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MULTIFRACTIONAL BROWNIAN FIELDS INDEXED BY METRIC SPACES
WITH DISTANCES OF NEGATIVE TYPE

Jacques Istas1

Abstract. We define multifractional Brownian fields indexed by a metric space, such as a manifold
with its geodesic distance, when the distance is of negative type. This construction applies when the
Brownian field indexed by the metric space exists, in particular for spheres, hyperbolic spaces and real
trees.
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1. Introduction

The concept of self-similarity is often used to give a mathematical meaning to the heuristic concept of
roughness. In this domain the fractional Brownian motion [6, 13] of index H is certainly the most famous
model. The roughness index H is constant and this is too restrictive for some applications. The multifractional
Brownian motions associated with a function H(.) [2, 3, 14] have therefore been defined for a while. The same
has been done in higher dimensions for the multifractional fields indexed by Euclidean spaces [7]. Some data
(texture, natural scene, geostatistical data, cosmic microwave background, . . .) are indexed not by an Euclidean
space but by a manifold. [10,11] has therefore defined fractional Brownian fields indexed by a metric space, such
as a manifold equipped with its geodesic distance. It is then natural to define multifractional Brownian fields
indexed by a metric space and this is the purpose of this paper.

2. Multifractional Brownian fields indexed by Euclidean spaces

2.1. Euclidean spaces R
n

Classically [2,3,7,14] the multifractional Brownian field Bn, indexed by R
n and associated with a multifrac-

tional function H : R
n �→ (0, 1) is defined, up to a constant, as the centered Gaussian field with covariance

Rn(X, X ′) =
∫

Rn

(
1 − ei〈X,Y 〉) (

1 − e−i〈X′,Y 〉
)

‖Y ‖n+H(X)+H(X′) dY,

where 〈X, Y 〉 stands for the Euclidean scalar product on R
n, and ‖X‖2 = 〈X, X〉.
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Proposition 2.1. Function R can be written as:

Rn(X, X ′) =
Cn(H(X) + H(X ′))

2

(
‖X‖H(X)+H(X′) + ‖X ′‖H(X)+H(X′)

−‖X − X ′‖H(X)+H(X′)
)

,

Cn(α) =
2π(n+1)/2Γ ((α + 1)/2)

α sin(απ/2)Γ (α)Γ ((n + α)/2)
,

where Γ is the Gamma function.

Proof. Let α ∈ (0, 2). Set

In(X) =
∫

Rn

∣∣1 − ei〈X,Y 〉∣∣2
‖Y ‖n+α

dY.

The change of variable Z = ‖X‖ Y leads to

In(X) = ‖X‖α

∫
Rn

∣∣1 − ei〈X/‖X‖,Z〉∣∣2
‖Z‖n+α

dZ.

Let ρ be a rotation such that X/‖X‖ = ρ((1, 0, . . . , 0)). The change of variable Z = ρ(Z̃) leads to

In(X) = ‖X‖α

∫
Rn

∣∣∣1 − ei〈(1,0,...,0),Z̃〉∣∣∣2∥∥∥Z̃
∥∥∥n+α dZ̃.

The integral Cn[α) =
∫

Rn

|1 − ei〈(1,0,...,0),Z̃〉|2
‖Z̃‖n+α

dZ̃ does not depend of X .

The constant Cn(α) has been already computed in [8](Appendix B)

Cn(α) =
2π(n+1)/2Γ ((α + 1)/2)

α sin(απ/2)Γ (α)Γ ((n + α)/2)
·

We have proved that

In(X) = Cn(α)‖X‖α.

For any θ, θ′, one has
∣∣1 − eiθ

∣∣2 +
∣∣∣1 − e−iθ′∣∣∣2 −

∣∣∣1 − ei(θ′−θ)
∣∣∣2 =

(
1 − eiθ

) (
1 − e−iθ′)

+
(
1 − e−iθ

) (
1 − eiθ′)

.

Taking α = H(X) + H(X ′), one gets

Rn(X, X ′) =
Cn(H(X) + H(X ′))

2

(
‖X‖H(X)+H(X′) + ‖X ′‖H(X)+H(X′) − ‖X − X ′‖H(X)+H(X′)

)
. �

2.2. �2-space

Let us define, for 0 < α < 2

F (α) =
2Γ ((α + 1)/2)

α sin((απ)/2)Γ (α)
· (2.1)

Set, for 0 < α < 2

vn(α) = π−n/4e−n/42n/4+α/2+1/4nn/4+α/2−1/4.

Let H be a function from �2 into (0, 1).
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Proposition 2.2.

• The function

R(X, X ′) =
F (H(X) + H(X ′))

2

(
‖X‖H(X)+H(X′) + ‖X ′‖H(X)+H(X′) − ‖X − X ′‖H(X)+H(X′)

)

is the covariance function of a centered Gaussian field B indexed by �2,
• the restriction of this Gaussian field B to R

n is not the Gaussian field Bn of Proposition 2.1;
• let p ≤ n. The field vn(H(X))Bn(X), X ∈ R

p converges in distribution, as n → +∞, in the sense of finite
dimensional margins, to the field B(X), X ∈ R

p.

Proof. Let us prove that R is non-negative definite. Using the Stirling formula

Γ (z) =

√
2π

z

(z

e

)z

(1 + o(1)) as z → +∞,

little algebra leads to

lim
n→+∞ vn(H(X))vn(H(X ′))Rn(X, X ′) = R (X, X ′) . (2.2)

Let p ≤ n. Using Proposition 2.1, Rn(X, X ′), X, X ′ ∈ R
p is the covariance function of a Gaussian field

B(X), X ∈ R
p. Therefore, vn(H(X))vn(H(X ′))Rn(X, X ′) is the covariance function of the field vn(H(X))B(X).

By (2.2), R(X, X ′), X, X ′ ∈ R
p is non-negative definite for any p. Since (X, X ′) �→ R(X, X ′), X, X ′ ∈ �2 is a

continuous function, (X, X ′) �→ R(X, X ′), X, X ′ ∈ �2 is therefore non-negative definite. �

Since the ratio Cn(α)/F (α) clearly depends on n, the restriction to R
n of the Gaussian field of Proposition 2.2

is not the Gaussian field of Proposition 2.1.

3. Multifractional Brownian fields indexed by metric spaces with distances
of negative type

Let (E, d) be a metric space. Let us assume from now on that distance d is of negative type (e.g. [1]), i.e.

∀n ≥ 2, ∀M1, . . . , Mn ∈ E, ∀λ1, . . . , λn ∈ R such that
n∑
1

λi = 0

n∑
i,j=1

λiλjd(Mi, Mj) ≤ 0.

Let us recall that d being of negative type is equivalent to the existence of Lévy-Brownian field indexed by
E [9]. The Euclidean norms [4], geodesic distances on the spheres [9], the hyperbolic spaces [5] and the real
trees [15] are examples of distances of negative type. Another consequence of d being of negative type (see [1])
is the existence of a Hilbert space H and a continuous mapping F̃ from E into H such that

d(M, N) =
∥∥∥F̃ (M) − F̃ (N)

∥∥∥2

H
∀M, N ∈ E,

and span{F̃ (M) − F̃ (M0), M ∈ E} is dense in H for all M0 ∈ E. Assume from now on that H is separable.
Fractional Brownian field indexed by the metric space E has been defined [10] as the centered Gaussian field

with covariance function

R(M, N) =
1
2

(
d2H(O, M) + d2H(O, N) − d2H(M, N)

)
,
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where O is a given point of E. Since the distance d is of negative type, fractional Brownian field exists at least
for 0 < H ≤ 1/2. It may not exist for H > 1/2: so is the case for spheres and hyperbolic spaces. The aim of
the next theorem is to construct a multifractional Brownian field indexed by E. Function F is still defined, for
0 < α < 2, by

F (α) =
2Γ ((α + 1)/2)

α sin((απ)/2)Γ (α)
· (3.1)

Let H be a function from E into (0, 1/2), and O be a given point of E.

Theorem 3.1.
• The function

R(M, N) =
F (2(H(M) + H(N)))

2

(
dH(M)+H(N)(O, M) + dH(M)+H(N)(O, N) − dH(M)+H(N)(M, N)

)

is the covariance function of a centered Gaussian field X(M), M ∈ E;
• assume moreover that function H is Lipschitz at point M , i.e. there exists k > 0 such that, for all N in a

neighborhood of M

|H(M) − H(N)| ≤ kd(M, N).

Let M be an accumulation point of E and let Mn → M . Then
X(Mn) − X(M)
dH(M)(Mn, M)

converges in distribution,

as n → +∞, to a centered Gaussian variable with variance F (4H(M)).

Remark 3.2. Since (E, d) is a metric space, and not necessarily a manifold, one can not expect a local asymp-
totical self-similarity property, as defined in [12].

Proof. Let (ei)i≥1 be an orthonormal basis of H. For any M ∈ E, F̃ (M) can be expanded on the (ei)i≥1

F̃ (M) =
∑
i≥1

fi(M)ei (3.2)

where f(M) = (f1(M), . . . , fn(M), . . .) ∈ �2. It follows

d(M, N) =
∥∥∥F̃ (M) − F̃ (N)

∥∥∥2

H
= ‖f(M)− f(N)‖2.

This leads to

R(M, N) =
F (2(H(M) + H(N)))

2

(
‖f(M)− f(O)‖2(H(M)+H(N))

+‖f(M)− f(O)‖2(H(M)+H(N)) − ‖f(M) − f(N)‖2(H(M)+H(N))
)

. (3.3)

By (2.1), the covariance R is non-negative definite for any function H . Letting H̃(f(M)) = H(M), we can apply
Proposition 2.1 to (3.3) and (3.3) defines a non-negative definite function.

Let us now prove the second item of the theorem.

E(X(Mn) − X(M))2 = R(Mn, Mn) + R(M, M) − 2R(M, Mn)
T1 + T2 + T3

T1 = (F (4H(Mn)) − F (2H(Mn) + 2H(M)))
× dH(Mn)+H(M)(O, Mn),

T2 = (F (4H(Mn)) − F (2H(Mn) + 2H(M)))
× dH(Mn)+H(M)(O, M),

T3 = F (2H(Mn) + 2H(M))dH(Mn)+H(M)(M, Mn).
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Since H is a continuous function, the sequence dH(Mn)+H(M)(O, Mn) is bounded. Function α → F (α) is C1,
and H is a Lipschitz function. There exists C1 such that

|T1| ≤ C1d(M, Mn).

Similar arguments show that there exists C2 such that

|T2| ≤ C2d(M, Mn).

Then

dH(Mn)−H(M)(Mn, M) = exp
{

H(Mn) − H(M)
d(Mn, M)

d(Mn, M) log d(Mn, M)
}

.

One gets

lim
n→+∞ dH(Mn)−H(M)(Mn, M) = 1,

and

lim
n→+∞ E

(
X(Mn) − X(M)
dH(M)(M, Mn)

)2

= lim
n→+∞

T3

d2H(M)(M, Mn)
= F (4H(M)). �
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