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MIXING CONDITIONS FOR MULTIVARIATE INFINITELY DIVISIBLE
PROCESSES WITH AN APPLICATION TO MIXED MOVING AVERAGES

AND THE supOU STOCHASTIC VOLATILITY MODEL

Florian Fuchs
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and Robert Stelzer
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Abstract. We consider strictly stationary infinitely divisible processes and first extend the mixing
conditions given in Maruyama [Theory Probab. Appl. 15 (1970) 1–22] and Rosiński and Żak [Stoc.
Proc. Appl. 61 (1996) 277–288] from the univariate to the d-dimensional case. Thereafter, we show
that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a
wide range of well-known processes such as superpositions of Ornstein−Uhlenbeck (supOU) processes
or (fractionally integrated) continuous time autoregressive moving average (CARMA) processes are
always mixing. Finally, mixing of the log-returns and the integrated volatility process of a multivariate
supOU type stochastic volatility model, recently introduced in Barndorff−Nielsen and Stelzer [Math.
Finance 23 (2013) 275–296], is established.
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1. Introduction

Lévy-driven continuous-time moving averages, i.e. processes (Xt)t∈R of the form Xt =
∫

R
f(t−s) dLs with f a

deterministic function and L a Lévy process, are frequently used in applications. Particularly popular examples
include, for instance, multivariate CARMA processes (see [7, 17]) or the increments of fractionally integrated
Lévy processes (see [6,16]). By allowing f to depend on an additional parameter and replacing the Lévy process
by a Lévy basis one arrives at so-called mixed moving averages. One example are the supOU processes of [2,4,11].
They are particularly interesting, as they constitute a continuous-time time series model capable of exhibiting
both jumps and long memory. For applications it is of high importance to understand the dependence structure
of these processes. In this paper we consider conditions implying mixing of multivariate infinitely divisible
processes and show that Lévy-driven mixed moving average processes are always mixing when they exist. This
has important implications for the statistical inference on the parameters of such processes. For moment based
estimation methods, like the GMM approach of [13], it implies that the estimators are consistent. This is used
for supOU processes in [27], but also seems to be important for non-causal CARMA processes, since the proof
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of the strong mixing property of causal CARMA processes (see [17], Prop. 3.34) requires Markovianity which
is not given in the general case.

Furthermore, financial data typically call for models allowing for jumps and rather slowly decaying autoco-
variance functions of the squared log-returns, sometimes even for long memory. These properties are both part
of the so-called “stylized facts” of financial data (see, e.g., [9, 12]). One possible model with these features is
the supOU stochastic volatility model of [5], where a latent stochastic volatility (covariance matrix) process is
modelled as a supOU process. We establish that the log-returns over an equidistant time grid, the only quantity
typically observed, are mixing. Thus our results allow e.g. establishing consistency of estimators for this model
as well.

Let (Xt)t∈R be an R
d-valued strictly stationary process defined on the canonical probability space(

(Rd)R,F ,P
)

with F = B
(
(Rd)R

)
. Then (Xt)t∈R is said to be ergodic if 1

T

∫ T
0 P(A∩StB) dt T→∞→ P(A)P(B),

weakly mixing if 1
T

∫ T
0 |P(A ∩ StB) − P(A)P(B)| dt T→∞→ 0 and mixing if

P
(
A ∩ StB) t→∞→ P(A)P(B) (1.1)

where (St)t∈R is the induced group of shift transformations on (Rd)R (i.e. St(xs)s∈R = (xs−t)s∈R for any
(xs)s∈R ∈ (Rd)R and t ∈ R) and A, B ∈ F . It is obvious that mixing implies weakly mixing and weakly mixing
implies ergodic, respectively. However, the inverse implications are not true in general, since in ergodic theory
there are examples of flows (St)t∈R that are weakly mixing, but not mixing and ergodic, but not weakly mixing,
respectively (cf. [10,20]). Usually, the weak mixing property is much closer to mixing than to ergodicity (cf. [24],
Prop. 1). However, Rosiński and Żak [24], Theorem 1, have proven the equivalence of weak mixing and ergodicity
for real-valued stationary infinitely divisible processes.

Recall that a stochastic process is said to be infinitely divisible (i.d.) if all its finite dimensional margins are
i.d. The description of the mixing property for univariate real-valued strictly stationary i.d. processes can be
characterized in terms of their Lévy characteristics. More precisely, in the fundamental paper [18], Maruyama
showed that such a process (Xt)t∈R is mixing if and only if

(M1) the covariance function r(t) of its Gaussian part tends to 0 as t→ ∞,
(M2) lim

t→∞ ν0t(|xy| > δ) = 0 for every δ > 0 and

(M3) lim
t→∞

∫
{0<x2+y2≤1} xy ν0t(dx, dy) = 0

where ν0t is the Lévy measure of the distribution of (X0, Xt). This result has been essentially improved by [15],
where the implication (M2)⇒(M3) has been established. However, condition (M2) is not very easy to verify
even for symmetric stable processes as mentioned in [23]. Therefore, [23], Theorem 1, provides another useful
criterion for mixing of i.d. processes: if ν0, the Lévy measure of L (X0), has no atoms in 2πZ, then (Xt)t∈R is
mixing if and only if lim

t→∞ E[ei(Xt−X0)] =
∣∣E[eiX0 ]

∣∣2.
The outline of this paper is as follows. Below we briefly summarize some notation before we then generalize

Maruyama’s mixing condition and the condition of Rosiński and Żak to the multivariate case in Section 2.
Interestingly, a multivariate i.d. process is mixing if and only if all bivariate marginal processes are mixing. An
alternative formulation of the mixing condition in terms of the codifference for i.d. processes concludes that
part. In the third section we briefly recall the definition of Lévy bases and Lévy-driven mixed moving average
processes, then show that these processes are always mixing and finish with supOU processes as an example.
The last section considers the multivariate supOU type stochastic volatility model, recently introduced in [5],
and mixing of the log-returns and the integrated volatility process over an equally spaced time grid of that
model, is established.

Notation

Given the real numbers R we use the convention R+ := (0,∞). For the minimum of two real numbers a, b ∈ R

we write shortly a ∧ b and for the maximum a ∨ b. The real and imaginary part of a complex number z ∈ C
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is written as Re(z) and Im(z), respectively. The collection of n × d matrices over the field R is denoted by
Mn×d(R). We set Md(R) := Md×d(R) and define Sd(R) as the linear subspace of symmetric matrices. The
positive semidefinite cone is denoted by S

+
d (R), the transpose of A ∈Mn×d(R) is written as A′ and the identity

matrix in Md(R) shall be denoted by Id.
On K ∈ {R,C} the Euclidean norm is denoted by | · | whereas on Kd it will be written as ‖ · ‖. Recall the

fact that two norms on a finite dimensional linear space are always equivalent which is why our results remain
true if we replace the Euclidean norm by any other norm. A scalar product on linear spaces is written as 〈 · , · 〉;
in Rd and Cd, we again take the Euclidean one. If X and Y are normed linear spaces, let B(X,Y ) be the
set of bounded linear operators from X into Y and in particular we equip Mn×d(R) = B(Rd,Rn) with the
corresponding operator norm if not stated otherwise. If X is a topological space, we denote by B(X) the Borel
σ-algebra on X .

For a random variable X defined on some probability space (Ω,F ,P) the image measure X(P) (distribution
ofX) is written as L (X). For two random variablesX and Y the notationX D= Y means equality in distribution.
If we consider a sequence of random variables (Xn)n∈N, we shall denote convergence in distribution (weak
convergence) of the sequence to some random variable X by Xn

w→ X .

2. Mixing of multivariate infinitely divisible processes

We denote the j-th component of an Rd-valued stochastic process (Xt)t∈R by
(
X

(j)
t

)
t∈R

. Generalizing [23],
Theorem 1, we show the following:

Theorem 2.1. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process such that ν0, the Lévy measure of
L (X0), satisfies ν0

({
x = (x1, . . . , xd)′ ∈ Rd : ∃j ∈ {1, . . . , d} , xj ∈ 2πZ

})
= 0. Then (Xt)t∈R is mixing if and

only if

lim
t→∞ E

[
ei
(
X

(j)
t −X(k)

0

)]
= E

[
eiX

(j)
0

]
· E

[
e−iX

(k)
0

]
(2.1)

for any j, k = 1, . . . , d.

Proof. We extend the proof of [23], Theorem 1, to the multivariate set-up.
“⇒”: Let (Xt)t∈R be mixing which implies

E

[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
t→∞→ E

[
ei〈θ1,X0〉

]
· E

[
ei〈θ2,X0〉

]
for any θ1, θ2 ∈ R

d (see e.g. [10,14] or [20]) and in particular, setting (θ1, θ2) = (−ek, ej), j, k = 1, . . . , d, with ej
the j-th unit vector in Rd, (2.1) holds.
“⇐”: Assume that (2.1) holds for every j, k = 1, . . . , d. Note first that then

E

[
ei
(
X

(j)
t +X

(k)
0

)]
t→∞→ E

[
eiX

(j)
0

]
· E
[
eiX

(k)
0

]
(2.2)

holds for every j, k = 1, . . . , d as well (cf. [23], Thm. 1, Step 1).
We now prove that (2.1) and (2.2) imply:

(M1) the covariance matrix function Σ(t) of the Gaussian part of (Xt)t∈R tends to 0 as t→ ∞ and
(M2) lim

t→∞ ν0t(‖x‖ · ‖y‖ > δ) = 0 for every δ > 0

where ν0t is the Lévy measure of L (X0, Xt) on (R2d,B(R2d)). Having established (M1) and (M2), we will
conclude with the upcoming Theorem 2.3 which shows that these two conditions imply mixing.
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As to (M1), since (X0, Xt) has a 2d-dimensional i.d. distribution, its characteristic function can be written,
due to the Lévy−Khintchine formula, for every (θ1, θ2) ∈ Rd × Rd, as

E

[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
= exp

{
i
〈(

θ1
θ2

)
,

(
γ1

γ2

)〉
− 1

2

〈(
θ1
θ2

)
, Σ

(
θ1
θ2

)〉
+
∫

R2d

ei〈θ1,x〉+i〈θ2,y〉 − 1 − (i 〈θ1, x〉 + i 〈θ2, y〉)�[0,1]

(∥∥∥(x′, y′)′∥∥∥) ν0t(d(x, y))
}

(2.3)

where γ1, γ2 ∈ Rd, Σ ∈ S
+
2d(R) and ν0t is the Lévy measure of L (X0, Xt) on (R2d,B(R2d)). Since L (X0) =

L (Xt), we observe that

Σ =
(
Σ(0) Σ(t)
Σ(t)′ Σ(0)

)
(2.4)

with Σ(t) being the covariance matrix function of the Gaussian part of (Xt)t∈R. If we denote the generating
triplet of L (X0) by (γ,Σ(0), ν0), we can use [25], Proposition 11.10, in order to deduce

γ1 = γ −
∫

R2d

x
(
�[0,1] (‖x‖) − �[0,1]

(∥∥∥(x′, y′)′∥∥∥)) ν0t(d(x, y)) and (2.5)

γ2 = γ −
∫

R2d

y
(
�[0,1] (‖y‖) − �[0,1]

(∥∥∥(x′, y′)′∥∥∥)) ν0t(d(x, y)). (2.6)

Putting (2.3)–(2.6) together, the characteristic function of (X0, Xt) at the point (θ1, θ2) ∈ Rd × Rd can be
written as

E

[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
= exp

{
i 〈θ1 + θ2, γ〉 − 1

2
(〈θ1, Σ(0)θ1〉 + 2 〈θ1, Σ(t)θ2〉 + 〈θ2, Σ(0)θ2〉)

+
∫

R2d

ei〈θ1,x〉+i〈θ2,y〉 − 1 − i 〈θ1, x〉�[0,1] (‖x‖) − i 〈θ2, y〉�[0,1] (‖y‖) ν0t (d(x, y))
}
.

(2.7)

By substituting (−ek, ej), (0, ej) and (−ek, 0), j, k = 1, . . . , d, for (θ1, θ2) in (2.7) we get the description
of (2.1) in terms of the covariance matrix function of the Gaussian part and the Lévy measure ν0t, namely

lim
t→∞ E

[
ei
(
X

(j)
t −X(k)

0

)]
·
(

E

[
eiX

(j)
t

]
· E
[
e−iX

(k)
0

])−1

= lim
t→∞ exp

{
σjk(t) +

∫
R2d

(
ei(y(j)−x(k)) − eiy(j) − e−ix(k)

+ 1
)
ν0t(d(x, y))

}
= 1

for arbitrary j, k = 1, . . . , d, where σjk(t) is the (k, j)-th element of Σ(t). Next, taking logarithms on both sides
and using the identity Re

(
ei(y−x) − eiy − e−ix + 1

)
= (cos x− 1)(cos y − 1) + sinx sin y we obtain

lim
t→∞ σjk(t) +

∫
R2d

((
cosx(k) − 1

)(
cos y(j) − 1

)
+ sinx(k) sin y(j)

)
ν0t(d(x, y)) = 0 (2.8)

for any j, k = 1, . . . , d.
Likewise, we get

lim
t→∞−σjk(t) +

∫
R2d

((
cosx(k) − 1

)(
cos y(j) − 1

)
− sinx(k) sin y(j)

)
ν0t(d(x, y)) = 0 (2.9)

for every j, k = 1, . . . , d.
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Adding (2.8) and (2.9) yields, due to the consistency of Lévy measures (see again [25], Prop. 11.10),

lim
t→∞

∫
R2d

(
cosx(k) − 1

)(
cos y(j) − 1

)
ν0t(d(x, y)) = lim

t→∞

∫
R2

(cosx− 1)(cos y − 1) ν(jk)
0t (dx, dy) = 0 (2.10)

for every j, k = 1, . . . , d, where ν(jk)
0t denotes the Lévy measure of L

(
X

(k)
0 , X

(j)
t

)
on (R2,B(R2)).

Now fix j, k ∈ {1, . . . , d} and observe that the family
{
L
(
X

(k)
0 , X

(j)
t

)}
t∈R

is tight. Indeed, letting

Br :=
{
(x, y) ∈ R2 : x2 + y2 ≤ r2

}
, we have by stationarity P

((
X

(k)
0 , X

(j)
t

)
/∈ Br

)
≤ P

(∣∣X(k)
0

∣∣2 > r2

2

)
+

P

(∣∣X(j)
0

∣∣2 > r2

2

)
and hence lim

r→∞ sup
t∈R

P

((
X

(k)
0 , X

(j)
t

)
/∈ Br

)
= 0. Thus, due to Prohorov’s Theorem, the fam-

ily is relatively compact (in the topology of weak convergence). Choose any sequence τn → ∞, τn ∈ R, and
let Fjk be an accumulation point of

{
L
(
X

(k)
0 , X

(j)
τn

)}
n∈N

. Then Fjk is an i.d. distribution on R2 with some
Lévy measure νjk (cf. [25], Lem. 7.8). Now let (tn)n∈N be a subsequence of (τn)n∈N such that

L
(
X

(k)
0 , X

(j)
tn

)
w→ Fjk as n→ ∞. (2.11)

Then, for every δ > 0 with νjk(∂Bδ) = 0,

ν
(jk)
0tn

∣∣∣
Bc

δ

w→ νjk|Bc
δ

as n→ ∞ (2.12)

which is an immediate consequence of [25], Theorem 8.7. Since (cosx− 1)(cos y − 1) ≥ 0, we deduce

0 ≤
∫
Bc

δ

(cosx− 1)(cos y − 1) νjk(dx, dy)
(2.12)
= lim

n→∞

∫
Bc

δ

(cosx− 1)(cos y − 1) ν(jk)
0tn

(dx, dy)

≤ lim
n→∞

∫
R2

(cosx− 1)(cos y − 1) ν(jk)
0tn

(dx, dy)
(2.10)
= 0.

Since δ can be taken arbitrarily small we infer that every Lévy measure νjk is concentrated on
{
(x, y) ∈ R2 :

x ∈ 2πZ or y ∈ 2πZ
}
.

By the stationarity of the process and (2.11), the projection of νjk onto the first and second axis coincides
with ν

(k)
0 and ν

(j)
0 , respectively, on the complement of every neighborhood of zero. Hence, by our assumption

on ν0, we have for every m ∈ Z, m �= 0,

νjk ({2πm} × R) = ν
(k)
0 ({2πm}) = ν0

⎛⎝R × . . .× R︸ ︷︷ ︸
k−1

×{2πm} × R × . . .× R︸ ︷︷ ︸
d−k

⎞⎠
≤ ν0

({
x ∈ R

d : ∃l ∈ {1, . . . , d} , xl ∈ 2πZ
})

= 0

and similarly νjk (R × {2πm}) = 0. This shows that every νjk, j, k = 1, . . . , d, is actually concentrated on the
axes of R

2 and on each of them coincides with ν(k)
0 and ν(j)

0 , respectively.
Now, observe that, for every t ∈ R,∫

Bδ

|xy| ν(jk)
0t (dx, dy) ≤ 1

2

∫
{|x|≤δ}

x2 ν
(k)
0 (dx) +

1
2

∫
{|y|≤δ}

y2 ν
(j)
0 (dy) < ε (2.13)

for any positive ε and any j, k = 1, . . . , d, if only δ is small enough. Then (2.13) yields, for every j, k = 1, . . . , d
and any n,

∫
Bδ

|sinx sin y| ν(jk)
0tn

(dx, dy) ≤ ∫
Bδ

|xy| ν(jk)
0tn

(dx, dy) < ε for sufficiently small δ > 0. Since every νjk
is concentrated on the axes of R2, (2.12) implies limn→∞

∫
Bc

δ
sinx sin y ν(jk)

0tn
(dx, dy) = 0. Thus

lim
n→∞

∫
R2

sinx sin y ν(jk)
0tn

(dx, dy) = 0 (2.14)

for every j, k = 1, . . . , d.
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From (2.8), (2.10) and (2.14) we infer that σjk(tn) → 0 as n→ ∞ for all j, k = 1, . . . , d. Since (tn) is a
subsequence of an arbitrary sequence τn → ∞, it follows that σjk(t) → 0 as t → ∞ and thus Σ(t) → 0 as
t→ ∞, i.e. (M1) holds.

To prove (M2), observe that, for any n ∈ N,

ν0tn

⎛⎜⎜⎝ ‖x‖2 · ‖y‖2︸ ︷︷ ︸
=
∑

d
j,k=1(x(k)y(j))2

> δ2

⎞⎟⎟⎠ ≤
d∑

j,k=1

ν
(jk)
0tn

(∣∣∣x(k)y(j)
∣∣∣ ≥ δ

d

)
·

By virtue of (2.12), we have lim supn→∞ ν
(jk)
0tn

(∣∣x(k)y(j)
∣∣ ≥ δ/d

) ≤ νjk
(∣∣x(k)y(j)

∣∣ ≥ δ/d
)

= 0 for every j, k =
1, . . . , d and thus limn→∞ ν0tn (‖x‖ · ‖y‖ > δ) = 0 for every δ > 0. Again, since (tn) is a subsequence of any
arbitrary sequence τn → ∞, it follows that limt→∞ ν0t (‖x‖ · ‖y‖ > δ) = 0 for any δ > 0, i.e. (M2) is shown.

We can now conclude with the upcoming Theorem 2.3. �

To establish Theorem 2.3 we need the following multivariate generalization of [15], Lemma 1.

Lemma 2.2. Assume that limt→∞ ν0t (‖x‖ · ‖y‖ > δ) = 0 for every δ > 0. Then one has

(M3) lim
t→∞

∫
{0<‖x‖2+‖y‖2≤1} ‖x‖ · ‖y‖ ν0t(d(x, y)) = 0.

Proof. Fix ε > 0 and define for any δ ∈ (0, 1) the sets Bδ :=
{
(x, y) ∈ Rd × Rd : ‖x‖2 + ‖y‖2 ≤ δ2

}
and

Rδ := B1\Bδ. Then, for every δ ∈ (0, 1),∫
{0<‖x‖2+‖y‖2≤1}

‖x‖ · ‖y‖ ν0t(d(x, y)) =
∫
Bδ

‖x‖ · ‖y‖ ν0t(d(x, y)) +
∫
Rδ

‖x‖ · ‖y‖ ν0t(d(x, y))

=: I1 + I2.

Taking advantage of stationarity of (Xt)t∈R, we obtain

|I1| ≤ 1
2

∫
Bδ

‖x‖2 + ‖y‖2
ν0t(d(x, y)) =

∫
{‖x‖≤δ}

‖x‖2
ν0(dx) ≤ ε

2

for every δ sufficiently small.
We fix such a δ and set l := min {δ/2, ε/8q} with q := ν0

({ ‖x‖2
> δ2/2

})
<∞ and C := Rδ∩{‖x‖ · ‖y‖ > l}.

Then

|I2| =
∫
C

‖x‖ · ‖y‖ ν0t(d(x, y)) +
∫
Rδ\C

‖x‖ · ‖y‖ ν0t(d(x, y)) ≤ 1
2
ν0t(C) +

ε

8q
ν0t (Rδ\C)

≤ 1
2
ν0t(C) +

ε

8q

[
ν0t

(
‖x‖2

>
δ2

2

)
+ ν0t

(
‖y‖2

>
δ2

2

)]
≤ 1

2
ν0t (‖x‖ · ‖y‖ > l) +

ε

4
·

Since ν0t (‖x‖ · ‖y‖ > l) ≤ ε/2 if only t is large enough, we obtain∫
{0<‖x‖2+‖y‖2≤1}

‖x‖ · ‖y‖ ν0t(d(x, y)) ≤ ε

for sufficiently large t. Letting ε↘ 0 yields the desired result. �

The next theorem, which is a multivariate generalization of Maruyama’s mixing condition [18], Theorem 6,
shows that conditions (M1) and (M2) together imply mixing and thus concludes the proof of Theorem 2.1.
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Theorem 2.3. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process. Then (Xt)t∈R is mixing if and
only if

(M1) the covariance matrix function Σ(t) of its Gaussian part tends to 0 as t→ ∞ and
(M2) lim

t→∞ ν0t (‖x‖ · ‖y‖ > δ) = 0 for every δ > 0.

Proof. We have already shown in the proof of Theorem 2.1 that mixing implies (M1) and (M2). Conversely,
assume that (M1) and (M2) hold and note that, due to Lemma 2.2, also condition (M3) must hold. We now
generalize the proof of [18], Theorem 6 to a multivariate setting. We shall denote Xτ = (X ′

s1 , . . . , X
′
sm

)′ for
any τ = (s1, . . . , sm)′ ∈ Rm. Then (cf. [18], (5.13)) it is sufficient for (Xt)t∈R to be mixing that for all τ =
(s1, . . . , sm)′, μ = (u1, . . . , um)′ ∈ Rm and z1, z2 ∈ Rmd,

lim
t→∞ E

[
ei〈z1,Xτ 〉+i〈z2,Xμ+t〉

]
= E

[
ei〈z1,Xτ 〉

]
· E
[
ei〈z2,Xμ〉

]
(2.15)

where μ+ t := (u1 + t, . . . , um + t)′.
The family of R2md-valued i.d. random vectors {(Xτ , Xμ+t)}t∈R

is tight since

P
(
(Xτ , Xμ+t) /∈ B√

2mr

) ≤ m∑
j=1

P
(∥∥Xsj

∥∥ > r
)

+ P
(∥∥Xuj+t

∥∥ > r
)

= 2m · P (‖X0‖ > r) → 0

as r → ∞, where Br :=
{
x ∈ R2md : ‖x‖2 ≤ r2

}
. Hence the family is relatively compact with respect to the

weak topology (i.e. the topology generated by weak convergence).
Let (γ1, Σ1, ν1) and (γ2, Σ2, ν2) be the characteristic triplets of L (Xτ ) and L (Xμ), respectively. Con-

sider an arbitrary sequence ηn ∈ R, ηn → ∞ and an accumulation point F of the associated sequence
{L (Xτ , Xμ+ηn)}n∈N

as n→ ∞, i.e. there is a subsequence (tn)n∈N of (ηn)n∈N such that L (Xτ , Xμ+tn) w→ F

as n→ ∞ where the accumulation point F is obviously (see [25], Lem. 7.8) an i.d. distribution on R2md with
some generating triplet (γ,Σ, ν). We denote by (γn, Σn, νn) the characteristic triplet of L (Xτ , Xμ+tn) for any
n ∈ N and by Φn(z1, z2) its characteristic function at the point (z1, z2) ∈ Rmd × Rmd. The logarithm of Φn can
be written (cf. proof of Thm. 2.1) as

log Φn (z1, z2) = i
〈(

z1
z2

)
,

(
γ1

γ2

)〉
− 1

2

〈(
z1
z2

)
, Σn

(
z1
z2

)〉
+
∫
{‖x‖<δ, ‖y‖<δ}

ei〈z1,x〉+i〈z2,y〉 − 1 − i 〈z1, x〉�[0,1] (‖x‖) − i 〈z2, y〉�[0,1] (‖y‖) νn(d(x, y))

+
∫
{‖x‖≥δ or ‖y‖≥δ}

ei〈z1,x〉+i〈z2,y〉 − 1 − i 〈z1, x〉�[0,1] (‖x‖) − i 〈z2, y〉�[0,1] (‖y‖) νn(d(x, y))

=: I1 + I2 + I3 + I4.

We shall prove that logΦn(z1, z2) → logΦ1(z1) + logΦ2(z2) as n→ ∞ for all z1, z2 ∈ Rmd where Φ1 and Φ2 are
the characteristic functions of Xτ and Xμ, respectively.

Obviously I1 = i〈z1, γ1〉 + i〈z2, γ2〉 and due to the assumption (M1) the second term I2 converges to
−1/2〈z1, Σ1z1〉 − 1/2〈z2, Σ2z2〉 as n→ ∞.

As to I4, we have (cf. (2.12))

I4
n→∞→

∫
{‖x‖≥δ or ‖y‖≥δ}

ei〈z1,x〉+i〈z2,y〉 − 1 − i 〈z1, x〉�[0,1] (‖x‖) − i 〈z2, y〉�[0,1] (‖y‖) ν(d(x, y))

=
∫
{‖x‖≥δ}

ei〈z1,x〉 − 1 − i 〈z1, x〉�[0,1] (‖x‖) ν1(dx) +
∫
{‖y‖≥δ}

ei〈z2,y〉 − 1 − i 〈z2, y〉�[0,1] (‖y‖) ν2(dy)
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since, letting x =
(
x(1)′, . . . , x(m)′

)′
∈ (Rd)m and y =

(
y(1)′, . . . , y(m)′

)′
∈ (Rd)m,

ν (‖x‖ · ‖y‖ > δ) ≤ lim inf
n→∞ νn (‖x‖ · ‖y‖ > δ) ≤ lim inf

n→∞

m∑
j,k=1

ν0,uk−sj+tn

(∥∥∥x(j)
∥∥∥ · ∥∥∥y(k)

∥∥∥ > δ

m

)
(M2)
= 0

for any δ > 0 which shows in particular that ν(‖x‖ · ‖y‖ > 0) = 0.
Analogously to x and y we denote the j-th R

d-component of z1 and z2 by z(j)
1 and z

(j)
2 , respectively. Con-

cerning I3, a simple Taylor expansion yields for any δ > 0 small enough

I3 = −1
2

⎡⎢⎣∫
{‖x‖<δ, ‖y‖<δ}

⎛⎝ m∑
j=1

〈
z
(j)
1 , x(j)

〉⎞⎠2

+

⎛⎝ m∑
j=1

〈
z
(j)
2 , y(j)

〉⎞⎠2

νn(d(x, y))

+2
∫
{‖x‖<δ, ‖y‖<δ}

⎛⎝ m∑
j,k=1

〈
z
(j)
1 , x(j)

〉〈
z
(k)
2 , y(k)

〉⎞⎠ νn(d(x, y))

⎤⎥⎦ +R

with

6 |R| ≤
∫
{‖x‖<δ, ‖y‖<δ}

|〈z1, x〉 + 〈z2, y〉|3 + o

((
‖x‖2 + ‖y‖2

)3/2
)
νn(d(x, y))

≤ 2
∥∥∥∥(z1z2

)∥∥∥∥3 · ∫{‖x‖<δ, ‖y‖<δ}
∥∥∥∥(xy

)∥∥∥∥3 νn(d(x, y))

≤ 2
∥∥∥∥(z1z2

)∥∥∥∥3 · √2δ ·
(∫

{0<‖x‖<δ}
‖x‖2

ν1(dx) +
∫
{0<‖y‖<δ}

‖y‖2
ν2(dy)

)
and thus 6 |R| < ε for any positive ε if only δ is sufficiently small. Moreover, we obtain for every j, k = 1, . . . ,m
and any δ ∈ (0, 1

2

√
2)∫

{‖x‖<δ, ‖y‖<δ}

∣∣∣〈z(j)
1 , x(j)

〉〈
z
(k)
2 , y(k)

〉∣∣∣ νn(d(x, y))

≤
∥∥∥z(j)

1

∥∥∥ · ∥∥∥z(k)
2

∥∥∥ · ∫
{‖x‖<δ, ‖y‖<δ}

∥∥∥x(j)
∥∥∥ · ∥∥∥y(k)

∥∥∥ νn(d(x, y))

≤
∥∥∥z(j)

1

∥∥∥ · ∥∥∥z(k)
2

∥∥∥ · ∫{
0<‖x(j)‖2

+‖y(k)‖2≤1
}
∥∥∥x(j)

∥∥∥ · ∥∥∥y(k)
∥∥∥ ν0,uk−sj+tn

(
d
(
x(j), y(k)

))
n→∞→ 0

by virtue of (M3). Finally∣∣∣∣∣12
∫
{‖x‖<δ, ‖y‖<δ}

〈z1, x〉2 νn(d(x, y)) +
∫
{0<‖x‖<δ}

ei〈z1,x〉 − 1 − i 〈z1, x〉�[0,1] (‖x‖) ν1(dx)

∣∣∣∣∣ ≤ J1 + J2

with

J1 =

∣∣∣∣∣12
∫
{0<‖x‖<δ, ‖y‖<δ}

〈z1, x〉2 νn(d(x, y)) − 1
2

∫
{0<‖x‖<δ}

〈z1, x〉2 νn(d(x, y))

∣∣∣∣∣
≤
∫
{0<‖x‖<δ}

〈z1, x〉2 νn(d(x, y)) ≤ ‖z1‖2 ·
∫
{0<‖x‖<δ}

‖x‖2
ν1(dx)
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and

J2 =

∣∣∣∣∣
∫
{0<‖x‖<δ}

1
2
〈z1, x〉2 + ei〈z1,x〉 − 1 − i 〈z1, x〉�[0,1] (‖x‖) ν1(dx)

∣∣∣∣∣
≤ ‖z1‖3

δ ·
∫
{0<‖x‖<δ}

‖x‖2
ν1(dx).

An analogous result is obviously true for the second addend of the first term of I3.
Putting all this together we obtain

lim
n→∞ logΦn (z1, z2) = logΦ1 (z1) + logΦ2 (z2) for all z1, z2 ∈ R

md

and thus the desired result in (2.15) which completes the proof. �

From Theorem 2.1 we can immediately derive the following corollary:

Corollary 2.4. A d-dimensional strictly stationary i.d. process X = (Xt)t∈R with

ν0
({
x = (x1, . . . , xd)

′ ∈ R
d : ∃j ∈ {1, . . . , d} , xj ∈ 2πZ

})
= 0 (2.16)

is mixing if and only if the bivariate processes (X(j), X(k)), j, k ∈ {1, . . . , d}, j < k, are all mixing.

If we use the asymptotic independence of X0 and Xt as a natural interpretation of the mixing property,
Corollary 2.4 means that pairwise asymptotic independence yields asymptotic independence for strictly station-
ary i.d. processes which satisfy the technical assumption (2.16). This is in a way consistent to the well-known fact
that pairwise independence and independence are equivalent for random vectors with i.d. distribution (cf. [25],
Exercises 12.9 and 12.10).

The next corollary can be seen as the multivariate generalization of [23], Corollary 3.

Corollary 2.5. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process. Then, with the previous notation,
(Xt)t∈R is mixing if and only if

lim
t→∞

{
‖Σ(t)‖ +

∫
R2d

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y))
}

= 0. (2.17)

Proof. Obviously (2.17) implies (M1) and (M2) and thus, due to Theorem 2.3, also mixing.
Conversely if (Xt)t∈R is mixing, then (M1) holds (cf. Thm. 2.3). Moreover (cf. (2.12))

ν
(jk)
0t

∣∣∣
Bc

δ

w→ νjk|Bc
δ

as t→ ∞ (2.18)

for every δ > 0 s.t. νjk(∂Bδ) = 0 and any j, k = 1, . . . , d. From the proof of Theorem 2.1 we further know that
the Lévy measures νjk are concentrated on the axes of R2. Now choose δ > 0 s.t. (2.13) and (2.18) hold, then
we have

lim sup
t→∞

∫
R2

(1 ∧ |xy|) ν(jk)
0t (dx, dy) ≤ ε+ lim sup

t→∞

∫
Bc

δ

(1 ∧ |xy|) ν(jk)
0t (dx, dy) = ε.

Letting ε↘ 0 we deduce limt→∞
∫

R2 (1 ∧ |xy|) ν(jk)
0t (dx, dy) = 0 for any j, k = 1, . . . , d. Finally∫

R2d

⎛⎝1 ∧
d∑
k=1

|xk| ·
d∑
j=1

|yj|
⎞⎠ ν0t(d(x, y)) ≤

d∑
j,k=1

∫
R2d

(1 ∧ |xkyj |) ν0t(d(x, y))

=
d∑

j,k=1

∫
R2

(1 ∧ |xy|) ν(jk)
0t (dx, dy) t→∞→ 0.

This clearly implies limt→∞
∫

R2d (1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) = 0 as well and hence (2.17) is shown. �
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Let us conclude this section with an alternative formulation of Theorem 2.1. Therefore recall that the
codifference τ(X1, X2) of an i.d. real bivariate random vector (X1, X2) is defined as follows

τ (X1, X2) := log E

[
ei(X1−X2)

]
− log E

[
eiX1

]− log E
[
e−iX2

]
.

If we now consider a univariate strictly stationary i.d. process (Xt)t∈R, then τ(Xs, Xt) = τ(X0, Xt−s) for any
s, t ∈ R and hence we can define the function

τ(t) := τ (X0, Xt) , t ∈ R,

which is positive semidefinite (see [24], Sect. 2). We call τ autocodifference function of (Xt)t∈R. Analogously
to the univariate case we define the autocodifference function for an Rd-valued strictly stationary i.d. pro-
cess (Xt)t∈R by τ(t) =

(
τ (jk)(t)

)
j,k=1,...,d

with τ (jk)(t) := τ
(
X

(k)
0 , X

(j)
t

)
. Hence we have the following mixing

condition in terms of the autocodifference function:

Corollary 2.6. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process such that ν0, the Lévy measure of
L (X0), satisfies ν0

({
x = (x1, . . . , xd)′ ∈ Rd : ∃j ∈ {1, . . . , d} , xj ∈ 2πZ

})
= 0. Then (Xt)t∈R is mixing if and

only if τ(t) → 0 as t→ ∞.

3. Mixed moving average processes

The central result of this section shows that mixed moving average processes are always mixing.
Let us first recall the definition of Rd-valued Lévy bases, which are generalizations of Lévy processes, and

the related integration theory. For a general introduction to Lévy processes and i.d. distributions see [25]. Lévy
bases are also called infinitely divisible independently scattered random measures (i.d.i.s.r.m.) in the literature.
For more details on Lévy bases see [19,22]. In the following, S denotes a non-empty topological space, B(S) is
the Borel σ-field on S and π is some probability measure on (S,B(S)). The collection of all Borel sets in S×R

with finite π⊗ λ1-measure, where λ1 denotes the one-dimensional Lebesgue measure, is written as B0(S ×R).

Definition 3.1 (Lévy basis). A d-dimensional Lévy basis on S × R is an Rd-valued random measure Λ =
{Λ(B) : B ∈ B0(S × R)} satisfying:

(i) the distribution of Λ(B) is infinitely divisible for all B ∈ B0(S × R),
(ii) for arbitrary n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ B0(S × R) the random variables

Λ(B1), . . . , Λ(Bn) are independent and
(iii) for any pairwise disjoint sets B1, B2, . . . ∈ B0(S × R) with

⋃
n∈N

Bn ∈ B0(S × R) we have, almost surely,
Λ(
⋃
n∈N

Bn) =
∑
n∈N

Λ(Bn).

In this paper we restrict ourselves to time-homogeneous and factorisable Lévy bases, i.e. Lévy bases with
characteristic function

E

[
ei〈z,Λ(B)〉

]
= eψ(z)Π(B) (3.1)

for all z ∈ Rd and B ∈ B0(S ×R), where Π = π⊗λ1 is the product of the probability measure π on S and the
Lebesgue measure λ1 on R and

ψ(z) = i 〈γ, z〉 − 1
2
〈z,Σz〉+

∫
Rd

(
ei〈z,x〉 − 1 − i 〈z, x〉�[0,1] (‖x‖)

)
ν(dx)

is the cumulant transform of an i.d. distribution with characteristic triplet (γ,Σ, ν). By L we denote the
underlying Lévy process associated with (γ,Σ, ν) and given by Lt = Λ

(
S × (0, t]

)
and L−t = −Λ(S × (−t, 0)

)
for t ∈ R+. The quadruple (γ,Σ, ν, π) determines the distribution of the Lévy basis completely and therefore it
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is called the generating quadruple. A definition of Sd(R)-valued Lévy bases on S ×R follows along the same
lines.

Regarding the existence of integrals with respect to a Lévy basis we recall the following multivariate extension
of [22], Theorem 2.7.

Theorem 3.2. Let Λ be an Rd-valued Lévy basis with characteristic function of the form (3.1) and let f :
S × R → Mn×d(R) be a measurable function. Then f is Λ-integrable as a limit in probability in the sense of
Rajput and Rosiński [22], if and only if∫

S

∫
R

∥∥∥f(A, s)γ +
∫

Rd

f(A, s)x
(
�[0,1](‖f(A, s)x‖) − �[0,1](‖x‖)

)
ν(dx)

∥∥∥ds π(dA) <∞,∫
S

∫
R

‖f(A, s)Σf(A, s)′‖ds π(dA) <∞ and∫
S

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx) ds π(dA) <∞.

If f is Λ-integrable, the distribution of
∫
S

∫
R
f(A, s)Λ(dA, ds) is infinitely divisible with characteristic triplet

(γint, Σint, νint) given by

γint =
∫
S

∫
R

(
f(A, s)γ +

∫
Rd

f(A, s)x
(
�[0,1](‖f(A, s)x‖) − �[0,1](‖x‖)

)
ν(dx)

)
ds π(dA),

Σint =
∫
S

∫
R

f(A, s)Σf(A, s)′ ds π(dA) and

νint(B) =
∫
S

∫
R

∫
Rd

�B(f(A, s)x) ν(dx) ds π(dA) for all Borel sets B ⊆ R
n\{0}.

Before we prove that mixed moving average processes are always mixing, let us briefly recall the definition
of these processes.

Definition 3.3 (mixed moving average process). Let Λ be an Rd-valued Lévy basis on S×R and let f : S×R →
Mn×d(R) be a measurable function. If the process

Xt :=
∫
S

∫
R

f(A, t− s)Λ(dA, ds)

exists in the sense of Theorem 3.2 for all t ∈ R, it is called an n-dimensional mixed moving average process
(MMA process for short). The function f is said to be its kernel function.

MMA processes have been first introduced in [26] in the univariate stable case. Note that an MMA process
is an i.d. process and obviously always strictly stationary.

Now Corollary 2.5 immediately yields the following mixing condition for MMA processes.

Lemma 3.4. Let (Xt)t∈R

D=
(∫
S

∫
R
f(A, t− s)Λ(dA, ds)

)
t∈R

be an MMA process where Λ is an Rd-valued Lévy
basis on S×R with generating quadruple (γ,Σ, ν, π) and f : S ×R →Mn×d(R) is measurable. Then (Xt)t∈R is
mixing if and only if

lim
t→∞

{∥∥∥∥∫
S

∫
R

f(A,−s)Σf(A, t− s)′ ds π(dA)
∥∥∥∥

+
∫
S

∫
R

∫
Rd

(1 ∧ ‖f(A,−s)x‖ · ‖f(A, t− s)x‖) ν(dx) ds π(dA)
}

= 0. (3.2)
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Proof. Since we can write (
X0

Xt

)
=
∫
S

∫
R

(
f(A,−s)
f(A, t− s)

)
Λ(dA, ds), t ∈ R,

we immediately obtain the covariance matrix function of the Gaussian part of (Xt)t∈R (cf. Thm. 3.2) by

Σ(t) =
∫
S

∫
R

f(A,−s)Σf(A, t− s)′ ds π(dA), t ∈ R.

The Lévy measure ν0t of L (X0, Xt) is given (see again Thm. 3.2) by

ν0t(B) =
∫
S

∫
R

∫
Rd

�B(f(A,−s)x, f(A, t− s)x) ν(dx) ds π(dA)

for all Borel sets B ⊆ R
2n\{0}. Thus∫

R2n

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) =
∫
S

∫
R

∫
Rd

(1 ∧ ‖f(A,−s)x‖ · ‖f(A, t− s)x‖) ν(dx) ds π(dA)

and Corollary 2.5 completes the proof. �

The following theorem shows that the mixing condition of Lemma 3.4 is indeed always satisfied for MMA
processes. Note that in the univariate moving average and stable mixed moving average case this result is already
known from [8], Section 7, Example 1, and [26], Theorem 3, respectively. The multivariate case is, however,
considerably more involved, because norms are only submultiplicative whereas |f(a,−s)x| = |f(a,−s)| · |x|
could be used for a proof of the general univariate case.

Theorem 3.5. Let (Xt)t∈R

D=
(∫
S

∫
R
f(A, t− s)Λ(dA, ds)

)
t∈R

be an MMA process where Λ is an Rd-valued
Lévy basis on S × R with generating quadruple (γ,Σ, ν, π) and f : S × R → Mn×d(R) is measurable. Then
(Xt)t∈R is mixing.

Proof. By virtue of Lemma 3.4 we have to show that

‖Σ(t)‖ =
∥∥∥∥∫

S

∫
R

f(A,−s)Σf(A, t− s)′ ds π(dA)
∥∥∥∥ t→∞→ 0

and ∫
R2n

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) =
∫
S

∫
R

∫
Rd

(1 ∧ ‖f(A,−s)x‖ · ‖f(A, t− s)x‖) ν(dx) ds π(dA) t→∞→ 0.

We first prove that ‖Σ(t)‖ → 0 as t → ∞. Therefore, note that the existence of the MMA process implies
(cf. Thm. 3.2) ∫

S

∫
R

∥∥∥f(A, t− s)Σ
1
2

∥∥∥2 ds π(dA) <∞

for any t ∈ R, where Σ
1
2 denotes the unique square root of Σ. Thus, for any t, the function gt : S × R →

R, (A, s) �→ ∥∥f(A, t − s)Σ
1
2
∥∥ is an element of L2

(
S × R, B(S × R), π ⊗ λ1; R

)
. Since the measure π ⊗ λ1 is

σ-finite, every such L2-function can be approximated (in the L2-norm) by an elementary function in

E :=
{
f ∈ L2

(
S × R, B(S × R), π ⊗ λ1; R

)
: f =

n∑
i=1

ci�Di×[ai,bi), n ∈ N,

ci ∈ R, Di ∈ B(S), −∞ < ai < bi <∞, i = 1, . . . , n
}
.
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Now fix an arbitrary ε > 0 and choose g̃ ∈ E such that

‖g0 − g̃‖L2 =
(∫

S

∫
R

|g0(A, s) − g̃(A, s)|2 ds π(dA)
) 1

2

< ε.

Then, due to the Cauchy–Schwarz Inequality,

‖Σ(t)‖ =
∥∥∥∥∫

S

∫
R

f(A,−s)Σ 1
2

(
f(A, t− s)Σ

1
2

)′
ds π(dA)

∥∥∥∥ ≤
∫
S

∫
R

g0(A, s) · gt(A, s) ds π(dA)

≤ ε · ‖gt‖L2 + ‖g̃‖L2 ·
(∫

S

∫
R

|gt(A, s) − g̃(A, s− t)|2 ds π(dA)
) 1

2

+
∫
S

∫
R

|g̃(A, s)g̃(A, s− t)| ds π(dA)

≤ ε · ‖g0‖L2 + (ε+ ‖g0‖L2) · ε

for sufficiently large t. This yields ‖Σ(t)‖ → 0 as t→ ∞.
It remains to show that

∫
R2n (1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) → 0 as t → ∞. We fix again an arbitrary ε > 0 and

set Br :=
{
(x, y) ∈ Rn × Rn : ‖x‖2 + ‖y‖2 ≤ r2

}
. Note that in order to establish (2.12) we did not use the

assumption that the process is mixing. Hence there is some R > 1 and some t0 > 0 such that

sup
t≥t0

ν0t
(
R

2n\BR
) ≤ ε.

Thus, for all t ≥ t0, we deduce
∫

R2n (1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) ≤ ∫BR
(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) + ε. Since

min{‖u‖ · ‖v‖ , 1} ≤ R · min{‖u‖ , 1} · min{‖v‖ , 1},

provided that max{‖u‖ , ‖v‖} ≤ R, we obtain∫
BR

(1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) ≤ R ·
∫
BR

(1 ∧ ‖x‖) · (1 ∧ ‖y‖) ν0t(d(x, y))

≤ R ·
∫
S

∫
R

∫
Rd

(1 ∧ ‖f(A,−s)x‖) · (1 ∧ ‖f(A, t− s)x‖) ν(dx) ds π(dA).

Analogously to above, the existence of the MMA process shows that, for any t ∈ R, the function ht : S×R×Rd →
R, ht(A, s, x) := 1∧ ‖f(A, t− s)x‖ is an element of L2

(
S ×R×Rd, B(S ×R×Rd), π⊗λ1 ⊗ ν; R

)
. Since every

Lévy measure is σ-finite, the product measure π ⊗ λ1 ⊗ ν is σ-finite as well and hence we can use the same
approximation argument as above in order to show that∫

S

∫
R

∫
Rd

(1 ∧ ‖f(A,−s)x‖) · (1 ∧ ‖f(A, t− s)x‖) ν(dx) ds π(dA) t→∞→ 0.

Consequently limt→∞
∫

R2n (1 ∧ ‖x‖ · ‖y‖) ν0t(d(x, y)) = 0 and the MMA process (Xt)t∈R is mixing. �

Example 3.6 (supOU processes). Superpositions of Ornstein−Uhlenbeck-type (supOU) processes provide a
class of continuous time processes capable of exhibiting long memory behavior. The theory of univariate supOU
processes as introduced in [2] has been extended to a multivariate setting in [4]. Intuitively supOU processes
are obtained by “adding up” (i.e., integrating) independent OU-type processes with different mean reversion
coefficients.
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Given an Rd-valued Lévy basis Λ on M−
d (R)×R, where M−

d (R) denotes the collection of all real d×d matrices
with eigenvalues having strictly negative real part, and given that the process

Xt :=
∫
M−

d (R)

∫ t

−∞
e(t−s)A Λ(dA, ds)

exists for all t ∈ R, it is said to be a d-dimensional supOU process.
One easily verifies that supOU processes are MMA processes with special kernel function

f(A, s) = esA�[0,∞)(s).

Consequently, (multivariate) supOU processes are always mixing by virtue of Theorem 3.5.

4. The supOU stochastic volatility model

The well-known Ornstein−Uhlenbeck type stochastic volatility (OU type SV) model introduced in [3] has
recently been extended to a multivariate set-up in [21]. Whereas the OU type SV model is capable of reproducing
most of the so-called stylized facts (stochastic volatility exhibiting jumps, volatility clustering, heavy tails, . . . )
which are usually present in observed financial return series, it is not capable of producing long memory in the
volatility or log-returns. Therefore one could use a (multivariate) supOU type SV model (see [5]) where the
volatility or instantaneous covariance matrix is modelled via a positive semidefinite supOU process.

Let us briefly recall the definition of positive semidefinite supOU processes. Suppose we have given an Sd(R)-
valued Lévy basis Λ on M−

d (R) × R with generating quadruple (γ, 0, ν, π) with

γ0 := γ −
∫
{‖x‖≤1}

‖x‖ ν(dx) ∈ S
+
d (R) (4.1)

and ν being a Lévy measure on Sd(R) satisfying

ν
(
Sd(R)\S

+
d (R)

)
= 0,

∫
{‖x‖>1}

log(‖x‖) ν(dx) <∞ and
∫
{‖x‖≤1}

‖x‖ ν(dx) <∞. (4.2)

Moreover, assume there exist measurable functions ρ : M−
d (R) → R+ and κ : M−

d (R) → [1,∞) such that∥∥esA∥∥ ≤ κ(A)e−ρ(A)s ∀s ∈ [0,∞), π − almost surely, and (4.3)

∫
M−

d (R)

κ(A)2

ρ(A)
π(dA) <∞. (4.4)

Then the process (Σt)t∈R given by

Σt :=
∫
M−

d (R)

∫ t

−∞
e(t−s)A Λ(dA, ds) e(t−s)A′

is well defined for all t ∈ R and strictly stationary. Moreover, with ⊗ being the tensor (Kronecker) product of
two matrices and vec the well-known vectorization operator that maps the d × d matrices to Rd

2
by stacking

the columns of a matrix below one another beginning with the left one, we have

vec (Σt) =
∫
M−

d (R)

∫ t

−∞
e(t−s)(A⊗Id+Id⊗A) vec(Λ)(dA, ds) (4.5)

and Σt is positive semidefinite for all t ∈ R (see [4], Thm. 4.1). The process (Σt)t∈R is said to be a positive
semidefinite supOU process.
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We also recall the definition of a supOU type stochastic volatility model (cf. [5], Def. 3.1):

Definition 4.1 (supOU stochastic volatility model). Let W be a d-dimensional standard Brownian motion
and Λ be an Sd(R)-valued Lévy basis on M−

d (R) × R, independent of W , with generating quadruple (γ, 0, ν, π)
satisfying conditions (4.1)–(4.4). Moreover, let L be the underlying Lévy process of Λ and finally β, ψ ∈
B
(
Sd(R),Rd

)
. Assume that X = (Xt)t≥0 is given by

dXt = (μ+ βΣt−) dt+ r (Σt−) dWt + ψ (dLt) , X0 = 0, (4.6)

for some μ ∈ Rd, a continuous function r : S
+
d (R) →Md(R) such that x = r(x)r(x)′ and where

Σt =
∫
M−

d (R)

∫ t

−∞
e(t−s)A Λ(dA, ds) e(t−s)A′ ∀t ∈ [0,∞).

Then we say that X follows a multivariate supOU type stochastic volatility (SV) model with leverage.

When thinking about X as the log-price processes of d financial assets, it is clear that one typically will
observe neither X continuously nor the volatility process Σ, but only X at a discrete set of times. In the
following we assume that we observe X at an equally spaced time grid with given grid size Δ > 0. Then one
is typically interested in the log-returns Y = (Yn)n∈N over the grid intervals as well as the integrated volatility
V = (Vn)n∈N over them (for more background see [21]). They are defined by

Yn := XnΔ −X(n−1)Δ
(4.6)
= μΔ+ β

(∫ nΔ

(n−1)Δ

Σt− dt

)
+
∫ nΔ

(n−1)Δ

r (Σt−) dWt + ψ
(
LnΔ − L(n−1)Δ

)
and

Vn :=
∫ nΔ

(n−1)Δ

Σt− dt, n ∈ N.

Of course, we have to ensure that the stochastic integrals involving Σ as integrand do indeed exist. To this end
we suppose throughout the whole section that the conditions of [4], Theorems 4.3 (ii) and (iii), namely∫

M−
d

(R)

κ(A)2 π(dA) <∞, (4.7)

∫
M−

d (R)

(‖A‖ ∨ 1)κ(A)2

ρ(A)
π(dA) <∞ and

∫
M−

d (R)

‖A‖κ(A)2 π(dA) <∞, (4.8)

are satisfied.
Our central result of this section is the following theorem:

Theorem 4.2. Both processes, the log-returns Y = (Yn)n∈N over the grid intervals as well as the integrated
volatility V = (Vn)n∈N over them are mixing.

Proof. Let (εn)n∈N be an i.i.d. sequence of N(0, Id)-distributed random vectors, independent of Σ and L. Then
using the independence between Λ and W we obtain

(Yn)n∈N

D=
(
μΔ+ βVn + r (Vn) εn + ψ

(
LnΔ − L(n−1)Δ

))
n∈N

. (4.9)

Now observe that the process G = (Gt)t≥0 given by

Gt :=
(

vec (Σt)
vec (Lt+Δ − Lt)

)
(4.5)
=
∫
M−

d (R)

∫
R

(
e(t−s)(A⊗Id+Id⊗A)

�[0,∞)(t− s)
Id2�[−Δ,0)(t− s)

)
vec(Λ)(dA, ds), t ∈ [0,∞),
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is a 2d2-dimensional MMA process with respect to the Rd
2
-valued Lévy basis vec(Λ) = {vec(Λ(B)) : B ∈

B0(M−
d (R) × R)} and hence it is mixing by virtue of Theorem 3.5. Using [1], Theorem 3.2.7, we easily deduce

that the process

(Hn)n∈N
:=
(

(Σs)s∈[(n−1)Δ,nΔ]

(Ls+Δ − Ls)s∈[(n−1)Δ,nΔ]

)
n∈N

is mixing as well. Since (εn)n∈N is mixing and independent of (Hn)n∈N we easily deduce from the definition (1.1)
that

(Rn)n∈N
:=
(
Hn

εn

)
n∈N

is also mixing. Finally, condition (4.7) ensures that the integrated volatility Vn can be seen ω-wise as a Lebesgue
integral (cf. [4], Thm. 4.3 (ii)), i.e. Vn is a measurable transformation of Hn for any n ∈ N and hence mixing.
In the same way the right-hand side of (4.9) is a measurable transformation of Rn and thus the log-returns
(Yn)n∈N are mixing as well. �
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