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LOWER LARGE DEVIATIONS FOR THE MAXIMAL FLOW THROUGH
TILTED CYLINDERS IN TWO-DIMENSIONAL FIRST PASSAGE

PERCOLATION
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Abstract. Equip the edges of the lattice Z
2 with i.i.d. random capacities. A law of large numbers

is known for the maximal flow crossing a rectangle in R
2 when the side lengths of the rectangle go to

infinity. We prove that the lower large deviations are of surface order, and we prove the corresponding
large deviation principle from below. This extends and improves previous large deviations results of
Grimmett and Kesten [9] obtained for boxes of particular orientation.
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1. Introduction

Imagine each edge of Z
2 is a microscopic pipe some fluid can go through. To each edge e, we attach a

random capacity t(e) and suppose that all these random variables are independent and identically distributed
with common distribution function F on R

+. Now, we take a large rectangle R in R
2, decide that one side is the

“left side”, and accordingly name the other sides the right side, the top and the bottom of R. We are concerned
with the maximal flow rate that can cross R from the top to the bottom, while never exceeding the capacities
of the edges (see Sect. 2.2 for a formal definition). Informally, we ask: how does the maximal flow between the
top and the bottom behave when R gets larger and larger? This question was first considered in Grimmett and
Kesten [9], where a law of large numbers and large deviation estimates where proved, but only for “straight”
rectangles R, i.e. with sides parallel to the coordinate axes. Let us mention that lower large deviations are of
surface order, i.e. of the order of the width of R whereas upper large deviations are of volume order, i.e. of
the order of the area of R. In a previous work Rossignol and Théret [13], the authors extended the law of large
numbers of Grimmett and Kesten [9] to rectangles R with arbitrary orientation. The purpose of this article is
to give a corresponding lower large deviation principle.

We shall precise now our contribution. Let us notice that the problem of maximal flow has been studied in
the more general case of the lattice Z

d, R being then some box in R
d, first through the work of Chayes and

Chayes [7] and Kesten [12], and then notably with Zhang [19,20], Théret [15,16], Rossignol and Théret [14].
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In any case, it is much simpler to study a subadditive version of the maximal flow, which we shall call τ in
Section 2.2 below. Then, when R is straight (i.e. has faces parallel to coordinate hyperplanes), one can pass
from τ to the maximal flow thanks to symmetry considerations. When d ≥ 3, results concerning R such as large
deviations estimates or laws of large numbers and that do not suppose that R is straight (or even that it is a
box) are known from the recent works Cerf and Théret [4–6], but they require a lot of geometric work, need
strong moment hypotheses and above all have not yet provided large deviation principles. Moreover they are in
any case much more involved than what is expected to be necessary in two dimensions to treat the simple case
of rectangles. Indeed, in two dimensions, duality considerations are of great help to prove a law of large numbers
and a lower large deviation principle. The aim of Rossignol and Théret [13] was thus to derive in a simple way
the law of large numbers for the maximal flow from the top to the bottom through a rectangle R. The aim of
the present article is to use the same constructions to derive in a simple way the lower large deviation principle
of the maximal flow that is still missing in the works of Cerf and Théret (see [5]), and to provide a deep study
of the properties of the corresponding rate function. A similar, simple proof in dimension d ≥ 3 remains to be
found.

The precise definitions and notations, the relevant background as well as the main results are presented in
Section 2. Then, the main construction and the lower large deviation estimates are the purpose of Section 3,
while Section 4 contains the proof of the large deviation principle itself and the study of the rate function.

2. Notations, background and main results

The most important notations are gathered in Sections 2.1 to 2.3, the relevant background is described in
Section 2.4 while our main results are stated in Section 2.5. We discuss in section 2.6 the different hypotheses
appearing in our results.

2.1. Maximal flow on a graph

First, let us define the notion of a flow on a finite unoriented graph G = (V, E) with set of vertices V and set
of edges E . Let t = (t(e))e∈E be a collection of non-negative real numbers, which are called capacities. It means
that t(e) is the maximal amount of fluid that can go through the edge e per unit of time. To each edge e, one
may associate two oriented edges, and we shall denote by

−→E the set of all these oriented edges. Let A and Z
be two finite, disjoint, non-empty sets of vertices of G: A denotes the source of the network, and Z the sink.
A function θ on

−→E is called a flow from A to Z with strength ‖θ‖ and capacities t if it is antisymmetric, i.e.
θ−→xy = −θ−→yx, if it satisfies the node law at each vertex x of V � (A ∪ Z):∑

y∼x
θ−→xy = 0 ,

where y ∼ x means that y and x are neighbours on G, if it satisfies the capacity constraints:

∀e ∈ E , |θ(e)| ≤ t(e),

and if the “flow in” at A and the “flow out” at Z equal ‖θ‖:

‖θ‖ =
∑
a∈A

∑
y∼a
y �∈A

θ(−→ay) =
∑
z∈Z

∑
y∼z
y �∈Z

θ(−→yz).

The maximal flow from A to Z, denoted by φt(G,A,Z), is defined as the maximum strength of all flows from
A to Z with capacities t. We shall in general omit the subscript t when it is understood from the context. The
max-flow min-cut theorem (see Bollobás [2] for instance) asserts that the maximal flow from A to Z equals the
minimal capacity of a cut between A and Z. Precisely, let us say that E ⊂ E is a cut between A and Z in G
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if every path from A to Z borrows at least one edge of E. Define V (E) =
∑

e∈E t(e) to be the capacity of a
cut E. Then,

φt(G,A,Z) = min{V (E) s.t. E is a cut between A and Z in G} . (2.1)

2.2. On the square lattice

We shall always consider G as a piece of Z
2. More precisely, we consider the graph L = (Z2,E2) having for

vertices Z
2 and for edges E

2, the set of pairs of nearest neighbours for the standard L1 norm. The notation
〈x, y〉 corresponds to the edge with endpoints x and y. To each edge e in E

2 we associate a random variable t(e)
with values in R

+. We suppose that the family (t(e), e ∈ E
2) is independent and identically distributed, with a

common distribution function F . More formally, we take the product measure P = F⊗Ω on Ω =
∏
e∈E2 [0,∞[,

and we write its expectation E. If G is a subgraph of L, and A and Z are two subsets of vertices of G, we
shall denote by φ(G,A,Z) the maximal flow in G from A to Z, where G is equipped with capacities t. When B
is a subset of R

2, and A and Z are subsets of Z
2 ∩ B, we shall denote by φ(B,A,Z) again the maximal flow

φ(G,A,Z) where G is the induced subgraph of Z
2 with set of vertices Z

2 ∩B.
For all θ ∈ R, we define the two following vectors, of unit Euclidean nom,

�v(θ) = (cos θ, sin θ) and �v⊥(θ) = (sin θ,− cos θ).

We denote by −→e 1 (resp. −→e 2) the vector (1, 0) ∈ R
2 (resp. (0, 1)). Let A be a non-empty line segment in R

2.
We shall denote by l(A) its (Euclidean) length. All line segments will be supposed to be closed in R

2. There
exists θ ∈ [0, π[ such that �v(θ) is orthogonal to hyp(A), the hyperplane spanned by A. Denote by a and b the
end-points of A such that (b− a).�v⊥(θ) > 0. For h a positive real number, we denote by cyl(A, h) the cylinder
of basis A and height 2h, i.e., the set

cyl(A, h) = {x+ t�v(θ) |x ∈ A, t ∈ [−h, h]}.

We define also the r-neighbourhood V(H, r) of a subset H of R
d as

V(H, r) = {x ∈ R
2 | d(x,H) < r},

where the distance is the Euclidean one (d(x,H) = inf{‖x− y‖2 | y ∈ H}).
Now, we define D(A, h) the set of admissible boundary conditions on cyl(A, h) (see Fig. 1):

D(A, h) =
{

(k, θ̃) | k ∈ [0, 1] and θ̃ ∈
[
θ − arctan

(
2hk
l(A)

)
, θ + arctan

(
2h(1 − k)
l(A)

)]}
·

The meaning of an element κ = (k, θ̃) of D(A, h) is the following. In cyl(A, h), we may define two points c
and d such that c is “at height 2kh on the left side of cyl(A, h)”, and d is “on the right side of cyl(A, h)” by

c = a+ (2k − 1)h�v(θ), (d− c) is orthogonal to �v(θ̃) and d satisfies �cd · �v⊥(θ̃) > 0.

Then we see that D(A, h) is exactly the set of parameters so that c and d remain “on the sides of cyl(A, h)”.
We define also D(A, h), the set of angles θ̃ such that there is an admissible boundary condition with angle θ̃:

D(A, h) =
[
θ − arctan

(
2h
l(A)

)
, θ + arctan

(
2h
l(A)

)]
·

It will be useful to define the left side (resp. right side) of cyl(A, h): let left(A) (resp. right(A)) be the set of
vertices in cyl(A, h)∩Z

2 such that there exists y /∈ cyl(A, h), 〈x, y〉 ∈ E
d and [x, y[, the segment that includes x

and excludes y, intersects a+ [−h, h].�v(θ) (resp. b+ [−h, h].�v(θ)).
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c
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Figure 1. An admissible boundary condition (k, θ̃).

Now, the set cyl(A, h) � (c+ R(d− c)) has two connected components, which we denote by C1(A, h, k, θ̃) and
C2(A, h, k, θ̃). For i = 1, 2, let Ah,k,θ̃i be the set of the points in Ci(A, h, k, θ̃)∩Z

2 which have a nearest neighbour
in Z

2
� cyl(A, h):

Ah,k,θ̃i = {x ∈ Ci(A, h, k, θ̃) ∩ Z
2 | ∃y ∈ Z

2
� cyl(A, h), ‖x− y‖1 = 1}.

We define the flow in cyl(A, h) constrained by the boundary condition κ = (k, θ̃) as:

φκ(A, h) := φ(cyl(A, h), Ah,k,θ̃1 , Ah,k,θ̃2 ).

A special role is played by the condition κ = (1/2, θ), and we shall denote:

τ(A, h) = τ(cyl(A, h), �v(θ)) := φ(1/2,θ)(A, h).

Let T (A, h) (respectively B(A, h)) be the top (respectively the bottom) of cyl(A, h), i.e.,

T (A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h), 〈x, y〉 ∈ E
d and 〈x, y〉 intersects A+ h�v(θ)}

and
B(A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h), 〈x, y〉 ∈ E

d and 〈x, y〉 intersects A− h�v(θ)}.
We shall denote the flow in cyl(A, h) from the top to the bottom as:

φ(A, h) = φ(cyl(A, h), �v(θ)) = φ(cyl(A, h), T (A, h), B(A, h)).

2.3. Duality

The main reason why dimension 2 is easier to deal with than dimension d ≥ 3 is duality. Indeed in dimension 2,
cuts between the top and the bottom of a cylinder are in 1 to 1 correspondance with paths from left to right in
the dual lattice. This allows to relate unconstrained flows to constrained flows, as shows the following lemma
taken from Rossignol and Théret [13].
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Lemma 2.1. Let A be any line segment in R
2 and h a positive real number. Then,

φ(A, h) = min
κ∈D(A,h)

φκ(A, h) .

Notice that the condition κ belongs to the non-countable set D(A, h), but the graph is discrete so φκ(A, h)
takes only a finite number of values when κ ∈ D(A, h). Precisely, there is a finite subset D̃(A, h) of D(A, h),
such that:

card(D̃(A, h)) ≤ C0h
2, (2.2)

for some universal constant C0, and:
φ(A, h) = min

κ∈D̃(A,h)
φκ(A, h).

2.4. Background

We gather in this section known results concerning the behaviour of the variables τ(nA, h(n)) and φ(nA, h(n))
when n and h(n) go to infinity. They are of two types. We present first the law of large numbers satisfied by
both variables. Then we describe the large deviation principle from below proved for τ(nA, h(n)). The purpose
of this article is to extend the study of lower large deviations to the variable φ(nA, h(n)).

We gather the main hypotheses that we shall do on F and on the height h. Notice that (F5) ⇒ (F4) ⇒
(F3) ⇒ (F2) and (H3) ⇒ (H1).

Hypotheses on F Hypotheses on h

(F1) F (0) < 1 − pc(2) = 1
2 (H1) limn→∞ h(n) = +∞

(F2)
∫∞
0
x dF (x) <∞ (H2) limn→∞

log h(n)
n = 0

(F3)
∫∞
0 x2 dF (x) <∞ (H3) limn→∞

h(n)
n = +∞

(F4) ∃γ > 0,
∫∞
0 eγx dF (x) <∞ (H4) ∃α ∈ [0, π2 ] , limn→∞

2h(n)
nl(A) = tanα

(F5) ∀γ > 0,
∫∞
0

eγx dF (x) <∞

Using a subadditive argument and deviation inequalities, Rossignol and Théret have proved in Rossignol and
Théret [14] that τ(nA, h(n)) satisfies a law of large numbers:

Theorem 2.2. We suppose that (F2) holds. For every unit vector �v(θ) = (cos θ, sin θ), there exists a constant νθ
depending on F and θ, such that for every non-empty line-segment A orthogonal to �v(θ) and of Euclidean
length l(A), for every height function h : N → R

+ satisfying (H1), we have

lim
n→∞

τ(nA, h(n))
nl(A)

= νθ in L1.

Moreover, if the origin of the graph belongs to A, or if (F3) holds, then

lim
n→∞

τ(nA, h(n))
nl(A)

= νθ a.s.

This law of large numbers holds in fact for every dimension d ≥ 2, and the limit ν depends also on the
dimension. Let us remark that (in dimension two) νθ is equal to μ(�v⊥(θ)), where μ(.) is the time-constant
function of first passage percolation as defined in Kesten [11], (3.10) p. 158. This equality follows from the
duality considerations of Section 2.3 and standard first passage percolation techniques (see also Thm. 5.1 in
Grimmett and Kesten [9]) that relate point-to-point passage times in cylinders to unrestricted point-to-point
passage times (as in Hammersley and Welsh [10], Thm. 4.3.7 for instance). Boivin has also proved a very similar
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law of large numbers (see Thm. 6.1 in Boivin [1]). Notice that for the definition of μ(.), Kesten requires only
the existence of the first moment of the law F in the proof from Kesten [11], and it can also be defined under
the weaker condition

∫∞
0 (1−F (x))4 dx <∞. In fact, a time constant can even be defined without any moment

condition at the price of changing slightly the definition of first passage time (see Kesten [11]).
One consequence of this equality between ν and μ is that θ �→ νθ is either constant equal to zero, or always

non-zero. In fact the following property holds (cf. Kesten [11], Thm. 6.1 and Rem. 6.2 p. 218):

Proposition 2.3. We suppose that (F2) holds. Then νθ is well defined for all θ, and we have

∃θ s.t. νθ > 0 ⇐⇒ ∀θ νθ > 0 ⇐⇒ (F1).

We recall that for all n ∈ N, we have defined

D(nA, h(n)) =
[
θ − arctan

(
2h(n)
nl(A)

)
, θ + arctan

(
2h(n)
nl(A)

)]
.

Extending the law of large numbers proved by Grimmett and Kesten [9] for φ(nA, h(n)) in boxes of particular
orientation, the authors proved the following result (see Thm. 2.8 and Cor. 2.10 in Rossignol and Théret [13]),
in the same spirit as the result of Garet [8]:

Theorem 2.4. Let A be a non-empty line-segment in R
2, with Euclidean length l(A). Let θ ∈ [0, π[ be such

that (cos θ, sin θ) is orthogonal to A and h : N → R
+ satisfying (H1) and (H2). Define:

D = lim sup
n→∞

D(nA, h(n)) =
⋂
N≥1

⋃
n≥N

D(nA, h(n)),

and
D = lim inf

n→∞ D(nA, h(n)) =
⋃
N≥1

⋂
n≥N

D(nA, h(n)).

Suppose that (F2) holds. Then,

lim inf
n→∞

E[φ(nA, h(n))]
nl(A)

= inf

{
νθ̃

cos(θ̃ − θ)
| θ̃ ∈ D

}
(2.3)

and

lim sup
n→∞

E[φ(nA, h(n))]
nl(A)

= inf

{
νθ̃

cos(θ̃ − θ)
| θ̃ ∈ D

}
. (2.4)

Moreover, if the origin of the graph 0 is the middle of A, or if (F3) holds, then

lim inf
n→∞

φ(nA, h(n))
nl(A)

= inf

{
νθ̃

cos(θ̃ − θ)
| θ̃ ∈ D

}
a.s.

and

lim sup
n→∞

φ(nA, h(n))
nl(A)

= inf

{
νθ̃

cos(θ̃ − θ)
| θ̃ ∈ D

}
a.s.

Corollary 2.5. We suppose that conditions (H1), (H2) and (H4) on h are satisfied. We suppose also that (F2)
holds. Then we have

lim
n→∞

φ(nA, h(n))
nl(A)

= inf

{
νθ̃

cos(θ̃ − θ)
| θ̃ ∈ [θ − α, θ + α]

}
in L1.
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Moreover, if 0 is the middle of A, or if (F3) holds, then

lim
n→∞

φ(nA, h(n))
nl(A)

= inf

{
νθ̃

cos(θ̃ − θ)
| θ̃ ∈ [θ − α, θ + α]

}
a.s.

Concerning the lower large deviations of τ(nA, h(n)), Theorem 3.9 and Lemma 5.1 in Rossignol and Théret [14]
state that:

Theorem 2.6. For every non-empty line-segment A in R
2, with Euclidean length l(A), for every height function

h : N → R
+ satisfying (H1), for all λ in R

+, the limit

Iθ(λ) = lim
n→∞

−1
nl(A)

log P

[
τ(nA, h(n)) ≤

(
λ− 1√

n

)
nl(A)

]
exists in [0,+∞] and depends only on θ ∈ [0, π[ such that (cos θ, sin θ) is orthogonal to A, and not on h nor A
itself. Moreover, if the hypotheses (F1) and (F2) are satisfied, the function Iθ has the following properties: it
is convex on R

+, infinite on [0, δ(| cos θ| + | sin θ|)[, where δ = inf{λ |P[t(e) ≤ λ] > 0}, finite on ]δ(| cos θ| +
| sin θ|),+∞[, equal to 0 on [νθ,+∞[, and if νθ > δ(| cos θ| + | sin θ|) it is continuous and strictly decreasing on
]δ(| cos θ| + | sin θ|), νθ] and positive on ]δ(| cos θ| + | sin θ|), νθ[.

For simplicity of notations, we define Iθ = +∞ on R
−∗ , and for all a ≥ 0,

Iθ(a+) = lim
ε→0, ε>0

Iθ(a+ ε) and Iθ(a−) = lim
ε→0, ε>0

Iθ(a− ε).

We denote by Jθ the function defined on R
+ by

Jθ(λ) =
{ Iθ(λ+) if λ ≤ νθ,

+∞ if λ > νθ.

The following large deviation principle has also been proved in Rossignol and Théret [14], Theorem 3.10:

Theorem 2.7. For every non-empty line-segment A in R
2, with Euclidean length l(A), for every height function

h : N → R
+ satisfying (H1), if (F1) and (F5) hold, then the sequence(

τ(nA, h(n))
nl(A)

, n ∈ N

)
satisfies a large deviation principle of speed nl(A) with the good rate function Jθ, where θ ∈ [0, π[ is such that
(cos θ, sin θ) is orthogonal to A.

The same large deviation principle is also proved for φ(nA, h(n)) if θ = 0 (see Thm. 3.17 in Rossignol and
Théret [14], condition (F5) is replaced by (F4) in comparison with Thm. 2.7) or if h satisfies limn→∞ h(n)/n = 0
(see Cor. 3.14 in Rossignol and Théret [14]). Theorems 2.6 and 2.7 are valid in any dimension d ≥ 2. The
difference of hypotheses between theorems concerning the variable τ and theorems concerning the variable φ
will be discussed in Section 2.6.

2.5. Main results

As we have seen in Theorem 2.4, the existence of a limit for φ(nA, h(n)) is linked with the equality between
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different infimum. The same holds for the large deviation principle, so we define two additional hypotheses we
will use:

Hypotheses on h and F

(FH1) inf
{

ν
θ̃

cos(θ̃−θ) | θ̃ ∈ D
}

= inf
{

ν
θ̃

cos(θ̃−θ) | θ̃ ∈ D
}

(FH2) ∀λ ≥ 0, inf
{

1

cos(θ̃−θ)Iθ̃(λ cos(θ̃ − θ)+) | θ̃ ∈ ad(D)
}

= inf
{

1

cos(θ̃−θ)Iθ̃(λ cos(θ̃ − θ)+) | θ̃ ∈ ad(D)
}

Here and in the rest of the paper we denote the adherence of a set S by ad(S). Notice that (H4) implies (FH1)
and (FH2). We can now state our main results:

Theorem 2.8 (lower large deviations). Let A be a non-empty line-segment in R
2, θ ∈ [0, π[ such that

(cos θ, sin θ) is orthogonal to A, and h : N → R
+satisfying conditions (H1) and (H2). If (F1), (F2) and

(FH1) hold, then for all ε > 0 there exist constants K1(F,A, h, ε) ≥ 0 and K2(F, θ, h, ε) > 0 such that

P

(
φ(nA, h(n))

nl(A)
≤ ηθ,h − ε

)
≤ K1e−K2nl(A),

where

ηθ,h = inf
θ̃∈D

νθ̃

cos(θ̃ − θ)
= lim

n→∞
φ(nA, h(n))

nl(A)
in L1.

Theorem 2.9 (large deviation principle). Let A be a non-empty line-segment in R
2, θ ∈ [0, π[ such that

(cos θ, sin θ) is orthogonal to A, and h : N → R
+satisfying conditions (H1) and (H2). If (F1), (F2), (FH1),

(FH2), and either (F4) or (H3) hold, then the sequence(
φ(nA, h(n))

nl(A)
, n ∈ N

)
satisfies a large deviation principle of speed nl(A) with the good rate function Kθ,h : R

+ → R
+∪{+∞} defined by

Kθ,h(λ) =

{
inf

{
1

cos(θ̃−θ)Iθ̃(λ cos(θ̃ − θ)+)
∣∣∣ θ̃ ∈ ad(D)

}
if λ ≤ ηθ,h,

+∞ if λ > ηθ,h.

Moreover, if we define

δθ,h = δ inf
θ̃∈D

| cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

·

where δ = inf{λ |P(t(e) ≤ λ) > 0}, the good rate function Kθ,h has the following properties: it is continuous on
[0, ηθ,h] except possibly at δθ,h where it may be only right continuous, it is infinite on [0, δθ,h[∪]ηθ,h,+∞[, finite
on ]δθ,h, ηθ,h], positive on [δθ,h, ηθ,h[ and equal to 0 at ηθ,h, and strictly decreasing when it is finite, in the sense
that if Kθ,h(λ) <∞, for all ε > 0, Kθ,h(λ − ε) > Kθ,h(λ).

Remark 2.10. We will prove in Lemma 4.5, Section 4.1 that when θ ∈ {0, π/2}, we have Kθ,h(λ) = Iθ(λ+),
and so Theorem 2.9 is consistent with the large deviation principle obtained in Theorem 3.17 by Rossignol and
Théret [14] in the case of straight cylinders.

2.6. Comments on the hypotheses

We want to discuss a little bit the different conditions on F and h we use. The condition (H1) is needed
to obtain asymptotic results independent of the height function h. The condition (F2) is needed to define νθ
in the way we did it (it may be relaxed, see Rem. 2.6 in Rossignol and Théret [14]). The condition (F1) is
equivalent to the fact that νθ �= 0.
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The conditions (F4) or (H3) appear in Theorem 2.9 to deal with the upper bound of the large deviation
principle (see Sect. 4.3.1, in particular Rem. 4.8). They correspond to the condition (F5) in Theorem 2.7.
Indeed, we need a stronger moment condition to deal with the upper large deviations of τ because a minimal
cutset corresponding to the maximal flow τ(nA, h(n)) is pinned along the boundary ∂(nA) of nA, thus it suffices
that some edges in a neighbourhood of this boundary have a huge capacity to increase the variable τ(nA, h(n))
(for more details, see Sect. 2.3 in Théret [18]). Since a minimal cutset corresponding to the flow φ(nA, h(n)) is
not pinned, there are no edges in the cylinders with such an influence on φ(nA, h(n)). However, the fact that a
cutset for φ(nA, h(n)) is not pinned implies that it can be located anywhere in the cylinder cyl(nA, h(n)), thus
we need to control the height of the cylinder by the condition (H2) to obtain interesting results concerning
φ(nA, h(n)), whereas this condition does not appear in theorems concerning τ(nA, h(n)). As explained in
Remark 3.22 in Rossignol and Théret [14], the condition (H2), combined with (F1), is relevant to observe a
maximal flow φ(nA, h(n)) that is not null.

Finally, the conditions (FH1) and (FH2) also appear because the minimal cutset does not have fixed
boundary conditions, thus it chooses its orientation to solve an optimisation problem. The condition (FH1)
ensures that the direction chosen by an optimal cutset is stable when n goes to infinity; this condition, com-
bined with (F2) and (H1), is relevant to observe a limit for φ(nA, h(n))/(nl(A)), as proved in Theorem 2.4.
The condition (FH2) is of the same kind, see Section 3.5 for more details. It is not obvious to check if the
conditions (FH1) and (FH2) are satisfied, however notice that (H4) implies both (FH1) and (FH2).

2.7. Outline of the proofs

For simplicity of notation, we denote by φn the maximal flow φ(nA, h(n)) when A and h are clearly given
from the context. Here is a detailed table of content of the rest of the article.

Section 3: We prove Theorem 2.8, i.e., that the lower large deviations of φn are of surface order.
• 3.1: We prove two technical lemmas on the functions (Iθ)θ∈[0,π[: a triangular inequality and a regularity

property.
• 3.2: By a subadditive argument (see Fig. 3), we obtain the following large deviation lower bounds

(cf. inequalities (3.10) and (3.11)):

lim inf
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≥ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
,

and

lim sup
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≥ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
.

• 3.3: By a similar subadditive argument (see Fig. 4), we obtain the following large deviation upper bounds
(cf. inequalities (3.18) and (3.19)) :

lim sup
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≤ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)+

)
,

and

lim inf
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≤ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)+

)
.

• 3.4: From properties of the functions (Iθ)θ∈[0,π[, we conclude that for all λ < ηθ,h,

lim sup
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] < 0.
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• 3.5: We discuss the existence of

lim
n→∞

1
nl(A)

log P[φn ≤ λnl(A)],

which is linked to condition (FH2).

Section 4: We prove Theorem 2.9, i.e., the large deviation principle itself.
• 4.1: We define the rate function Kθ,h and study its properties: lower semi-continuity, coercivity, continuity.

A deeper understanding of the behaviour of the function Iθ is needed here. We notice also that for
particular orientations (θ = kπ/4 for k ∈ N) we have Kθ,h = Jθ.

• 4.2: Using classical technics, we prove the lower bound of the large deviation principle.
• 4.3: We prove by imitating technics used in Théret [15,18] that the upper large deviations of φn are negligible

compared to its lower large deviations. This allows to obtain the upper bound of the large deviation
principle, and concludes the proof of Theorem 2.9.

The most original part of our work is the study of the rate function done in Section 4.1. The technics used
in Section 3 are largely inspired by the ones in Rossignol and Théret [13], and the proof of the large deviation
principle itself in Sections 4.2 and 4.3 is based on quite classical methods.

Finally, we shall use two abbreviations: làglàd for “limite à gauche, limite à droite”, meaning that a function
admits, on every point of its domain, a limit (eventually infinite) from the left and a limit from the right. We
shall also use l.s.c for “lower semi-continuous”.

3. Lower large deviations

This section is devoted to the study of P[φn ≤ λnl(A)] for λ ≥ 0. We will add conditions on h and F step
by step, to emphasize what condition is needed at each time.

3.1. Technical lemma

We state here a property which comes from the weak triangle inequality for ν (see Sect. 4.4 in Rossignol and
Théret [14]):

Lemma 3.1. Let (abc) be a non degenerate triangle in R
2 and let va, vb, vc be the exterior normal unit vectors

to the sides [bc], [ac], [ab]. We denote by (cos θi, sin θi) the coordinates of vi, and by l(ij) the length of the side
[i, j] for i, j in {a, b, c}. If the angles ĉab and âbc have values strictly smaller than π/2, then for all λ ≥ 0, for
all α ∈ [0, 1], we have

l(ab)Iθc

(
λ

l(ab)

+)
≤ l(ac)Iθb

(
α

λ

l(ac)

+)
+ l(bc)Iθa

(
(1 − α)

λ

l(bc)

+)
·

Proof. This proof follows the one of Proposition 11.6 in Cerf [3]. We consider the cylinder

cylc(N) = cyl(N [ab], N)

of dimensions Nl(ab)× 2N oriented towards the direction θc, and we define τc(N) = τ(cylc(N)) (implicitly, for
the direction defined by θc). Exactly as in Section 4.1 of Rossignol and Théret [13], we choose two functions
ζ, h′ : N → R

+ such that
lim
n→∞h′(n) = lim

n→∞ ζ(n) = +∞,

and

lim
n→∞

h′(n)
ζ(n)

= 0.
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ζ(n)

θc

2h′(n)

cylc(N)

2N

H(n, N, a, b, c)

cylib(n)

Nl(ab)

θa

cylja(n)

θb

Na

Nb

Nc

�v⊥(θa)

�v⊥(θb)

Figure 2. The cylinders cylc(N), cylib(n) and cylja(n).

We construct smaller cylinders oriented towards the directions θb and θa inside cylc(N) (see Fig. 2). We define

cylb(n) = cyl
(
[0, 0 + nl(ab)�v⊥(θb)], h′(n)

)
,

cyla(n) = cyl
(
[0, 0 + nl(bc)�v⊥(θa)], h′(n)

)
,

respectively oriented towards the direction θb and θa. We define the vectors

�ui = (ζ(n) + (i− 1)nl(ac))�v⊥(θb) and �wj = (ζ(n) + (j − 1)nl(bc))�v⊥(θa)

and the points
Ui = Na+ �ui and Wj = Nc+ �wj

for

i ∈
{

1, . . . ,Mb =
⌊
Nl(ac) − 2ζ(n)

nl(ac)

⌋}
and j ∈

{
1, . . . ,Ma =

⌊
Nl(bc) − 2ζ(n)

nl(bc)

⌋}
,

where Ma = Ma(n,N, b, c) and Mb = Mb(n,N, a, c). For i = 1, . . . ,Mb (resp. j = 1, . . . ,Ma), let c̃yl
i

b(n)

(resp. c̃yl
j

a(n)) be the image of cylb(n) (resp. cyla(n)) the the translation of vector
−→
0Ui (resp.

−−→
0Wj). We can
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translate again each c̃yl
i

b(n) (resp. c̃yl
j

a(n)) by a vector of norm strictly smaller than one to obtain an integer
translate cylib(n) (resp. cylja(n)) of cylb(n) (resp. cyla(n)), i.e., a translate by a vector whose coordinates are
in Z

2. For i = 1, . . . ,Mb (resp. j = 1, . . . ,Ma), we define τ ib(n) = τ(cylib(n)) (resp. τ ja(n) = τ(cylja(n))) for
the direction defined by θb (resp. θa). The dimensions of cylb(n) (resp. cyla(n)) are (nl(ac)) × 2h′(n) (resp.
(nl(bc))× 2h′(n)), and for N and n large enough cylib(n) and cylja(n) are included in cylc(N) for all i and j (we
only consider such large n and N), because ĉab and âbc are strictly smaller than π/2 and h′(n)/ζ(n) → 0. The
variables (τ ib(n), τ ja(n)) are identically distributed. To glue together cutsets in the cylinders cylib(n) and cylja(n)
for all i and j to obtain a cutset in cylc(N) we have to add some edges. We finally define

H(n,N, a, b, c) = V
(

[Na,Na+ �u1] ∪ [Na+ �uMb
, Nc]

∪[Nc,Nc+ �w1] ∪ [Nc+ �wMa , Nb]
, 4
)
,

and we denote by H(n,N, a, b, c) the set of the edges included in H(n,N, a, b, c). There exists a constant C1

such that

card(H(n,N, a, b, c)) ≤ C1

(
ζ(n) + n+

N

n

)
·

The union of H(n,N, a, b, c) with cutsets in the cylinders cylib(n) and cylja(n) for all i and j separates the upper
half part from the lower half part of the boundary of cylc(N) (see Fig. 2), so we have

τc(N) ≤
Mb∑
i=1

τ ib(n) +
Ma∑
j=1

τ ja(n) + V (H(n,N, a, b, c)). (3.5)

Then for all λ ≥ 0, for all positive η, for all large N , for all α ∈ [0, 1], by the FKG inequality we have

P

[
τc(N)
Nl(ab)

≤ λ+ 3η − 1√
N

]
≥ P

[
τc(N)
Nl(ab)

≤ λ+ 2η

]

≥ P

[Mb∑
i=1

τ ib(n) ≤ α(λ+ η)Nl(ab)

]
× P

⎡⎣Ma∑
j=1

τ ja(n) ≤ (1 − α)(λ+ η)Nl(ab)

⎤⎦
× P [V (H(n,N, a, b, c)) ≤ ηNl(ab)]

≥
Mb∏
i=1

P
[
τ ib(n) ≤ α(λ + η)nl(ab)

]× Ma∏
j=1

P
[
τ ja(n) ≤ (1 − α)(λ + η)nl(ab)

]
× P [V (H(n,N, a, b, c)) ≤ ηNl(ab)]

≥ P

[
τa(n) ≤ (1 − α)(λ+ η)nl(ab) − nl(bc)√

n

]Ma

× P

[
τb(n) ≤ α(λ + η)nl(ab) − nl(ac)√

n

]Mb

× P

[
t(e) ≤ ηNl(ab)

C1(ζ(n) + n+N/n)

]C1(ζ(n)+n+N/n)

.

We take the logarithm of the previous inequality, divide it by −N , send N to infinity and then n to infinity.
We obtain that

l(ab)Iθc (λ+ 3η) ≤ l(ac)Iθb

(
α(λ+ η)

l(ab)
l(ac)

)
+ l(bc)Iθa

(
(1 − α)(λ + η)

l(ab)
l(bc)

)
· (3.6)

Sending η to zero, and replacing λ by λ/l(ab) we obtain the desired inequality. �
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We state next a property of continuity:

Lemma 3.2. For all λ ≥ 0, we define gλ : [θ − π/2, θ + π/2] → R
+ ∪ {+∞} by

∀θ̃ ∈]θ − π/2, θ + π/2[, gλ(θ̃) =
1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+)

and

gλ(θ − π/2) = gλ(θ + π/2) =
{

+∞ if Iθ̃(0+) > 0,
0 if Iθ̃(0+) = 0.

Then gλ is lower semi-continuous, and gλ is continuous on

H>
λ =

{
θ̃ |λ > δ

| cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

}
·

Remark 3.3. If (F1) holds, then for all θ̃ we have νθ̃ > 0, that implies Iθ̃(0+) > 0. The definition of gλ(θ−π/2)
and gλ(θ + π/2) is consistent with the expression given for any different θ̃. We shall always use Lemma 3.2
under assumption (F1).

Proof. The proof is based on the same ideas as the one of Lemma 3.1, so we will use part of it. We consider
two angles θ̃1, θ̃2 such that θ̃1− θ̃2 = ε̂ (positive or negative) and |ε̂| = ε is small. Let (abc) be the right triangle
such that, using the same notations as in the previous proof, l(ab) = 1, θc = θ̃1 + π, θb = θ̃2 and θa = θ̃2 − π/2,
and so b̂ac = ε, âcb = π/2 and âbc < π/2. Obviously we are confronted with a particular case of triangle (abc)
studied in Lemma 3.1. We do exactly the same construction as in the previous proof, and we start again from
equation (3.6). Here we have constructed (abc) such that l(ab) = 1, l(ac) = cos ε and l(bc) = sin ε, and by
invariance of the graph by a rotation of angle π/2, we know that the functions Iθ̃2 and Iθ̃2−π/2 (respectively Iθ̃1
and Iθ̃1+π) are equal. We can rewrite equation (3.6) the following way:

Iθ̃1(λ+ 3η) ≤ (cos ε)Iθ̃2
(
α
λ+ η

cos ε

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ+ η

sin ε

)
. (3.7)

We want to make appear the factor cos(θ̃1 − θ), so for all λ ≥ 0 and for all small η we deduce from (3.7) that
for all ε small enough,

Iθ̃1(λ cos(θ̃1 − θ) + 3η)

≤ (cos ε)Iθ̃2
(
α
λ cos(θ̃1 − θ) + η

cos ε

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ cos(θ̃1 − θ) + η

sin ε

)

≤ (cos ε)Iθ̃2
(
α(λ cos(θ̃2 − θ) + η/2)

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ cos(θ̃1 − θ) + η

sin ε

)
·

If λ > 0 we choose α ∈] max(2/3, 1 − η/(12λ)), 1[ (remember that λ is fixed and we can choose η small in
comparison with λ), then α(λ cos(θ̃2 − θ) + η/2) ≥ λ cos(θ̃2 − θ) + η/4. This equation is satisfied for all
1 > α ≥ 1/2 if λ = 0. We stress here the fact that how large must be α depends on λ and η, but not on ε.
With a such fixed big α, we obtain that

Iθ̃1(λ cos(θ̃1 − θ) + 3η) ≤ (cos ε)Iθ̃2
(
λ cos(θ̃2 − θ) + η/4

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ cos(θ̃1 − θ) + η

sin ε

)
·
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We send θ̃2 to θ̃1, i.e. ε to zero by fixing θ̃1. Since (1−α)(λ cos(θ̃1 − θ) + η) is fixed and positive, we know that
for small ε we obtain

(1 − α)
λ cos(θ̃1 − θ) + η

sin ε
> νmax = max

θ∈[0,π]
νθ,

and so for all θ̃ we have

Iθ̃
(

(1 − α)
λ cos(θ̃1 − θ) + η

sin ε

)
= 0.

We send finally η to zero and obtain

Iθ̃1(λ cos(θ̃1 − θ)+) ≤ lim inf
η→0

lim inf
ε̂→0

Iθ̃1+ε̂

(
λ cos(θ̃1 + ε̂− θ) + η/4

)
.

We know that the limit limη→0 Iθ̃1+ε̂(λ cos(θ̃1 + ε̂− θ) + η/4) is an increasing limit for all fixed ε̂, so we get:

Iθ̃1(λ cos(θ̃1 − θ)+) ≤ lim inf
ε̂→0

Iθ̃1+ε̂(λ cos(θ̃1 + ε̂− θ)+). (3.8)

We will now fix θ̃2 and send θ̃1 to θ̃2. Starting again from (3.6), for all β > 0, for all λ > 0, for all
θ̃2 ∈]θ − π/2, θ + π/2[, for all η small enough and ε small (in particular such that θ̃1 ∈]θ − π/2, θ + π/2[ too),
we obtain

Iθ̃1(λ cos(θ̃1 − θ) + β)

≤ Iθ̃1(λ cos(θ̃1 − θ))

≤ (cos ε)Iθ̃2
(
α
λ cos(θ̃1 − θ) − 2η

cos ε

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ cos(θ̃1 − θ) − 2η
sin ε

)

≤ (cos ε)Iθ̃2
(
α(λ cos(θ̃2 − θ) − 3η)

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ cos(θ̃1 − θ) − 2η
sin ε

)
·

Exactly as previously, for α < 1 but sufficiently close to 1 (how close depending on λ and η but not on ε), we
have

Iθ̃1(λ cos(θ̃1 − θ) + β)

≤ (cos ε)Iθ̃2
(
λ cos(θ̃2 − ε) − 4η

)
+ (sin ε)Iθ̃2

(
(1 − α)

λ cos(θ̃1 − θ) − 2η
sin ε

)
·

We send first β to zero, then θ̃1 to θ̃2 (thus ε to zero), and finally η to zero to obtain as for (3.8) that

Iθ̃2(λ cos(θ̃2 − θ)−) ≥ lim sup
ε̂→0

Iθ̃2+ε̂(λ cos(θ̃2 + ε̂− θ)+). (3.9)

This inequality remains valid for λ = 0 or cos(θ̃2−θ) = 0, since for convenience we decided that Iθ̃2(0−) = +∞.
From (3.8) and (3.9), we conclude that for all λ ≥ 0:

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+) ≤ lim inf

ε̂→0
gλ(θ̃ + ε̂)

≤ lim sup
ε̂→0

gλ(θ̃ + ε̂) ≤ 1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)−).
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Lemma 3.2 follows, since we know that:

∀θ̃ ∈ H>
λ Iθ̃(λ cos(θ̃ − θ)+) = Iθ̃(λ cos(θ̃ − θ)−).

�

3.2. Lower bound

From now on, we suppose that the height function h satisfies (H1). We will use equation (19) of Rossignol
and Théret [13], and thus the construction that leads to it, to prove that

lim inf
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≥ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
, (3.10)

and
lim sup
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≥ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
, (3.11)

We recall this construction here. We consider a line segment A, of orthogonal unit vector �v(θ) = (cos θ, sin θ) for
θ ∈ [0, π[, and a function h : N → R

+ satisfying limn→∞ h(n) = +∞. We use the notation Dn = D(nA, h(n)).
For all θ̃ ∈ Dn, we define

kn =
1
2

+
nl(A) tan(θ̃ − θ)

4h(n)
,

and thus κn = (kn, θ̃) ∈ Dn. We want to compare φκn
n with the maximal flow τ in a cylinder inside cyl(nA, h(n))

and oriented towards the direction θ̃. In fact, we must use the subadditivity of τ and compare φκn
n with a sum

of such variables τ .
We consider n and N in N, with N a lot bigger than n. The following definitions can seem a little bit

complicated, but Figure 3 is more explicit. We choose two functions h′, ζ : N → R
+ such that

lim
n→∞h′(n) = lim

n→∞ ζ(n) = +∞,

and

lim
n→∞

h′(n)
ζ(n)

= 0, (3.12)

We consider a fixed θ̃ ∈ DN . We recall that

�v(θ̃) = (cos θ̃, sin θ̃) and �v⊥(θ̃) = (sin θ̃,− cos θ̃).

In cyl(NA, h(N)), we denote by xN and yN the two points corresponding to the boundary conditions κN , such
that −−−→xNyN · �v⊥(θ̃) > 0. Notice that according to our choice of kN , the segments [xN , yN ] and NA cut each
other in their middle. If we denote by L(N, θ̃) the distance between xN and yN , we have:

L(N, θ̃) =
Nl(A)

cos(θ̃ − θ)
·

We define
cyl′(n) = cyl([0, n�v⊥(θ̃)], h′(n)).

We will translate cyl′(n) numerous times inside cyl(NA, h(N)). We define

ti = xN + (ζ(n) + (i− 1)n)�v⊥(θ̃),
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ζ(n)

2kN h(N)

2(1 − kN )h(N)

xN

θ

�v(θ)

yN
2ζ

θ̃

�v(θ̃)

�v⊥(θ̃)

n

≥ ζ(n)

L(N, θ̃)

Nl(A)

: cyl(NA, h(N))

: G̃i

: Gi

: F1(n, N, κN ) ∪ F2(n, N, κN )

h′(n)

Figure 3. The cylinders cyl(NA, h(N)) and Gi, for i = 1, . . . ,M.

for i = 1, . . . ,M, where

M = M(n,N) =

⌊
L(N, θ̃) − 2ζ(n)

n

⌋
·

Of course we consider only N large enough to have M ≥ 2. For i = 1, . . . ,M, we denote by G̃i the image of
cyl′(n) by the translation of vector

−→
0ti. For n (and thus N) sufficiently large, thanks to condition (3.12), we

know that G̃i ⊂ cyl(NA, h(N)) for all i. We can translate G̃i again by a vector of norm strictly smaller than 1
to obtain an integer translate of cyl′(n) (i.e., a translate by a vector whose coordinates are in Z

2) that we will
call Gi. Now we want to glue together cutsets of boundary condition (1/2, θ̃) in the cylinders Gi. We define:

F1(n,N, κN ) =

(M⋃
i=1

V(ti, ζ0)

) ⋂
cyl(NA, h(N)),

where ζ0 is a fixed constant larger than 4, and:

F2(n,N, κN ) = V
(
[xN , xN + ζ(n)�v⊥(θ̃)] ∪ [zM, yN ], ζ0

) ⋂
cyl(NA, h(N)).

Let F1(n,N, κN) (respectively F2(n,N, κN )) be the set of the edges included in F1(n,N, κN ) (respectively
F2(n,N, κN )). If for every i = 1, . . . ,M, Gi is a cutset of boundary condition (1/2, θ̃) in Gi, then

M⋃
i=1

Gi ∪ F1(n,N, κN ) ∪ F2(n,N, κN )
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contains a cutset of boundary conditions κN in cyl(NA, h(N)). We obtain:

φκN

N ≤
M∑
i=1

τ(Gi, �v(θ̃)) + V (F1(n,N, κN ) ∪ F2(n,N, κN )), (3.13)

and so,

∀θ̃ ∈ DN φN ≤ φκN

N ≤
M∑
i=1

τ(Gi, �v(θ̃)) + V (F1(n,N, κN ) ∪ F2(n,N, κN )), (3.14)

This equation (3.14) is equation (19) in Rossignol and Théret [13]. Moreover, there exists a constant C2 such
that:

card(F1(n,N, κN )) ≤ C2M and card(F2(n,N, κN )) ≤ C2 (ζ(n) + n) .

Then for all θ̃ ∈ Dn, for all λ > 0, for all positive small ε, by the FKG inequality,

P[φN ≤ λl(A)N ]

≥ P

[M⋂
i=1

{
τ(Gi, �v(θ̃)) ≤ (λ− ε)

Nl(A)
M }∩ {V (F1(n,N, κN ) ∪ F2(n,N, κN )) ≤ εl(A)N

}]

≥ P

[
τ(cyl′(n), �v(θ̃)) ≤ (λ − ε) cos(θ̃ − θ)n

]M
× P

[
∀e ∈ F1(n,N, κN) ∪ F2(n,N, κN ), t(e) ≤ εl(A)N

C2(M + ζ(n) + n)

]

≥ P

[
τ(cyl′(n), �v(θ̃))

n
≤ (λ− ε) cos(θ̃ − θ) − 1√

n

]M

× P

[
t(e) ≤ εl(A)N

C2(M + ζ(n) + n)

]C2(M+ζ(n)+n)

·

We take the logarithm of this inequality, divide it by Nl(A), send N to infinity and then n to infinity. Thanks
to Theorem 2.6, for all θ̃ ∈ D and λ > ε > 0, we obtain

lim inf
N→∞

1
Nl(A)

log P

[
φN

Nl(A)
≤ λ

]
≥ −1

cos(θ̃ − θ)
Iθ̃
(
(λ− ε) cos(θ̃ − θ)

)
.

Sending ε to zero (remember that Iθ̃ is làglàd) and taking the infimum in θ̃,

lim inf
N→∞

1
Nl(A)

log P[φN ≤ λNl(A)] ≥ − inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
· (3.15)

Similarly, if θ̃ ∈ D, let ψ : N → N be strictly increasing such that for all N , θ̃ ∈ Dψ(N). Then we obtain by the
same arguments that

lim sup
N→∞

1
Nl(A)

log P[φN ≤ λNl(A)] ≥ lim inf
N→∞

1
ψ(N)l(A)

log P[φψ(N) ≤ λψ(N)l(A)]

≥ − inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
. (3.16)

These inequalities remain valid for λ = 0, since Iθ̃(0−) = +∞, so equations (3.15) and (3.16) are satisfied for
all λ ≥ 0.
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We will transform a little bit inequalities (3.15) and (3.16) to make it more useful for us in the proof of the
large deviation principle below. Actually, let us prove that:

inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
= inf

θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
, (3.17)

where D is an interval of [θ−π/2, θ+π/2] which is centered at θ and symmetric with respect to θ (representing D
or D here). As we did previously, we define

H∗
λ =

{
θ̃ |λ ∗ δ | cos θ̃| + | sin θ̃|

cos(θ̃ − θ)

}
,

where ∗ represents <, >, ≤, ≥ or =, and for simplicity of notations we define also:

g̃λ(θ̃) =
1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)−

)
.

The function g̃λ is infinite on H≤
λ , and finite, continuous and equal to gλ on H>

λ . If D is included in H≤
λ , then

ad(D) too because H≤
λ is closed, and then:

inf
D
g̃λ = +∞ = inf

ad(D)
g̃λ.

Otherwise, D ∩H>
λ is non empty, so infD g̃λ is finite. If ad(D) �= D (otherwise the result is obvious), then D is

open since it is symmetric with respect to θ, and we denote by θ̃1 and θ̃2 the two points of ad(D)�D. Either g̃λ
is continuous at θ̃1 (respectively θ̃2), or g̃λ(θ̃1) (respectively g̃λ(θ̃2)) is infinite, so

inf
D
g̃λ = inf

ad(D)
g̃λ,

and equation (3.17) is proved. Inequalities (3.15) and (3.16) are equivalent to (3.10) and (3.11).

3.3. Upper bound

We suppose from now on that h satisfies (H1) and (H2). We will use equation (24) in Rossignol and
Théret [13], and thus the construction that leads to it, to prove that

lim sup
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≤ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)+

)
, (3.18)

and
lim inf
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≤ − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃
(
λ cos(θ̃ − θ)+

)
, (3.19)

We recall this construction now. We do the symmetric construction of the one done in Section 3.2. We consider
n and N in N and take N a lot bigger than n. We choose functions ζ′, h′′ : N → R

+ such that

lim
n→∞ ζ′(n) = lim

n→∞h′′(n) = +∞,

and

lim
n→∞

h(n)
ζ′(n)

= 0, (3.20)
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N

2h′′(N)

ζ

ζ′(n)

≥ ζ′(n)

�v(θ̃)

�v(θ)

θ̃

�v⊥(θ̃)

: cyl′′(N)

: B̃i

: Bi

: E1(n, κ) ∪ E2(n, κ)θ

L(n, θ̃)

nl(A)

Figure 4. The cylinders cyl′′(N) and Bi, for i = 1, . . . ,N .

We consider κ = (k, θ̃) ∈ Dn. Keeping the same notations as in Section 3.2, we define

cyl′′(N) = cyl
(
[0, N�v⊥(θ̃)], h′′(N)

)
.

We will translate cyl(nA, h(n)) numerous times in cyl′′(N). Figure 4 is more explicit than the following defi-
nitions. The condition κ defines two points xn and yn on the boundary of cyl(nA, h(n)) (see Sect. 3.2). As in
Section 3.2, we denote by L(n, θ̃) the distance between xn and yn, and we have

L(n, θ̃) =
nl(A)

cos(θ̃ − θ)
·

We define
zi =

(
ζ′(n) + (i− 1)L(n, θ̃)

)
�v⊥(θ̃),

for i = 1, . . . ,N , where

N =

⌊
N − 2ζ′(n)

L(n, θ̃)

⌋
·

Of course we consider only N large enough to have N ≥ 2. For i = 1, . . . ,N , we denote by B̃i the image of
cyl(nA, h(n)) by the translation of vector −−→xnzi. For N sufficiently large, thanks to condition (3.20), we know
that B̃i ⊂ cyl′′(N) for all i. We can translate B̃i again by a vector of norm strictly smaller than 1 to obtain an
integer translate of cyl(nA, h(n)) (i.e., a translate by a vector whose coordinates are in Z

2) that we will call Bi.
Now we want to glue together cutsets of boundary condition κ in the different Bi. We define:

E1(n,N, κ) =

( N⋃
i=1

V(zi, ζ)

) ⋂
cyl′′(N),

where ζ is still a fixed constant bigger than 4, and:

E2(n,N, κ) = V
(
[0, ζ′(n)�v⊥(θ̃)] ∪ [zN , N�v⊥(θ̃)], ζ

) ⋂
cyl′′(N).
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LetE1(n,N, κ) (respectivelyE2(n,N, κ)) be the set of the edges included in E1(n,N, κ) (respectively E2(n,N, κ)).
Then, still by gluing cutsets together, we obtain:

τ(cyl′′(N), �v(θ̃)) ≤
N∑
i=1

φκ(Bi, �v(θ)) + V (E1(n,N, κ) ∪ E2(n,N, κ)), (3.21)

This equation (3.21) is equation (24) in Rossignol and Théret [13]. On one hand, there exists a constant C3

(independent of κ) such that:

card(E1(n,N, κ) ∪ E2(n,N, κ)) ≤ C3

(
N + ζ′(n) + L(n, θ̃)

)
.

On the other hand, the variables (φκ(Bi))i=1,...,N are identically distributed, with the same law as φκn (because
we only consider integer translates). Then for all κ ∈ Dn, for all λ̃ ≥ ε > 0, for all large N , we have by the
FKG inequality

P

[
τ(cyl′′(N), �v(θ̃)) ≤

(
λ̃− 1√

N

)
N

]
≥ P

[
φκn ≤

(
λ̃− ε

) N
N
]N

× P

[
V (E1(n, κ) ∪ E2(n, κ)) ≤ ε

2
N
]

≥ P

[
φκn

nl(A)
≤ λ̃− ε

cos(θ̃ − θ)

]N
× P

[
t(e) ≤ εN

2C3(N + ζ′(n) + L(n, θ̃))

]C3(N+ζ′(n)+L(n,θ̃))

≥ P

[
φκn

nl(A)
≤ λ̃− ε

cos(θ̃ − θ)

]N
× P

[
t(e) ≤ εl(A)n

4C3

]C3(N+ζ′(n)+L(n,θ̃))

·

We take the logarithm of the previous inequality, divide it by −N , and sendN to infinity. Thanks to Theorem 2.6
we obtain that:

Iθ̃(λ̃) ≤ −1

L(n, θ̃)
log P

[
φκn

nl(A)
≤ λ̃− ε

cos(θ̃ − θ)

]
− C3

L(n, θ̃)
log P

[
t(e) ≤ εl(A)n

4C3

]
·

For n large enough,

P

[
t(e) ≤ εl(A)n

4C3

]
≥ 1

2
,

and thus,

1
nl(A)

log P

[
φκn

nl(A)
≤ λ̃− ε

cos(θ̃ − θ)

]
≤ − 1

cos(θ̃ − θ)
Iθ̃(λ̃) +

C4

n
,

where C4 = C4(l(A)) = C3 log 2/l(A). We set λ = (λ̃−ε)/ cos(θ̃−θ) (so λ ≥ 0), and let ε go to zero to conclude
that for all λ ≥ 0 and κ ∈ Dn,

P

[
φκn

nl(A)
≤ λ

]
≤ exp−

[
nl(A)

(
1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+) +

C4

n

)]
. (3.22)
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We come back now to the study of φn itself. From Lemma 2.1 and equation (2.2), we know that there exists a
finite subset D̃n of Dn such that φn = infκ∈D̃n

φκn and card(D̃n) ≤ C0h(n)2. Therefore,

P[φn ≤ λnl(A)] = P

[
∃κ ∈ D̃n |φκn ≤ λnl(A)

]
≤

∑
κ∈D̃′

n

P[φκn ≤ λnl(A)]

≤ C0h(n)2 × max
κ∈Dn

P[φκn ≤ λnl(A)]

≤ C0h(n)2 exp

[
−nl(A)

(
C4

n
+ inf
θ̃∈Dn

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+)

)]
.

Since h satisfies (H2), we obtain that:

lim sup
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≤ − lim inf
n→∞ inf

θ̃∈Dn

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+), (3.23)

and

lim inf
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] ≤ − lim sup
n→∞

inf
θ̃∈Dn

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+), (3.24)

We can now apply Lemmas 4.1 and 4.2 in Rossignol and Théret [13] with f = gλ, that we know to be l.s.c.
thanks to Lemma 3.2, to obtain that

lim inf
n→∞ inf

θ̃∈Dn

gλ(θ̃) ≥ inf
θ̃∈ad(D)

gλ(θ̃) and lim sup
n→∞

inf
θ̃∈Dn

≥ inf
θ̃∈ad(D)

gλ(θ̃).

So (3.23) and (3.24) lead to (3.18) and (3.19).

3.4. Positivity and proof of Theorem 2.8

We need some extra hypotheses: from now on, we suppose that (H1), (H2), (F1), (F2) and (FH1) hold.
We define

ηθ,h = inf
θ̃∈D

νθ̃

cos(θ̃ − θ)
= inf

θ̃∈D

νθ̃

cos(θ̃ − θ)
·

By Theorem 2.4,

lim
n→∞

φn
nl(A)

= ηθ,h in L1,

and by Proposition 2.3, ηθ,h > 0. In fact, the convergence of φn/(nl(A)) in L1 is stated in Corollary 2.5
under the stronger assumption (H3). However, the methods used in Rossignol and Théret [14] to prove this
L1-convergence do not use the condition (H3) itself, and can be performed under the assumption (FH1) instead.

We define

K̃θ,h(λ) = inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+) = inf

θ̃∈ad(D)
gλ(θ̃).

We want to prove that K̃θ,h > 0 on [0, ηθ,h[. Indeed, we know that

lim sup
n→∞

1
nl(A)

log P [φn ≤ λnl(A)] ≤ −K̃θ,h,

thus proving that K̃θ,h > 0 on [0, ηθ,h[ is equivalent to proving that the lower large deviations of φn/(nl(A)) are
(at least) of surface order.
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Known properties of Iθ̃ are recalled in Theorem 2.6. Let us define

δθ,h = δ × inf
θ̃∈D

| cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

,

the infimum of the values that φn/(nl(A)) can take asymptotically. Notice that by continuity of the function
whose infimum we consider, δθ,h satisfies

δθ,h = δ × inf
θ̃∈ad(D)

| cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

·

Then by Theorem 2.6, K̃θ,h is infinite on [0, δθ,h[ and finite on ]δθ,h,+∞[ (its behaviour at δθ,h will be studied
in Section 4.1), and K̃θ,h is null on [ηθ,h,+∞[. Since for all θ̃, λ→ Iθ̃(λ+) is non increasing, so is K̃θ,h on R

+.
We state the following result:

Lemma 3.4. The function K̃θ,h is strictly decreasing on [δθ,h, ηθ,h], i.e.,

∀λ ∈]δθ,h, ηθ,h], ∀ε > 0 K̃θ,h(λ) < K̃θ,h(λ− ε).

We immediately notice that this lemma implies the positivity of K̃θ,h on [0, ηθ,h[, and thus Theorem 2.8
through inequality (3.23).

Proof. Thanks to Lemma 3.2, we know that for every fixed λ, θ̃ �→ gλ(θ̃) is l.s.c. Since ad(D) is compact,
inf θ̃∈ad(D) gλ(θ̃) is reached at some θ̃λ ∈ ad(D). Notice also that for every fixed θ̃, λ �→ gλ(θ̃) is strictly
decreasing (in the same meaning as in Lem. 3.4) on the interval:[

δ
| cos θ̃| + | sin θ̃|

cos(θ̃ − θ)
,

νθ̃

cos(θ̃ − θ)

]
·

We consider λ ∈]δθ,h, ηθ,h]. Thus K̃θ,h(λ) <∞, so we can suppose that K̃θ,h(λ− ε) <∞ otherwise the result is
obvious. The condition K̃θ,h(λ − ε) < ∞ is equivalent by definition of θ̃λ−ε to gλ−ε(θ̃λ−ε) < ∞, which implies
that

λ > δ
| cos θ̃λ−ε| + | sin θ̃λ−ε|

cos(θ̃λ−ε − θ)
·

We deduce that

λ ∈
]
δ
| cos θ̃λ−ε| + | sin θ̃λ−ε|

cos(θ̃λ−ε − θ)
,

νθ̃λ−ε

cos(θ̃λ−ε − θ)

]
,

thus

gλ(θ̃λ−ε) < gλ−ε(θ̃λ−ε).

We obtain

K̃θ,h(λ) = inf
θ̃∈ad(D)

gλ(θ̃) ≤ gλ(θ̃λ−ε) < gλ−ε(θ̃λ−ε) = inf
θ̃∈ad(D)

gλ−ε(θ̃) = K̃θ,h(λ− ε). �
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3.5. Discussion

Combining the results of the two previous sections, we obtain that for all λ ≥ 0, if we define

�n =
1

nl(A)
log P[φn ≤ λnl(A)],

we have ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)−)

cos(θ̃ − θ)
≤ lim inf

n→∞ �n ≤ − inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)+)

cos(θ̃ − θ)
,

− inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)−)

cos(θ̃ − θ)
≤ lim sup

n→∞
�n ≤ − inf

θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)+)

cos(θ̃ − θ)
.

In fact, we will prove in Section 4.1 that for all

λ �= δ inf
θ̃∈D

| cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

= δθ,h,

we have

inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)+)

cos(θ̃ − θ)
= inf

θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)−)

cos(θ̃ − θ)
, (3.25)

(see the proof of the continuity of K̃θ,h, Lem. 4.2), and similarly for all

λ �= δ inf
θ̃∈D

| cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

= δ̂θ,h,

we have

inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)+)

cos(θ̃ − θ)
= inf

θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)−)

cos(θ̃ − θ)
·

It implies that for all λ �= δθ,h,

lim inf
n→∞ �n = − inf

θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+) = − inf

θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)−)

and for all λ �= δ̂θ,h

lim sup
n→∞

�n = − inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+) = − inf

θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)−).

Under condition (FH2), we have δθ,h = δ̂θ,h, since

δθ,h = inf

{
λ ∈ R

+

∣∣∣∣ inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)+)

cos(θ̃ − θ)
(λ) <∞

}

= inf

{
λ ∈ R

+

∣∣∣∣ inf
θ̃∈ad(D)

Iθ̃(λ cos(θ̃ − θ)+)

cos(θ̃ − θ)
(λ) <∞

}
= δ̂θ,h.
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Thus, under condition (FH2), we obtain that for all λ �= δθ,h, we know that limn→∞ �n exists and

lim
n→∞

1
nl(A)

log P[φn ≤ λnl(A)] = K̃θ,h(λ).

Notice that if Iθ̃0(δ(| cos θ̃0|+ | sin θ̃0|)+) <∞ for some θ̃0 ∈ D such that δθ,h = δ(| cos θ̃0|+ | sin θ̃0|)/ cos(θ̃0−θ),
then

−∞ = − inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃(δθ,h cos(θ̃ − θ)−) < − inf

θ̃∈D

1

cos(θ̃ − θ)
Iθ̃(δθ,h cos(θ̃ − θ)+),

thus we have no hope to prove equation (3.25) at the point λ = δθ,h.

4. Large deviation principle

From now on, we suppose that hypotheses (H1), (H2), (F1), (F2), (FH1) and (FH2) hold (we recall
that (H4) implies (FH1) and (FH2)). By definition, we have

∀λ ∈ R
+, K̃θ,h(λ) = inf

θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+)

= inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+)·

We define the rate function Kθ,h : R
+ → R

+ ∪ {+∞} by:

Kθ,h(λ) =

{
inf θ̃∈ad(D)

1

cos(θ̃−θ)Iθ̃(λ cos(θ̃ − θ)+) = K̃θ,h(λ) if λ ≤ ηθ,h,

+∞ if λ > ηθ,h.

4.1. Properties of Kθ,h

We can deduce a lot of properties of Kθ,h from the properties of K̃θ,h stated in Section 3.4: Kθ,h is infinite on
[0, δθ,h[ (if δθ,h > 0) and on ]ηθ,h,+∞[, finite on ]δθ,h, ηθ,h] (if ηθ,h > δθ,h) and strictly decreasing on [δθ,h, ηθ,h]
in the sense of Lemma 3.4. We only have to prove that Kθ,h is a good rate function, and that it is continuous
on [0, ηθ,h] except possibly at δθ,h where it may be only right continuous. We first state that Kθ,h is a good rate
function:

Lemma 4.1. The function Kθ,h is lower semi-continuous and coercive on R
+, i.e., for all t ≥ 0, the set

{λ | Kθ,h(λ) ≤ t} is compact.

We will use this property to prove that K̃θ,h is right continuous.

Proof. In fact it is sufficient to prove that for all t ≥ 0, the set {λ | K̃θ,h(λ) ≤ t} is closed, because we know that

∀t ≥ 0 {λ | Kθ,h(λ) ≤ t} = {λ | K̃θ,h(λ) ≤ t} ∩ [0, η(θ, h)].

Let (λn)n≥0 be a sequence of {λ | K̃θ,h(λ) ≤ t}, converging towards some λ0. For each fixed λ in R
+, since the

function gλ is lower semi-continuous and ad(D) is compact, there exists θ̃λ such that

K̃θ,h(λ) = gλ(θ̃λ).

The sequence (θ̃λn)n≥0 takes values in the compact ad(D), so up to extracting a subsequence, we can suppose
that it converges towards a limit θ̃0 ∈ ad(D). For all positive ε, for all large n we have λn ≤ λ0 + ε, and so,
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since Iθ̃ is non increasing for all θ̃, we obtain for all large n that

g(λ0+ε)(θ̃λn) ≤ gλn(θ̃λn) ≤ t.

Since g(λ0+ε) is l.s.c. and a subsequence (θ̃ψ(n))n≥0 of (θ̃λn)n≥0 converges towards θ̃0, we obtain:

g(λ0+ε)(θ̃0) ≤ lim inf
n→∞ g(λ0+ε)(θ̃ψ(n)) ≤ t.

This inequality is satisfied for all positive ε, and θ̃0 ∈ ad(D), so

K̃θ,h(λ0) ≤ gλ0(θ̃0) = lim
ε→0, ε>0

g(λ0+ε)(θ̃0) ≤ t.

This ends the proof of Lemma 4.1. �

We now study the continuity of Kθ,h:

Lemma 4.2. The function K̃θ,h is continuous on R
+, except possibly at δθ,h where it may be only right

continuous.

The proof of the continuity of K̃θ,h is quite long and technical, and this property of K̃θ,h is not needed to
prove the large deviation principle. However, as explained in Section 3.5 and below, the continuity of K̃θ,h is a
natural question to ask, so it seems to us important to give an answer to it.

Proof. We define

K̃θ,h(λ+) = lim
ε→0, ε>0

K̃θ,h(λ+ ε) and K̃θ,h(λ−) = lim
ε→0, ε>0

K̃θ,h(λ− ε).

First of all, we prove that K̃θ,h is right continuous, i.e., K̃θ,h(λ+) = K̃θ,h(λ) for all λ ∈ R
+. We have for all

λ ≥ 0

K̃θ,h(λ+) = lim
ε→0, ε>0

inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃((λ + ε) cos(θ̃ − θ)+)

≤ lim
ε→0, ε>0

inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+)

≤ K̃θ,h(λ),

and since K̃θ,h is lower semi-continuous, we know that

K̃θ,h(λ+) ≥ K̃θ,h(λ),

thus

∀λ ≥ 0 K̃θ,h(λ+) = K̃θ,h(λ).
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On the other hand, for all λ ≥ 0 we have

K̃θ,h(λ−) = lim
ε→0, ε>0

inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃((λ− ε) cos(θ̃ − θ)+)

= inf
θ̃∈ad(D)

lim
ε→0, ε>0

1

cos(θ̃ − θ)
Iθ̃((λ− ε) cos(θ̃ − θ)+)

= inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)−)

≥ K̃θ,h(λ),

since the limit in ε appearing in these equations is a decreasing limit. Thus K̃θ,h is continuous at λ if and only if

inf
θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)−) = inf

θ̃∈ad(D)

1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+).

We will thus prove that it is true for all λ �= δθ,h. Notice that the proof we propose can be performed with
ad(D) instead of ad(D), and thus the continuity of K̃θ,h is linked with the existence of the limit

lim
n→∞

1
nl(A)

log P[φn ≤ λnl(A)]

as explained in Section 3.5. We need two intermediate lemmas to prove Lemma 4.2. The first one is the
following:

Lemma 4.3. Let Λ be the function defined on R
+ × R

2
� (0, 0) by

Λ(λ,�v) = ‖�v‖2Iθ(�v)
(
λ(| cos(θ(�v))| + | sin(θ(�v))|)+)

where θ(�v) ∈ [0, 2π[ satisfies �v = ‖�v‖2(cos(θ(�v)), sin(θ(�v))) and ‖�v‖2 is the Euclidean norm of �v. Then for all
vectors �u and �v in (R+)2 � {(0, 0)}, we have

∀λ ∈ R
+ Λ(λ, �u+ �v) ≤ Λ(λ, �u) + Λ(λ,�v), (4.26)

Proof. Lemma 4.3 is a simple consequence of Lemma 3.1. We consider �u and �v in (R+)2 � {(0, 0)}, and define
�w = �u+�v. We use the notations θ(�u) = θa, θ(�v) = θb and θ(�w) = θc. We consider the triangle (abc) of side [bc]
(resp. [ab], [ac]) orthogonal to �u (resp. �w, �v) and of length ‖�u‖2 (resp. ‖�w‖2, ‖�v‖2). It is indeed a triangle since
�w = �u + �v. Moreover, since �u and �v are in (R+)2 � {(0, 0)}, we know that the angles ĉab and âbc have values
strictly smaller than π/2. We consider λ ∈ R

+, and

λ′ = λ l(ab)(cos θc + sin θc) = λ ‖�w‖1.

We can apply Lemma 3.1 in the triangle (abc) to obtain for all α ∈ [0, 1]

Λ(λ, �u+ �v) = l(ab) Iθc

(
λ′

l(ab)

+
)

≤ l(ac) Iθb

(
α

λ′

l(ac)

+
)

+ l(bc) Iθa

(
(1 − α)

λ′

l(bc)

+
)

≤ Λ
(
λ
α‖�w‖1

‖�v‖|1 , �v
)

+ Λ
(
λ

(1 − α)‖�w‖1

‖�u‖|1 , �u

)
.
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Since �u and �v are both in (R+)2, we know that ‖�w‖1 = ‖�u‖1 + ‖�v‖1, thus we can choose α = ‖�v‖1/‖�w‖1 ∈ [0, 1]
and 1 − α = ‖�u‖1/‖�w‖1. This ends the proof of Lemma 4.3. �

Lemma 4.3 states a property of convexity for the function Λ. To deduce from it a property of continuity, we
need to investigate when Λ, thus Iθ̃, is finite. It is known (see Rossignol and Théret [14]) that Iθ̃(λ+) is infinite
if λ ∈ [0, δ(| cos θ̃| + | sin θ̃|)[ (if δ > 0) and finite if λ ∈]δ(| cos θ̃| + | sin θ̃|),+∞[. The only point to study is the
behaviour of Iθ̃(δ(| cos θ̃| + | sin θ̃|)+). This is the purpose of the following Lemma:

Lemma 4.4. We have

∀θ̃, Iθ̃(δ(| cos θ̃| + | sin θ̃|)+) < ∞ ⇐⇒ ∃θ̃, Iθ̃(δ(| cos θ̃| + | sin θ̃|)+) < ∞
⇐⇒ P(t(e) = δ) > 0,

Proof. First, let us prove that

P(t(e) = δ) > 0 =⇒ ∀θ̃, Iθ̃(δ(| cos θ̃| + | sin θ̃|)+) < ∞, (4.27)

Let Ã be a line segment orthogonal to (cos θ̃, sin θ̃) for some fixed θ̃, and h a height function satisfying
limn→∞ h(n) = +∞. We know (see Lem. 4.1 in Rossignol and Théret [14]) that the minimal number of

edges N (nÃ, h(n)) of a cutset that separates (nÃ)h(n),1/2,θ̃
1 from (nÃ)h(n),1/2,θ̃

2 satisfies∣∣∣∣∣N (nÃ, h(n))

nl(Ã)
− (| cos θ̃| + | sin θ̃|)

∣∣∣∣∣ ≤ 2

nl(Ã)
· (4.28)

Let ε > 0. Let Emin(n) be a cutset of minimal number of edges. For n large enough, we know that 1/
√
n ≤ ε/2

and N (nÃ, h(n))/(nl(Ã)) ≤ (| cos θ̃| + | sin θ̃|) + ε/(2δ), and we obtain

P

(
τ(nÃ, h(n))

nl(Ã)
≤ δ(| cos θ̃| + | sin θ̃|) + ε− 1√

n

)

≥ P

(
V (Emin(n))

nl(Ã)
≤ δ(| cos θ̃| + | sin θ̃|) +

ε

2

)
≥ P (∀e ∈ Emin(n), t(e) = δ)

≥ P(t(e) = δ)N (nÃ,h(n)).

Thus for all ε > 0 we have

Iθ̃(δ(| cos θ̃| + | sin θ̃|) + ε) ≤ −(| cos θ̃| + | sin θ̃|) log P(t(e) = δ),

and we conclude that

Iθ̃(δ(| cos θ̃| + | sin θ̃|)+) ≤ −(| cos θ̃| + | sin θ̃|) log P(t(e) = δ).

This implies (4.27). We now prove that if for all distribution function G such that inf{x |G(x) > 0} = 0, we
have

G(0) = 0 =⇒ ∀θ̃, I [G]

θ̃
(0+) = +∞,

where the exponent [G] stress the dependence of I in G, then for all distribution function F on R
+, if δ =

inf{x |F (x) > 0}, we obtain:

F (δ) = 0 =⇒ ∀θ̃, I [F ]

θ̃
(δ(| cos θ̃| + | sin θ̃|)+) = +∞.
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Let F be a distribution function on R
+, δ = inf{x |F (x) > 0}, and (t(e)) the family of capacities on the

edges of distribution function F . Let t′(e) = t(e) − δ ≥ 0 for all e, t′(e) has distribution function G such that
inf{x |G(x) > 0} = 0, and G(0) = F (δ). We denote by τ (resp. τ ′) the maximal flows corresponding to the
capacities (t(e)) (resp. (t′(e))). Then obviously

τ(nÃ, h(n)) ≥ τ ′(nÃ, h(n)) + δN (nÃ, h(n)),

thus for n large enough, thanks to (4.28), we have

P

(
τ(nÃ, h(n))

nl(Ã)
≤ δ(| cos θ̃| + | sin θ̃|) + ε− 1√

n

)
≤ P

(
τ ′(nÃ, h(n))

nl(Ã)
≤ ε

4

)
·

Thus

I [F ]

θ̃
(δ(| cos θ̃| + | sin θ̃|)+) ≥ I [G]

θ̃
(0+),

which proves the previous statement. The last thing to prove is that if F is a distribution function such that
inf{x |F (x) > 0} = 0, then

F (0) = P(t(e) = 0) = 0 =⇒ ∀θ̃, Iθ̃(0+) = +∞, (4.29)

We consider such a distribution function F . We want to compare F with a Bernoulli distribution of parameter p
very close to 1. For a fixed p (as close to 1 as we will need), there exists η(p) > 0 such that F (η(p)) < 1 − p,
because F (0) = 0 and F is right continuous. We denote by (t[p](e)) the i.i.d. family of Bernoulli variables of
parameter p indexed by the edges, and by τ [p] the maximal flow corresponding to these capacities. Then

τ(nÃ, h(n)) ≥ η(p) τ [p](nÃ, h(n)).

It is proved in Section 3 of Théret [16] (the proof is written for a straight cylinder θ̃ = 0 and for the variable φ,
but it can be directly adapted to a tilted box and the variable τ – notice that the factor h(n) disappears) that
there exists a constant c such that for all γ > 0

P

(
τ [p](nÃ, h(n))

nl(Ã)
≤ 1

2

)
≤ exp

(
−nl(Ã)

[γ
2
− log c− log(p+ (1 − p)eγ)

])
·

Thus for any fixed R (very large, thus log c < R), we can choose γ = 6R, and then p(R) close enough to 1 to
obtain that log(p+ (1 − p)e6R) < R, thus

P

(
τ [p(R)](nÃ, h(n))

nl(Ã)
≤ 1

2

)
≤ e−Rnl(Ã).

Finally, for any fixed R, for a fixed ε small enough to have ε/η(p(R)) ≤ 1/2, we obtain

P

(
τ(nÃ, h(n))

nl(Ã)
≤ ε

)
≤ P

(
τ [p(R)](nÃ, h(n))

nl(Ã)
≤ ε

η(p(R))

)
≤ e−Rnl(Ã),

thus Iθ̃(ε) ≥ R for such small ε, which implies that Iθ̃(0+) ≥ R for all R. This ends the proof of equation (4.29),
and thus the proof of Lemma 4.4. �
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We come back to the proof of Lemma 4.2. We recall that K̃θ,h(λ) = inf{gλ(θ̃) | θ̃ ∈ ad(D)}. Since gλ is l.s.c.
and ad(D) is compact, there exists θ̃λ ∈ ad(D) (maybe not unique) such that K̃θ,h(λ) = gλ(θ̃λ). If

λ cos(θ̃λ − θ) < δ(| cos θ̃λ| + | sin θ̃λ|),

then
K̃θ,h(λ) = Iθ̃λ

(λ cos(θ̃λ − θ)+) = +∞ = K̃θ,h(λ−).
If

λ cos(θ̃λ − θ) > δ(| cos θ̃λ| + | sin θ̃λ|),
then

K̃θ,h(λ−) = lim
ε→0, ε>0

K̃θ,h(λ− ε)

≤ lim
ε→0, ε>0

1

cos(θ̃λ − θ)
Iθ̃λ

((λ− ε) cos(θ̃λ − θ)+)

≤ 1

cos(θ̃λ − θ)
Iθ̃λ

(λ cos(θ̃λ − θ)−)

≤ 1

cos(θ̃λ − θ)
Iθ̃λ

(λ cos(θ̃λ − θ)+) = K̃θ,h(λ),

since Iθ̃ is continuous on ]δ(| cos θ̃| + | sin θ̃|),+∞[, thus K̃θ,h(λ−) = K̃θ,h(λ). We suppose that

λ cos(θ̃λ − θ) = δ(| cos θ̃λ| + | sin θ̃|λ),

which is the only non-obvious case, and thus

K̃θ,h(λ) =
1

cos(θ̃λ − θ)
Iθ̃λ

(δ(| cos θ̃λ| + | sin θ̃λ|)+).

If P(t(e) = δ) = 0, by Lemma 4.4 we know that the previous quantity is infinite, thus K̃θ,h(λ−) = +∞ = K̃θ,h(λ).
For the rest of the proof, we suppose that P(t(e) = δ) > 0. Still by Lemma 4.4, we know in this case that for
all θ̃, Iθ̃(δ(| cos θ̃| + | sin θ̃|)+) < +∞. If λ = δθ,h, we have nothing to prove, thus we suppose that λ > δθ,h (it
implies that λ > 0). We suppose that the following property P holds: there exists a sequence (θ̃n)n∈N such that

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) limn→∞ θ̃n = θ̃λ,

(ii) ∀n ∈ N, δ | cos θ̃n|+| sin θ̃n|
cos(θ̃n−θ) < λ = δ | cos θ̃λ|+| sin θ̃λ|

cos(θ̃λ−θ) ,

(iii) lim supn→∞ Iθ̃n
(δ(| cos θ̃n| + | sin θ̃n|)+) ≤ Iθ̃λ

(δ(| cos θ̃λ| + | sin θ̃λ|)+),

We consider a given η > 0. For n0 large enough, we have

1

cos(θ̃n0 − θ)
Iθ̃n0

(δ(| cos θ̃n0 | + | sin θ̃n0 |)+) ≤ 1

cos(θ̃λ − θ)
Iθ̃λ

(δ(| cos θ̃λ| + | sin θ̃λ|)+) + η.

Moreover, there exists ε0 > 0 such that

δ
| cos θ̃n0 | + | sin θ̃n0 |

cos(θ̃n0 − θ)
≤ λ− ε0,
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and for all ε ≤ ε0, since Iθ̃n0
is non increasing, we obtain that

K̃θ,h(λ− ε) ≤ 1

cos(θ̃n0 − θ)
Iθ̃n0

((λ− ε) cos(θ̃n0 − θ)+)

≤ 1

cos(θ̃n0 − θ)
Iθ̃n0

(δ(| cos θ̃n0 | + | sin θ̃n0 |)+)

≤ 1

cos(θ̃λ − θ)
Iθ̃λ

(δ(| cos θ̃λ| + | sin θ̃λ|)+) + η = K̃θ,h(λ) + η.

We conclude that K̃θ,h(λ−) ≤ K̃θ,h(λ), so K̃θ,h(λ−) = K̃θ,h(λ), and this ends the proof of Lemma 4.2.
The last thing we have to do is to prove the property P . Obviously, property (ii) is linked with the mono-

tonicity of the function

Γ : θ̃ �→ | cos θ̃| + | sin θ̃|
cos(θ̃ − θ)

·

If θ ∈ {kπ/4 | k ∈ N}, we will prove in the next paragraph, see Lemma 4.5, that K̃θ,h(λ) = Iθ(λ+); since it is
obvious that in this case δθ,h = δ, the continuity of K̃θ,h possibly except at δθ,h is already known. We suppose
that θ /∈ {kπ/4 | k ∈ N}, and by symmetry we can suppose that θ ∈]0, π/2[�{π/4}. It is obvious (see the factor
cos(θ̃ − θ)−1) that for all θ̃ ∈ [θ − π/2, θ + π/2] � [0, π/2], we have Γ(θ̃) > inf [0,π/2] Γ, so argminΓ ∈ [0, π/2].
Similarly, θ̃λ ∈ [0, π/2] too. For all θ̃ ∈ [0, π/2], we can write

Γ(θ̃) =
cos θ̃ + sin θ̃

cos(θ̃ − θ)
=

1 + tan θ̃

cos θ + sin θ tan θ̃
·

We deduce from this equality that Γ is strictly monotone on [0, π/2]: strictly increasing (resp. decreasing)
if θ ∈]0, π/4[ (resp. θ ∈]π/4, π/2[ ), and thus argminΓ = 0 (resp. argminΓ = π/2). We consider the case
θ ∈]0, π/4[, the study of the case θ ∈]π/4, π/2[ being similar. We know that θ̃λ ∈]0, π/2], because θ̃λ = 0 implies
that λ = δθ,h, and we excluded this case. Thus we can consider a strictly increasing sequence (θ̃n)n∈N such that
θ̃n ∈]0, π/2[ for all n and (i): limn→∞ θ̃n = θ̃λ is satisfied. Since Γ is strictly increasing on [0, π/2], we know
that such a strictly increasing sequence (θ̃n)n∈N satisfies the hypothesis (ii). To prove that (iii) also holds, we
need Lemmas 4.3 and 4.4. The function

Λδ : �v �→ Λ(δ, �v)
is finite on (R+)2 � {(0, 0)} under the hypothesis that F (δ) > 0 we did (see Lem. 4.4), and it is convex
(see Lemma 4.3), so it is continuous on the interior of (R+)2 � {(0, 0)}. If θ̃λ �= π/2, it proves (iii). We suppose
θ̃λ = π/2. Let �u = (0, 1), �vn = (1/ tan θ̃n, 0) and �wn = (1/ tan θ̃n, 1) = �u+ �vn. By equation (4.26) for λ = δ we
have for all n ∈ N

1

sin θ̃n
Iθ̃n

(δ(| cos θ̃n| + | sin θ̃n|)+) ≤ Iπ/2(δ+) +
1

tan θ̃n
I0(δ+),

and sending n to infinity we obtain (iii), so the property P is proved. �
We prove finally the property stated in Remark 2.10, in fact a property a little bit more general:

Lemma 4.5. If θ ∈ {kπ/4 | k ∈ N}, then
Kθ,h = Jθ.

Proof. We fix a θ ∈ {kπ/4 | k ∈ N}. We know that νθ = ηθ,h for such a θ (see Rem. 2.11 in Rossignol and
Théret [13]), so it is sufficient to prove that

∀λ ≥ 0, K̃θ,h(λ) = Iθ(λ+).
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Since θ ∈ ad(D), it is equivalent to prove that

∀λ ≥ 0, ∀θ̃ ∈ [θ − π/2, θ + π/2], Iθ(λ+) ≤ 1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+).

Let θ̃ ∈]θ − π/2, θ + π/2[. We use the same notations as in Lemma 3.1. We consider the non degenerate
triangle (abc) such that θc = θ + π (so cylc(n) is a straight cylinder in the case θ = 0), θb = max(θ̃, 2θ − θ̃),
θa = min(θ̃, 2θ − θ̃), l(ab) = 1 and l(ac) = l(bc) = (2 cos(θ̃ − θ))−1. Since the graph is invariant by a symmetry
of axis ((0, 0), (cos θ, sin θ)) (respectively ((0, 0), (1, 1))), we know that Iθa = Iθb

(respectively Iθc = Iθ). Then
Lemma 3.1 applied with α = 1/2 states that for all λ ≥ 0,

Iθ
(
λ+
) ≤ 1

cos(θ̃ − θ)
Iθ̃(λ cos(θ̃ − θ)+).

The inequality remains obviously valid for θ̃ ∈ {θ + π/2, θ − π/2}, since we have seen in Remark 3.3 that the
right hand side of the previous inequality equals +∞ in this case. This ends the proof of Lemma 4.5. �

4.2. Lower bound

We have to prove that for all open subset O of R
+, we have

lim inf
n→∞

1
nl(A)

log P

[
φn

nl(A)
∈ O

]
≥ − inf

λ∈O
Kθ,h(λ).

We will use standard arguments, see for example Cerf [3] Section 8.1. Classically, it suffices to prove the local
lower bound:

∀a ∈ R
+, ∀ε > 0 lim inf

n→∞
1

nl(A)
log P

[
φn

nl(A)
∈ [a− ε, a+ ε]

]
≥ −Kθ,h(a), (4.30)

If Kθ,h(a) = +∞, the result is obvious, so we suppose that Kθ,h(a) < +∞. For all η < ε, we have

lim inf
n→∞

1
nl(A)

logP

[
φn

nl(A)
∈ [a− ε, a+ ε]

]
≥ lim inf

n→∞
1

nl(A)
log

(
P

[
φn

nl(A)
≤ a+ η

]
− P

[
φn

nl(A)
≤ a− ε

])
. (4.31)

Since Kθ,h is strictly decreasing (see Lem. 3.4), we deduce that for all a ∈ R
+ such that Kθ,h(a) < ∞, for all

positive η and ε, we have

inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃((a+ η) cos(θ̃ − θ)−) < inf

θ̃∈D

1

cos(θ̃ − θ)
Iθ̃((a− ε) cos(θ̃ − θ)+). (4.32)

Indeed, for all positive η, we have

inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃((a+ η) cos(θ̃ − θ)−) ≤ Kθ,h(a) < Kθ,h(a− ε).
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Then thanks to (3.10), (3.18) and (4.32), we know that the second term in the sum appearing in (4.31) is
negligible compared to the first one, so we obtain that

lim inf
n→∞

1
nl(A)

logP

[
φn

nl(A)
∈ [a− ε, a+ ε]

]
≥ − inf

θ̃∈D

1

cos(θ̃ − θ)
Iθ̃((a+ η) cos(θ̃ − θ)−)

≥ − inf
θ̃∈D

lim
ε′→0

1

cos(θ̃ − θ)
Iθ̃((a+ η) cos(θ̃ − θ) − ε′).

Sending η to zero, we obtain that

lim inf
n→∞

1
nl(A)

log P

[
φn

nl(A)
∈ [a− ε, a+ ε]

]
≥ − lim inf

η→0
inf
θ̃∈D

lim
ε′→0

1

cos(θ̃ − θ)
Iθ̃((a+ η) cos(θ̃ − θ) − ε′)

≥ − inf
θ̃∈D

lim
η→0

lim
ε′→0

1

cos(θ̃ − θ)
Iθ̃((a+ η) cos(θ̃ − θ) − ε′)

≥ − inf
θ̃∈D

1

cos(θ̃ − θ)
Iθ̃(a cos(θ̃ − θ)+),

and so the local lower bound is proved.

4.3. Upper bound

4.3.1. Upper large deviations

To handle the upper large deviations, we shall use the following result:

Lemma 4.6. Let A be a non-empty line-segment in R
2, with Euclidean length l(A). Let θ ∈ [0, π[ be such that

(cos θ, sin θ) is orthogonal to the hyperplane spanned by A and h : N → R
+. We suppose that (H1), (H2), (F2),

(FH1) and either (F4) or (H3) hold. Then for all λ > ηθ,h we have

lim sup
n→∞

1
nl(A)

log P

[
φn

nl(A)
≥ λ

]
= −∞. (4.33)

In fact, we have a stronger result, if F admits an exponential moment:

Lemma 4.7. Let A be a non-empty line-segment in R
2, with Euclidean length l(A). Let θ ∈ [0, π[ be such that

(cos θ, sin θ) is orthogonal to the hyperplane spanned by A and h : N → R
+. We suppose that (H1), (H2), (F2),

(FH1) and (F4) hold. Then for all λ > ηθ,h, we have

lim inf
n→∞

−1
nl(A)h(n)

log P [φ(nA, h(n)) ≥ λnl(A)] > 0.

The upper large deviations are thus of volume order.

Obviously, Lemma 4.7 implies Lemma 4.6 in the case where the condition (F4) is satisfied, since
limn→∞ h(n) = +∞ by (H1). We do not present a complete version of the proof of Lemma 4.7: it is sim-
ply a modification of the proofs of Theorem 2 in Théret [15] (the part concerning the positivity of the rate
function, Sect. 3.7) and Theorem 4 in Théret [18], and it can be found in Part 3, Chapter 6, Section 5 of
Théret [17]. The common idea of these proofs is the following. We consider the cylinder cyl(NA, h(N)), and
divide it into slabs of height 2h(n), i.e., translates of cyl(NA, h(n)), for n a lot smaller than N . If φ(NA, h(N))
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is big, it implies that the maximal flow from the top to the bottom of each slab is big too, and we have of
order h(N) such slabs for a fixed n. It implies roughly that

P [φ(NA, h(N)) ≥ λNl(A)] “ ≤ ” P [φ(NA, h(n)) ≥ λNl(A)]ph(N)
, (4.34)

for some constant p. We divide then each slab into disjoint translates of cyl(nA, h(n)), and we can compare the
maximal flow from the top to the bottom of the slab with the sum of the variables τ in into these small cylinders.
Roughly speaking, we obtain that

P [φ(NA, h(n)) ≥ λNl(A)] ” ≤ ” P

[∑
i

τ in ≥ λNl(A)

]
.

Under the hypothesis (F4), Cramér’s Theorem in R states that P[
∑
i τ
i
n ≥ λNl(A)] decays exponentially fast

with N for any λ > νθ = limn→∞ τ in/(nl(A)), thus we obtain that

P [φ(NA, h(N)) ≥ λNl(A)] ≤ p′e−p
′′h(N)Nl(A),

for other constants p′ and p′′. The only adaptation we have to do is to take into account the fact that under
hypothesis (FH1), the limit ηθ,h of φ(NA, h(N))/(Nl(A)) is equal to νθ̃0/ cos(θ̃0 − θ) for some θ̃0. Thus we

divide cyl(NA, h(N)) into slabs orthogonal to �v(θ̃0) instead of slabs orthogonal to �v(θ). Thus we compare
φ(NA, h(N)) with h(N) sums of Nl(A)/ cos(θ̃0 − θ) terms equal in law with τn(θ̃0), the maximal flow from the
upper half part to the lower half part of the boundary of a box of size n×h(n) oriented towards the direction θ̃0.
We conclude again thanks to Cramér’s Theorem in R.

If (F4) is not satisfied, we cannot use Cramer’s Theorem. However, we can perform the division of
cyl(NA, h(N)) into slabs orthogonal to θ̃0, and thus obtain an equation very close to (4.34):

P [φ(NA, h(N)) ≥ λNl(A)] “ ≤ ” P
[
τ iN,n ≥ λNl(A)

]ph(N)
, (4.35)

where τ iN,n is the maximal flow from the upper half part to the lower half part of the boundary of a slab. Thus,
if (H3) holds instead of (F4), equation (4.35) leads to the conclusion of Lemma 4.6.

Remark 4.8. The hypotheses (H3) or (F4) may not be optimal, but a simple example shows why we need
such kind of hypotheses. We consider that the capacity of an edge is distributed according to the Pareto law
of parameters p and 1, i.e., the probability that an edge has a capacity bigger than t ≥ 1 is equal to t−p. We
consider the rectangle A = [0, 1] × {0}, and the maximal flow φ(nA, h(n)) from the top to the bottom of the
cylinder [0, n]× [−h(n), h(n)]. If all the vertical edges (ei, i = 1, . . . , 2h(n)) (we suppose h(n) ∈ N for simplicity)
in the box that are included in the segment {1} × [−h(n), h(n)] have a capacity bigger than λn for a fixed λ,
then φ(nA, h(n)) is bigger than λn. We obtain:

P [φ(nA, h(n)) ≥ λn] ≥ P [∀i = 1, . . . , 2h(n), t(ei) ≥ λn] ≥ (λn)−2ph(n).

If h(n) log n is not large compared to n, in the sense that h(n) logn/n does not converge towards +∞, then
equation (4.33) is not satisfied.

4.3.2. End of the proof of Theorem 2.9

For this last section, we impose (H1), (H2), (F1), (F2), (FH1), (FH2) and either (F4) or (H3). Let F be
a closed subset of R

+. We want to prove that

lim sup
n→∞

1
nl(A)

log P

[
φn

nl(A)
∈ F

]
≤ − inf

λ∈F
Kθ,h(λ).
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If ηθ,h belongs to F , then according to Corollary 2.5, we know that

lim
n→∞ P

[
φn

nl(A)
∈ F

]
= 1,

and so

lim sup
n→∞

1
nl(A)

log P

[
φn

nl(A)
∈ F

]
= 0 = − inf

λ∈F
Kθ,h(λ),

because Kθ,h is non-negative, and Kθ,h(ηθ,h) = 0. Let us suppose that ηθ,h does not belong to F . The following
proof is similar to the one of the upper bound in Rossignol and Théret [14]. We define f1 = sup(F ∩ [0, ηθ,h])
and f2 = (inf F ∩ [ηθ,h,+∞[). We suppose here that F ∩ [0, ηθ,h] and F ∩ [ηθ,h,+∞[ are non empty, because it
is the most complicated case (if one of these two sets is empty, part of the following study is sufficient). Since F
is closed, we know that f1 < ηθ,h and f2 > ηθ,h. Then

lim sup
n→∞

1
nl(A)

logP

[
φn

nl(A)
∈ F

]
≤ lim sup

n→∞
1

nl(A)
log

(
P

[
φn

nl(A)
≤ f1

]
+ P

[
φn

nl(A)
≥ f2

])
,

On one hand, by (3.18), we know that

lim sup
n→∞

1
nl(A)

log P[φn ≤ f1nl(A)] ≤ −Kθ,h(f1).

On the other hand, if we refer to Lemma 4.6, we know that

lim sup
n→∞

1
nl(A)

log P[φn ≥ f2nl(A)] = −∞.

If Kθ,h(f1) = +∞, we have

lim sup
n→∞

1
nl(A)

log P

[
φn

nl(A)
∈ F

]
= −∞ = − inf

F
Kθ,h,

because Kθ,h is infinite on [0, f1] (K′
θ,h is non-increasing) and on [f2,+∞[, so on F . If Kθ,h(f1) <∞, we have

lim sup
n→∞

1
nl(A)

log P

[
φn

nl(A)
∈ F

]
≤ −Kθ,h(f1) = − inf

F
Kθ,h,

because Kθ,h is non-increasing on [0, f1] and infinite on [f2,+∞[. So the upper bound is proved.
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[7] J. T. Chayes and L. Chayes Bulk transport properties and exponent inequalities for random resistor and flow networks.
Commun. Math. Phys. 105 (1986) 133–152.

[8] O. Garet, Capacitive flows on a 2d random net. Ann. Appl. Probab. 19 (2009) 641–660.
[9] G. Grimmett and H. Kesten, First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete

66 (1984) 335–366.
[10] J.M. Hammersley and D.J.A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized

renewal theory, in Proc. Internat. Res. Semin., Statist. Lab. Univ. California, Berkeley, Calif. Springer-Verlag, New York
(1965) 61–110.
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