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WIENER INTEGRAL FOR THE COORDINATE PROCESS UNDER
THE σ-FINITE MEASURE UNIFYING BROWNIAN PENALISATIONS ∗

Kouji Yano1

Abstract. Wiener integral for the coordinate process is defined under the σ-finite measure unifying
Brownian penalisations, which has been introduced by [Najnudel et al., C. R. Math. Acad. Sci. Paris
345 (2007) 459–466] and [Najnudel et al., MSJ Memoirs 19. Mathematical Society of Japan, Tokyo
(2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the
author’s recent study [K. Yano, J. Funct. Anal. 258 (2010) 3492–3516] of Cameron-Martin formula
for the σ-finite measure.
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1. Introduction

Let Ω = C([0,∞) → R) and let F∞ = σ(Xs : s ≥ 0) where (Xs : s ≥ 0) stands for the coordinate process.
Let R+ denote the law on (Ω,F∞) of the 3-dimensional Bessel process starting from 0. We denote by R− the
law on (Ω,F∞) of (−Xt) under R+. We define R = R++R−

2 ; in other words, R is the law on Ω of (εXt) under
the product measure P (dε) ⊗ R+(dX) where P (ε = 1) = P (ε = −1) = 1/2. For u > 0 and for two processes
X(u) = (Xt : 0 ≤ t ≤ u) and Y = (Yt : t ≥ 0), we define the concatenation X(u) • Y as

(X(u) • Y )t =

⎧⎪⎨⎪⎩
Xt if 0 ≤ t < u,

Yt−u if t ≥ u and Xu = Y0,

Xu if t ≥ u and Xu �= Y0.

(1.1)

We define the concatenation Π(u) • R as the law on (Ω,F∞) of the concatenation X(u) • Y under the product
measure Π(u)(dX(u)) ⊗R(dY ).

In this paper we consider the following σ-finite measure W defined on (Ω,F∞):

W =
∫ ∞

0

du√
2πu

(
Π(u) •R

)
. (1.2)
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This measure W has been introduced by Najnudel et al. [8,9] (see also [13]) in order to give a global view
on various Brownian penalisations, which were developed by Roynette et al. (see [10,11] and the references
therein).

The purpose of this paper is to define and study Wiener integral, i.e., stochastic integral whose integrand is
a deterministic function f , written as ∫ ∞

0

f(s)dXs under W . (1.3)

We discuss its decomposition into the sum of two Wiener integrals before and after last exit time from 0; the
former is for Brownian bridge, while the latter is for 3-dimensional Bessel process.

As an application of the Wiener integral under W , the author studies, in a separate paper [12], Cameron-
Martin formula for W , i.e., quasi-invariance of W under deterministic translations.

Our main results are stated in the remainder of this section. All of their proofs will be given in Section 4.
(1) Wiener integrals. Let us recall definition of Wiener integrals. If the integrand is an indicator, we define∫ ∞

0

1[t1,t2)(s)dXs = Xt2 −Xt1 . (1.4)

We extend it linearly so that we define Wiener integral
∫∞
0
f(s)dXs if the integrand f is a step function. In order

to extend it to more general integrand functions, we need certain properties peculiar to the process considered;
see below.

The following facts are well-known: if a sequence {fn} of step functions approximates f in L2(ds), then, for
Brownian motion {(Xs),W}, it holds that∫ ∞

0

fn(s)dXs −→
n→∞

∫ ∞

0

f(s)dXs in L2(W ) (1.5)

and, for Brownian bridge {(Xs),Π(u)} with u > 0, it holds that∫ u

0

fn(s)dXs −→
n→∞

∫ u

0

f(s)dXs in L2(Π(u)). (1.6)

The symmetrized 3-dimensional Bessel process {(Xt), R} requires an integrand function f to belong to L2(ds)
and as well to the following class:

L1

(
ds√
s

)
=
{
f :
∫ ∞

0

|f(s)| ds√
s
<∞

}
. (1.7)

Now the following fact holds (see Sect. 3.4 for details): if a sequence {fn} of step functions approximates f
both in L2(ds) and in L1( ds√

s
), i.e.,∫ ∞

0

|fn(s) − f(s)|2ds+
∫ ∞

0

|fn(s) − f(s)| ds√
s
→ 0, (1.8)

then ∫ ∞

0

fn(s)dXs −→
n→∞

∫ ∞

0

f(s)dXs in R-probability. (1.9)

Note that we cannot dispense with the assumption f ∈ L1( ds√
s
); see Remark 3.13.
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(2) Approximation theorem. Let us discuss the Wiener integral (1.3). Note that the measure W on F∞
is singular to Wiener measure and also to BES(3) measure; in fact, it holds W -a.e. that |Xt| → ∞ as t → ∞
and that (Xt) takes both positive and negative values. Thus, in order to define the Wiener integral (1.3), we
can only utilize the definition (1.2).

We need the following notion of convergence. We say that a sequence {Zn} of measurable functionals converge
locally in W -measure to a measurable functional Z if, for any ε > 0 and any measurable set A with W (A) <∞,

W (A ∩ {|Zn − Z| ≥ ε}) → 0 as n→ ∞. (1.10)

Thanks to the σ-finiteness of W , this notion of convergence plays a key role; see Section 2 for details, and
also [1].

We introduce the following class of functions:

L1

(
ds

1 +
√
s

)
=
{
f :
∫ ∞

0

|f(s)| ds
1 +

√
s
<∞

}
. (1.11)

Note that f ∈ L1( ds
1+

√
s
) if and only if f is locally integrable and

∫∞
v

|f(s)| ds√
s
<∞ for any (large) v > 0. Wiener

integral for X under W may be defined through the following theorem.

Theorem 1.1. Let f ∈ L2(ds) ∩ L1( ds
1+

√
s
). Let {fn} be a sequence of step functions such that {fn} approxi-

mates f both in L2(ds) and in L1( ds
1+

√
s
), i.e.,

∫ ∞

0

|fn(s) − f(s)|2ds+
∫ ∞

0

|fn(s) − f(s)| ds
1 +

√
s
→ 0. (1.12)

(Note that this condition is weaker than (1.8).) Then there exists a random variable, which will be denoted by∫∞
0 f(s)dXs, such that ∫ ∞

0

fn(s)dXs −→
n→∞

∫ ∞

0

f(s)dXs locally in W -measure. (1.13)

The limit random variable does not depend up to W -null sets on the choice of the approximation sequence {fn}.

Since L1(ds) ⊂ L1( ds
1+

√
s
), the following corollary is immediate from Theorem 1.1.

Corollary 1.2. Let f ∈ L2(ds)∩L1(ds). Let {fn} be a sequence of step functions such that {fn} approximates
f both in L2(ds) and in L1(ds). Then it holds that

∫ ∞

0

fn(s)dXs −→
n→∞

∫ ∞

0

f(s)dXs locally in W -measure. (1.14)
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(3) Decomposition before and after last exit time. Let g(X) denote the last exit time from 0 for X :

g(X) = sup{s ≥ 0 : Xs = 0}. (1.15)

For u ≥ 0, let θuX denote the shifted process: (θuX)s = Xu+s, s ≥ 0. Then the definition (1.2) says that the
measure W may be described as follows:

(i) W (g(X) ∈ du) =
du√
2πu

;

(ii) For (Lebesgue) a.e. u ∈ [0,∞), it holds that, given g(X) = u,
(iia) (Xs : s ≤ u) is a Brownian bridge from 0 to 0 of length u;
(iib) ((θuX)s : s ≥ 0) is a symmetrized 3-dimensional Bessel process.

Based on this path decomposition, we may also decompose the Wiener integral as follows.

Theorem 1.3. Let f ∈ L2(ds) ∩ L1( ds
1+

√
s
). Then it holds that

f(· + u) ∈ L1

(
ds√
s

)
for a.e. u ∈ [0,∞) (1.16)

and that there exists a jointly measurable functional (u,X) �→ I(f ;u,X) such that∫ ∞

0

f(s)dXs = I(f ; g(X), X) W -a.e. (1.17)

and that, for a.e. u ∈ [0,∞),

I(f ;u,X) =
∫ u

0

f(s)dXs +
∫ ∞

0

f(s+ u)d(θuX)s (Π(u) •R)-a.e. (1.18)

In the right hand side of the expression (1.18), the first and the second terms are Wiener integrals for the Brow-
nian bridge (Xs : s ≤ u) and for the symmetrized 3-dimensional Bessel process ((θuX)s : s ≥ 0), respectively.

(4) Continuous modification. Let 0 < T < ∞ be fixed and write FT = σ(Xs : s ∈ [0, T ]). Note that an
FT -measurable set is W -null if and only if it is W -null. Although we cannot apply Radon-Nikodym theorem to
W since it is not σ-finite on FT , we have the following absolute continuity relationship (see [9], Eq. (1.2.45)):

W
[
FT (X)e−g(X)

]
= W [FT (X)ΛT (X)] (1.19)

for any bounded FT -measurable functional FT (X), where ΛT (X) is given as

ΛT (X) = |XT | exp
(
−g(T )(X)

)
+
∫ ∞

0

du√
2πu

e−(T+u) exp
(
−X

2
T

2u

)
(1.20)

and where g(T )(X) = sup{s ≤ T : Xs = 0}. This shows that, if we assume that f ∈ L2([0, T ], ds), there
exists, under W , a continuous modification {∫ t

0
f(s)dXs : t ∈ [0, T ]} of {∫∞

0
1[0,t)f(s)dXs : t ∈ [0, T ]}. It is

not, however, immediate from this fact whether there exists a jointly measurable functional which gives the
decomposition of the continuous modification before and after the last exit time. The following theorem assures
existence of such a functional.

Theorem 1.4. Let f ∈ L2([0, T ], ds). Then there exists a jointly measurable functional (t, u,X) �→ It(f ;u,X)
such that the following statements hold:

(i) For a.e. u ∈ [0,∞) and for (Π(u) •R)(dX)-a.e. X, the function t �→ It(f ;u,X) is continuous;
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(ii) For each t ∈ [0, T ], ∫ t

0

f(s)dXs = It(f ; g(X), X) W -a.e.; (1.21)

(iii) For each t ∈ [0, T ] and for a.e. u ∈ [0,∞),

It(f ;u,X) =
∫ u∧t

0

f(s)dXs +
∫ (t−u)∨0

0

f(s+ u)d(θuX)s (Π(u) •R)-a.e. (1.22)

(5) This paper is organized as follows. In Section 2, we study several properties of convergence a.e. and of
convergence locally in measure, both considered on a σ-finite measure space. In Section 3, we recall Wiener
integrals for Brownian motion, Brownian bridge and 3-dimensional Bessel process. Section 4 is devoted to the
proofs of the main theorems.

2. Convergence locally in W -measure

In this subsection, we only assume that (Ω,F ,W ) is a σ-finite measure space.

Definition 2.1. Let Z,Z1, Z2, . . . be F -measurable functionals. As n → ∞, we say that Zn → Z locally in
W -measure if, for any ε > 0 and any A ∈ F with W (A) <∞, it holds that

W (A ∩ {|Zn − Z| ≥ ε}) → 0. (2.1)

Let us study some properties about this convergence. Define

L1
+(W ) = {G : Ω → R+, F -measurable, W (G = 0) = 0, W [G] <∞} . (2.2)

For G ∈ L1
+(W ), we define a probability measure W G on (Ω,F) by

W G(A) =
W [1AG]
W [G]

, A ∈ F . (2.3)

We obtain the following lemma, which only requires the σ-finiteness of W .

Proposition 2.2. Let Z,Z1, Z2, . . . be F-measurable functionals.
(i) The following three statements are equivalent:

(A1) Zn → Z W -a.e.
(A2) Zn → Z W G-a.s. for some G ∈ L1

+(W ).
(A3) Zn → Z W G-a.s. for any G ∈ L1

+(W ).
(ii) The following three statements are equivalent:

(B1) Zn → Z locally in W -measure.
(B2) Zn → Z in W G-probability for some G ∈ L1

+(W ).
(B3) Zn → Z in W G-probability for any G ∈ L1

+(W ).
(iii) Zn → Z locally in W -measure if and only if one can extract, from an arbitrary subsequence, a further
subsequence {n(k) : k = 1, 2, . . .} along which Zn(k) → Z W -a.e.
(iv) Convergence locally in W -measure may be induced by some complete separable metric on the set of
F∞-measurable functionals.

The reader may not be familiar with claim (ii), so we give its proof for convenience of the reader, although
it is an elementary argument.
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Proof of claim (ii) of Proposition 2.2. Note that, since W is σ-finite, we may take a family {Em} ⊂ F such
that 0 < W (Em) <∞ and ∪mEm = Ω.

[(B3) ⇒ (B1)] Suppose that Zm → Z in W G-probability for any G ∈ L1
+(W ). Let A ∈ F such that

W (A) < ∞. We define G = 1A +
∑∞

m=1 2−mW (Em)−11Em . Then we have G ∈ L1
+(W ), and consequently, we

obtain Zn → Z in W G-probability. For any ε > 0, we have

W (A ∩ {|Zn − Z| ≥ ε}) ≤ W [G]W G(|Zn − Z| ≥ ε) → 0. (2.4)

Hence we obtain (B1).
[(B1) ⇒ (B2)] Suppose that Zn → Z locally in W -measure. Then, for any ε > 0, we have

∞∑
m=1

1
2mW (Em)

W (Em ∩ {|Zn − Z| ≥ ε}) −→
n→∞ 0. (2.5)

Now we defineG =
∑∞

m=1 2−mW (Em)−11Em . Then we haveG ∈ L1
+(W ) and obtain Zn → Z in W G-probability.

[(B2) ⇒ (B3)] Suppose that Zn → Z in W G-probability for G ∈ L1
+(W ). Then, from any subsequence

k(n) → ∞, we can extract a further subsequence k′(n) → ∞ along which Zk′(n) → Z, W G-a.s., and consequently
by (i), Zk′(n) → Z, W -a.e. Hence, again by (i), we obtain (B3). The proof of claim (ii) is now complete. �

3. Wiener integrals for Brownian motion, Brownian bridge and 3-dimensional
Bessel process

3.1. Wiener integrals

Let Ω = C([0,∞) → R) and X = (Xt : t ≥ 0) stand for the coordinate process. For 0 < u <∞, let S([0, u])
denote the set of all step functions f on [0, u] of the form:

f(t) =
n∑

k=1

ck1[tk−1,tk)(t), t ≥ 0 (3.1)

with n ∈ N, ck ∈ R (k = 1, . . . , n) and 0 = t0 < t1 < · · · < tn < u. Note that S([0, u]) is dense in
L2([0, u], ds); indeed, we can take two sequences {f+

n } and {f−
n } from S([0, u]) such that 0 ≤ f+

n ↗ f ∨ 0 and
0 ≤ f−

n ↗ (−f) ∨ 0, and hence we see that f+
n − f−

n → f in L2([0, u], ds). We write

S =
{
f : ∃ u ∈ [0,∞) such that f |[u,∞) = 0 and f |[0,u) ∈ S([0, u])

}
. (3.2)

Then we know that S is dense in L2(ds).
For a function f ∈ S and a process X , we define∫ ∞

0

f(s)dXs =
n∑

k=1

ck(Xtk
−Xtk−1). (3.3)

For a more general function f , we will write
∫∞
0
f(s)dXs for the limit of

∫∞
0
fn(s)dXs in some sense with an

approximation sequence {fn} ⊂ S of f in some functional space, and call it Wiener integral of f for X whenever
it is well-defined.

In the following subsections, we give an introductory review on how to construct Wiener integrals for Brownian
motion, Brownian bridge and 3-dimensional Bessel process, and on several facts about them.
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3.2. Wiener integral for Brownian motion

Denote F∞ = σ(Xs : s ≥ 0). Let W denote the Wiener measure, i.e., the law on (Ω,F∞) of a (one-
dimensional, standard) Brownian motion. Let us recall Wiener integral for the Brownian motion {(Xt),W}.

The key to approximation is the following identity:

Theorem 3.1 (Itô isometry). For any f ∈ S, it holds that

W

[∣∣∣∣∫ ∞

0

f(s)dXs

∣∣∣∣2
]

=
∫ ∞

0

|f(s)|2ds. (3.4)

Although it is widely known, we give the proof for completeness of the paper.

Proof. Let f ∈ S be of the form (3.1). Since {Xtk
−Xtk−1 : k = 1, . . . , n} is an orthogonal system in L2(W )

and since W [(Xtk
−Xtk−1)

2] = tk − tk−1, we have

W

⎡⎣∣∣∣∣∣
n∑

k=1

ck(Xtk
−Xtk−1)

∣∣∣∣∣
2
⎤⎦ =

n∑
k=1

c2k (tk − tk−1) . (3.5)

This proves (3.4). �

The Itô isometry (3.4) shows that if {fn} ⊂ S approximates f in L2(ds), then the Wiener integral
∫∞
0 fn(s)dXs

forms a Cauchy sequence in L2(W ) and hence it converges in L2(W ) where the limit random variable does not
depend on the choice of the approximation sequence {fn}.
Definition 3.2. For f ∈ L2(ds), the Wiener integral

∫∞
0
f(s)dXs is defined as the L2(W )-limit of

∫∞
0
fn(s)dXs

for some sequence {fn} ⊂ S which approximates f in L2(ds).

Theorem 3.3. For any f ∈ L2(ds), the Wiener integral
∫∞
0
f(s)dXs satisfies the Itô isometry (3.4) and is a

centered Gaussian variable with variance ‖f‖2
L2(ds).

Proof. The former assertion is immediate from Theorem 3.1. The latter is obvious via characteristic functions.
�

3.3. Wiener integral for Brownian bridge

Let 0 < u <∞ be fixed. We write Ω(u) = C([0, u] → R) and write X(u) = (Xs : 0 ≤ s ≤ u) for the coordinate
process. (We sometimes use the same symbol X(u) to mean the part (Xs : 0 ≤ s ≤ u) of the coordinate process
(Xs : s ≥ 0) of Ω = C([0,∞) → R).) Denote Fu = σ(Xs : s ≤ u). We denote by Π(u) the law on (Ω(u),Fu) of
the Brownian bridge:

Π(u)(·) = W (·|Xu = 0). (3.6)

The process X(u) under Π(u) is a continuous centered Gaussian process with covariance Π(u)[XsXt] = s− st/u
for 0 ≤ s ≤ t ≤ u. As a realization of {(Xs),Π(u)}, we may take(

Bs − s

u
Bu : s ∈ [0, u]

)
(3.7)

where {(Bt),Π(u)} is a Brownian motion.
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Let us recall Wiener integral for Brownian bridge {X(u),Π(u)} for 0 < u < ∞. (See also [6].) For f ∈
L2([0, u], ds), we define πuf ∈ L2([0, u], ds) by

(πuf)(s) = f(s) − 1
u

∫ u

0

f(t)dt, s ∈ [0, u]. (3.8)

Note that
∫ u

0 (πuf)(s)ds = 0 and that

‖πuf‖2
L2([0,u],ds) = ‖f‖2

L2([0,u],ds) −
1
u

(∫ u

0

f(t)dt
)2

. (3.9)

In particular, we have

‖πuf‖L2([0,u],ds) ≤ ‖f‖L2([0,u],ds). (3.10)

Theorem 3.4 (Itô isometry for Brownian bridge). For any f ∈ S([0, u]), it holds that

Π(u)

[(∫ u

0

f(s)dXs

)2
]

=
∫ u

0

|πuf(s)|2ds. (3.11)

Although it is elementary, we give the proof for completeness of the paper.

Proof. Let us adopt the realization (3.7) of the Brownian bridge. Taking the Wiener integrals for (Bt) of both
sides of (3.8), we obtain ∫ u

0

f(s)dBs − Bu

u

∫ u

0

f(s)ds =
∫ u

0

(πuf)(s)dBs. (3.12)

This shows that ∫ u

0

f(s)dXs =
∫ u

0

(πuf)(s)dBs (3.13)

for all f ∈ S([0, u]). Thus we obtain (3.11) from the Itô isometry (3.4) for Wiener integral for (Bt). �
The Itô isometry (3.11) and inequality (3.10) show that if {fn} ⊂ S([0, u]) approximates f in L2([0, u], ds),

then the Wiener integral
∫∞
0
fn(s)dXs forms a Cauchy sequence in L2(Π(u)) and hence it converges in L2(Π(u))

where the limit random variable does not depend on the choice of the approximation sequence {fn}.
Definition 3.5. For f ∈ L2([0, u], ds), the Wiener integral

∫∞
0
f(s)dXs is defined as the L2(Π(u))-limit of∫∞

0
fn(s)dXs for some sequence {fn} ⊂ S which approximates f in L2([0, u], ds).

Theorem 3.6. For any f ∈ L2([0, u], ds), the Wiener integral
∫∞
0
f(s)dXs satisfies the Itô isometry (3.11) and

identity (3.13), and is a centered Gaussian variable with variance ‖πuf‖2
L2([0,u],ds).

Proof. The former assertion is immediate from Theorem 3.4. The latter is obvious via characteristic
functions. �

3.4. Wiener integral for 3-dimensional Bessel process via stochastic differential equation

Recall that R+ is the law on (Ω,F∞) of the 3-dimensional Bessel process starting from 0. It is well-known
that R+ is the law of the process (

√
Zt) where (Zt) is the unique strong solution to the stochastic differential

equation

dZt = 2
√
|Zt|dβt + 3dt, Z0 = 0 (3.14)
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with (βt) a Brownian motion. Under R+, the process X satisfies

dXt = dBt +
1
Xt

dt, X0 = 0 (3.15)

with a Brownian motion {(Bt), R+}.
We may define Wiener integral for 3-dimensional Bessel process {(Xt), R+} via the stochastic differential

equation (3.15). Noting that

R+

[
1
Xt

]
=

√
2
πt
, (3.16)

we may give the following definition.

Definition 3.7. For f ∈ L2(ds) ∩ L1( ds√
s
), we define

∫ ∞

0

f(s)dXs =
∫ ∞

0

f(s)dBs +
∫ ∞

0

f(s)
Xs

ds. (3.17)

Approximation by step functions is given as follows.

Lemma 3.8. Let f ∈ L2(ds) ∩ L1( ds√
s
). Suppose that a sequence {fn} ⊂ S approximates f both in L2(ds) and

in L1( ds√
s
) (see (1.8)). Then it holds that

∫ ∞

0

fn(s)dXs −→
n→∞

∫ ∞

0

f(s)dXs in L1(R+). (3.18)

Proof. Since fn → f in L2(ds), we have∫ ∞

0

fn(s)dBs −→
n→∞

∫ ∞

0

f(s)dBs in L2(R+), (3.19)

and consequently, the convergence occurs also in L1(R+). Since

R+

[∫ ∞

0

|fn(s) − f(s)|
Xs

ds
]

=

√
2
π

∫ ∞

0

|fn(s) − f(s)| ds√
s

−→
n→∞ 0, (3.20)

we have ∫ ∞

0

fn(s)
Xs

ds −→
n→∞

∫ ∞

0

f(s)
Xs

ds in L1(R+). (3.21)

The proof is now complete. �

3.5. Wiener integral for 3-dimensional Bessel process via centered Bessel process

There is another way of constructing Wiener integral for the 3-dimensional Bessel process, which is due to
Funaki et al. [2] (see also [3–5]). Note that this method will play a crucial role in [12].

We define

X̂t = Xt −R+[Xt] (3.22)
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and we call {(X̂t), R+} the centered 3-dimensional Bessel process. For f ∈ S of the form (3.1), the Wiener
integral has already been defined as ∫ ∞

0

f(s)dX̂s =
n∑

k=1

ck(X̂tk
− X̂tk−1). (3.23)

We remark that neither the 3-dimensional Bessel process nor the centered one is Gaussian. So we cannot expect
an isometry to hold similar to the Itô isometries (3.4) and (3.11). Funaki et al. [2] obtained the following
remarkable inequality analogous to the Itô isometries.

Theorem 3.9 (Funaki et al. [2]). For any f ∈ S and any non-negative convex function ψ on R, it holds that

R+

[
ψ

(∫ ∞

0

f(s)dX̂s

)]
≤W

[
ψ

(∫ ∞

0

f(s)dXs

)]
. (3.24)

In particular, taking ψ(x) = x2, one has

R+

[∣∣∣∣∫ ∞

0

f(s)dX̂s

∣∣∣∣2
]
≤
∫ ∞

0

|f(s)|2ds. (3.25)

For the proof of this theorem, see [2], Proposition 4.1.
The inequality (3.25) shows that, if {fn} ⊂ S approximates f in L2(ds), then the Wiener integral

∫∞
0
fn(s)dX̂s

forms a Cauchy sequence in L2(R+) and hence it converges in L2(R+) where the limit random variable does
not depend on the choice of the approximation sequence {fn}.
Definition 3.10. For f ∈ L2(ds), the Wiener integral

∫∞
0
f(s)dX̂s is defined as the L2(R+)-limit of

∫∞
0
fn(s)dX̂s

for some sequence {fn} ⊂ S which approximates f in L2(ds).

Theorem 3.11. For any f ∈ L2(ds) and any non-negative convex function ψ on R, the inequality (3.24)
remains valid, and so does (3.25), in particular.

Proof. We may take an approximation sequence {fn} of f in L2(ds) so that σn := ‖fn‖L2(ds) converges increas-
ingly to σ := ‖f‖L2(ds). By the monotone convergence theorem, we see that∫ ∞

−∞
ψ(x) exp

(
− x2

2σn

)
dx −→

n→∞

∫ ∞

−∞
ψ(x) exp

(
− x2

2σ

)
dx. (3.26)

(The limit may possibly be infinite.) Since the Wiener integral for Brownian motion is Gaussian, we obtain

W

[
ψ

(∫ ∞

0

fn(s)dXs

)]
−→

n→∞ W

[
ψ

(∫ ∞

0

f(s)dXs

)]
. (3.27)

Therefore we obtain (3.24) by Fatou’s lemma and by Theorem 3.9. �
Note that

R+[Xt] =

√
2
π

∫ t

0

ds√
s
, t ≥ 0. (3.28)

Lemma 3.12. Let f ∈ L2(ds) ∩ L1( ds√
s
). Then, under R+, it holds that

∫ ∞

0

f(s)dXs =
∫ ∞

0

f(s)dX̂s +

√
2
π

∫ ∞

0

f(s)
ds√
s

(3.29)

where the Wiener integral in the left hand side has been defined in (3.17).
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Proof. It is obvious that the equality (3.29) holds in the case where f is a step function. In the general case,
we obtain (3.29) by approximating f by step functions both in L2(ds) and in L1( ds√

s
). �

Remark 3.13. We cannot dispense with the assumption that f ∈ L1( ds√
s
); in fact, if

f(s) =
1√
s log s

1(2,∞)(s), (3.30)

then f ∈ L2(ds) so that
∫∞
0
f(s)dX̂s exists, while the integral

∫∞
0
f(s) ds√

s
diverges. See [7] for a very similar

discussion.

4. Wiener integral under the σ-finite measure

4.1. A limit theorem for last exit time

Note that the last exit time from 0 up to time t, denoted by g(t)(X) = sup{s ≤ t : Xs = 0}, has, under W ,
the arcsine law:

W (g(t)(X) ∈ du) =
du

π
√
u(t− u)

· (4.1)

We need the following limit theorem.

Theorem 4.1. Let ϕ be a non-negative non-increasing function on (0,∞) such that ϕ ∈ L1( du√
u
). Then it holds

that

lim
t→∞

√
t

∫ t

0

ϕ(u)
du√

u(t− u)
=
∫ ∞

0

ϕ(u)
du√
u

; (4.2)

in other words,

lim
t→∞

√
πt

2
W
[
ϕ(g(t)(X))

]
= W [ϕ(g(X))] . (4.3)

Remark 4.2. We have a counterexample (see [13], ex. 6.1) if we omit the non-increasingness assumption.
Theorem 4.1 is a special case of [13], Lemma 6.3, which plays an important role in penalisation problems.

Proof of Theorem 4.1. It suffices to show that

lim
t→∞

∫ t

0

ϕ(u)

(√
t

t− u
− 1

)
du√
u

= 0. (4.4)

Since
√
a−√

b ≤ √
a− b for a ≥ b ≥ 0, it suffices to show that

lim
t→∞

∫ t

0

ϕ(u)
du√
t− u

= 0. (4.5)

We note that ∫ t

t/4

ϕ(u)
du√
u
≥ ϕ(t)

∫ t

t/4

du√
u

=
√
tϕ(t). (4.6)

Hence it follows from the assumption ϕ ∈ L1( du√
u
) that

√
tϕ(t) → 0 as t→ ∞.
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Let 0 < ε < 1. First, we have∫ t

εt

ϕ(u)
du√
t− u

≤ϕ(εt)
∫ t

εt

du√
t− u

(4.7)

=2

√
1 − ε

ε

{√
εtϕ(εt)

}
−→
t→∞ 0. (4.8)

Second, we have ∫ εt

0

ϕ(u)
du√
t− u

≤
∫ εt

0

ϕ(u)
du√

(u/ε) − u
(4.9)

=
1√

(1/ε) − 1

∫ εt

0

ϕ(u)
du√
u
· (4.10)

Thus we obtain

lim sup
t→∞

∫ t

0

ϕ(u)
du√
t− u

≤ 1√
(1/ε)− 1

∫ ∞

0

ϕ(u)
du√
u
· (4.11)

Letting ε→ 0+, we obtain the desired result. �
We shall utilize the following lemma.

Lemma 4.3. Let ϕ be a non-negative non-increasing function on (0,∞) such that ϕ ∈ L1( du√
u
). Suppose that

ϕ(0+) is finite. Then there exist two constants c0 and C0 such that, for any Borel function f , it holds that

c0

∫ ∞

0

|f(s)| ds
1 +

√
s
≤
∫ ∞

0

du√
u
ϕ(u)

∫ ∞

0

|f(s+ u)| ds√
s
≤ C0

∫ ∞

0

|f(s)| ds
1 +

√
s
· (4.12)

In other words, the norm ‖ · ‖ϕ defined by

‖f‖ϕ =
∫ ∞

0

du√
u
ϕ(u)

∫ ∞

0

|f(s+ u)| ds√
s

(4.13)

is equivalent to the norm ‖ · ‖L1( ds
1+

√
s
). In particular, if f ∈ L1( ds

1+
√

s
), then it holds that∫ ∞

0

|f(s+ u)| ds√
s
<∞ for a.e. u ∈ [0,∞). (4.14)

Proof. Changing the order of integration, we have

‖f‖ϕ =
∫ ∞

0

du√
u
ϕ(u)

∫ ∞

u

|f(s)| ds√
s− u

(4.15)

=
∫ ∞

0

ds|f(s)|
∫ s

0

ϕ(u)
du√

u(s− u)
· (4.16)

Applying Theorem 4.1, we see that∫ s

0

ϕ(u)
du√

u(s− u)
∼
{

(1/
√
s)
∫∞
0
ϕ(u) du√

u
as s→ ∞,

ϕ(0+)π as s→ 0+.
(4.17)

Thus we obtain the desired result. �
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4.2. Approximation theorems

Let ϕ be a non-negative non-increasing function on (0,∞) such that ϕ ∈ L1( du√
u
) and that ϕ(0+) is finite.

We are mainly interested in the measure du√
2πu

Π(u) • R, but it will be more convenient to work with the finite
measure

μϕ(du × dX) =
du

Cϕ
√
u
ϕ(u)

(
Π(u) •R

)
(dX) (4.18)

where Cϕ =
∫∞
0 ϕ(u) du√

u
. Note that∫

F (u,X)μϕ(du× dX) =
1

W [ϕ(g(X))]

∫
Ω

W (dX) [ϕ(g(X))F (g(X), X)] (4.19)

for any non-negative measurable function F on [0,∞)×Ω. For simplicity, we may choose ϕ(u) = e−u and write
μ for μϕ.

For f ∈ S and the coordinate process X , we define

J (1)(f ;u,X(u)) =
∫ u

0

f(s)dXs and J (2)(f ;u, θuX) =
∫ ∞

0

f(s+ u)d(θuX)s. (4.20)

Proposition 4.4. Let f ∈ S. Then it holds that

μ
[
|J (1)(f ;u,X(u))|

]
≤ ‖f‖L2(ds) (4.21)

and that there exists an absolute constant C1 such that

μ
[
|J (2)(f ;u, θuX)|

]
≤ C1

{
‖f‖L2(ds) + ‖f‖L1( ds

1+
√

s
)

}
. (4.22)

Proof. By definition, we have

μ

[∣∣∣∣∫ u

0

f(s)dXs

∣∣∣∣] =
∫ ∞

0

du√
πu

e−u

∥∥∥∥∫ u

0

f(s)dXs

∥∥∥∥
L1(Π(u))

· (4.23)

By the Schwarz inequality and by the Itô isometry (3.11), we have

(4.23) ≤
∫ ∞

0

du√
πu

e−u

∥∥∥∥∫ u

0

f(s)dXs

∥∥∥∥
L2(Π(u))

≤ ‖πuf‖L2([0,u],ds) ≤ ‖f‖L2(ds). (4.24)

This proves (4.21).
By definition, we have

μ

[∣∣∣∣∫ ∞

0

f(s+ u)dXs+u

∣∣∣∣] =
∫ ∞

0

du√
πu

e−uR

[∣∣∣∣∫ ∞

0

f(s+ u)dXs

∣∣∣∣] . (4.25)

Using (3.17), we have

R

[∣∣∣∣∫ ∞

0

f(s+ u)dXs

∣∣∣∣] ≤R [∣∣∣∣∫ ∞

0

f(s+ u)dBs

∣∣∣∣]+
∫ ∞

0

|f(s+ u)|R
[

1
Xs

]
ds (4.26)

≤‖f‖L2(ds) +

√
2
π

∫ ∞

0

|f(s+ u)| ds√
s
· (4.27)
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Hence we have

(4.25) ≤ ‖f‖L2(ds) +
√

2
π

‖f‖ϕ (4.28)

where ϕ(u) = e−u. By Lemma 4.3, we obtain (4.22). The proof is now complete. �

Theorem 4.5. Let f ∈ L2(ds) ∩ L1( ds
1+

√
s
). Suppose that a sequence {fn} ⊂ S approximates f both in L2(ds)

and in L1( ds
1+

√
s
). Then there exist jointly measurable functionals J (1)(f ;u,X(u)) and J (2)(f ;u, θuX) such that

J (1)(fn;u,X(u)) −→
n→∞ J (1)(f ;u,X(u)) in μ-probability (4.29)

and

J (2)(fn;u, θuX) −→
n→∞ J (2)(f ;u, θuX) in μ-probability. (4.30)

The limit functionals do not depend on the choice of the approximation sequence. Moreover, it holds for a.e.
u ∈ [0,∞) and for (Π(u) •R)(dX)-a.e. X that

J (1)(f ;u,X(u)) =
∫ u

0

f(s)dXs and J (2)(fn;u, θuX) =
∫ ∞

0

f(s+ u)d(θuX)s. (4.31)

Proof. This is obvious by Proposition 4.4. �

Now we proceed to prove Theorem 1.1 and Theorem 1.3 at the same time.

Proof of Theorem 1.1 and Theorem 1.3. Let {fn} be a sequence of step functions such that {fn} approximates
f both in L2(ds) and in L1( ds

1+
√

s
). Since fn is a step function, we have

∫ ∞

0

fn(s)dXs = I(fn; g(X), X) (4.32)

where I(fn;u,X) = J (1)(fn;u,X(u)) + J (2)(fn;u, θuX). Thus Theorem 4.5 shows that∫ ∞

0

fn(s)dXs −→
n→∞ I(f ; g(X), X) in W G-probability (4.33)

where I(f ;u,X) = J (1)(f ;u,X(u)) + J (2)(f ;u, θuX) and where G(X) = e−g(X) ∈ L1
+(W ). By (ii) of Proposi-

tion 2.2, we obtain ∫ ∞

0

fn(s)dXs −→
n→∞ I(f ; g(X), X) locally in W -measure (4.34)

where

I(f ;u,X) = J (1)(f ;u,X(u)) + J (2)(f ;u, θuX). (4.35)

This completes the proof. �
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4.3. Continuous modification

Let us prove Theorem 1.4.

Proof of Theorem 1.4. For the coordinate process X and for u = g(X), we define

(̂θuX)t = (θuX)t −
√

2
π

∫ t

0

ds√
s

for t ≥ 0. (4.36)

Let f ∈ L2([0, T ], ds). Then we may define

J (3)(f ;u, θuX) =
∫ ∞

0

f(s+ u)d(̂θuX)s μ-a.s. (4.37)

Applying Theorem 3.11 for ψ(x) = x4 and then using the Gaussian property of {(Xt),W}, we see that

μ

[∣∣∣J (3)(f ;u, θuX)
∣∣∣4] ≤ ∫ ∞

0

du√
πu

e−uR

[∣∣∣J (3)(f ;u, θuX)
∣∣∣4] ≤ 3‖f‖2

L2(ds). (4.38)

For t ∈ [0, T ], we write ft = f1[0,t). Set

M(t) = t+
∫ t

0

|f(s)|2ds. (4.39)

Since the function v = M(t) is continuous and strictly-increasing, there exists its continuous inverse t = L(v).
Then, for 0 ≤ v1 < v2 ≤ T , it holds that

μ

[∣∣∣J (3)(fL(v2);u, θuX) − J (3)(fL(v1);u, θuX)
∣∣∣4] (4.40)

≤ 3

(∫ L(v2)

L(v1)

|f(s)|2ds
)2

≤ 3|v2 − v1|2. (4.41)

From this inequality, we appeal to Kolmogorov’s continuity theorem, and we see that there exists a process
(K(3)

v (f ;u, θuX) : v ∈ [0,M(T )]) which is a μ-a.s. continuous modification of {J (3)(fL(v);u, θuX) : v ∈
[0,M(T )]}. In the same way as above, we may construct a continuous process {K(1)

v (f ;u,X(u)) : v ∈ [0,M(T )])}
which is a μ-a.s. continuous modification of {J (1)(fL(v);u,X(u)) : v ∈ [0,M(T )]}.

Set

U =
{
u ∈ [0,∞) :

∫ ∞

0

|f(s+ u)| ds√
s
<∞

}
. (4.42)

By Lemma 4.3, we see that U c has Lebesgue measure zero. For u ∈ U and t ∈ [0, T ], we define

It(f ;u,X) = K
(1)
M(t)(f ;u,X(u)) +K

(3)
M(t)(f ;u, θuX) +

√
2
π

∫ ∞

0

ft(s+ u)
ds√
s

(4.43)

and, for u /∈ U and t ∈ [0, T ], we define It(f ;u,X) = 0. Therefore we conclude that the resulting process
{It(f ;u,X) : t ∈ [0, T ]} is as desired. �
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