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FIXED-α AND FIXED-β EFFICIENCIES
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Abstract. Consider testing H0 : F ∈ ω0 against H1 : F ∈ ω1 for a random sample X1, . . . , Xn from
F , where ω0 and ω1 are two disjoint sets of cdfs on R = (−∞,∞). Two non-local types of efficiencies,
referred to as the fixed-α and fixed-β efficiencies, are introduced for this two-hypothesis testing situation.
Theoretical tools are developed to evaluate these efficiencies for some of the most usual goodness of
fit tests (including the Kolmogorov–Smirnov tests). Numerical comparisons are provided using several
examples.
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1. Introduction

Let Fn denote the empirical cdf of a random sample X1, . . . , Xn from a distribution function F on R =
(−∞,∞). Let η̇(·) denote the first derivative of η(·), a function with a single argument. Let F0 denote some
hypothesized cdf for F and assume throughout that F0 is absolutely continuous. Let ψ denote a non-negative
function on [0, 1]. Define

Tnm(ψ) = || |Fn − F0|ψ (F0) ||F0,m, 0 ≤ m ≤ ∞ (1.1)

T+
nm(ψ) = || (Fn − F0)ψ (F0) ||F0,m, m = 1, 3, 5, . . . (1.2)
Dn(ψ) = || |Fn − F0|ψ (F0) ||F0,∞, (1.3)
D+
n (ψ) = sup (Fn − F0)ψ (F0) , D−

n (ψ) = sup (F0 − Fn)ψ (F0) , (1.4)
D+
F0

(F ) = sup (F − F0)ψ (F0) , D−
F0

(F ) = sup (F0 − F )ψ (F0) , (1.5)

Vn(ψ) = D+
n (ψ) +D−

n (ψ), (1.6)
||G||m = ||G||U,m, (1.7)

where

||G||F,m =

⎧⎨
⎩

(∫
GmdF

)1/m

, if 0 < m <∞,

supG, if G ≥ 0,m = ∞,
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and

U(x) =

⎧⎨
⎩

0, x < 0,
x, 0 ≤ x ≤ 1,
1, 1 < x.

We wish to test whether H0 : F ∈ ω0 against H1 : F ∈ ω1, where ω0 and ω1 are two disjoint sets of cdfs on R.
For example, ω0 = {F0} and ω1 = {F | F �= F0}. As candidates for the test, we consider the class of statistics
given by (1.1)–(1.7). This class consists of the integral, Kolmogorov–Smirnov and Kuiper statistics, Tn2(1),
Tn∞ (1) and Vn (1) whose asymptotic null distributions are given in Anderson and Darling [2], Kolmogorov [15]
and Stephens [21]3.

This paper is related to Withers and Nadarajah [23], where we showed how the asymptotic power (AP) of
Tn2(ψ) may be computed. Withers and Nadarajah [23] also compared the AP of Tn2(ψ) with the AP of Tn2(1),
Dn(1), Vn(1) for the envelope power function of a particular example, the double-exponential shift family.

This paper deals with exact non-local types of efficiencies for the general two-hypothesis testing situation.
There are generally three different strategies to try and approximate such efficiencies: taking alternatives close
to the null hypothesis leads to Pitman efficiency; small levels are related to Bahadur efficiency [3]; consideration
of high powers results in the Hodges–Lehmann [11] efficiency. There are also other strategies due to Chernoff,
Kallenberg, Borovkov and Mogulskiy.

Hodges–Lehmann and Bahadur efficiencies for comparing the performance of gof tests are very much related
to large deviation results. Pitman’s efficiency is more connected to the notion of contiguity and is nicely studied
in the framework given by Le Cam’s theory of statistical experiments.

However, Pitman and Hodges–Lehmann efficiencies are not appropriate when test statistics have non-normal
limiting distributions, for example, Cramer–von Mises and Watson statistics have degenerate kernels with non-
normal limiting distributions. Furthermore, Hodges–Lehmann efficiency cannot discriminate between two-sided
tests like Kolmogorov and Cramer–von Mises tests that are asymptotically optimal.

Bahadur efficiencies are not easy to compute. Besides, approximate Bahadur efficiencies are of “little value as
measures of performance of tests since monotone transformations of a test statistic may lead to entirely different
approximate Bahadur slopes” [14]. So, there is a need for variations of these efficiencies.

In this paper, we introduce two new efficiencies that are “intermediate” between the Hodges–Lehmann and
Bahadur efficiencies. We provide some tools from the calculus of variations to compute them in some of the
most usual nonparametric gof tests: integral and Kolmogorov–Smirnov tests. For a review of results related
to this paper, we refer the readers to Wieand [22], Kallenberg and Ledwina [14], Kallenberg and Koning [13],
Litvinova and Nikitin [16], and the most excellent book by Nikitin [17].

The contents of this paper are organized as follows. In Section 2, two non-local types of efficiency (eα, eβ) are
introduced. These are computed in Sections 3 and 4 for gof tests of the type Tnm(ψ) or Vn(ψ) for parametric
and non-parametric alternatives. It is argued that locally Tn∞(ψ) is preferable to Tnm(ψ) if m <∞, in testing
F = F0 against “F is not close to F0”. For α-level tests the Hodges–Lehmann efficiency or its generalization the
fixed-α efficiency (Sect. 2) is appropriate, but is shown in Section 3 to tend to one under suitable conditions,
for the statistics we consider, when testing F ∈ ω0 against F ∈ ω1 as ω0 shrinks to {F0}. Section 4 gives the
Bahadur efficiency for some common parametric examples, using large deviation results derived in part from
the work of Hoadley [10] and Abrahamson [1]. More interesting is a comparison of the statistics when testing
whether F0 is close to F (sup |F −F0| = a0, say) or distant from F (sup |F −F0| = a1, say). This is carried out
by computing eβ in Section 4 when a0 = 0, for the statistics Tn1(1), Tn2(1), Vn(1) and Dn(ψ) for certain ψ. The
values of eβ for these statistics are compared using several examples: a normal with shift alternative example, a
logistic with shift alternative example, a double-exponential with shift alternative example and others. Section 5
establishes a local inefficiency of Tnm(ψ). The proofs of all results are given in Section 6.

3Their percentiles are conveniently given for all n in a table of Pearson and Hartley [18].
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2. Two types of efficiency

Let X1, . . . , Xn be independent and identically distributed according to F , a cdf on R. Let ω0 and ω1 be two
disjoint sets of cdfs on R. Suppose we test H0 : F ∈ ω0 against H1 : F ∈ ω1, rejecting H0 when Tn(Fn) > rn
for some functional Tn(·). For simplicity of presentation we exclude randomized tests. Suppose Tn is such
that Tn(Fn) = T (F ) + op(1) and rn → r ∈ [μ0, μ1] as n → ∞, where μ0 = μ(ω0) = supF∈ω0

T (F ) and
μ1 = μ(ω1) = infF∈ω1 T (F ). We assume that μ0 < μ1. If μ0 > μ1 the statistic cannot discriminate between ω0

and ω1. Set

αn (rn, F ) = PF {Tn (Fn) > rn} ,
βn (rn, F ) = PF {Tn (Fn) ≤ rn} ,
αn (rn) = sup

F∈ω0

αn (rn, F ) , the maximum type 1 error,

βn (rn) = sup
F∈ω1

βn (rn, F ) , the maximum type 2 error,

Ωr = {cdfs Q on R : T (Q) > r} ,
Ωcr = {cdfs Q on R : T (Q) ≤ r} ,
I(F,G) =

∫
ln (dF/dG) dF if F , G are absolutely continuous cdfs,

I(A,B) = inf
F∈A

inf
G∈B

I(F,G) for sets of cdfs A and B,

I1 (r, ω1) = I (Ωcr , ω1) ,
I0 (r, ω0) = I (Ωr, ω0) ,
Ii(r, F ) = Ii (r, {F}) , i = 0, 1.

Note that we have assumed that both F and G are absolutely continuous cdfs. A weaker condition is to assume F
is absolutely continuous with respect to G and then define I(F,G) = ∞ otherwise.

Hoadley [10] has shown that for continuous F and “regular” Tn(·) (in particular for Tn(·) ≡ T (·) uniformly
continuous with respect to the “usual” metric),

αn (rn, F ) = exp {−nI0(r, F ) + o(n)} for F ∈ ω0, (2.1)

and

βn (rn, F ) = exp {−nI1(r, F ) + o(n)} for F ∈ ω1, (2.2)

if I0(r, F ) and I1(r, F ) are continuous at r. Suppose now that (2.1) and (2.2) hold uniformly. This certainly
follows from (2.1) and (2.2) if ω0 and ω1 are finite sets. Then

αn (rn) = exp {−nI0 (r, ω0) + o(n)}
and

βn (rn) = exp {−nI1 (r, ω1) + o(n)} .
Without uniformity we only have

lim sup
n

− 1
n

lnαn (rn) ≤ I0 (r, ω0)

and

lim sup
n

− 1
n

lnβn (rn) ≤ I1 (r, ω1) .
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If the maximum type 1 error is fixed, that is, αn(rn) ≡ α, or if 0 < α1 ≤ αn(rn) ≤ α2 for all n then I0(r, ω0) = 0
so, assuming continuity of T , we have r ≤ μ0. If r ≤ μ0 then r = μ0 minimizes asymptotically the maximum
type 2 error βn(rn), so that if (2.2) is uniform in F ∈ ω1, βn(rn) = exp{−nI1(μ0, ω1) + o(n)}. Now

I1 (μ0, ω1) ≤ I (ω0, ω1) (2.3)

with equality if ω0 = {F | T (F ) ≤ a0} for some a0. Further, in the parametric case when T (Fn) is the fixed
α-level LR (likelihood-ratio) test, under suitable conditions (*) (see below),

βn (rn, F ) = exp {−nI (ω0, F ) + o(n)} ,

so that, if this holds uniformly for F ∈ ω1, then equality is obtained in (2.3). These considerations lead us to
define the fixed-α efficiency of Tn(Fn) as

eα =
I1 (μ0, ω1)
I (ω0, ω1)

·

For similar reasons we define the fixed-β efficiency of Tn(Fn) as

eβ =
I0 (μ1, ω0)
I (ω1, ω0)

·

Bahadur [4, 5] and Brown [6] show that under suitable conditions for the LR test in the parametric case, (2.2)
holds at r = μ1 and I1(μ1, F ) = I(ω1, F ); (*) above is the dual of these conditions.

When ω0 and ω1 are simple, eα is the Hodges–Lehmann efficiency relative to the LR test, and eβ is the exact
Bahadur efficiency relative to the LR test, cf. Appendix 1 of Bahadur [3]. We note in passing that Bahadur’s
definition of eβ in terms of ‘the level attained’, extends to ω0 and ω1 composite.

Between the two extremes of fixing the maximum type 1 error and fixing the maximum type 2 error, is the
middle course of choosing rn to minimize ln = αn(rn) + λβn(rn) for some λ > 0. In either case, uniformity
in (2.1) and (2.2) implies that independently of λ

ln = exp [−nmin {I0 (r, ω0) , I1 (r, ω1)} + o(n)] ,

so that the optimal rn → μ2, the root of I0(r, ω0) = I1(r, ω1), which exists and is unique if {Ii(r, ωi), i = 0, 1}
are continuous and strictly monotone in [μ0, μ1].

In the parametric case, one can show from Brown [6] and Lemma 8 of Chernoff [7] that under suitable
conditions (2.1) holds in ω0, (2.2) holds in ω1, and

I0 (μ2, ω0) = I1 (μ2, ω1) ≤ J (ω0, ω1) ,

where

J (ω0, ω1) = inf
F0∈ω0

inf
F1∈ω1

sup
0<t<1

− ln
∫

(dF0/dν)
1−t (dF1/dν)

t dν

with equality for the LR test of ω0 against ω1.

3. Fixed-α efficiency

Here we show that under suitable conditions for many gof tests eα → 1 as ω0 → {F0} (which means that F
approaches F0 in distribution for every F ∈ ω0). Consider testing the hypothesis H0 : F ∈ ω0, a set of
cdfs containing a cdf F0, against the alternative H1 : F ∈ ω1, another set of cdfs. Suppose that we consider
statistics T (Fn) such that
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(a) T (F0) = 0;
(b) T (F ) ≤ 0 ⇒ F = F0.

For example, the gof tests Tnm(ψ), Vn(ψ) satisfy these conditions for 0 < m ≤ ∞, ψ positive and bounded.
Suppose also that

(c) I1(r, ω1) is right-continuous at r = 0;
(d) μ0 → 0 as ω0 → {F0}.

Then limr↓0 I1(r, ω1) = I1(0, ω1) = infT (F )≤0 I(F, ω1) = I(F0, ω1). Hence, eα → 1 as ω0 → {F0}. However, in
order for eα to be a measure of efficiency when the type-one error is fixed, we require that (2.2) holds uniformly
in F ∈ ω1. For example, by Hoadley’s [10], Theorem 1, sufficient additional conditions are

(e) ω1 is a finite set (since then (2.2) holds uniformly if it holds pointwise);
(f) all cdfs in ω1 are continuous;
(g) for some δ > 0 for all F in ω1, I1(·, F ) is continuous in (0, δ);
(h) T (·) is uniformly continuous with respect to the “usual” metric, sup |F −G|.

4. Fixed-β efficiency

According to the definition in Section 2, in order to calculate eβ in testing F = F0 against F ∈ ω1 we need
to find I0(r, F0). Theorems 4.1 and 4.2 derive expressions for I0(r, F0) for integral type statistics: compare with
Sections 2.3 and 2.4 in Nikitin [17]. Theorems 4.3 and 4.4 derive expressions for I0(r, F0) for Kolmogorov–
Smirnov and Kuiper type statistics: compare with Sections 2.1 and 2.2 in Nikitin [17]. Figures 1 to 6 provide a
comparison of the values of eβ for these statistics using several examples.

Theorem 4.1. For Tnm(1) and T+
nm(1),

I0 (r, F0) = m−1λ−1/m

∫ γ

ε

y exp(y) {μ+ y − exp(y)}1/m−1 dy

for r > 0, where λ, μ, ε, γ are determined by

μ = exp(ε) − ε = exp(γ) − γ, ε < γ,

mλ1/m =
∫ γ

ε

{μ+ y − exp(y)}1/m−1 dy,

λ1+1/m mrm =
∫ γ

ε

{μ+ y − exp(y)}1/m dy.

Theorem 4.2. For Tn2(ψ0) with r > 0 and ψ0(t) = (t− t2)−1/2, I0(r, F0) ≡ r2.

Theorem 4.3. Suppose [(x − x2)ψ(x)]1/ψ(x) → 0 as x → 0, 1, and that ψ is positive and continuous in (0, 1).
Then for Vn(ψ) if ψ = 1, and for Dn(ψ), I0(r, F0) is continuous for 0 ≤ r < max(δ1, δ2) and

I0 (r, F0) = inf
x

min {a (x, r/ψ(x)) , a (1 − x, r/ψ(x))} ,

where δ1 = supxψ(x), δ2 = sup(1 − x)ψ(x) and

a(x, r) =

⎧⎨
⎩ (x + r) ln

(
1 +

r

x

)
+ (1 − x− r) ln

(
1 − r

1 − x

)
, 0 < x < 1 − r,

∞, otherwise.

For D+
n (ψ),

I0 (r, F0) = inf a (x, r/ψ(x)) , 0 ≤ r < δ2
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and I0(r, F0) is continuous in this range. For D−
n (ψ),

I0 (r, F0) = inf
x
a (1 − x, r/ψ(x)) , 0 ≤ r < δ1,

and I0(r, F0) is continuous in this range.

So, I0(r, F0) for Dn(ψ) is the minimum of I0(r, F0) for D+
n (ψ) and I0(r, F0) for D−

n (ψ). If ψ is symmetric
about 1/2, I0(r, F0) is the same for D+

n (ψ), D−
n (ψ) and Dn(ψ). So, for F0 ∈ ω0 and ω1 ⊂ {F | F �= F0}, eβ for

Dn(ψ) ≤ eβ for D+
n (ψ) with equality when ψ is symmetric about 1/2.

Theorem 4.4. Define a(x, r) as in Theorem 4.3. We have the following.
(i) Let ψ be non-negative piecewise continuous and bounded in [0, 1). Let (1 − x)ψ(x) → 0 as x → 1. Set
G−1(x) = sup{y : G(y) = x}. Suppose F/F0 is bounded and

(I) : f = F0

(
F−1

)
is continuous and f(0) = 0, f(1) = 1

or
(II) : g = F

(
F−1

0

)
is continuous and g(0) = 0, g(1) = 1.

Then for D+
n (ψ), I0(r, F ) is continuous provided D+

F0
(F ) < r < sup(0,1)(1 − x)ψ(x) and I0(r, F ) = inf a(F, r/ψ

(F0) + F0 − F ), where D+
F0

(F ) = sup(F − F0)ψ(F0).

(ii) Let ψ be non-negative, piecewise-continuous and bounded in (0, 1]. Let xψ(x) → 0 as x → 0. Suppose
(1 − F )/(1 − F0) is bounded and (I) or (II). Then for D−

n (ψ), I0(r, F ) is continuous provided D−
F0

(F ) < r <

sup(0,1) xψ(x) and I0(r, F ) = inf a(1 − F, r/ψ(F0) − F0 + F ), where D−
F0

(F ) = sup(F0 − F )ψ(F0).

(iii) Under the assumptions of (i) and (ii), for Dn(ψ), I0(r, F ) is continuous for DF0(F ) < r < max {supxψ(x),
sup(1 − x)ψ(x)} and

I0(r, F ) = min
{
I0(r, F ) for D+

n (ψ), I0(r, F ) for D−
n (ψ)

}
,

where DF0(F ) = |||F − F0|ψ(F0)||F0,∞.
(iv) For Vn(1), VF0(F ) < r < 1, I0(r, F ) is continuous and

I0(r, F ) = inf
x>y

min
{
a (F (x) − F (y), r − F (x) + F (y) + F0(x) − F0(y)) ,

a (1 − F (x) + F (y), r + F (x) − F (y) − F0(x) + F0(y))
}
,

where VF0(F ) = D+
F0

(F ) +D−
F0

(F ).
(v) Under the conditions of (iii), for Vn(ψ), I0(r, F ) is continuous for VF0(F ) < r < supcdfG VF0(G), and
I0(r, F ) = − lnmax[ρV (r), ρV (−r)] for ρV (r) = supx>y G(T (x, y, r), x, y, r), G(t, x, y, r) = exp[−t(r + F0(x)
φ(F0(x)) − F0(y)φ(F0(y)))]φ(t, x, y), T (x, y, r) is the root of r = (∂/∂t) lnφ(t, x, y) for x > y when the root
exists and of φ(t, x, y) = E exp(tZ) for x > y, where

Z =

⎧⎨
⎩
ψ (F0(x)) − ψ (F0(y)) w.p.F (y),
ψ (F0(x)) w.p.F (x) − F (y),
0 w.p.1 − F (x).

When ψ equals ψ0 one can show that I0(r, F0) ≡ 0, μ1 = limT (Fn) = ∞ for Dn(ψ0), Vn(ψ0), D+
n (ψ0),

D−
n (ψ0), so that eβ cannot be calculated using these methods; however, eβ becomes arbitrarily small as ψ

remains bounded but approaches ψ0.
Figure 1 shows the variation of I0(r, F0) versus r for Tn1(1) (and so for T+

n1(1)); for Tn2(1); for Dn(1)
(and so for D+

n (1), D−
n (1) and Vn(1)); and for Dn(ψ1) (and so for D+

n (ψ1) and D−
n (ψ1)), where ψ1 = ψ0 in
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Figure 1. I0(r, F0) versus r for Tn1(1) (solid curve),
Tn2(1) (curve of dashes), Dn(1) (curve of dots) and
Dn(ψ1) (curve of dots and dashes).
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Figure 2. Fixed β-efficiency versus θ for Tn1(1) (solid
curve), Tn2(1) (curve of dashes), Dn(1), Vn(1) (curve
of dots) and Tn2(ψ0) (curve of dots and dashes), where
Fθ(x) = Φ(x − θ), the normal with shift alternative.
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Figure 3. Fixed β-efficiency versus θ for Tn1(1) (solid
curve), Tn2(1) (curve of dashes), Dn(1), Vn(1) (curve
of dots) and Tn2(ψ0) (curve of dots and dashes), where
Fθ(x) = 1/{1 + exp(−x + θ)}, the logistic with shift
alternative.
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Figure 4. Fixed β-efficiency versus θ for Tn1(1) (solid
curve), Tn2(1) (curve of dashes), Dn(1), Vn(1) (curve
of dots) and Tn2(ψ0) (curve of dots and dashes), where
Fθ(x) = F0(x − θ) and Ḟ0(x) = exp(−|x|)/2, the
double-exponential with shift alternative.

[0.005, 0.995] and ψ1 = ψ0(0.005) otherwise. Figure 2 shows the variation of eβ versus θ for Tn1(1), Tn2(1),
Dn(1), Vn(1) and Tn2(ψ0), where Fθ(x) = Φ(x− θ), the normal with shift alternative. Figure 3 shows the same
for Fθ(x) = 1/{1+exp(−x+θ)}, the logistic with shift alternative. Figure 4 shows the same for Fθ(x) = F0(x−θ)
and Ḟ0(x) = exp(−|x|)/2, the double-exponential with shift alternative. Figure 5 shows the same for Fθ(x) =
F0(x)θ+1, the Lehmann alternative. Finally, Figure 6 shows the same for Fθ = {exp(θF0) − 1}/{exp(θ) − 1}.

Figures 2 to 4 show that Tn2(ψ0) exhibits the highest eβ efficiencies. Figures 5 and 6 show that Tn1(1) exhibits
the highest eβ efficiencies. So, Tn1(1) and Tn2(ψ0) exhibit the highest eβ efficiencies. The lowest eβ efficiencies
in each figure are for Vn(1).

When Tn2(ψ0) exhibits the highest eβ efficiencies, the second and third largest efficiencies are those by Tn1(1)
and Tn2(1), respectively. When Tn1(1) exhibits the highest eβ efficiencies, the second and third largest efficiencies
are those by Tn2(ψ0) and Tn2(1), respectively.

Furthermore, in the case of Fθ(x) = 1/{1 + exp(−x + θ)}, Tn2(ψ0) is just as good as the LR test for all θ.
In the case of Fθ = {exp(θF0) − 1}/{exp(θ) − 1}, Tn1(1) is just as good as the LR test for all θ, which is not
surprising since the LR test is equivalent to T−

n1(1).
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Figure 5. Fixed β-efficiency versus θ for Tn1(1) (solid
curve), Tn2(1) (curve of dashes), Dn(1), Vn(1) (curve
of dots) and Tn2(ψ0) (curve of dots and dashes), where
Fθ(x) = F0(x)θ+1, the Lehmann alternative.
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Figure 6. Fixed β-efficiency versus θ for Tn1(1) (solid
curve), Tn2(1) (curve of dashes), Dn(1), Vn(1) (curve
of dots) and Tn2(ψ0) (curve of dots and dashes), where
Fθ = {exp(θF0) − 1}/{exp(θ) − 1}.

These figures suggest Tnm(ψ) are the most powerful statistics and Vn(1) are the least powerful statistics in
terms of eβ efficiencies.

5. Local inefficiency of Tnm(ψ)

Suppose that we test F = F0 against the alternative that F is not close to F0, in the sense that

F ∈ ω1 = {F continuous cdf on R, || |F − F0|ψA (F0) ||k,F0 ≥ a1} ,
where a1 > 0 and ψA is some non-negative function, and 0 ≤ k ≤ ∞.

Lemma 5.1. Set

f(x) =
{
x in [0, 1/2],
1 − x in [1/2, 1].

Then, we have the following:
(i) If ||FψA||k <∞, 1 ≤ k ≤ m then, for Tnm(ψ),

a1 inf ψ/ψA ≤ μ1 ≤ a1||fψA||m/||fψA||k.
(ii) If 0 < inf ψA, 1 ≤ m ≤ k then, for Tnm(ψ),

μ1 ≤ supψ
(

a1

inf ψA

)k/(k+1)(m+1)/m

(k + 1)(m+1)/(k+1)/m(m+ 1)−1/m.

(iii) If ω1 = {F : sup |F − F0| ≥ a1} then, for Tnm(1), μ1 = a
1+1/m
1 (m+ 1)−1/m (that is, equality is obtained

in (ii)). The same is true for ω1 = {F ≤ F0 : sup(F − F0) ≥ a1}.
(iv) For Vn(φ), if k = ∞, inf ψ/ψAa1 ≤ μ1 ≤ supψ/ψAa1.

Theorem 5.1. Let ψ, ψA be bounded away from zero and ∞. Suppose αn(rn, F0), βn(rn) are O∗(1), by allow-
ing a1 to decrease to zero as n→ ∞, where by f = O∗(g) we mean that f/g is bounded away from zero and ∞.
Then Tnm(ψ) needs O∗(a−c1 ) observations, where

c =

{
2, k ≤ m ≤ ∞,
k

k + 1
m+ 1
m

, m < k ≤ ∞
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while Vn(ψ) needs O∗(a−2
1 ) observations.

Hence, in order to ensure that the local efficiency (in the sense implicit in the theorem – a generalization of
the idea of Pitman efficiency) is positive for all k and ψA bounded, one must take m = ∞ when using Tnm(ψ).

6. Proofs

The following lemma is needed.
Lemma For

(i) T+
nm(ψ), ψ bounded,

(ii) Tnm(ψ), m = 2, 4, 6, . . . , ψ bounded,
(iii) Tnm(ψ), 0 < m <∞, ψ = 1,

we have

I0(r, F0) =
∫ 1

0

Ḣ ln Ḣ,

where H = H(x) is an absolutely continuous cdf on [0, 1] such that

Ḧ/Ḣ +mλ(H − x)m−1ψ(x)m = 0,∫ 1

0

(H − x)mψ(x)mdx = rm

and for (iii), H(x) ≥ x.

Proof. For (i) and (ii),

I0 (r, F0) = {inf I (Q,F0) : Q a cdf such that || (Q− F0)ψ (F0) ||F0,m > r} = inf
∫ 1

0

Ḣ ln Ḣ,

where the inf is taken over cdfs on [0, 1], H , such that
∫ 1

0
(H − x)mψ(x)m = rm since the closer H(x) is to x,

the smaller is
∫
Ḣ ln Ḣ if Ḣ exists. For

V = V
(
H, Ḣ, x

)
= Ḣ ln Ḣ − λ(H − x)mψ(x)m,

by the method of Lagrange multipliers, we seek a function H on [0, 1] giving an extremal of
∫ 1

0 V dx subject to
H(0) = 0 and H(1) = 1. By the calculus of variation (for example, Courant and Hilbert [8]) H satisfies Euler’s
equation:

∂V

∂H
=

d
dx

∂V

∂Ḣ
·

For (iii) we wish to find an extremal of
∫ 1

0 V dx, where V = Ḣ ln Ḣ −λ|H −x|m. Suppose H2 gives an extremal.
Then H2 is a.c. For all intervals such that H2(x) − x < 0 in (a, b) and H2(x) − x = 0 at a, b, let H1(x) =
a+ b−H2(a+ b− x) ∈ (a, b). Let H1(x) = H2(x) when H2(x) ≥ x. Then∫ 1

0

Ḣ2 ln Ḣ2 =
∫ 1

0

Ḣ1 ln Ḣ1

and ∫ 1

0

|H2 − x|m =
∫ 1

0

|H1 − x|m .

It is now straightforward to see that the solution of Euler’s equation is the minimizing cdf. �
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Proof of Theorem 4.1. By the lemma,

I0 (r, F0) =
∫
Ḣ1 ln Ḣ1,

where H1 = x + J , J ≥ 0, J(0) = J(1) = 0, J̈/(J̇ + 1) + λmJm−1 = 0 and
∫ 1

0
Jm = rm. Let t = J̇ + 1. So,

t− ln t = μ− λJm, μ a constant, and

x =
∫ J dJ

t− 1
= − 1

mλ

∫ t

((μ− t+ ln t) /λ)−1+1/m d ln t

since λ > 0 (λ ≤ 0 leads to a contradiction). Set T = ln t and g(x) =
∫ x
γ {μ + y − exp(y)}1/m−1dy for γ a

constant such that −mλ1/mx = g(T ). Set G(x) = g−1(x). So, T = G(−mλ1/mx), G(0) = γ and J(0) = 0 ⇒
μ = exp(γ) − γ. Let ε = G(−mλ1/m), J(0) = 0 ⇒ μ = exp(ε) − ε and −mλ1/m = g(ε). So, ε < γ. The theorem
follows. �

Proof of Theorem 4.2. Hoadley’s [10] Theorem 2 can be used to show that the lemma extends to Tn2(ψ0). So,

I0 (r, F0) =
∫ 1

0

Ḣ ln Ḣ,

where (x− x2)Ḧ + 2λ(ḢH − Ḣx) = 0. Note that

H(0) = 0 ⇒ (
x− x2

)
Ḣ + λH2 −H + 2(1 − λ)

∫ x

0

xdH = 0

and H(1) = 0 ⇒ λ = 1 as
∫ 1

0
xdH �= 1/2. So,

H − x =
z

(
x− x2

)
1 + zx

,

where z + 1 is a positive constant,

I0 (r, F0) =
∫
Ḣ ln Ḣ = ln(1 + z)(1 + 2/z) + 2/z − 2(1 + 1/z) =

∫
(H − x)2

x− x2
= r2.

The proof is complete. �

Proof of Theorem 4.3. When ψ = 1 this is well-known – see Theorem 1 of Sethuraman [19], Theorems 5.1
and 5.2 of Hoadley [9]. Under the different condition that

∫ 1

0

exp {s supψ(t)} dy <∞ for all s,

the theorem follows from Theorem 1 of Sethuraman [20]. This version follows from Theorems 1 and 2 of
Abrahamson [1] when corrected: for the continuity of ρ∗ψ(ε), (x− x2)ψ(x) → 0 as x→ 0, 1 is not strong enough;
the fifth line from the bottom of page 1481 of Abrahamson [1] is incorrect as the right hand side depends
on n. �

Proof of Theorem 4.4. Follows easily from Abrahamson [1]. �
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Proof of Lemma 5.1. For (i), choose F ∈ ω1 of the form F0 + a1cf(F0). The result of (ii) follows from the case
ψ = ψA = 1 by choosing

F ∈ ω1 of the form
{

0 in [0, c),
F0 in [c, 1].

For (iii), if Ḣ exists and H(x) − x ≥ 0 in A and H(x) − x ≤ 0 in B, then if y ∈ B, there is a y0 in B such that
[y0, y] ⊂ B and H(y0) = y0, so that

∫
|H − x|m ≥

∫
B

(x−H)m ≥
∫ y

y0

(x−H)md(x−H) =
(y −H(y))m+1

m+ 1

∣∣∣∣∣
y

y0

,

implying that ∫
|H − x|m ≥ sup

B
|H(y) − y|m+1 /(m+ 1).

Similarly, for y ∈ A. So, μm1 ≥ am+1
1 /(m+ 1). By (ii) equality is obtained and hence also for the one-sided case

since F ≤ F0 in (ii).
For (iv),

a1 inf ψ/ψA = (inf ψ/ψA) inf
{
λ+ + λ− : F such that max

(
λ+, λ−

) ≥ a1

} ≤ μ1,

where λ+ = D+
F0

(F ) at ψ = ψA and λ− = D−
F0

(F ) at ψ = ψA. �

Proof of Theorem 5.1. This was given in Kac et al. [12] for k, m = 2, ∞ and ψ = ψA = 1. With βn bounded
away from zero,

αn = exp [−nI0 (μ1, F0) + o(n)] ,

so αn is bounded away from zero, implying that nI0(μ1, F0) = O∗(1). But I0(r, F0) = O(r2) as r ↓ 0 and by
Lemma 5.1, μ1 = O∗(ac1) as a1 ↓ 0. The result follows. �
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