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FIXED-a AND FIXED-3 EFFICIENCIES

CHRISTOPHER S. WITHERS' AND SARALEES NADARAJAH?

Abstract. Consider testing Ho : F' € wp against Hy : F € w; for a random sample X1,...,X,, from
F, where wo and w; are two disjoint sets of cdfs on R = (—o00, 00). Two non-local types of efficiencies,
referred to as the fixed-a and fixed-( efficiencies, are introduced for this two-hypothesis testing situation.
Theoretical tools are developed to evaluate these efficiencies for some of the most usual goodness of
fit tests (including the Kolmogorov—Smirnov tests). Numerical comparisons are provided using several
examples.
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1. INTRODUCTION

Let F,, denote the empirical cdf of a random sample X;,...,X,, from a distribution function F on R =
(—00,00). Let 7(-) denote the first derivative of 7(-), a function with a single argument. Let F denote some
hypothesized cdf for F' and assume throughout that Fj is absolutely continuous. Let 1) denote a non-negative
function on [0, 1]. Define

Tom(¥) = |[ [Fn — Fol ¢ (FO) [|Fy,m, 0 <m < o0

5. () = || (Fn — Fo) ¥ (Fo) || pyyms m=1,3,5,...

Dn(¢ = H |Fn - F0| T/J (FO) HFo,om

D () = sup (K, — Fo) ¥ (Fo), Dy, () = sup (Fo — F,) ¢ (Fo),
D (F) = sup (F — Fo) ¢ (Fo), Dy, (F) =sup (Fo — F)¢ (Fp),
V() = DY () + Dy, (¥),

[|Glm = ||G]
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where
1/m
mdF if
HGHF,m: (/Gd) , 10 <m < oo,
sup G, if G>0,m= o0,
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and

0, z <0,
U(z) =1 =, 0<.Z‘<1
11

We wish to test whether Hy : F' € wg against Hy : F' € wy, where wy and wy are two disjoint sets of cdfs on R.
For example, wy = {Fy} and wy = {F | F # Fy}. As candidates for the test, we consider the class of statistics
given by (1.1)—(1.7). This class consists of the integral, Kolmogorov—Smirnov and Kuiper statistics, T),2(1),
Thoo (1) and V;, (1) whose asymptotic null distributions are given in Anderson and Darling [2], Kolmogorov [15]
and Stephens [21]°.

This paper is related to Withers and Nadarajah [23], where we showed how the asymptotic power (AP) of
Th2(1) may be computed. Withers and Nadarajah [23] also compared the AP of T},2(1)) with the AP of T),2(1),
D, (1), V,,(1) for the envelope power function of a particular example, the double-exponential shift family.

This paper deals with exact non-local types of efficiencies for the general two-hypothesis testing situation.
There are generally three different strategies to try and approximate such efficiencies: taking alternatives close
to the null hypothesis leads to Pitman efficiency; small levels are related to Bahadur efficiency [3]; consideration
of high powers results in the Hodges-Lehmann [11] efficiency. There are also other strategies due to Chernoff,
Kallenberg, Borovkov and Mogulskiy.

Hodges—Lehmann and Bahadur efficiencies for comparing the performance of gof tests are very much related
to large deviation results. Pitman’s efficiency is more connected to the notion of contiguity and is nicely studied
in the framework given by Le Cam’s theory of statistical experiments.

However, Pitman and Hodges—Lehmann efficiencies are not appropriate when test statistics have non-normal
limiting distributions, for example, Cramer—von Mises and Watson statistics have degenerate kernels with non-
normal limiting distributions. Furthermore, Hodges—Lehmann efficiency cannot discriminate between two-sided
tests like Kolmogorov and Cramer—von Mises tests that are asymptotically optimal.

Bahadur efficiencies are not easy to compute. Besides, approximate Bahadur efficiencies are of “little value as
measures of performance of tests since monotone transformations of a test statistic may lead to entirely different
approximate Bahadur slopes” [14]. So, there is a need for variations of these efficiencies.

In this paper, we introduce two new efficiencies that are “intermediate” between the Hodges—Lehmann and
Bahadur efficiencies. We provide some tools from the calculus of variations to compute them in some of the
most usual nonparametric gof tests: integral and Kolmogorov—Smirnov tests. For a review of results related
to this paper, we refer the readers to Wieand [22], Kallenberg and Ledwina [14], Kallenberg and Koning [13],
Litvinova and Nikitin [16], and the most excellent book by Nikitin [17].

The contents of this paper are organized as follows. In Section 2, two non-local types of efficiency (eq, €g) are
introduced. These are computed in Sections 3 and 4 for gof tests of the type Ty (¢) or V,(¢) for parametric
and non-parametric alternatives. It is argued that locally T}, (1) is preferable to Ty, () if m < oo, in testing
F = Fj against “F is not close to Fy”. For a-level tests the Hodges—Lehmann efficiency or its generalization the
fixed-«v efficiency (Sect. 2) is appropriate, but is shown in Section 3 to tend to one under suitable conditions,
for the statistics we consider, when testing F' € wy against F' € w; as wp shrinks to {Fp}. Section 4 gives the
Bahadur efficiency for some common parametric examples, using large deviation results derived in part from
the work of Hoadley [10] and Abrahamson [1]. More interesting is a comparison of the statistics when testing
whether Fy is close to F' (sup |F — Fy| = ag, say) or distant from F (sup |F' — Fy| = a1, say). This is carried out
by computing eg in Section 4 when ag = 0, for the statistics Tp1(1), Tha(1), V(1) and D,,(¢)) for certain ¢. The
values of eg for these statistics are compared using several examples: a normal with shift alternative example, a
logistic with shift alternative example, a double-exponential with shift alternative example and others. Section 5
establishes a local inefficiency of T,,,,(¢). The proofs of all results are given in Section 6.

3Their percentiles are conveniently given for all n in a table of Pearson and Hartley [18].
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2. TWO TYPES OF EFFICIENCY

Let X1,..., X, be independent and identically distributed according to F', a cdf on R. Let wy and w; be two
disjoint sets of cdfs on R. Suppose we test Hy : F € wq against Hy : F € wy, rejecting Hy when T, (F,) > ry
for some functional T, (). For simplicity of presentation we exclude randomized tests. Suppose T, is such
that T,,(F,) = T(F) + op(1) and r, — 7 € [uo, p1] as n — oo, where py = p(wo) = suppe,, I'(F) and
w1 = p(wr) = inf pey,, T(F). We assume that pg < p1. If o > pp the statistic cannot discriminate between wq
and wi. Set

Oy TmF):PF{Tn( >Tn}’

( Fy)
ﬁn(rn F):PF{Tn(Fn)STn}a

(

(

2

n (rn) = sup ay, (r, F), the maximum type 1 error,

=

o (1) = sup By (1, F), the maximum type 2 error,
Few;

02, ={cdfs Q on R:T(Q) >r},
2f={cdfs Q on R:T(Q) <r},
I(F,G) = /ln (dF/dG)dF if F, G are absolutely continuous cdfs,
I(A,B) = inf inf I(F,G) for sets of cdfs A and B,
FEA GeB
I (Ta wl) = I(Qﬁawl)a
Io (r,wo) = 1 (£2r,w0) ,
Li(r,F)=1;(r,{F}), i=0,1.

Note that we have assumed that both F' and G are absolutely continuous cdfs. A weaker condition is to assume F'
is absolutely continuous with respect to G and then define I(F,G) = oo otherwise.

Hoadley [10] has shown that for continuous F' and “regular” T, () (in particular for T, (-) = T'(-) uniformly
continuous with respect to the “usual” metric),

o, (rn, F) = exp{—nlo(r, F) + o(n)} for F € wy, (2.1)
and
Bn (rn, F) =exp{—nli(r,F) +o(n)} for F € wy, (2.2)

if Iy(r, F') and I;(r, F') are continuous at r. Suppose now that (2.1) and (2.2) hold uniformly. This certainly
follows from (2.1) and (2.2) if wy and w; are finite sets. Then

Qi (Tn) = eXp{_nIO (Tv WO) + O(Tl)}
and
B (rn) = exp{—nly (r,w1) +o(n)}.

Without uniformity we only have

1
limsup —— In o, (1) < Iy (r,wo)
n n

and

lim sup —1 InG, (r,) < I (rywi).
n

n
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If the maximum type 1 error is fixed, that is, a,, (1) = @, or if 0 < a3 < @, (1) < g for all n then Iy(r,wy) =0
so, assuming continuity of T', we have r < pg. If 7 < pg then r = py minimizes asymptotically the maximum
type 2 error (3,(ry), so that if (2.2) is uniform in F' € wy, By, (1) = exp{—nli (1o, wi) + o(n)}. Now

Il (Mo,wl) S I(wo,wl) (23)

with equality if wg = {F | T(F) < ag} for some ag. Further, in the parametric case when T'(F,) is the fixed
a-level LR (likelihood-ratio) test, under suitable conditions (*) (see below),

Bn (1, F) = exp{—nI (wo, F) + o(n)},

so that, if this holds uniformly for F' € wq, then equality is obtained in (2.3). These considerations lead us to
define the fized-«v efficiency of T,,(F,,) as

I (po, wr)
o= ——
I(wo,wl)

For similar reasons we define the fized-f efficiency of T,,(F),) as

o (p1,wo)
e = —r——0>

I (w1, wo)
Bahadur [4,5] and Brown [6] show that under suitable conditions for the LR test in the parametric case, (2.2)
holds at r = py and I (1, F) = I(w1, F); (*) above is the dual of these conditions.

When wy and w; are simple, e,, is the Hodges—Lehmann efficiency relative to the LR test, and eg is the exact
Bahadur efficiency relative to the LR test, ¢f. Appendix 1 of Bahadur [3]. We note in passing that Bahadur’s
definition of eg in terms of ‘the level attained’, extends to wy and w; composite.

Between the two extremes of fixing the maximum type 1 error and fixing the maximum type 2 error, is the
middle course of choosing 7, to minimize I, = o, (r,) + AB,(ry) for some A > 0. In either case, uniformity
in (2.1) and (2.2) implies that independently of A

l, = exp[—nmin{Iy (r,wo), I (r,w1)} + o(n)],

so that the optimal r,, — p2, the root of Iy(r,wp) = I1(r,w1), which exists and is unique if {;(r, w;), i =0,1}
are continuous and strictly monotone in [ug, (1]

In the parametric case, one can show from Brown [6] and Lemma 8 of Chernoff [7] that under suitable
conditions (2.1) holds in wy, (2.2) holds in wq, and

Ip (p2,wo) = I (2, w1) < J (wo,wi),

where

J (wo,wy) = inf inf sup —ln/(dFO/dz/)l_t (AFy /dv) dv
FoEwg F1EWq o<t<1

with equality for the LR test of wg against wy.

3. FIXED-o EFFICIENCY

Here we show that under suitable conditions for many gof tests e, — 1 as wg — {Fp} (which means that F'
approaches Fj in distribution for every F' € wy). Consider testing the hypothesis Hy : F € wp, a set of
cdfs containing a cdf Fy, against the alternative Hy : F' € wy, another set of cdfs. Suppose that we consider
statistics T'(F},) such that
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(a) T(Fy)=0;

(b) T(F)<0= F = Fy.
For example, the gof tests Thm (¢), V(1) satisfy these conditions for 0 < m < oo, 9 positive and bounded.
Suppose also that

(¢) Ii(r, wy) is right-continuous at r = 0;

(d) po — 0aswy— {Fo}.
Then lim, o I1 (r,w1) = 11(0,w1) = infppy<o I(F,w1) = I(Fo,w1). Hence, e, — 1 as wg — {Fp}. However, in
order for e, to be a measure of efficiency when the type-one error is fixed, we require that (2.2) holds uniformly
in F' € wy. For example, by Hoadley’s [10], Theorem 1, sufficient additional conditions are

(e) wi is a finite set (since then (2.2) holds uniformly if it holds pointwise);

(f) all cdfs in wy are continuous;

(g) for some § > 0 for all F'in wq, I1(-, F') is continuous in (0, );

(h) T(-) is uniformly continuous with respect to the “usual” metric, sup |F' — G].

4. FIXED-/3 EFFICIENCY

According to the definition in Section 2, in order to calculate eg in testing F' = F{ against ' € w; we need
to find Io(r, Fy). Theorems 4.1 and 4.2 derive expressions for Iy(r, Fy) for integral type statistics: compare with
Sections 2.3 and 2.4 in Nikitin [17]. Theorems 4.3 and 4.4 derive expressions for Iy(r, Fy) for Kolmogorov—
Smirnov and Kuiper type statistics: compare with Sections 2.1 and 2.2 in Nikitin [17]. Figures 1 to 6 provide a
comparison of the values of eg for these statistics using several examples.

Theorem 4.1. For Ty,,(1) and T}, (1),

,
Io (r, Fp) = m~'A~Y/m / yexp(y) {n+y —exp(y)}/™ ' dy

€

for v >0, where \, u, €, v are determined by
= exp(e) — € = exp(y) — 7, € <7,
gl
mAl/™ = / {n+y—exp(y)}/™ " dy,

,
AFL/me e — / {+y—exp(y)}/™ dy.

Theorem 4.2. For Ty2(1o) with r > 0 and ¥o(t) = (t — t2)7Y2, Iy(r, Fy) = r2.

Theorem 4.3. Suppose [(z — x2)(2)]Y/¥®) — 0 as © — 0,1, and that v is positive and continuous in (0,1).
Then for V,(¢) if v = 1, and for D, (v), Lo(r, Fy) is continuous for 0 < r < max(dy, d2) and

I (r, Fy) = inf min {a (z,r/b(x)) ,a (1~ x, r/(x))},

where 81 = sup z)(x), 02 = sup(l — x)(z) and

(:E—i—r)ln(l—i—%)+(1—x—r)ln<1—ﬁ>,0<x<1—r,

0, otherwise.

a(x,r) =

For D} (),
Iy (r, Fy) = infa(z,r/y(x)), 0<r <ds
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and Iy(r, Fy) is conlinuous in this range. For D, (¢),

Iy (r,Fp) =infa (1 —x,r/¢(x)), 0<r <o,

and Iy(r, Fy) is continuous in this range.

So, Iy(r, Fo) for D, (¢) is the minimum of Iy(r, Fy) for D} () and Io(r, Fy) for D, (). If 4 is symmetric
about 1/2, Io(r, Fpy) is the same for D} (), D, () and D,,(¢). So, for Fy € wy and wy C {F | F # Fy}, eg for
D, (¢) < eg for D;f (¢) with equality when v is symmetric about 1/2.

Theorem 4.4. Define a(x,r) as in Theorem 4.3. We have the following.
(i) Let v be non-negative piecewise continuous and bounded in [0,1). Let (1 — x)(x) — 0 as ¢ — 1. Set
G~ (z) =sup{y : G(y) = z}. Suppose F/Fy is bounded and

(I): f=Fy(F~") is continuous and f(0) =0, f(1)=1

or
(I):g=F (F(fl) is continuous and g(0) =0, ¢(1)=1.

Then for D;f (), Io(r, F) is continuous provided D;O (F) <7 <supq (1 —2)¢(x) and Io(r, F) = infa(F,r/¢
(Fo) + Fy — F), where D;O(F) = sup(F — Fp)v(Fp).

(it) Let v be non-negative, piecewise-continuous and bounded in (0,1]. Let xp(xz) — 0 as x — 0. Suppose
(1= F)/(1 = Fo) is bounded and (I) or (II). Then for D, (1), Io(r, F) is continuous provided Dy, (F) < r <
SUp(0,1) xp(z) and Io(r, F) = infa(l — F,r/¢(Fy) — Fo + F), where Dy, (F) = sup(Fy — F)(Fp).

(#i3) Under the assumptions of (i) and (i1), for Dy (), Io(r, F) is continuous for Dp,(F') < r < max {sup zi(x),
sup(l — z)(z)} and

Io(r, F) =min {Iy(r, F) for D} (¢), Io(r, F) for D, (¥)},

where D, (F) = |[[F" = Folt(Fo)|| 7y o0-
(i) For V,,(1), Vg,(F) <r <1, Iy(r, F') is continuous and

Io(r, F) = inf min {a (F(z) = F(y),r — F(z) + F(y) + Fo(z) — Fo(y)) ,

>y

a (1= F(2) + F(y),r + F() = Fy) = Fo(@) + Fo(y)) }.

where Vi, (F) = D}, (F) + Dy, (F).

(v) Under the conditions of (iii), for V,,(1), Io(r, F') is continuous for Vg, (F) < r < sup.y¢ Vi (G), and
Io(r, F) = —Inmax[py (r), pv (=1)] for pv(r) = sup,., G(T(z,y,7),z,y,7), G(t,x,y,7) = exp[—t(r + Fo(x)
o(Fo(z)) — Foly)p(EFo(y))]o(t, x,y), T(x,y,r) is the root of r = (0/0t)Ind(t,x,y) for x > y when the root
exists and of ¢(t,z,y) = Eexp(tZ) for x >y, where

¥ (Fo(x)) — ¥ (Fo(y)) wp.F(y),
Z =< ¥ (Fy(x)) w.p.F(z) — F(y),
0 w.p.l — F(x).

When 1 equals 1y one can show that Io(r, Fy) = 0, p1 = imT(F,) = oo for Dy (v0), Va(tbo), D; (o),
D,, (¢0), so that eg cannot be calculated using these methods; however, eg becomes arbitrarily small as ¢
remains bounded but approaches ).

Figure 1 shows the variation of Io(r, Fy) versus r for T,1(1) (and so for T.f(1)); for Tpa(1); for D, (1)
(and so for D} (1), D, (1) and V,(1)); and for D,,(¢)1) (and so for D, (¢1) and D, (1)), where ¥1 = 1)y in

n
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FIGURE 1. Io(r, Fy) versus r for T,1(1) (solid curve),
T,2(1) (curve of dashes), D, (1) (curve of dots) and
D,,(11) (curve of dots and dashes).

FIGURE 3. Fixed S-efficiency versus 6 for T,,1(1) (solid
curve), Tpa(1) (curve of dashes), D, (1), V(1) (curve
of dots) and T},2(100) (curve of dots and dashes), where
Fyp(x) = 1/{1 + exp(—z + 0)}, the logistic with shift
alternative.

o 1 2 3 4

]

FIGURE 2. Fixed [-efficiency versus 0 for T,,1(1) (solid
curve), Tp2(1) (curve of dashes), D, (1), V,,(1) (curve
of dots) and T},2()o) (curve of dots and dashes), where
Fp(xz) = &(x — 0), the normal with shift alternative.
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FIGURE 4. Fixed (-efficiency versus 0 for Tnl(l) (solid
curve), Ty2(1) (curve of dashes), D, (1), V,,(1) (curve
of dots) and T},2(o) (curve of dots and dashes), where
Fy(z) = Fo(x — 0) and Fy(x) = exp(—|z|)/2, the
double-exponential with shift alternative.

[0.005,0.995] and 11 = 0(0.005) otherwise. Figure 2 shows the variation of eg versus 6 for T,,1(1), Tp2(1),

D, (1), V,,(1) and T},2(¢bg), where Fy(x)

for Fy(z) = 1/{14+exp(—z+86)}, the logistic with shift alternative. Figure 4 shows the same for Fy(z)

= @(z — 0), the normal with shift alternative. Figure 3 shows the same

= Fo(x—e)

and Fy(z) = exp(—|z])/2, the double-exponential with shift alternative. Figure 5 shows the same for Fy(z) =

Fy(2)?*!, the Lehmann alternative. Finally, Figure 6 shows the same for Fy = {exp(6Fy) — 1}/{exp(#) — 1}.
Figures 2 to 4 show that T,2(1)o) exhibits the highest eg efficiencies. Figures 5 and 6 show that 75,1 (1) exhibits

the highest e efficiencies. So, T,,1(1) and T,2(10g) exhibit the highest eg efficiencies. The lowest eg efficiencies

in each figure are for V,(1).

When T,2(10o) exhibits the highest eg efficiencies, the second and third largest efficiencies are those by T5,1(1)
and Tp2(1), respectively. When T,,1 (1) exhibits the highest eg efficiencies, the second and third largest efficiencies

are those by Tha(10o) and Tp2(1), respectively.

Furthermore, in the case of Fy(x) = 1/{1 + exp(—xz + 0)}, Th2(1ho) is just as good as the LR test for all 6.
In the case of Fy = {exp(0Fy) — 1}/{exp(d) — 1}, T1(1) is just as good as the LR test for all #, which is not

surprising since the LR test is equivalent to 7, (1).
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FIGURE 5. Fixed S-efficiency versus 6 for Tp,1(1) (solid ~ FIGURE 6. Fixed S-efficiency versus 6 for T,,1(1) (solid
curve), Tpa(1) (curve of dashes), Dy (1), V(1) (curve  curve), Tpa(1) (curve of dashes), Dy (1), V,,(1) (curve
of dots) and T},2(t0g) (curve of dots and dashes), where  of dots) and T),2(10) (curve of dots and dashes), where
Fy(z) = Fy(z)?*!, the Lehmann alternative. Fop = {exp(0Fy) — 1}/{exp(#) — 1}.

These figures suggest T, (1)) are the most powerful statistics and V;,(1) are the least powerful statistics in
terms of eg efficiencies.

5. LOCAL INEFFICIENCY OF T, (%)
Suppose that we test F' = Fj against the alternative that F' is not close to Fp, in the sense that

F € wy = {F continuous cdf on R, || |F — Fy|va (Fo)||k,rm > a1},

where a; > 0 and ¥4 is some non-negative function, and 0 < k < co.
Lemma 5.1. Set

_l= in [0,1/2],
@)= { 1—= in [1/2,1].

Then, we have the following:
(i) If ||Fvallx < o0, 1 <k <m then, for Ty, (),

arinf/va < py < arl|fallm/|| fallk-
(i) If0 <infia, 1 <m <k then, for Tpm(v),

k/(k+1)(m+1)/m
M) (/4; + 1)(m+1)/(k+1)/m(m+ 1)—1/m_

— .q _ 14+1/m -1/ . AP .

1 — . — 4ol = 01 y nm s - m ’

(iii) If wy = {F :sup|F — Fy| > a1} then, for Tpm (1), p1 = a; (m+1) (that is, equality is obtained
in (4)). The same is true for w1 = {F < Fy : sup(F — Fy) > a1 }.
(iv) For V, (@), if k = oo, inf/thaar < py < supt/vaas.
Theorem 5.1. Let ¢, ¥a be bounded away from zero and co. Suppose au,(ry, Fy), Bn(ry) are O*(1), by allow-

ing a1 to decrease to zero as n — oo, where by [ = O*(g) we mean that f/g is bounded away from zero and cc.
Then Tym(¢) needs O*(ay ©) observations, where

1 < Sup¢(

ko m+1

2, k<m < oo,
CcC =
k+1

,m<k<oo
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while Vy,(¥) needs O*(ay?) observations.

Hence, in order to ensure that the local efficiency (in the sense implicit in the theorem — a generalization of
the idea of Pitman efficiency) is positive for all k and 14 bounded, one must take m = oo when using T}, (¢).

6. PROOFS

The following lemma is needed.
Lemma For

(i) Tofn (), ¢ bounded,
(#7) Tom(v), m=2,4,6,...,¢ bounded,
(i1) Tpm(®),0 < m < 00, ¥ = 1,

we have
1 . .
Io(’l“,Fo) = / HlIlH,
0
where H = H(x) is an absolutely continuous cdf on [0, 1] such that
H/H 4+ mAH — 2)™ 9(z)™ =0,
1
/ (H —2)™(z)"dx = r™
0
and for (iii), H(z) > x.
Proof. For (i) and (ii),

1
Iy (r, Fp) = {inf I (Q, Fy) : Q a cdf such that || (Q — Fo) ¥ (Fo) ||rym > 7} = inf/ HinH,
0

where the inf is taken over cdfs on [0,1], H, such that fol(H —z)™p(x)™ = ™ since the closer H(x) is to x,
the smaller is lenH if H exists. For

V=V (H Hw) = HInH — \H — 2)™p(z)™,

by the method of Lagrange multipliers, we seek a function H on [0, 1] giving an extremal of fol Vdx subject to
H(0) =0 and H(1) = 1. By the calculus of variation (for example, Courant and Hilbert [8]) H satisfies Euler’s
equation:

ov._d v

OH  dx 9H
For (iii) we wish to find an extremal of fol Vdz, where V = HIn H — \|H — z|™. Suppose H, gives an extremal.
Then Hj is a.c. For all intervals such that Ha(z) — 2z < 0 in (a,b) and Ha(x) —x = 0 at a,b, let Hy(z) =
a+b— Hy(a+b—2x) € (a,b). Let Hi(x) = Ho(z) when Hy(x) > 2. Then

1 1
/ HQIHHQZ/ HllnHl
0 0

1 1
/ ‘Hg—m‘m:/ |H1—l‘|m.
0 0

It is now straightforward to see that the solution of Euler’s equation is the minimizing cdf. O

and
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Proof of Theorem 4.1. By the lemma,
IO (7“, Fo) = /H1 lth

where Hy =z + J, J >0, J(0) = J(1) = 0, J/(J + 1) + AmJ™ ' = 0 and [, J™ = . Let t = J + 1. So,
t—Int =p—AJ", pu a constant, and

J t
B dJ 1 —1+1/m
1’—/ ey ((p—t+1nt)/X) dlnt

since A > 0 (A < 0 leads to a contradiction). Set 7' = Int and g(z) = fj {p+y —exp(y)}/™ 1dy for v a
constant such that —mA/™z = ¢(T). Set G(x) = g~ *(z). So, T = G(—mA\"/™z), G(0) = v and J(0) = 0 =
p=exp(y) — 7. Let € = G(—mAY™), J(0) = 0 = u = exp(e) — e and —mA™ = g(e). So, € < 7. The theorem
follows. O

Proof of Theorem 4.2. Hoadley’s [10] Theorem 2 can be used to show that the lemma extends to T},2(¢0). So,
1 . .
Io(T,Fo):/ }IIHFI7
0

where (z — 22)H 4+ 2\(HH — Hz) = 0. Note that
xT

H(o):0:>(gg—x2)H+)\H2—H+2(1—)\)/ xdH =0
0

and H1)=0=X=1as folde #1/2. So,

oz (ac — 1:2)
14z
where z + 1 is a positive constant,
. . (H — 33)2 2
Io(r,fo)= [ HmH =In(1+2)(1+2/2) +2/2 =21+ 1/2) = [ ———5— =71".
r—x
The proof is complete. O

Proof of Theorem 4.3. When ¢ = 1 this is well-known — see Theorem 1 of Sethuraman [19], Theorems 5.1
and 5.2 of Hoadley [9]. Under the different condition that

1
/ exp {ssupy(t)} dy < oo for all s,
0

the theorem follows from Theorem 1 of Sethuraman [20]. This version follows from Theorems 1 and 2 of
Abrahamson [1] when corrected: for the continuity of pj,(€), (z — 22)y(x) — 0 as x — 0,1 is not strong enough;
the fifth line from the bottom of page 1481 of Abrahamson [1] is incorrect as the right hand side depends
on n. ]

Proof of Theorem 4.4. Follows easily from Abrahamson [1]. O
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Proof of Lemma 5.1. For (i), choose F' € wy of the form Fy + ajcf(Fo). The result of (ii) follows from the case
¥ =14 =1 by choosing

0 in [0,¢),
F € wy of the form {Fo in [e1].
For (iii), if H exists and H(z) —x > 01in A and H(z) — 2z < 0 in B, then if y € B, there is a yo in B such that
[yo,y] C B and H(yo) = yo, so that

/\H—az|m2/B(a:—H)mZ /:@—H)md(x_m:%y ,

implying that
/ 1~ ol = sup | H(y) o] /(m+ 1)

Similarly, for y € A. So, uJ* > a7 /(m +1). By (ii) equality is obtained and hence also for the one-sided case
since F' < Fy in (ii).
For (iv),

ayinf /s = (infw/wA)inf{/\"‘ + A7 : F such that max ()\+,)\_) > al} < 1,
where /\+:D;CD(F) at Y =14 and A~ = D (F) at ¢ = 4. O

Proof of Theorem 5.1. This was given in Kac et al. [12] for k, m = 2, co and ¢ = ¢4 = 1. With (,, bounded
away from zero,

ay, = exp [—nly (p1, Fo) + o(n)],

S0 oy, is bounded away from zero, implying that nlo(u1, Fo) = O*(1). But Io(r, Fy) = O(r?) as v | 0 and by
Lemma 5.1, 1y = O*(a§) as aj | 0. The result follows. O
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