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LOCAL ASYMPTOTIC NORMALITY FOR NORMAL INVERSE GAUSSIAN
LÉVY PROCESSES WITH HIGH-FREQUENCY SAMPLING ∗

Reiichiro Kawai1 and Hiroki Masuda2

Abstract. We prove the local asymptotic normality for the full parameters of the normal inverse
Gaussian Lévy process X, when we observe high-frequency data XΔn , X2Δn , . . . , XnΔn with sampling
mesh Δn → 0 and the terminal sampling time nΔn → ∞. The rate of convergence turns out to be
(
√

nΔn,
√

nΔn,
√

n,
√

n) for the dominating parameter (α, β, δ, μ), where α stands for the heaviness of
the tails, β the degree of skewness, δ the scale, and μ the location. The essential feature in our study
is that the suitably normalized increments of X in small time is approximately Cauchy-distributed,
which specifically comes out in the form of the asymptotic Fisher information matrix.
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1. Introduction

Lévy processes have been recognized as building blocks for analyzing realistic data structure, which most often
loses touch with the conventional Gaussianity especially when dealing with high-frequency data, such as intraday
stock returns. For a stochastic-process model based on high-frequency data, one of the most fundamental, yet
in no way obvious, issues is estimation of the dominating parameters involved, where we observe discrete-time
sample XΔn , X2Δn , . . . , XnΔn stemming from a stochastic process X = (Xt)t∈R+ , where Δn → 0 denotes
a diminishing sampling mesh. This high-frequency data framework often leads to a better understanding
of fine data structure and estimation performance than in case of targeting the classical independent and
identically distributed data with Δn ≡ Δ > 0, a fixed constant. Moreover, due to a wide variety of the class
of Lévy processes, it is a rather difficult matter to formulate a unified and versatile parametric estimation
procedure for the whole class of Lévy processes discretely observed at high frequency. In general, the marginal
distribution L(Xt) for t �= 1 do not belong to the same distribution family as L(X1). Even if the existence of
the Lebesgue density of L(XΔn) is guaranteed, the corresponding likelihood function does not have a closed
form, making the likelihood analysis intractable and difficult.

Among others, the normal inverse Gaussian (NIG) Lévy process exhibits attractive features: the tractability
and the availability of a simple simulation method at arbitrary sampling frequencies (i.e., for any Δn > 0).
The NIG distribution is a four-parameter family, derived as a special case of the highly flexible five-parameter
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generalized hyperbolic (GH) distribution introduced by Barndorff–Nielsen [5] for investigating a distribution of
size of wind-blown particles of sand. The GH distribution is known to be infinitely divisible (more strongly,
selfdecomposable), hence, we can associate with it a Lévy process such that L(X1) is the GH distribution.
However, the GH Lévy processes has a drawback that L(Xt) no longer belongs to the GH family for t �= 1, and
moreover, the characteristic function of the GH distribution is rather complicated, so that the Fourier inversion
formula is also intractable (see, e.g., Prause [19], Lem. 1.18). One may consult Prause [19] in Section 1, for
estimation of the GH distributions (hence contains the NIG case) in the classical iid setting, together with a
series of empirical analysis concerning financial asset data. Although he studied explicit derivation of the score
function and several numerical recipes to obtain maximum likelihood estimates, no theoretical background,
such as its asymptotic distribution, was given. Prause [19] in Section 1.5, reported that the GH model is also
appropriate for financial intraday (referred to as high-frequency) data, nevertheless, the rigorous analysis of the
estimation based on the high-frequency setting Δn → 0 we have adopted in this paper is extremely difficult,
due to the lack of the reproducing property.

Within the GH family, NIG and normal gamma (NG) distributions are known to have the reproducing
property, which entails that, if the distribution at unit time for a Lévy process is NIG or NG, then its marginal
distribution at any time belongs to the same distribution family. Under discrete sampling, the reproducing
property combined with the Markov property helps to simplify the expression of the likelihood function, and
its further asymptotic analysis as well. Besides, toward optimal inference and testing hypothesis concerning the
dominating parameters of the NIG Lévy process, a fundamental step is to investigate asymptotic behavior of the
likelihood-ratio random fields based on an available record XΔn , X2Δn , . . . , XnΔn . In this paper, we investigate
Local Asymptotic Normality (LAN) for NIG Lévy process observed at discrete time points under large-term
and high-frequency sampling design, where Δn → 0 and nΔn → ∞. The concept of LAN was introduced
by Le Cam (1924–2000) in [15] in order to study approximations (simplifications) of statistical tests for large
sample, and nowadays has become a vital concept to establish asymptotic optimalities of estimation and test
in large-sample framework. For a systematic account concerning the LAN theory, we refer to, among others,
Le Cam and Yang [16], Strasser [23] and van der Vaart [24]. Also, Jacod [9] presents a nice concise review in
this direction, with a particular focus on the case of diffusion processes. An earlier attempt at systematic study
of the LAN for discretely observed Lévy processes was made by Woerner [25], where various LAN results were
“individually” provided for each specific parameter, such as drift, diffusion, scale, and skeweness. (See Sect. 3
for more details.)

The objective of this paper is to derive the “full-parameter” LAN for NIG Lévy processes discretely observed
at high frequency. Previously, on the one hand, in the high-frequency data framework, Masuda [18] (see also
Aı̈t-Sahalia and Jacod [2]) derived the full-parameter LAN for the non-Gaussian stable Lévy process with drift
and symmetric Lévy density, and Kawai and Masuda [14] derived the full-parameter LAN for the Meixner Lévy
process. In both cases, the Fisher information matrices are constantly degenerate, rendering that there is no
guarantee for usual good asymptotic behavior of the corresponding maximum likelihood estimators. On the
other hand, we have clarified that the Fisher information matrix in the NIG case is always non-degenerate. To
the best of our knowledge, Theorem 3.1 below is the first fruitful “full-parameter” LAN for a high frequently
observed infinite activity pure jump Lévy process which is not subordinator.

The rest of this paper is organized as follows. Section 2 is devoted to a brief review of basic facts on the
normal inverse Gaussian Levy process and the LAN under high-frequency sampling. Section 3 states our main
result, which provides the rate of convergence and the Fisher information matrix in closed form concerning
the LAN for NIG Lévy processes discretely observed at high frequency. Also, we partly compare our result with
the case of continuous observation, and clarify big differences between them. To maintain the flow of the paper,
we collect proofs in Section 4. Our result requires rather lengthy proofs of somewhat routine nature. To avoid
overloading the paper, we omit nonessential details in some instances.
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2. Preliminaries

2.1. Basic notation

Throughout this paper, the following basic notation is used:

• I(A) denotes the indicator function of any event A;
• L(X) denotes the distribution of a random element X ;
• ϕa denotes the characteristic function of a, which indicates a distribution or a random variable;
• ∂x := ( ∂

∂x1
, . . . , ∂

∂xk
)� and ∂2

x := ∂x∂�
x for a vector x = (xj)j≤k with � denoting transpose, and also we

sometimes use the notation f ′ for the derivative of a function f , when no confusion may occur for the
differentiating variable;

• M⊗2 := MM� for any matrix M ;
• C denotes a generic positive constant which may vary at each appearance;
• an � bn and an ∼ bn indicate that an ≤ Cbn for every n large enough and that an/bn → 1 as n → ∞,

respectively.

2.2. Normal inverse Gaussian Lévy process

A univariate Lévy process X = (Xt)t∈R+ with finite mean has the Lévy-Khintchine representation

ϕXt(u) = exp
{

t

(
iμ0u − 1

2
σ2u2 +

∫
(eiuz − 1 − iuz)ν(dz)

)}
, (2.1)

where μ0 ∈ R, σ2 ≥ 0, and ν(dz) is a Lévy measure, i.e., a σ-finite measure on R such that ν({0}) = 0 and∫
(1 ∧ |x|2)ν(dz) < ∞. When the generating triplet (μ0, σ

2, ν(dz)) depends on a finite-dimensional parameter
θ ∈ Θ ⊂ R

p, we denote by Pθ the distribution of X on the Skorohod space. We refer the reader to Sato [21] for
a detailed account of Lévy processes.

The univariate normal inverse Gaussian (NIG) distribution, denoted by NIG(α, β, δ, μ), is the selfdecompos-
able (hence infinitely divisible) distribution admitting a density

p(y; α, β, σ, μ) =
αδ

π
exp

{
δ
√

α2 − β2 + β(y − μ)
} K1(α

√
δ2 + (y − μ)2)√

δ2 + (y − μ)2
, y ∈ R, (2.2)

where Kw(y), w ∈ R, y > 0, denotes the modified Bessel function of the third kind1 with index w:

Kw(y) =
1
2

∫ ∞

0

xw−1 exp
{
− y

2

(
x +

1
x

)}
dx. (2.3)

We write
θ = (α, β, δ, μ) ∈ Θ ⊂ R

4,

where the parameter space Θ is a bounded convex domain such that

Θ− ⊂ {(α, β, δ, μ)|α > 0, α > |β| ≥ 0, δ > 0, μ ∈ R}, (2.4)

where Θ− denotes the closure of Θ. (Throughout, we rule out the case where α = |β| ≥ 0.) The distribu-
tion NIG(α, β, δ, μ) exhibits semi-heavy tails in the sense that the density behaves as a constant multiple of

1Here, we follow the terminology used in [7]. Note that some authors call this function “modified Bessel function of the second
kind” or “modified Hankel function”.
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|y|−3/2 exp(−α|y| + βy) for |y| → ∞, so that moments of any order are finite. The mean and variance of
NIG(α, β, δ, μ) are respectively given by

μ +
βδ√

α2 − β2
and

α2δ

(α2 − β2)3/2
,

and the characteristic function by

ϕNIG(α,β,δ,μ)(u) = exp
{

iuμ + δ(
√

α2 − β2 −
√

α2 − (iu + β)2)
}

. (2.5)

Now, the univariate NIG Lévy process is defined to be a Lévy process X starting from the origin such that
L(X1) = NIG(α, β, δ, μ). It is clear from (2.5) that for any Δn > 0 and a �= 0

L(a(XΔn − μΔn)) = NIG

(
α

|a| ,
β

a
, δ|a|Δn, 0

)
. (2.6)

The generating triplet of X is given by μ0 = μ + βδ/
√

α2 − β2, σ2 = 0, and ν(dz; θ) = g(z; α, β, δ)dz with

g(z; α, β, δ) =
αδ

π|z|e
βzK1(α|z|), z �= 0. (2.7)

One can consult Barndorff–Nielsen [6,7] for more analytical facts concerning the NIG distribution and the NIG
Lévy process.

2.3. LAN under high-frequency sampling

In this subsection, Θ denotes a convex domain in R
p, and X a Lévy process (not necessarily the NIG one).

For later use and convenience, let us introduce a general framework for LAN under high-frequency sampling.
Fix a θ ∈ Θ, and let X be observed at tj = tnj , j ≤ n, with tn0 < tn1 < · · · < tnn for each n. We denote by

xj = xnj the successive increments:
xj = xnj := Xtj − Xtj−1 . (2.8)

Because of the independent-increments property of X , the sequence (xj)j≤n for each n forms an independent
array. For simplicity, we set tj = jΔn for some Δn > 0, so that L(xj) = L(XΔn) under Pθ for every j ≤ n.
Then, we denote by Pn

θ the distribution of (Xtj )j≤n under Pθ.
Suppose that L(XΔn) under Pθ admits an everywhere positive Lebesgue density, say pΔn(y; θ), which is of

the class C2(Θ) for each y ∈ R as a function of θ ∈ Θ. According to the stationarity and independence of
increments of X , the log-likelihood function takes the form

�n(θ) =
n∑

j=1

log pΔn(xj ; θ),

where pΔn(x; θ) denotes the density of XΔn under Pθ.
Let (rn) be a nonrandom positive definite diagonal matrices tending to 0 in norm, and I(θ) a nonnegative

definite symmetric R
p ⊗ R

p matrix. Pick any h ∈ R
p. We may suppose that θn := θ + rnh ∈ Θ. We say that

LAN holds true at θ with rate rn and Fisher information matrix I(θ), if the stochastic expansion

log
dPn

θn

dPn
θ

= �n(θn) − �n(θ) = h�Sn(θ) − 1
2
h�I(θ)h + oPθ

(1) (2.9)

holds true, where Sn(θ) := rn∂θ�n(θ) → Np(0, I(θ)) weakly under Pθ, where Np(0, I(θ)) stands for the p-variate
normal distribution with mean 0 and covariance I(θ). Let us note that, in order to apply the general asymptotic
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optimality theory based on the LAN, the matrix I(θ) has to be positive definite; if not, the LAN is not of much
help to clarify asymptotic optimality criteria.

If we have the LAN, then it is known that general criteria for asymptotic optimalities of estimation and
testing hypotheses follows from the LAN. Here, let us briefly mention the following (see Le Cam and Yang [16],
Strasser [23] and van der Vaart [24] for more details): if one has asymptotically normally distributed estimator θ̂n

of θ, say c−1
n (θ̂n−θ) → Np(0,V(θ)) weakly under Pθ where c−1

n → ∞ and V(θ) ∈ R
p⊗R

p is positive definite, then
the maximal rate of convergence and the minimal asymptotic covariance matrix are given by r−1

n and I(θ)−1,
respectively. Namely, the optimal quantities are explicitly provided by the form of the LAN obtained. In our
main result (Thm. 3.1 below), the rate and the Fisher information matrix are specified by (3.3) and (3.2),
respectively, where the latter turns out to be positive definite for each θ ∈ Θ.

3. Main result

Let X be a Lévy process such that L(X1) = NIG(α, β, δ, μ) (recall (2.6) and suppose that available data is
(XjΔn)j≤n with

Δn → 0 and nΔn → ∞. (3.1)

Define the matrix I(θ) = [Ikl(θ)]4k,l=1 for θ = (α, β, δ, μ) ∈ Θ as follows:

I(θ) =

⎛
⎜⎜⎝

I11(θ) I12(θ) 0 0
I22(θ) 0 0

I33(θ) 0
sym. I44(θ)

⎞
⎟⎟⎠ , (3.2)

where

I11(θ) :=
δ

απ

∫ ∞

0

(
e(β/α)y + e−(β/α)y

)
y
{K0(y)}2

K1(y)
dy,

I12(θ) := − 2αδ

π(α2 − β2)

{
1 +

β√
α2 − β2

arctan

(
β√

α2 − β2

)}
,

I22(θ) :=
α2δ

(α2 − β2)3/2
,

I33(θ) :=
1

2δ2
,

I44(θ) :=
1

2δ2
·

Here, the integral in I11(θ) is indeed finite; see Lemma 4.82.
Let

rn = diag(r1n, r2n, r3n, r4n) := diag
(

1√
nΔn

,
1√
nΔn

,
1√
n

,
1√
n

)
· (3.3)

Our main result is the following, which clarifies a crucial contrast between discrete and continuous observations
(see Cor. 3.3 for the latter case).

Theorem 3.1. Let X be as above and suppose (2.4) and (3.1). Then LAN holds true at each θ ∈ Θ with
rate rn and the Fisher information matrix I(θ). In particular, I(θ) is positive definite for each θ ∈ Θ.

2We note that Woerner ([26], Thm. 2 and Ex. 1) contains a slight typo concerning the expression of I22(θ): the exponent in
the denominator is not 5/2 but 3/2.
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Thus we have seen that the rate
√

n for (δ, μ) is faster than
√

nΔn for (α, β). Such a phenomenon is known
to arise in some specific cases of Lévy processes under high-frequency sampling. A prime example is the scaled
Wiener process with drift, say Xt = μt + σwt, where w denotes the standard Wiener process. In this case, we
have the LAN for each (μ, σ) at rate (

√
nΔn,

√
n), which can be easily seen by, e.g., applying Proposition 4.3 in

Section 4.1 to the corresponding (fully Gaussian) likelihood function. The rate
√

nΔn is the discrete-sampling
analogue to

√
T in the case of continuous observation (Xt)t≤T as T → ∞; see, e.g., Akritas and Johnson [3] for

details. See also Masuda [17] for the cases of the gamma and the inverse Gaussian subordinators.
For non-Gaussian stable Lévy processes with drift and symmetric Lévy density, it turns out that the Fisher

information matrix is singular at “every” θ whenever both the stability index and scale parameters are included
in θ (see Aı̈t-Sahalia and Jacod [2] and Masuda [18] for details). In the present NIG case, normalized small time
increment (XΔn − μΔn)/(δΔn) is approximately Cauchy distributed (see Lem. 4.6 below). If X is the Cauchy
Lévy process such that L(X1) admits the Lebesgue density x �→ (δ/π){δ2 + (x − μ)2}−1, then, by a direct
application of Masuda ([18], Thm. 2.1), we see that the LAN holds true at each (δ, μ) with rate

√
n and Fisher

information matrix diag{1/(2δ2), 1/(2δ2)}; we here do not suffer from the singularity of Fisher information, since
the stability index is fixed at 1 and is not the parameter to be estimated. Returning to the present NIG case,
we note that the last expression is exactly the same as the lower right 2× 2 submatrix of I(θ) in Theorem 3.1,
that is, diag{I33(θ), I44(θ)} = diag{1/(2δ2), 1/(2δ2)}: informally speaking, this implies that we can extract
information of the parameter (δ, μ) of the NIG Lévy process even in small time (in view of asymptotic Fisher
information), and the information amount can be the same as if we observe the Cauchy Lévy process. Although
we have additionally α and β for the NIG case, Theorem 3.1 implies that we can derive the LAN jointly for the
full parameter θ as soon as nΔn → ∞. Moreover, in view of the block diagonal form of I(θ), we may expect
various possibilities of approximate conditional inference, simplified estimation procedure, and so on (see, e.g.,
Cox and Reid [8] and Jørgensen and Knudsen [10]).

Woerner [25,26] previously studied LAN for discretely observed Lévy processes. Especially for the NIG Lévy
process, she essentially provided LAN results “individual” for: β when Δn ≡ Δ > 0 and Δn → 0 ([25, Ex. 1]
and ([26], Ex. 1); δ when Δn ≡ Δ > 0 ([25], Thm. 3.3); and finally, μ when Δn ≡ Δ > 0 ([25], Thm. 3.5),
while no LAN for α was given. In contrast, our Theorem 3.1 provides the information of asymptotically optimal
“full-parameter” estimation.

It is interesting to compare Theorem 3.1 with the case of continuous observation. In order to state the
continuous-observation LAN result for the NIG Lévy processes, let us first recall a general characterization of
the absolute continuity. Let X be a Lévy process admitting the Lévy-Khintchine representation (2.1) with
(μ0, σ

2, ν(dz)) = (μ0(θ), σ2(θ), ν(dz; θ)) for θ ∈ Θ ⊂ R
p, and suppose that we observe (Xt)t∈[0,T ]. Let P

(T )
θ

denote the restriction of Pθ to FT , the natural filtration generated by the continuous-time record (Xt)t≤T . The
equivalence of P

(T )
θ and P

(T )
θ′ for θ �= θ′ is characterized by the following proposition borrowed from Raible

([20], Prop. 2.19). See also Sato ([21], Thm. 33.1.)

Proposition 3.2. Fix any T > 0 and θ, θ′ ∈ Θ. Then P
(T )
θ and P

(T )
θ′ are equivalent iff the following conditions

are fulfilled.
(a) ν(dz; θ′) = γ(z; θ, θ′)ν(dz, θ) for some Borel function γ(·; θ, θ′) : R → (0,∞).
(b) μ0(θ′) = μ0(θ) +

∫
R

z(γ(z; θ, θ′) − 1)ν(dz; θ) +
√

σ2(θ)b for some b ∈ R.
(c)

∫
R
(1 − √

γ(z; θ, θ′))2ν(dz; θ) < ∞.
(d) σ2(θ′) = σ2(θ).

As a corollary to Raible ([20], Prop. 2.20) based on Proposition 3.2, we have

Corollary 3.3. Let Pθk
, k = 1, 2, denote the distribution of the NIG Lévy process with parameters θk =

(αk, βk, δk, μk) ∈ Θ, and fix any T > 0. Then P
(T )
θ1

and P
(T )
θ2

are equivalent iff δ1 = δ2 and μ1 = μ2.

Corollary 3.3 clears up an essential difference between the cases of continuous and high-frequency sampling
for the NIG Lévy processes. Indeed, Corollary 3.3 enables us to study the LAN for (α, β) in the continuous-
observation case, where the asymptotics are taken as T → ∞. We do not touch the details in order not to
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digress from the main topic, but only refer to Akritas and Johnson [3] for possible LAN for (α, β) at rate
√

T ;
specifically, they derived sufficient conditions under which a parametric family of continuously observed pure
jump Lévy processes fulfills a LAN property, and also, they provided the general form of the Fisher information
matrix for continuously observed pure pump Lévy processes, the matrix being represented as some integral with
respect to the Lévy measure (see Eq. (2.4) in Akritas and Johnson [3]). On the contrary, as in the present
NIG case, the full-parameter likelihood function may exist when we deal with the high-frequency (discrete-time)
sample, so that the maximum-likelihood estimation of (δ, μ) becomes meaningful. Finally, let us mention that,
as the rate of convergence of (δ, μ) is

√
n free of Δn, it may not be necessary to impose that nΔn → ∞ for

estimation of (δ, μ). In this case, we regard (α, β) as a nuisance parameter as in the case of estimation of σ in
the aforementioned Wiener case.

4. Proof

We proceed as follows. First, in Section 4.1 we provide a useful general tool (Prop. 4.3) for proving
Theorem 3.1. Next, we prepare some preliminary lemmas in Section 4.2 for investigating the likelihood function
in question, whose expression together with its derivatives up to the second order are specified in Section 4.3.
Finally, Sections 4.4 to 4.7 are devoted to verifications of the conditions of Proposition 4.3.

4.1. A tool for proving LAN under high-frequency sampling

In this section, as a continuation of Section 2.3, we prepare a useful tool for proving our main result. Our
setup here covers general Lévy processes discretely observed at high frequency.

Write gnj(θ) = ∂θ log pΔn(xj ; θ). The random fields log(dPn
θn

/dPn
θ ) on Θ admits the asymptotically quadratic

structure

log
dPn

θn

dPn
θ

= h�
n∑

j=1

rn{gnj(θ) − Eθ[gnj(θ)]} − 1
2
h�

n∑
j=1

Eθ[{rngnj(θ)}⊗2]h + oPθ
(1) (4.1)

if it holds that

lim sup
n→∞

n∑
j=1

Eθ[|rngnj(θ)|2] < ∞, (4.2)

n∑
j=1

Eθ

[|rngnj(θ)|2I(|rngnj(θ)| ≥ ε)
] → 0 for every ε > 0, (4.3)

n∑
j=1

Eθ

⎡
⎣{√

pΔn(xj ; θn)
pΔn(xj ; θ)

− 1 − 1
2
h�rngnj(θ)

}2
⎤
⎦ → 0. (4.4)

If (4.2) and (4.3) hold true with gnj(θ) replaced by g∗nj(θ), where g∗nj(θ) := 2{√pΔn(xj ; θn)/pΔn(xj ; θ) − 1},
then we have the asymptotically quadratic structure (4.1) with gnj(θ) replaced by g∗nj(θ) in the right-hand
side (Strasser [23], Thm. 74.2). Moreover, Strasser ([23], Cor. 74.4) in turn ensures that (4.1) itself holds true
under (4.4). Thus, (4.1) indeed follows on verifying the conditions (4.2) to (4.4).

Now we assume that
n∑

j=1

Eθ[{rngnj(θ)}⊗2] → I(θ), (4.5)

n∑
j=1

|rnEθ[gnj(θ)]|2 → 0. (4.6)

Note that (4.5) implies (4.2); in Section 4.5, we in fact will check that (17) holds in our framework.
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To treat the first term in the right-hand side of (4.1), we prepare the following.

Lemma 4.1. Suppose the conditions (4.3), (4.5), and (4.6) hold. Then the first term in the right-hand side
of (4.1) weakly under Pθ tends to Np(0, h�I(θ)h).

Proof. Introduce the centered variables χnj = χnj(θ) := rn{gnj(θ) − Eθ[gnj(θ)]}. By means of the central
limit theorem for rowwise independent triangular arrays (e.g. Kallenberg [11], Thm. 5.12 combined with the
Cramér–Wald device), the claim follows from the convergence of the cumulative variance and the Lindeberg
condition, that is,

∑n
j=1 Eθ[χ⊗2

nj ] → I(θ) and
∑n

j=1 Eθ[|χnj |2I(|χnj | ≥ ε′)] → 0 for every ε′ > 0, respectively.
The former is obtained by noting that

n∑
j=1

Eθ[χ⊗2
nj ] =

n∑
j=1

Eθ[{rngnj(θ)}⊗2] −
n∑

j=1

{rnEθ[gnj(θ)]}⊗2

and then applying (4.5) and (4.6). Now fix any ε′ > 0. Since (4.6) entails that |√nrnEθ[gn1(θ)]| → 0, we can
find ε > 0 such that ε′ − |rnEθ[gn1(θ)]| ≥ ε for every n large enough. Accordingly,

n∑
j=1

Eθ[|χnj |2I(|χnj | ≥ ε′)]

�
n∑

j=1

Eθ[|rngnj(θ)|2I(|rngnj(θ)| + |rnEθ[gnj(θ)]| ≥ ε′)] +
n∑

j=1

|rnEθ[gnj(θ)]|2

�
n∑

j=1

Eθ[|rngnj(θ)|2I(|rngnj(θ)| ≥ ε)] + |√nrnEθ[gn1(θ)]|2 → 0

by virtue of (4.3). The proof is complete. �

Thus we have seen that the desired property (2.9) can be derived under (4.3), (4.4), (4.5), and (4.6).
Nevertheless, it is convenient to replace (4.4) by an alternative, which is easier to verify. We prepare the
following lemma.

Lemma 4.2. The condition (4.4) holds true if

n∑
j=1

sup
{ρ∈Θ:|r−1

n (ρ−θ)|≤a}
Eρ

[|rn∂θ[gnj(ρ)�]rn|2 + |rngnj(ρ)|4] → 0. (4.7)

for any a > 0.

Proof. Write
∑n

j=1 enj(θ) for the left-hand side of (4.4), and let

Hn(x; θ) := {pΔn(x; θn)1/2 − pΔn(x; θ)1/2 − (θn − θ)�∂θ[pΔn(x; θ)1/2]}2.

Then

enj(θ) = Eθ

[
pΔn(xj ; θ)−1Hn(xj ; θ)

]
=

∫
R

Hn(x; θ)dx. (4.8)

We note that ∣∣r∂2
θ [f(θ)1/2]r

∣∣2 � f(θ)
{|r[∂2

θ log f(θ)]r|2 + |r∂θ log f(θ)|4} (4.9)

for any nonnegative C2(Θ) function f and diagonal p × p matrix r: indeed, using the identities ∂θk
f(θ) =

f(θ)∂θk
log f(θ) and ∂θk

∂θl
f(θ) = f(θ){∂θk

∂θl
log f(θ) + (∂θk

log f(θ))(∂θl
log f(θ))}, which are valid for any
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k, l ∈ {1, . . . , p}, we get

∂θk
∂θl

[f(θ)1/2] = 2−1f(θ)−1{f(θ)1/2∂θk
∂θl

f(θ) − 2−1f(θ)−1/2(∂θk
f(θ))(∂θl

f(θ))}
= f(θ)1/2{2−1∂θk

∂θl
log f(θ) + 4−1(∂θk

log f(θ))(∂θl
log f(θ))},

from which the inequality (4.9) readily follows. Using the last inequality, we get for each x

Hn(x; θ) �
∫ 1

0

∣∣rn∂2
θ

[
pΔn(x; θ + srnh)1/2

]
rn

∣∣2ds

�
∫ 1

0

{∣∣rn∂2
θ log pΔn(x; ρ′n(s))rn

∣∣2 +
∣∣rn∂θ log pΔn(x; ρ′n(s))

∣∣4} pΔn(x; ρ′n(s))ds, (4.10)

where we wrote ρ′n(s) = θ + srnh, which belongs to Θ for every n large enough. Now, by substituting (4.10)
in (4.8) and then applying Fubini’s theorem for interchanging the ds and dx integrals, we have

n∑
j=1

enj(θ) �
n∑

j=1

∫ 1

0

∫
R

{∣∣rn∂2
θ log pΔn(x; ρ′n(s))rn

∣∣2

+
∣∣rn∂θ log pΔn(x; ρ′n(s))

∣∣4}pΔn(x; ρ′n(s))dxds

≤
n∑

j=1

sup
{ρ∈Θ:|r−1

n (ρ−θ)|≤|h|}

∫
R

{∣∣rn∂2
θ log pΔn(x; ρ)rn

∣∣2

+
∣∣rn∂θ log pΔn(x; ρ)

∣∣4}pΔn(x; ρ)dx → 0

by means of (4.7); recall that h ∈ R
p here is fixed arbitrarily. This completes the proof. �

To sum up we have derived the following proposition, which serves as our basic tool for proving LAN.

Proposition 4.3. Suppose that (4.3), (4.5), (4.6), and (4.7) hold true. Then we have (2.9), that is, LAN
holds true at each θ with rate rn and the Fisher information matrix I(θ).

Remark 4.4. Of course, the concept of LAN is defined for much more general statistical experiments than ours,
such as a discrete-time sample from an ergodic process. Also in such cases we can provide a set of conditions
analogous to the ones in Proposition 4.3, as a useful tool for proving the LAN.

4.2. Preliminary lemmas

We are here going to check that, in our framework, the conditions (4.3), (4.5), (4.6), and (4.7) hold and
that I(θ) is positively definite for each θ ∈ Θ.

For later use, we prepare some lemmas. We consistently use the notation (2.8). For j ≤ n, we introduce

εnj = εnj(δ, μ) :=
xj − μΔn

δΔn
·

Clearly we have L(εnj) = L(εn1) for each n ∈ N and j ≤ n.

Lemma 4.5. It holds that for each n ∈ N, L(εn1) = NIG(αδΔn, βδΔn, 1, 0).

Proof. Obvious from (2.6) with taking a = (δΔn)−1. �
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An important point in our study is that the normalized increments of X in small time can be approximated
by the Cauchy distribution having Blumenthal–Getoor index 1. In what follows, let

φ1(y) :=
1

π(1 + y2)
,

the standard symmetric Cauchy density corresponding to the characteristic function u �→ exp(−|u|).
Lemma 4.6. Denote by fΔn : R → (0,∞) the smooth density of L(εn1). For any nonnegative integer k, we
have

lim
Δn→0

sup
y∈R

∣∣∂k
yfΔn(y) − ∂k

y φ1(y)
∣∣ = 0.

Proof. In view of (2.5), we have ϕεn1(u) = exp{δΔn
√

m − √
(αδΔn)2 − (iu + βδΔn)2}. Here and in what

follows, we write
m = α2 − β2 > 0.

Simple manipulation of complex numbers gives

ϕεn1(u) = eδΔn
√

m exp

⎧⎨
⎩−

√
1
2
(A +

√
A2 + B2) − iB√

2(A +
√

A2 + B2)

⎫⎬
⎭ , (4.11)

where we wrote A := (δΔn)2m + u2 (A > 0 always) and B := −2βδΔnu for brevity. Hence, we clearly have
ϕεn1(u) → exp(−|u|) for each u ∈ R. The expression (4.11) also leads to the estimate

|ϕεn1(u)| � exp
{
−

√
1
2
(A +

√
A2 + B2)

}
≤ e−

√
A ≤ e−|u|. (4.12)

By means of the Fourier inversion formula we have

sup
y∈R

∣∣∂k
y fΔn(y) − ∂k

yφ1(y)
∣∣ �

∫
|u|k

∣∣∣ϕεn1(u) − e−|u|
∣∣∣du. (4.13)

Under (4.12), we can apply the dominated convergence theorem to the upper bound of (4.13). This completes
the proof. �

In particular, note that the limit of L(εn1) in total variation is symmetric even if β �= 0. As a matter of
fact, since the Lévy density g of NIG(α, β, δ, μ) admits the expansion z2g(z) = (1/π) + (δβ/π)|z| + o(|z|) as
|z| → 0 (see (2.7) together with (4.15) below, or, more generally, Raible [20], Prop. 2.18), Lemma 4.6 can also
be deduced from the behavior of the Lévy density of L(εn1) around the origin; note that the standard Cauchy
Lévy density equals z �→ (1/π)|z|−2.

We introduce the following functions:

η(y) := φ′
1(y)/φ1(y), y ∈ R,

ζ(y) := K ′
1(y)/K1(y), y ∈ [0,∞),

H(y) := y−1{1 + yζ(y)} = −K0(y)/K1(y), y ∈ [0,∞), (4.14)

where we used the identity K ′
w(y) = −Kw−1(y) − (w/y)Kw(y) for (4.14). The functions ζ, H , and their

derivatives are to be defined at y = 0 as limits from the right.
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Lemma 4.7. (a) The functions y �→ η(y), yη(y), and y2η′(y) are bounded in R.
(b) y �→ H(y) is bounded and continuous in [0,∞). Moreover, H(y) ∼ −y log(1/y) as y → 0 and H(y) =

−1 + 1/(2y) + 3/(8y2) + O(y−3) as y → ∞.
(c) H ′(y) ∼ − log(1/y) as y → 0 and y2H ′(y) = −1/2 + O(y−1) as y → ∞. In particular, y �→ yH ′(y) is

bounded and continuous in [0,∞).

Proof. The claim (a) readily follows from the well known fact

sup
y∈R

|y|k|∂k
y φ1(y)|

φ1(y)
< ∞

for each k ∈ Z+; this is valid too for φ1 replaced by the a general symmetric non-Gaussian β-stable density.
As for (b), the continuity of H is clear. We first note the asymptotic behaviors:

Kw(y) ∼
{

log(1/y) + log 2 − C if w = 0,
Γ(|w|)2|w|−1y−|w| if w �= 0,

as y → 0, (4.15)

Kw(y) =
√

π

2y
e−y

{
1 +

κ − 1
8y

+
(κ − 1)(κ − 9)

(8y)22!
+ O(y−3)

}
as y → ∞, (4.16)

where C ≈ 0.5772 is the Euler–Mascheroni constant and κ := 4w2. The desired behavior of H(y) as y → 0 is
trivial from (4.15). Next, by applying (4.16) for w = 0, 1 and then expanding the fraction −K0(y)/K1(y) as
a power series of y−1, straightforward computations lead to the desired behavior of H(y) as y → ∞. Now the
boundedness of H is trivial.

We turn to (c). Using the known identity Kw(y) = K−w(y) valid for each w, y > 0 and also the identity
K ′

w(y) = −Kw−1(y) − (w/y)Kw(y) once again, we get

H ′(y) = 1 + H(y)/y − {H(y)}2,

and so y2H ′(y) = y2 + yH(y) − y2{H(y)}2. These expressions combined with (b) lead to the claims. �

Now we define

qnj = qnj(α, δ, μ) := αδΔn(1 + ε2nj)
1/2

and

Ak(θ) := (−1)k αδ

π

∫ ∞

0

(
e(β/α)y + e−(β/α)y

)
yk−1K1(y)

{
K0(y)
K1(y)

}k

dy,

A′(θ) := − 1
π

∫ ∞

0

(
e(β/α)y + e−(β/α)y

)
yK0(y)dy.

We need the following lemmas to specify the Fisher information matrix I(θ), and to estimate the remainder
term in the stochastic expansion of the likelihood ratio random fields (see (4.21) below).

Lemma 4.8. For any k ∈ N we have

lim
n→∞

1
Δn

Eθ

[{qn1H(qn1)}k
]

= Ak(θ),

with Ak(θ) being finite. In particular, lim supn→∞ Δ−1
n Eθ[|qn1H(qn1)|] < ∞.
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Proof. Reminding Lemma 4.5 and (4.14), we have

1
Δn

Eθ

[{qn1H(qn1)}k
]

=
1

Δn

∫
R

{
αδΔn

√
1 + x2H

(
αδΔn

√
1 + x2

)}k αδΔn

π
eδΔn

√
m+βδΔnx K1

(
αδΔn

√
1 + x2

)
√

1 + x2
dx

= (−1)k αδ

π
eδΔn

√
m

[
αδΔn

∫
R

eβδΔnx
(
αδΔn

√
1 + x2

)k−1
{

K0(αδΔn

√
1 + x2)

K1(αδΔn

√
1 + x2)

}k

K1(αδΔn

√
1 + x2)dx

]

=: (−1)k αδ

π
eδΔn

√
mB

(k)
Δn

∼ (−1)k αδ

π
B

(k)
Δn

. (4.17)

Write B
(k)
Δn

=
∫ ∞
0 +

∫ 0

−∞ =: B
(k)+
Δn

+ B
(k)−
Δn

.

First let us look at B
(k)+
Δn

. The change of variables y = αδΔn(
√

1 + x2 − 1) leads to B
(k)+
Δn

=
∫ ∞
0

b
(k)+
Δn

(y)dy,
where

b
(k)+
Δn

(y) = e(β/α)
√

y
√

y+2αδΔn
(y + αδΔn)k

√
y
√

y + 2αδΔn

{
K0(y + αδΔn)
K1(y + αδΔn)

}k

K1(y + αδΔn).

Obviously, for each y ∈ (0,∞)

b
(k)+
Δn

(y) → e(β/α)yyk−1K1(y)
{

K0(y)
K1(y)

}k

=: b
(k)+
0 (y). (4.18)

In order to apply the dominated convergence theorem, we have to look at the behaviors of b
(k)+
Δn

(y) as y → 0
and y → ∞ uniformly in small Δn, say Δn ∈ (0, 1]. First, by means of Lemma 4.7(b) and (4.16), we can derive
as y → ∞

sup
Δn≤1

|b(k)+
Δn

(y)| � e(β/α)yy−1/2(y + αδΔn)k−1/2K1(y + αδΔn)

� e−(1−β/α)yyk−3/2, (4.19)

the upper bound being Lebesgue integrable at infinity; here the assumption |β| < α comes into effect. On
account of (4.15) and Lemma 4.7(b), it holds that yk−1/2{K0(y)/K1(y)}kK1(y) ∼ Cy2k−3/2{log(1/y)}k → 0 as
y → 0. This leads to supy∈(0,1] y

k−1/2{K0(y)/K1(y)}kK1(y) < ∞, so that, as y → 0

sup
Δn≤1

|b(k)+
Δn

(y)| � y−1/2 sup
Δn≤1

[
(y + αδΔn)k−1/2

{
K0(y + αδΔn)
K1(y + αδΔn)

}k

K1(y + αδΔn)
]

� y−1/2, (4.20)

the upper bound being Lebesgue integrable near the origin. Having (4.18), (4.19) and (4.20) in hand, the
dominated convergence theorem yields that B

(k)+
Δn

→ ∫ ∞
0

b
(k)+
0 (y)dy < ∞.

Let b
(k)−
0 (y) := e−(β/α)yyk−1K1(y){K0(y)/K1(y)}k. In the same manner as before, we can deduce that

B
(k)−
Δn

→ ∫ ∞
0

b
(k)−
0 (y)dy. Thus B

(k)
Δn

→ ∫ ∞
0

{b(k)+
0 (y) + b

(k)−
0 (y)}dy, completing the proof of the first half of the

claims. The last half is obvious from (4.17) and what we have seen above. The proof is complete. �
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Lemma 4.9. It holds that

lim
n→∞Eθ[εn1qn1H(qn1)] = A′(θ),

with A′(θ) being finite.

Proof. The lemma can be deduced in an analogous way to the proof of Lemma 4.8, so we omit the details. �

The Lemma 4.10 below provides the fully closed form of A′(θ), which directly leads to the closed form
of I12(θ), as we will see in Section 4.5. We set aside the integral form of A′(θ) for later convenience in the proof
of positive definiteness of I(θ).

Lemma 4.10. It holds that

A′(θ) = −2α2

πm

{
1 +

β√
m

arctan
(

β√
m

)}
·

Proof. We note that (x + 1/x)/2 ≥ 1 for any x ≥ 0, and that, for any |b| < 1,

1
2

∫ ∞

0

1
x

{
1
2

(
x +

1
x

)
+ b

}−2

dx =
1

1 − b2

[ −(bx + 1)
x2 + 2bx + 1

− b√
1 − b2

arctan
(

x + b√
1 − b2

)]x=∞

x=0

=
1

1 − b2

[
1 − b√

1 − b2

{
π

2
− arctan

(
b√

1 − b2

)}]
·

In view of the definition (2.3) and Fubini’s theorem, we see that the leftmost side of the above display equals∫ ∞
0

e−byyK0(y)dy. Using this fact with b = β/α and −β/α, it is straightforward to deduce the claim. �

4.3. Likelihood, score, and observed information in question

Now, let us look at the log likelihood function �n(θ) associated with a sample (Xtj )j≤n. By (2.2), the density
of L(xj) under Pθ exists. We use the notation consistent with Sections 2.3 and 4.1:

pΔn(xj ; θ) =
αδΔn

π
exp{δΔn

√
m + β(xj − μΔn)}

K1

(
α
√

(δΔn)2 + (xj − μΔn)2
)

√
(δΔn)2 + (xj − μΔn)2

·

Then, we can write down �n(θ) in terms of (εnj)j≤n as

�n(θ) =
n∑

j=1

{
log α + δΔn(

√
m + βεnj) + log φ1(εnj) +

1
2

log(1 + ε2nj) + log K1

(
αδΔn

√
1 + ε2nj

) }
. (4.21)

The expression (4.21) may look unnecessarily lengthy, as the term log φ1(εnj)+2−1 log(1+ε2nj) can be obviously
simplified. However, we have meaningly transformed it as just described. In fact, the introduction of the
standard Cauchy density φ1 above turns out to be convenient in the process of deriving various limiting values
as well as deducing estimates of stochastically small terms, to which Lemma 4.7 to 4.9 can effectively be applied.

For studying LAN, we need to look at the score θ �→ ∂θ�n(θ) and the observed information θ �→ −∂2
θ�n(θ).

Note that ∂μεnj = −δ−1, ∂2
μεnj = 0, ∂δεnj = −δ−1εnj , and ∂2

δ εnj = 2δ−2εnj , and ∂δ∂μεnj = δ−2. In terms
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of (4.21), the first-order partial derivative of θ �→ �n(θ) are explicitly given as follows:

∂α�n(θ) =
n∑

j=1

{
αδΔn√

m
+

1
α

qnjH(qnj)
}

, (4.22)

∂β�n(θ) =
n∑

j=1

{
δΔn

(
εnj − β√

m

)}
, (4.23)

∂δ�n(θ) =
n∑

j=1

⎧⎨
⎩−1

δ
(εnjη(εnj) + 1) + Δn

⎛
⎝√

m +
α√

1 + ε2nj

H(qnj)

⎞
⎠

⎫⎬
⎭ , (4.24)

∂μ�n(θ) =
n∑

j=1

⎧⎨
⎩−1

δ
η(εnj) − Δn

⎛
⎝β +

αεnj√
1 + ε2nj

H(qnj)

⎞
⎠

⎫⎬
⎭ . (4.25)

We also need to look at the Hessian matrix ∂2
θ�n(θ): the diagonal elements are

∂2
α�n(θ) =

n∑
j=1

{
−β2δΔn

m3/2
+

q2
nj

α2
H ′(qnj)

}
, (4.26)

∂2
β�n(θ) =

n∑
j=1

{
−α2δΔn

m3/2

}
= −α2δnΔn

m3/2
, (4.27)

∂2
δ �n(θ) =

n∑
j=1

{
1
δ2

(1 + 2εnjη(εnj) + ε2njη
′(εnj)) +

αΔn

δ

(
qnjH

′(qnj)
(1 + ε2nj)3/2

+
ε2njH(qnj)

(1 + ε2nj)3/2

)}
, (4.28)

∂2
μ�n(θ) =

n∑
j=1

{
1
δ2

η′(εnj) +
αΔn

δ

(
ε2njqnjH

′(qnj)
(1 + ε2nj)3/2

+
H(qnj)

(1 + ε2nj)3/2

)}
, (4.29)

and the off-diagonal ones are

∂α∂β�n(θ) =
n∑

j=1

αβδΔn

m3/2
=

αβδnΔn

m3/2
, (4.30)

∂α∂δ�n(θ) =
n∑

j=1

⎧⎨
⎩αΔn√

m
+

Δn√
1 + ε2nj

(H(qnj) + qnjH
′(qnj))

⎫⎬
⎭ , (4.31)

∂α∂μ�n(θ) =
n∑

j=1

⎧⎨
⎩− Δnεnj√

1 + ε2nj

(H(qnj) + qnjH
′(qnj))

⎫⎬
⎭ , (4.32)

∂β∂δ�n(θ) =
n∑

j=1

{
−βΔn√

m

}
= −βnΔn√

m
, (4.33)

∂β∂μ�n(θ) =
n∑

j=1

{−Δn} = −nΔn, (4.34)

∂δ∂μ�n(θ) =
n∑

j=1

{
1
δ2

(η(εnj) + εnjη
′(εnj)) − αΔn

δ

εnj

(1 + ε2nj)3/2
(qnjH

′(qnj) − H(qnj))

}
. (4.35)
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In what follows, we complete the proof of Theorem 3.1 by verifying the conditions (4.3), (4.5), (4.6), and (4.7)
given in Section 2.3, with taking rn = (rkn)4k=1 as in (3.3).

4.4. Lindeberg condition

First we look at (4.3). As is well known, (4.3) is implied by the Lyapunov condition: there exists a constant
ε′ > 0 such that

∑n
j=1 Eθ[|rngnj(θ)|2+ε′ ] → 0 (e.g., Shiryaev [22]). Here, we set ε′ = 2 and prove

4∑
k=1

n∑
j=1

Eθ[|rkngk,nj(θ)|4] → 0, (4.36)

where gk,nj(θ) denotes the kth component of gnj(θ). Using Lemma 4.8, we get

n∑
j=1

Eθ[|r1ng1,nj(θ)|4] � 1
nΔn

· 1
n

n∑
j=1

1
Δn

{Δ4
n + Eθ[{qnjH(qnj)}4]} � 1

nΔn
→ 0.

Next, we note that Eθ[|xj |q] � Δn for every q ≥ 2: indeed, since Eθ[|XΔn − Eθ[XΔn ]|q] � Δn (Asmussen
and Rosiński [4], Lem. 3.1) and Eθ[XΔn ] = ΔnEθ[X1], it follows that Eθ[|xj |q] � Eθ[|XΔn − Eθ[XΔn ]|q] +
|Eθ[XΔn ]|q � Δn + Δq

n � Δn. Accordingly, noting that r2ng2,nj(θ) = (nΔn)−1/2(xj − μΔn − βδΔn/
√

m), we
get

n∑
j=1

Eθ[|r2ng2,nj(θ)|4] � 1
nΔn

· 1
n

n∑
j=1

{Δ−1
n Eθ[|xj |4] + Δ3

n} � 1
nΔn

→ 0.

In view of the fact supy∈R
|η(y)| ∨ |yη(y)| < ∞ and supy≥0 |H(y)| < ∞ (see Lems. 4.7(a) and 4.7(b)) and

the expressions (4.24) and (4.25), we see that |r3ng3,nj(θ)|4 + |r4ng4,nj(θ)|4 � (1 + Δn)/n2 � 1/n2 (Pθ-a.s.).
Therefore,

∑n
j=1 Eθ[|r3ng3,nj(θ)|4] +

∑n
j=1 Eθ[|r4ng4,nj(θ)|4] � 1/n → 0. Thus (4.36), hence (4.3), has been

obtained.
For later use, we note the stronger convergence

n∑
j=1

sup
θ∈Θ

Eθ[|rngnj(θ)|4] → 0, (4.37)

which directly follows from (4.36) and the boundedness of Θ.

4.5. Fisher information matrix

Next we look at (4.5) and the positive definiteness of the Fisher information matrix I(θ).
First we prove (4.5), which amounts to proving that

Ikl(θ) = lim
n→∞

n∑
j=1

Eθ[rkngk,nj(θ)rlngl,nj(θ)], 1 ≤ k ≤ l ≤ 4.

Prior to computing the limits, let us recall the expressions (4.22) to (4.25), and the notation Ak(θ) in Lemma 4.8.
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We begin with the diagonal elements. First, we observe that

n∑
j=1

Eθ[{r1ng1,nj(θ)}2] = O(Δn) +
2δ√
m

1
n

n∑
j=1

Eθ[qnjH(qnj)] +
1
α2

1
n

n∑
j=1

1
Δn

Eθ[{qnjH(qnj)}2]

= O(Δn) +
2δΔn√

m

1
Δn

Eθ[qn1H(qn1)] +
1
α2

1
Δn

Eθ[{qn1H(qn1)}2]

→ 1
α2

A2(θ) = I11(θ).

It follows from Lemma 4.5 that Eθ[εnj] = β/
√

m and Eθ[(εnj − β/
√

m)2] = (δΔn)−1α2/m3/2, so that

n∑
j=1

Eθ[{r2ng2,nj(θ)}2] = δα2/m3/2 = I22(θ). (4.38)

According to the boundedness of H (Lem. 4.7(b)),

n∑
j=1

Eθ[{r3ng3,nj(θ)}2] =
1

δ2n

n∑
j=1

Eθ[{εnjη(εnj) + 1}2] + O(Δn) =
1
δ2

Eθ[{εn1η(εn1) + 1}2] + O(Δn).

Building on Lemmas 4.6 and 4.7(a), we can apply the bounded convergence theorem to the last expectation, so
that

n∑
j=1

Eθ[{r3ng3,nj(θ)}2] → 1
δ2

∫
R

(
yφ′

1(y)
φ1(y)

+ 1
)2

φ1(y)dy

=
1

2πδ2

[
y − y3

(1 + y2)2
+ arctany

]y=∞

y=−∞
=

1
2δ2

= I33(θ).

In a similar manner, based on the expression (4.25) we can deduce

n∑
j=1

Eθ[{r4ng4,nj(θ)}2] → 1
δ2

∫
R

(
φ′

1(y)
φ1(y)

)2

φ1(y)dy

=
1

2πδ2

[
y3 − y

(1 + y2)2
+ arctany

]y=∞

y=−∞
=

1
2δ2

= I44(θ).

Now we turn to the off-diagonal elements. First, by means of Lemmas 4.8, 4.9, 4.10, we get

n∑
j=1

Eθ[r1ng1,nj(θ)r2ng2,nj(θ)] = δ
1
n

n∑
j=1

Eθ

[(
εnj − β√

m

) (
αδΔn√

m
+

1
α

qnjH(qnj)
)]

=
δ

α

1
n

n∑
j=1

Eθ

[(
εnj − β√

m

)
qnjH(qnj)

]

=
δ

α

1
n

n∑
j=1

Eθ [εnjqnjH(qnj)] + O(Δn) → δ

α
A′(θ) = I12(θ).
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Next, it follows from Lemma 4.7 that

Eθ[|r2ng2,nj(θ)r3ng3,nj(θ)|] ≤ 1
n

{∣∣∣∣Eθ

[√
Δn

(
εn1 − β√

m

)
(1 + εn1η(εn1))

] ∣∣∣∣
+ δΔn

∣∣∣∣Eθ

[√
Δn

(
εn1 − β√

m

) (√
m +

α√
1 + ε2n1

H(qn1)
)]∣∣∣∣

}

� 1
n

Eθ

[∣∣∣∣√Δn

(
εn1 − β√

m

) ∣∣∣∣
]

=:
1
n

Eθ[ξn].

Since ξn = OPθ
(
√

Δn) = oPθ
(1) and supn Eθ[|ξn|2] = α2/(δm3/2) < ∞ (recall (4.38)), we deduce that Eθ[ξn] →

0. Thus

∣∣∣∣
n∑

j=1

Eθ[r2ng2,nj(θ)r3ng3,nj(θ)]
∣∣∣∣ � Eθ[ξn] → 0 = I23(θ).

Now let us note that
∫

R
φ′

1(y)dy = 0, and that
∫

R
y{φ′

1(y)/φ1(y)}2φ1(y)dy = 0 since the integrands are odd and
behaves like y−3 up to multiplicative constant at infinity. Hence

n∑
j=1

Eθ[r3ng3,nj(θ)r4ng4,nj(θ)] → 1
δ2

∫
R

φ′
1(y)

φ1(y)

{
1 + y

φ′
1(y)

φ1(y)

}
φ1(y)dy = 0 = I34(θ).

The proofs for Ikl(θ) = 0 for the remaining (k, l)s are easier, and we omit them.
Summarizing the above now yields (4.5).
It remains to prove the positive definiteness of I(θ) for each θ ∈ Θ. In view of the form (3.2), I(θ) is

positive definite as soon as so is the principal submatrix of second order, say Iα,β(θ). Obviously, det [Iα,β(θ)] is
symmetric as a function of β. Hence, it suffices to prove that, given any α > 0, the function β �→ det [Iα,β(θ)] =
I11(θ)I22(θ) − {I12(θ)}2 is positive for β ∈ [0, α). Fix any α, δ > 0 in the sequel. It is convenient to introduce
the notation:

C(β) =
∫ ∞

0

(e(β/α)y + e−(β/α)y)yK1(y)dy,

Ξ(y; β) = C(β)−1(e(β/α)y + e−(β/α)y)yK1(y), y > 0.

Then y �→ Ξ(y; β) for each β ∈ [0, α) acts as a probability density function on (0,∞).
As in the proof of Lemma 4.10, we can derive

C(β) =
1
2

∫ ∞

0

∫ ∞

0

y
(
e−{(x+1/x)/2−β/α}y + e−{(x+1/x)/2+β/α}y

)
dydx

=
1
2

[∫ ∞

0

{
1
2

(
x +

1
x

)
− β

α

}−2

dx +
∫ ∞

0

{
1
2

(
x +

1
x

)
+

β

α

}−2

dx

]

=
α3π

m3/2
,
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where we used the identity valid for any |b| < 1:

∫ ∞

0

{
1
2

(
x +

1
x

)
+ b

}−2

dx =
2

1 − b2

[
1√

1 − b2
arctan

(
x + b√
1 − b2

)
− x − 2b2x − b

x2 + 2bx + 1

]x=∞

x=0

=
2

1 − b2

[
1√

1 − b2

{
π

2
− arctan

(
b√

1 − b2

)}
− b

]
.

In particular, we have C(0) = π. Then, some elementary manipulations and Cauchy–Schwarz’s inequality
lead to

det [Iα,β(θ)] = α−2A2(θ) · α2δm−3/2 − α−2δ2{A′(θ)}2

=
α4δ2

m3

{∫ ∞

0

Ξ(y; β)
(

K0(y)
K1(y)

)2

dy ·
∫ ∞

0

Ξ(y; β)dy −
( ∫ ∞

0

Ξ(y; β)
K0(y)
K1(y)

dy

)2}
> 0,

where the last strict inequality does hold true since y �→ K0(y)/K1(y) is not a constant on (0,∞). This
completes the proof of the positive definiteness of I(θ) for each θ ∈ Θ.

4.6. Negligibility of the centering

Turning to verification of (4.6), it suffices to see that rknEθ[gk,n1(θ)] = o(1/
√

n) for each k.
Thanks to Lemma 4.8, we have r1nEθ[g1,n1(θ)] = n−1/2{O(

√
Δn)+Eθ [qn1H(qn1)]} = O(

√
Δn/n) = o(1/

√
n),

and it is obvious that r2nEθ[g2,nj(θ)] = 0. It follows from Lemmas 4.6 and 4.7(a) that Eθ[εn1η(εn1)] →∫
R

yφ′
1(y)dy = −1 and Eθ[η(εn1)] → ∫

R
φ′

1(y)dy = 0. Therefore r3nEθ[g3,n1(θ)] = n−1/2{o(1) + O(Δn)} =
o(1/

√
n) and similarly, r4nEθ[g4,n1(θ)] = o(1/

√
n). Thus we get (4.6).

4.7. Mean-square differentiability

Finally we verify (4.7). For this it only remains to show that
∑n

j=1 supθ Eθ[|rn∂�
θ gnj(θ)rn|2] → 0 since we

already have (4.37). To do this, we recall (3.3), and also the summands of the expressions (4.26) to (4.35) for
∂�

θ gnj(θ) = ∂2
θ log pΔn(xj ; θ). It suffices to estimate

Bkl,n(θ) := Eθ

[|rknrln∂θk
∂θl

log pΔn(xj ; θ)|2
]

for k, l ∈ {1, 2, 3, 4} individually, where we wrote θ = (α, β, δ, μ) =: (θ1, θ2, θ3, θ4) for convenience.
Invoking the boundedness of y �→ yH ′(y) (cf. Lem. 4.7(c)), we get

sup
θ∈Θ

B11,nj(θ) � 1
n2

{
1 + Eθ[|qnj/Δn|2]

}
� 1

n2
{1 + Eθ[ε2nj ]} � 1

n2Δn
= o

(
1
n

)

as soon as nΔn → ∞, so that
∑n

j=1 supθ∈Θ B11,nj(θ) → 0 according to the boundedness of Θ. For the others,
reminding Lemma 4.7 it is not difficult to deduce that

sup
θ∈Θ

Bkl,nj(θ) �
{

O(1/n2) for k = l �= 1 and for {k, l} = {1, 2} or {3, 4},
O(Δn/n) for all the rest.

}
= o

(
1
n

)
·

Therefore
∑n

j=1 supθ∈Θ Bkl,nj(θ) → 0 for each (k, l), completing the proof of (4.7).
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5. Concluding remarks

In this paper, we obtained the LAN for the NIG Lévy process discretely observed at high frequency. The
rate in the LAN are of two kind:

√
n for (δ, μ), while

√
nΔn for (α, β). Furthermore, the Fisher information

matrix I(θ) turned out to be always positive-definite. Only the element I11(θ) involves an integral, however,
given any admissible parameter values, we can evaluate it numerically in a small amount of time.

One of the important future tasks is construction of an estimator θ̂n of θ, which is asymptotically optimal in
the sense that, in view of Theorem 3.1, the normalized estimator r−1

n (θ̂n − θ) is asymptotically distributed as
N4(0, I(θ)−1) under the true measure. The maximum likelihood estimator is the first candidate. Nevertheless,
direct simultaneous optimization for the four parameters might entail numerical difficulties, so that some numer-
ical procedures must be of practical help. Among others, for possible practical devices for computing estimates,
we refer to EM type algorithm (Karlis [12]) and MCMC based Bayesian estimation (Karlis and Lillestöl [13]).
Hence, for example, it would then be more convenient to provide a rate-optimal estimator of θ (initial estimator)
at first, and then execute the likelihood based one-step improvement in order to attain the minimal asymptotic
variance I(θ)−1 specified in Theorem 3.1.

It would also be interesting to investigate some related classes of stochastic processes. In particular, the
class of Lévy-driven Ornstein-Uhlenbeck processes, of increasing importance in various fields of application, is a
challenging object, as in general, it does not admit a transition probability density in closed form. Those issues
will be addressed in subsequent papers.

Acknowledgements. The authors are grateful to the anonymous referee for his or her very careful reading and several
constructive comments.
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