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A CENTRAL LIMIT THEOREM FOR TRIANGULAR ARRAYS
OF WEAKLY DEPENDENT RANDOM VARIABLES, WITH APPLICATIONS

IN STATISTICS

Michael H. Neumann1

Abstract. We derive a central limit theorem for triangular arrays of possibly nonstationary random
variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc.
Appl. 84 (1999) 313–342]. The proof uses a new variant of the Lindeberg method: the behavior of
the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also
discuss a few applications in statistics which show that our central limit theorem is tailor-made for
statistics of different type.
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1. Introduction

For a long time mixing conditions have been the dominating way for imposing a restriction on the dependence
between time series data. The most popular notions of this type are strong mixing (α-mixing) which was
introduced by Rosenblatt [25], absolute regularity (β-mixing) introduced by Volkonski and Rozanov [27] and
uniform mixing (φ -mixing) proposed by Ibragimov [15]. These concepts were extensively used by statisticians
since many processes of interest fulfill such conditions under natural restrictions on the process parameters;
see Doukhan [13] as one of the standard references for examples and available tools.

On the other hand, it turned out that some classes of processes statisticians like to work with are not
mixing although a decline of the influence of past states takes place as time evolves. The simplest example of
such a process is a stationary AR(1)-process, Xt = θXt−1 + εt, where the innovations are independent with
P (εt = 1) = P (εt = −1) = 1/2 and 0 < |θ| ≤ 1/2. The stationary distribution of this process is supported on
[−1/(1− |θ|), 1/(1− |θ|)] and it follows from the above model equation that Xt has always the same sign as εt.
Hence, we could perfectly recover Xt−1, Xt−2, . . . from Xt which clearly excludes any of the common mixing
properties to hold. (Rosenblatt [26] mentions the fact that a process similar to (Xt)t∈Z is purely deterministic
going backwards in time. A rigorous proof that it is not strong mixing is given by Andrews [1]). On the other
hand, it can be seen from the equation Xt = εt +θεt−1+ . . .+θt−s−1εs+1+θt−sXs that the impact of Xs on Xt

declines as t − s tends to infinity. Besides this simple example, there are several other processes of this type
which are of considerable interest in statistics and for which mixing properties cannot be proved. To give a more
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relevant example, for bootstrapping a linear autoregressive process of finite order, it is most natural to estimate
first the distribution of the innovations by the empirical distribution of the (possibly re-centered) residuals
and to generate then a bootstrap process iteratively by drawing independent bootstrap innovations from this
distribution. It turns out that commonly used techniques for proving mixing of autoregressive processes fail;
because of the discreteness of the bootstrap innovations it is in general impossible to construct a successful
coupling of two versions of the process with different initial values.

Inspired by such problems, Doukhan and Louhichi [14] and Bickel and Bühlmann [3] proposed alternative
notions called weak dependence and ν-dependence, respectively. Basically, they imposed a restriction on covari-
ances of smooth functions of blocks of random variables separated by a certain time gap and called a process
weakly dependent (or ν-dependent, respectively) if these covariances tend to zero as the time gap increases. It
has been shown that many classes of processes for which mixing is problematic satisfy appropriate versions of
these weaker conditions; see e.g. Dedecker et al. [12] for numerous examples.

The main result in this paper is a central limit theorem for triangular arrays of weakly dependent random
variables. Under conditions of this type, central limit theorems were given in Corollary A in Doukhan and
Louhichi [14] for sequences of stationary random variables and in Theorem 1 in Coulon-Prieur and Doukhan [6]
for triangular arrays of asymptotically sparse random variables as they appear with nonparametric kernel density
estimators. Using their notion of ν-mixing Bickel and Bühlmann [3] proved a CLT for linear processes of infinite
order and their (smoothed) bootstrap counterparts. CLTs for triangular arrays of weakly dependent, row-wise
stationary random variables were also given in Theorem 6.1 in Neumann and Paparoditis [21] and in Theorem 1
in Bardet et al. [2]. The latter one is formulated for situations where the dependence between the summands
declines as n → ∞. It can also be applied to dependent processes in conjunction with an additional block-
ing step. Under projective conditions, versions of a CLT were derived by Dedecker [9], Dedecker and Rio [11]
and Dedecker and Merlevède [10]. In the present paper we generalize previous versions of a CLT under weak
dependence. Having applications in statistics such as to bootstrap processes and to nonparametric curve es-
timators in mind, it is important to formulate the theorem for triangular arrays; see Sections 3.2 and 3.3 for
a discussion of such applications. Moreover, motivated by a particular application sketched in Section 3.1, we
also allow that the random variables in each row are nonstationary. The assumptions of our CLT are quite
weak; beyond finiteness of second moments only Lindeberg’s condition has to be fulfilled and only some minimal
dependence conditions are imposed. Nevertheless, this result can be applied in situations offering different chal-
lenges such as nonstationarity, sparsity, and with a triangular scheme. The versatility of our CLT is indicated
by the applications discussed in Section 3.

To prove this result, we adapt the approach introduced by Lindeberg [18] in the case of independent random
variables. Actually, we use a variant of this method where the asymptotic behavior of the partial sums is
explicitly compared to the behavior of partial sums of Gaussian random variables. This approach has also
been chosen in Neumann and Paparoditis [21] for proving a CLT for triangular schemes but under stationarity.
However, since in our more general context the increments of the variances of the partial sum process are not
necessarily nonnegative we cannot take independent Gaussian random variables as an appropriate counterpart.
Our new idea is to choose here dependent, jointly Gaussian random variables, having the same covariance
structure as the original ones. This modification of the classical Lindeberg method seems to be quite natural
in the case of dependent random variables and it turns out that it does not create any essential additional
problems compared to situations where the partial sum process can be compared to a process with independent
Gaussian summands.

This paper ist organised as follows. In Section 2 we state and discuss the main result. Section 3 is devoted
to a discussion of some possible applications in statistics. The proof of the CLT is contained in Section 4.
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2. Main result

Theorem 2.1. Suppose that (Xn,k)k=1,...,n, n ∈ N, is a triangular scheme of random variables with EXn,k = 0
and

∑n
k=1 EX2

n,k ≤ v0, for all n, k and some v0 < ∞. We assume that

σ2
n := var(Xn,1 + . . . + Xn,n) −→

n→∞ σ2 ∈ [0,∞), (2.1)

and that
n∑

k=1

E{X2
n,k11(|Xn,k| > ε)} −→

n→∞ 0 (2.2)

holds for all ε > 0. Furthermore, we assume that there exists a summable sequence (θr)r∈N such that, for all
u ∈ N and all indices 1 ≤ s1 < s2 < . . . < su < su +r = t1 ≤ t2 ≤ n, the following upper bounds for covariances
hold true: for all measurable functions g : R

u −→ R with ‖g‖∞ = supx∈Ru |g(x)| ≤ 1,

|cov (g(Xn,s1 , . . . , Xn,su)Xn,su , Xn,t1)| ≤
(
EX2

n,su
+ EX2

n,t1 + n−1
)

θr (2.3)

and
|cov (g(Xn,s1 , . . . , Xn,su), Xn,t1Xn,t2)| ≤

(
EX2

n,t1 + EX2
n,t2 + n−1

)
θr. (2.4)

Then

Xn,1 + . . . + Xn,n
d−→ N (0, σ2).

Remark 2.2. To prove this theorem, we use the approach introduced by Lindeberg [18] in the case of in-
dependent random variables. Later this method has been adapted by Billingsley [4] and Ibragimov [16]
to the case of stationary and ergodic martingale difference sequences, by Rio [24] to the case of triangu-
lar arrays of strongly mixing and possibly nonstationary processes, by Dedecker [9] to stationary random
fields, by Dedecker and Rio [11] for deriving a functional central limit theorem for stationary processes, and
by Dedecker and Merlevède [10] and Neumann and Paparoditis [21] for triangular arrays of weakly depen-
dent random variables. The core of Lindeberg’s method is that, for any suffiently regular test funtion h,
E{h(Xn,1 + . . . + Xn,k)− h(Xn,1 + . . . + Xn,k−1)} is approximated by E{h′′

(Xn,1 + . . . + Xn,k−1)vk/2}, where
vk = var(Xn,1+ . . .+Xn,k)−var(Xn,1+ . . .+Xn,k−1) is the increment of the variance of the partial sum process.
Since an analogous approximation also holds for the partial sums process of related Gaussian random variables
one can make the transition from the non-Gaussian to the Gaussian case. In most of these papers, this idea is put
into practice by a comparison of Eh(Xn,1+ . . .+Xn,n) with Eh(Zn,1+ . . .+Zn,n), where Zn,1, . . . , Zn,n are inde-
pendent Gaussian random variables with EZn,k = 0 and EZ2

n,k = var(Xn,1+. . .+Xn,k)−var(Xn,1+. . .+Xn,k−1).
To simplify computations, sometimes blocks of random variables rather than single random variables are con-
sidered; see e.g. Dedecker and Rio [11] and Dedecker and Merlevède [10]. In the case considered here, however,
we have to deviate from this common practice. Since Xn,1, . . . , Xn,n are not necessarily stationary we cannot
guarantee that the increments of the variances, var(Xn,1 + . . . + Xn,k) − var(Xn,1 + . . . + Xn,k−1), are always
nonnegative. Moreover, it is even not clear if blocks of fixed length would help here. Therefore, we compare the
behavior of Xn,1 + . . . + Xn,n with that of Zn,1 + . . . + Zn,n, where Zn,1, . . . , Zn,n are no longer independent.
Rather, we choose them as centered and jointly Gaussian random variables with the same covariance structure
as Xn,1, . . . , Xn,n. Nevertheless, it turns out that the proof goes through without essential complications com-
pared to the common situation with independent Zn,k’s. Note that Rio [24] also proved a central limit theorem
for triangular arrays of not necessarily stationary, mixing random variables. This author managed the problem
with possibly negative increments of the variances of the partial sums by omitting an explicit use of Gaussian
random variables; rather he derived an approximation to the characteristic function, on the Gaussian side.



CENTRAL LIMIT THEOREM FOR DEPENDENT RV’S 123

3. Applications in statistics

The purpose of this section is twofold. First, we intend to demonstrate the versatility of our CLT by a few
applications of different type. And second, we also want to show how this can be accomplished in an effective
manner.

3.1. Asymptotics of quadratic forms

For the analysis of nonstationary time series, Dahlhaus [7] introduced the notion of locally stationary processes
as a suitable framework for a rigorous asymptotic theory. Basically, one has to deal with a triangular scheme of
random variables (Yn,t)t=1,...,n, n ∈ N, where the covariance structure of . . . , Yn,[nv]−1, Yn,[nv], Yn,[nv]+1, . . . is
asymptotically constant for any fixed v ∈ [0, 1]. In this sense, the time points 1, . . . , n are renormalized to the
unit interval. As an empirical version of the corresponding local spectral density, Neumann and von Sachs [23]
proposed the so-called preperiodogram,

In(v, ω) =
1
2π

∑
k∈Z: 1≤[nv+1/2−k/2],[nv+1/2+k/2]≤n

Yn,[nv+1/2−k/2]Yn,[nv+1/2+k/2] cos(ω k).

The integrated and normalized preperiodogram is defined as

Jn(u, ν) =
√

n

∫ ν

0

∫ u

0

{In(v, ω) − EIn(v, ω)} dv dω.

The process Jn = (Jn(u, ν))u∈[0,1],ν∈[0,π] can be used in many contexts, ranging from testing the hypothesis
of stationarity to estimation of model parameters; see Dahlhaus [8] for several examples. This author proposed
the test statistics

Tn = sup
u∈[0,1],ν∈[0,π]

∣∣∣∣√n

∫ ν

0

[∫ u

0

In(v, ω) dv − u

∫ 1

0

In(v, ω) dv

]
dω

∣∣∣∣ .
Under the null hypothesis of stationarity, this test statistic can be approximated by supu,ν |Jn(u, ν) − uJn(1, ν)|.
Neumann and Paparoditis [22] develop details for a bootstrap-based test for stationarity based on Tn. In
the case of the null hypothesis, convergence of Jn = (Jn(ν, u))u∈[0,1],ν∈[0,π] to a certain Gaussian process
J = (J(ν, u))u∈[0,1],ν∈[0,π] can be proved. In what follows we will sketch how Theorem 2.1 can be employed for
proving asymptotic normality of its finite-dimensional distributions, which yields in conjunction with stochastic
equicontinuity the convergence to a certain Gaussian process. The advantage of this somehow unusual approach
is that finiteness of fourth moments suffices whereas traditionally used cumulant methods require finiteness of
all moments.

Under the hypothesis of stationarity we don’t have a triangular scheme and we denote the underlying process
by (Yt)t∈Z. Note that the preperiodogram can be rewritten as

In(v, ω) = Y ′
nAnY n,

where Y n = (Y1, . . . , Yn)′ and

(An)i,j =
{

(2π)−1 cos(ω(i − j)), if (i + j − 1)/(2n) ≤ v < (i + j + 1)/(2n),
0, otherwise.

Accordingly, we have that
Jn(u, ν) = Y ′

nBn(u, ν)Y n − EY ′
nBn(u, ν)Y n,
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where

(Bn(u, ν))i,j =

⎧⎨⎩
√

n
2π

sin(ν(i−j))
i−j λ1

(
[0, u] ∩ [ i+j−1

2n , i+j+1
2n )
)
, for i 	= j,

√
n

2π ν λ1
(
[0, u] ∩ [ 2i−1/2

n , 2i+1/2
n )
)

, for i = j

and λ1 denotes the Lebesgue measure on (R,B). The desired convergence of the finite-dimensional distributions
of Jn to those of J , i.e.,

(Jn(u1, ν1), . . . , Jn(ud, νd))
′ d−→ J = (J1, . . . , Jd)′, (3.1)

for arbitrary u1, . . . , ud ∈ [0, 1], ν1, . . . , νd ∈ [0, π] and d ∈ N, will follow by the Cramér–Wold device from

Zn =
d∑

i=1

ciJn(ui, νi)
d−→ Z ∼ N (0, v),

where v =
∑d

j,k=1 cj ck cov(Jk, Jl), for any c1, . . . , cd ∈ R. We assume that

(A1) (i)
∑∞

j=−∞ | cov(Y0, Yj)| < ∞,
(ii) EY 4

0 < ∞ and
∑

j,k,l | cum(Y0, Yj , Yk, Yl)| < ∞.

Zn can be rewritten as
Zn = Y ′

nCnY n − EY ′
nCnY n,

where Cn is an (n × n)-matrix with

(Cn)i,j =
d∑

k=1

ckBn(uk, νk)i,j = O

(
1√
n

(
1 ∧ 1

|i − j|
))

·

Since the off-diagonal terms decay fast enough as |i − j| grows we can approximate Zn by

Z(K)
n = Y ′

nC(K)
n Y n − EY ′

nC(K)
n Y n,

where (C(K)
n )i,j = (Cn)i,j11(|i − j| ≤ K). Let Σn = Cov(Y n). It follows from (A1) that

E
({

Y ′
nCnY n − EY ′

nCnY n

} −
{
Y ′

nC(K)
n Y n − EY ′

nC(K)
n Y n

})2

= var
(
Y ′

n(Cn − C(K)
n )Y n

)
=

n∑
i,j,k,l=1

(Cn − C(K)
n )i,j (Cn − C(K)

n )k,l cum(Yi, Yj , Yk, Yl)

+ 2 tr
(
(Cn − C(K)

n )Σn(Cn − C(K)
n )Σn

)
= O(1/K2) + O(1/K). (3.2)

The latter equality follows from λmax(Σn) ≤ ‖Σn‖∞ = supi

∑n
j=1 | cov(Yi, Yj)| and the estimate tr((Cn −

C
(K)
n )Σn(Cn − C

(K)
n )Σn) ≤ (λmax(Σn))2 tr((Cn − C

(K)
n )2); see e.g. Lütkepohl [20] (p. 44). According to

Theorem 4.2 in Billingsley [5], it follows from (3.2) that it remains to prove that, for all fixed K,

Z(K)
n

d−→ N (0, v(K)), (3.3)
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with v(K) →n→∞ v. The matrix C
(K)
n , however, has almost a diagonal form which will allow us to derive (3.3)

from Theorem 2.1. To this end, we rewrite Z
(K)
n as

Z(K)
n =

n∑
i=1

Xn,i,

where Xn,i =
∑min{i+K,n}

j=max{i−K,1}(Cn)i,j(YiYj − E(YiYj)). Now we assume that

(A2) For all fixed K ∈ N, there exists a summable sequence (θr)r∈N such that, for s1 < . . . < su < t1 ≤ t2,
‖g‖∞ ≤ 1 and −K ≤ k1, k2, l1, l2 ≤ K,
(i) |cov(g(Ys1−K , . . . , Ysu+K)Ysu+k1Ysu+k2 , Yt1+l1Yt1+l2)| ≤ θt1−su ,
(ii) |cov(g(Ys1−K , . . . , Ysu+K), Yt1+k1Yt1+k2Yt2+l1Yt2+l2)| ≤ θt1−su .

It can be easily verified that the triangular scheme (Xn,i)i=1,...,n satisfies the assumptions of Theorem 2.1. Here
we note that the Xn,i are in general not stationary, even if the Yi are. Therefore, it is essential to have a CLT
which allows nonstationary random variables in each row. Moreover, it also follows from (3.2) that

sup
n

∣∣∣var(Y ′
nC(K)

n Y n) − var(Y ′
nCnY n)

∣∣∣ −→
K→∞

0.

This, together with
var(Y ′

nCnY n) −→
n→∞ v,

yields (3.1) under the assumptions (A1) and (A2).

3.2. Consistency of bootstrap methods

Since our central limit theorem is formulated for triangular schemes it is tailor-made for applications to
bootstrap processes. We demonstrate this for the simplest possible example, the sample mean.

Assume that we have a strictly stationary process (Xt)t∈Z with EX0 = μ and EX2
0 < ∞. Additionally we

assume that there exists a summable sequence (θr)r∈N such that, for all u ∈ N and all indices 1 ≤ s1 < s2 <
. . . < su < su + r = t1 ≤ t2 ≤ n, the following upper bounds for covariances hold true: for all measurable
functions g : R

u −→ R with ‖g‖∞ ≤ 1,

|cov (g(Xs1 , . . . , Xsu)Xsu , Xt1)| ≤
(
EX2

su
+ EX2

t1 + 1
)

θr (3.4)

and
|cov (g(Xs1 , . . . , Xsu), Xt1Xt2)| ≤

(
EX2

t1 + EX2
t2 + 1

)
θr. (3.5)

Then the triangular scheme (Xn,k)k=1,...,n, n ∈ N, given by Xn,k = (Xk − μ)/
√

n satisfies the conditions of
Theorem 2.1. In particular, it follows from (3.4) and majorized convergence that

σ2
n := var(Xn,1 + . . . + Xn,n)

= var(X0) + 2
n−1∑
k=1

(1 − k/n) cov(X0, Xk)

−→
n→∞ σ2 := var(X0) + 2

∞∑
k=1

cov(X0, Xk) ∈ [0,∞).

Now we obtain from Theorem 2.1, for X̄n = n−1
∑n

t=1 Xt, that

√
n(X̄n − μ) = Xn,1 + . . . + Xn,n

d−→ Z ∼ N (0, σ2). (3.6)
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Assume now that, conditioned on X1, . . . , Xn, a stationary bootstrap version (X∗
t )t∈Z is given. We assume

that
P

X∗
0 ,X∗

k∗ =⇒ PX0,Xk in probability (3.7)
holds for all k ∈ N and that

E∗[(X∗
0 )2] P−→ E[X2

0 ]. (3.8)

(Starred symbols such as E∗ and P∗ refer as usual to the conditional distribution, given X1, . . . , Xn). (3.7)
and (3.8) imply that

cov∗(X∗
0 , X∗

k) P−→ cov(X0, Xk) ∀k = 0, 1, . . . (3.9)
Assume further that there exist sequences (θn,r)r∈N, n ∈ N, which may depend on the original sample X1, . . . , Xn,
such that, for all u ∈ N and all indices 1 ≤ s1 < s2 < . . . < su < su + r = t1 ≤ t2 ≤ n, the following upper
bounds for covariances hold true: for all measurable functions g : R

u −→ R with ‖g‖∞ ≤ 1,∣∣cov∗
(
g(X∗

s1
, . . . , X∗

su
)X∗

su
, X∗

t1

)∣∣ ≤ (E(X∗
su

)2 + E(X∗
t1)

2 + 1
)

θn,r (3.10)

and ∣∣cov∗
(
g(X∗

s1
, . . . , X∗

su
), X∗

t1X
∗
t2

)∣∣ ≤ (E(X∗
t1)

2 + E(X∗
t2)

2 + 1
)

θn,r, (3.11)
and that

P
(
θn,r ≤ θ̄r ∀r ∈ N

) −→
n→∞ 1, (3.12)

for some summable sequence (θ̄r)r∈N. Actually, (3.10) to (3.12) can often be verified for model-based bootstrap
schemes if for the underlying model (3.4) and (3.5) are fulfilled; see Neumann and Paparoditis [21] for a few
examples. We define X∗

n,k = (X∗
k − μn)/

√
n, where μn = E∗X∗

0 . It follows, again from (3.7) and (3.8), that

n∑
k=1

E∗
{
(X∗

n,k)211(|X∗
n,k| > ε)

}
= E∗

{
(X∗

0 − μn)211(|X∗
0 − μn| > ε

√
n)
} P−→ 0.

Hence, the triangular scheme (X∗
n,k)k∈N, n ∈ N, satisfies the conditions of Theorem 2.1 “in probability”. The

latter statement means that there exist measurable sets Ωn ⊆ R
n with P ((X1, . . . , Xn)′ ∈ Ωn) −→n→∞ 1

and, for any sequence (ωn)n∈N with ωn ∈ Ωn, we have that, conditioned on (X1, . . . , Xn)′ = ωn, the triangular
scheme (X∗

n,k)k∈N satisfies the conditions of our CLT. This, however, implies that

√
n(X̄∗

n − μn) = X∗
n,1 + . . . + X∗

n,n
d−→ Z, in probability. (3.13)

(3.6) and (3.13) yield that

sup
x

∣∣P (√n(X̄n − μ) ≤ x
) − P∗

(√
n(X̄∗

n − μn) ≤ x
)∣∣ P−→ 0,

which means that the bootstrap produces an asymptotically correct confidence interval for μ.

3.3. Nonparametric density estimation under uniform mixing

As a further test case for the suitability of our CLT for triangular schemes we consider asymptotics for a
nonparametric density estimator under a uniform (φ-) mixing condition. Here we have the typical aspect of
sparsity, that is, in the case of a kernel function with compact support, there is a vanishing share of nonzero
summands. It turns out that a result by Dedecker and Merlevède [10] can also be proved by our Theorem 2.1.
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Assume that observations X1, . . . , Xn from a strictly stationary process (Xt)t∈Z with values in R
d are

available. We assume that X0 has a density which we denote by f . The commonly used kernel density
estimator f̂n of f is given by

f̂n(x) =
1

nhd
n

n∑
k=1

K

(
x − Xk

hn

)
,

where K : R
d → R is a measurable “kernel” function and (hn)n∈N is a sequence of (nonrandom) bandwidths.

Favorable asymptotic properties of f̂n(x) are usually guaranteed if f is continuous at x, K possesses certain
regularity properties and, as a minimal condition for consistency, if hn −→n→∞ 0 and nhd

n −→n→∞ ∞. Here
we will make the following assumptions:

(B1) (i) f is bounded and continuous at x.
(ii) For all k ∈ N, the joint density of X0 and Xk, fX0,Xk

, is bounded.
(iii) hn −→n→∞ 0 and nhd

n −→n→∞ ∞.

(B2) (i) (Xt)t∈Z is uniform mixing with coefficients φr satisfying
∑∞

r=1

√
φr < ∞.

(ii)
∫

Rd |K(u)|λd(du) < ∞ and
∫

Rd K(u)2 λd(du) < ∞.

(B3) (i) (Xt)t∈Z is uniform mixing with coefficients φr satisfying
∑∞

r=1 φr < ∞.
(ii) K is bounded and

∫
Rd |K(u)|λd(du) < ∞.

(B1) and (B2) are similar to the conditions of a functional CLT in Billingsley [5] (p. 174), while Dedecker and
Merlevède [10] proved asymptotic normality of a kernel density estimator under conditions similar to (B1) and
(B3). We will show how Theorem 2.1 can be employed for proving asymptotic normality of f̂n(x).

Lemma 3.1. If (B1) and either (B2) or (B3) are fulfilled, then√
nhd

n

(
f̂n(x) − Ef̂n(x)

)
d−→ N (0, σ2

0),

where σ2
0 = f(x)

∫
Rd K2(u)λd(du).

Proof. First of all, it is easy to see that the Lindeberg condition (2.2) is fulfilled by the triangular scheme in both
cases. To verify the other conditions of our central limit theorem we need appropriate covariance inequalities for
φ -mixing processes. For s1 < s2 < . . . < su < t1 < t2 < . . . < tv, it follows from Lemma 20.1 in Billingsley [5]
that

|cov (g(Xs1 , . . . , Xsu), h(Xt1 , . . . , Xtv))| ≤ 2
√

φt1−su

√
E{g2(Xs1 , . . . , Xsu)}

√
E{h2(Xt1 , . . . , Xtv )}. (3.14)

Furthermore, equation (20.28) in Billingsley [5] yields that

|cov (g(Xs1 , . . . , Xsu), h(Xt1 , . . . , Xtv ))| ≤ 2 φt1−su E {|g (Xs1 , . . . , Xsu)|} ‖h‖∞. (3.15)

In order to get condition (2.4) from our CLT satisfied, we will consider the process (Xt)t∈Z in time-reversed
order. We define, for k = 1, . . . , n and n ∈ N,

Xn,k = (nhd
n)−1/2 {K((x − Xn−k+1)/hn) − EK((x − Xn−k+1)/hn)} .

Now let 1 ≤ s1 < s2 < . . . < su < t1 ≤ t2 ≤ n and g : R
du −→ R be measurable with ‖g‖∞ ≤ 1. We consider

first the case where (B1) and (B2) are fulfilled. It follows from (3.14) that

|cov (g(Xn,s1 , . . . , Xn,su)Xn,su , Xn,t1)| ≤ 2
√

φt1−su

√
EX2

n,su

√
EX2

n,t1 , (3.16)
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and from (3.15) that
|cov (g(Xn,s1 , . . . , Xn,su), Xn,t1Xn,t2)| ≤ 2 φt1−su EX2

n,t1 . (3.17)

Therefore, the weak dependence conditions (2.3) and (2.4) are fulfilled for θr = 2
√

φr. It remains to indentify
the limiting variance of Xn,1 + . . . + Xn,n. Since EX2

n,k ≤ n−1E{h−d
n K2((x − Xn−k+1)/hn)} ≤ Cn−1, for

some C < ∞, we obtain from (3.16) that

|cov (Xn,k, Xn,k+l)| ≤ 2
√

φl C n−1 ∀l ∈ N. (3.18)

On the other hand, it follows from the boundedness of the joint densities that there exist finite constants
C1, C2, . . . such that

|cov (Xn,k, Xn,k+l)| ≤ hd
n Cl n−1

holds for all l ∈ N. Both inequalities together yield, by majorized convergence, that

n∑
k=1

∑
l 	=k

|cov (Xn,k, Xn,l)| −→
n→∞ 0. (3.19)

Therefore, we have, as in the case of independent random variables, that

var(Xn,1 + . . . + Xn,n) = n var (Xn,1) + o(1) −→
n→∞ σ2

0 .

Hence, the assertion follows from Theorem 2.1.
Now we consider the other case where (B1) and (B3) are fulfilled. We only have to modify the two covariance

estimates (3.16) and (3.18). Instead of these two inequalities we use the following alternative estimates:

|cov (g(Xn,s1 , . . . , Xn,su)Xn,su , Xn,t1)|
≤ 2 φt1−su ess sup|Xn,su | E|Xn,t1 |
≤ 2 φt1−su ‖K‖∞ ‖f‖∞

∫
Rd

|K(u)|λd(du) n−1 (3.20)

and
|cov (Xn,k, Xn,k+l)| ≤ 2 φl ‖K‖∞ ‖f‖∞

∫
Rd

|K(u)|λd(du) n−1 ∀l ∈ N. (3.21)

This time the weak dependence conditions (2.3) and (2.4) are fulfilled for θr = 2φr max{‖K‖2
∞‖f‖∞(2M)d, 1},

and we obtain again the assertion. �
Remark 3.2. The example of kernel density estimators is included as a further test case for the suitability of
our CLT for triangular schemes. Here we are faced with the aspect of sparsity, where only a vanishing share of
the summands is of non-negligible size. It turns out that again moment conditions of second order suffice for
asymptotic normality. It is not clear if the summability condition imposed for the uniform mixing coefficients
is the best possible. For stationary ρ-mixing sequences, Ibragimov [17] proved a CLT under the condition∑∞

n=1 ρ(2n) < ∞. Since ρ(n) ≤ 2
√

φn the condition
∑∞

n=1

√
φ2n < ∞ suffices for the CLT to hold in the case

of a stationary uniform mixing sequence.

4. Proof of the main result

Proof of Theorem 2.1. Let h : R −→ R be an arbitrary bounded and three times continuously differentiable
function with max{‖h′‖∞, ‖h′′‖∞, ‖h(3)‖∞} ≤ 1. Furthermore, let Zn,1, . . . , Zn,n be centered and jointly
Gaussian random variables which are independent of Xn,1, . . . , Xn,n and have the same covariance structure
as Xn,1, . . . , Xn,n, that is, cov(Zn,j , Zn,k) = cov(Xn,j , Xn,k), for 1 ≤ j, k ≤ n.
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Since Zn,1 + . . .+Zn,n ∼ N(0, σ2
n) =⇒ N(0, σ2) it follows from Theorem 7.1 in Billingsley [5] that it suffices

to show that
Eh (Xn,1 + . . . + Xn,n) − Eh (Zn,1 + . . . + Zn,n) −→

n→∞ 0. (4.1)

We define Sn,k =
∑k−1

j=1 Xn,j and Tn,k =
∑n

j=k+1 Zn,j. Then,

Eh (Xn,1 + . . . + Xn,n) − Eh (Zn,1 + . . . + Zn,n) =
n∑

k=1

Δn,k,

where
Δn,k = E {h(Sn,k + Xn,k + Tn,k) − h(Sn,k + Zn,k + Tn,k)} .

We set vn,k = 1
2EX2

n,k +
∑k−1

j=1 EXn,kXn,j and v̄n,k = 1
2EZ2

n,k +
∑n

j=k+1 EZn,kZn,j. Note that 2vn,k =
var(Sn,k + Xn,k) − var(Sn,k) are the commonly used increments of the variances of the partial sum process
while 2v̄n,k = var(Tn,k + Zn,k) − var(Tn,k) are the increments of the variances of the reversed partial sum
process. Now we decompose further Δn,k = Δ(1)

n,k − Δ(2)
n,k + Δ(3)

n,k, where

Δ(1)
n,k = Eh(Sn,k + Xn,k + Tn,k) − Eh(Sn,k + Tn,k) − vn,kEh

′′
(Sn,k + Tn,k),

Δ(2)
n,k = Eh(Sn,k + Zn,k + Tn,k) − Eh(Sn,k + Tn,k) − v̄n,kEh

′′
(Sn,k + Tn,k),

Δ(3)
n,k = (vn,k − v̄n,k)Eh

′′
(Sn,k + Tn,k).

We will show that
n∑

k=1

Δ(i)
n,k −→

n→∞ 0, for i = 1, 2, 3. (4.2)

(i) Upper bound for |∑n
k=1 Δ(1)

n,k|

Let ε > 0 be arbitrary. We will actually show that∣∣∣∣∣
n∑

k=1

Δ(1)
n,k

∣∣∣∣∣ ≤ ε for all n ≥ n(ε) (4.3)

and n(ε) sufficiently large.
It follows from a Taylor series expansion that

Δ(1)
n,k = EXn,kh′(Sn,k + Tn,k) + E

{
X2

n,k

2
h

′′
(Sn,k + τn,kXn,k + Tn,k)

}
− vn,kEh

′′
(Sn,k + Tn,k),

for some appropriate random τn,k ∈ (0, 1). (It is not clear that τn,k is measurable, however, X2
n,kh

′′
(Sn,k +

τn,kXn,k + Tn,k) as a sum of measurable quantities is. Therefore, the above expectation is correctly defined).
Since Sn,1 = 0 and, therefore, EXn,kh′(Sn,1 + Tn,k) = 0 we obtain that

EXn,kh′(Sn,k + Tn,k) =
k−1∑
j=1

EXn,k {h′(Sn,j+1 + Tn,k) − h′(Sn,j + Tn,k)}

=
k−1∑
j=1

EXn,kXn,jh
′′
(Sn,j + μn,k,jXn,j + Tn,k),
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again for some random μn,k,j ∈ (0, 1). This allows us to decompose Δ(1)
n,k as follows:

Δ(1)
n,k =

k−d−1∑
j=1

E
[
Xn,kXn,j

{
h

′′
(Sn,j + μn,k,jXn,j + Tn,k) − Eh

′′
(Sn,k + Tn,k)

}]

+
k−1∑

j=k−d

E
[
Xn,kXn,j

{
h

′′
(Sn,j + μn,k,jXn,j + Tn,k) − Eh

′′
(Sn,k + Tn,k)

}]
+

1
2
E
[
X2

n,k

{
h

′′
(Sn,k + τn,kXn,k + Tn,k) − Eh

′′
(Sn,k + Tn,k)

}]
= Δ(1,1)

n,k + Δ(1,2)
n,k + Δ(1,3)

n,k , (4.4)

say.
By choosing d sufficiently large we obtain from (2.3) that∣∣∣∣∣

n∑
k=1

Δ(1,1)
n,k

∣∣∣∣∣ ≤ (2v0 + 1)
n∑

j=d+1

θj ≤ ε

3
for all n. (4.5)

The term Δ(1,2)
n,k will be split up as

Δ(1,2)
n,k =

k−1∑
j=k−d

EXn,kXn,j

{
h

′′
(Sn,j + μn,k,jXn,j + Tn,k) − h

′′
(Sn,j−d′ + Tn,k)

}

+
k−1∑

j=k−d

EXn,kXn,j

{
h

′′
(Sn,j−d′ + Tn,k) − Eh

′′
(Sn,j−d′ + Tn,k)

}

+
k−1∑

j=k−d

EXn,kXn,j

{
Eh

′′
(Sn,j−d′ + Tn,k) − Eh

′′
(Sn,k + Tn,k)

}
= Δ(1,2,1)

n,k + Δ(1,2,2)
n,k + Δ(1,2,3)

n,k , (4.6)

say. (The proper choice of d′ will become clear from what follows).
Using the decomposition Xn,k = Xn,k11(|Xn,k| > ε′) + Xn,k11(|Xn,k| ≤ ε′), for some ε′ > 0, we obtain by the

Cauchy-Schwarz inequality and the Lindeberg condition (2.2) that

∣∣∣∣∣
n∑

k=1

Δ(1,2,1)
n,k

∣∣∣∣∣ ≤ 2 d

√√√√ n∑
k=1

EX2
n,k11(|Xn,k| > ε′)

√√√√ n∑
j=1

EX2
n,j + ε′

√√√√ n∑
k=1

k−1∑
j=k−d

EX2
n,j

×
√√√√ n∑

k=1

k−1∑
j=k−d

E{h′′(Sn,j + μn,k,jXn,j + Tn,k) − h′′(Sn,j−d′ + Tn,k)}2

= o(1) + O(ε′). (4.7)

Using condition (2.4) we obtain that ∣∣∣∣∣
n∑

k=1

Δ(1,2,2)
n,k

∣∣∣∣∣ ≤ d θd′ (2v0 + 1). (4.8)



CENTRAL LIMIT THEOREM FOR DEPENDENT RV’S 131

Furthermore, it follows from the Lindeberg condition (2.2) that

max
1≤k≤n

{var(Xn,k)} −→
n→∞ 0, (4.9)

which implies that ∣∣∣∣∣
n∑

k=1

Δ(1,2,3)
n,k

∣∣∣∣∣ −→
n→∞ 0.

This implies, in conjunction with (4.7) and (4.8) that∣∣∣∣∣
n∑

k=1

Δ(1,2)
n,k

∣∣∣∣∣ ≤ ε

3
for all n ≥ n(1)(ε), (4.10)

provided that d′ and n(1)(ε) are chosen sufficiently large. Finally, we obtain in complete analogy to the compu-
tations above that ∣∣∣∣∣

n∑
k=1

Δ(1,3)
n,k

∣∣∣∣∣ ≤ ε

3
for all n ≥ n(2)(ε), (4.11)

which completes, in conjunction with (4.5) and (4.10), the proof of (4.3).

(ii) Upper bound for |∑n
k=1 Δ(2)

n,k|

Similarly to (4.4), we decompose Δ(2)
n,k as

Δ(2)
n,k = E [Zn,kh′(Sn,k + Tn,k+d)]

+
k+d∑

j=k+1

E
[
Zn,kZn,j

{
h

′′
(Sn,k + μ̄n,k,jZn,j + Tn,j) − Eh

′′
(Sn,k + Tn,k)

}]
+

1
2
E
[
Z2

n,k

{
h

′′
(Sn,k + τ̄n,kZn,k + Tn,k) − Eh

′′
(Sn,k + Tn,k)

}]
= Δ(2,1)

n,k + Δ(2,2)
n,k + Δ(2,3)

n,k ,

say, where μ̄n,k,j and τ̄n,k are appropriate random quantities with values in (0, 1). It follows from (2.3) that

|cov(Zn,j , Zn,k)| = |cov(Xn,j, Xn,k)| ≤ (EX2
n,j + EX2

n,k + n−1
)

θ|j−k|. (4.12)

For our following estimates we make use of Lemma 1 from Liu [19] which states that, for X := (X1, . . . , Xk)′ ∼
N (μ, Σ) and any function h : R

k −→ R such that ∂h/∂xi exists almost everywhere and E| ∂
∂xi

h(X)| < ∞,
i = 1, . . . , k, the following identity holds true:

cov(X, h(X)) = Σ

(
E

[
∂

∂x1
h(X)

]
, . . . , E

[
∂

∂xk
h(X)

])′
. (4.13)

Since Sn,k is by construction independent of Zn,1, . . . , Zn,n we obtain from (4.13) that

Δ(2,1)
n,k = cov (Zn,k, h′(Sn,k + Zn,k+d+1 + . . . + Zn,n))

=
n∑

j=k+d+1

cov(Zn,k, Zn,j) Eh
′′
(Sn,k + Tn,k+d),
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which implies by (4.12) that ∣∣∣∣∣
n∑

k=1

Δ(2,1)
n,k

∣∣∣∣∣ ≤ (2v0 + 1)
∞∑

j=d+1

θj . (4.14)

Similarly to (4.6), we decompose Δ(2,2)
n,k as

Δ(2,2)
n,k =

k+d∑
j=k+1

E
[
Zn,kZn,j

{
h

′′
(Sn,k + μ̄n,k,jZn,j + Tn,j) − h

′′
(Sn,k + Tn,j+d′)

}]

+
k+d∑

j=k+1

E
[
Zn,kZn,j

{
h

′′
(Sn,k + Tn,j+d′) − Eh

′′
(Sn,k + Tn,j+d′)

}]

+
k+d∑

j=k+1

E
[
Zn,kZn,j

{
Eh

′′
(Sn,k + Tn,j+d′) − Eh

′′
(Sn,k + Tn,k)

}]
= Δ(2,2,1)

n,k + Δ(2,2,2)
n,k + Δ(2,2,3)

n,k , (4.15)

say. It follows from (4.9) that
∑n

k=1 E|Zk,n|3 −→n→∞ 0, which implies that∣∣∣∣∣
n∑

k=1

Δ(2,2,1)
n,k

∣∣∣∣∣ −→
n→∞ 0. (4.16)

To estimate Δ(2,2,2)
n,k , we use the following identities:

E
[
Zn,kZn,j

{
h

′′
(Sn,k + Tn,j+d′) − Eh

′′
(Sn,k + Tn,j+d′)

}]
= cov

(
Zn,kZn,j, h

′′
(Sn,k + Tn,j+d′)

)
= cov

(
Zn,k, Zn,jh

′′
(Sn,k + Tn,j+d′)

)
− E[Zn,kZn,j] Eh

′′
(Sn,k + Tn,j+d′)

=
∑

l≥d′+1

cov(Zn,k, Zn,j+l) E[Zn,jh
(3)(Sn,k + Tn,j+d′)].

The latter equation follows again from (4.13). This implies that∣∣∣∣∣
n∑

k=1

Δ(2,2,2)
n,k

∣∣∣∣∣ = O

⎛⎝ d∑
j=1

∞∑
l=d′+1

θj+l

⎞⎠ . (4.17)

Finally,
∑n

k=1 Δ(2,2,3)
n,k = O(

∑n
k=1 E|Zn,k|3) = o(1) is obvious. This yields, in conjunction with (4.16)

and (4.17), that
n∑

k=1

Δ(2,2)
n,k −→

n→∞ 0. (4.18)

The term
∑n

k=1 Δ(2,3)
n,k can be estimated analogously, which gives, together with (4.14) and (4.18), that

n∑
k=1

Δ(2)
n,k −→

n→∞ 0. (4.19)
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(iii) Upper bound for |∑n
k=1 Δ(3)

n,k|

We split up:

n∑
k=1

Δ(3)
n,k =

n∑
k=1

⎛⎝ k−1∑
j=k−d

EXn,kXn,j −
k+d∑

j=k+1

EXn,kXn,j

⎞⎠ Eh
′′
(Sn,k + Tn,k)

+
n∑

k=1

⎛⎝k−d−1∑
j=1

EXn,kXn,j −
n∑

j=k+d+1

EXn,kXn,j

⎞⎠ Eh
′′
(Sn,k + Tn,k)

=
n∑

k=1

d∑
j=1

E
[
Xn,kXn,k−j

{
Eh

′′
(Sn,k + Tn,k) − Eh

′′
(Sn,k−j + Tn,k−j)

}]

+ O

( ∞∑
r=d+1

θr

)
. (4.20)

Since ‖h(3)‖∞ ≤ 1 we obtain from (4.9) that

max
1≤k≤n, 1≤j≤d

∣∣∣Eh
′′
(Sn,k + Tn,k) − Eh

′′
(Sn,k−j + Tn,k−j)

∣∣∣ −→
n→∞ 0.

Therefore, the first term on the right-hand side of (4.20) converges to 0 as n → ∞. The second one can be
made arbitrarily small if d is chosen large enough. This completes the proof of the theorem. �
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