(x,|y−x|)
eXl(z)− 1

2 E[Xl(z)
2]dz

)−q
eqXl(x)+qXl(y)− q2

2 E[Xl(x)
2]− q2

2 E[Xl(y)
2]

⎤
⎦ .

Taking the limit as l goes to 0, this implies:

lim
l→∞

∫
|y−x|≤δ

γ0(dx)γ0(dy)E

⎡
⎣(∫

B(x,|y−x|)
eXl,F (z)−1

2 E[Xl,F (z)2]dz

)−q
eqXl,F (x)+qXl,F (y)− q2

2 E[Xl,F (x)2]−q2
2 E[Xl,F (y)2]

⎤
⎦≤

Cq,r,δ lim
l→∞

∫
|y−x|≤δ

γ0(dx)γ0(dy)E

⎡
⎣
(∫

B(x,|y−x|)
eXl(z)− 1

2 E[Xl(z)
2]dz

)−q
eqXl(x)+qXl(y)− q2

2 E[Xl(x)
2]− q2

2 E[Xl(y)
2]

⎤
⎦<∞.

We remind that the second inequality above results from a straightforward adaptation to the 2 dimensional case
of the proof of Theorem 4.1 (in the log normal case).

We then conclude by using the same argument than in the proof of Theorem 4.1.
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