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CONVOLUTION PROPERTY AND EXPONENTIAL BOUNDS
FOR SYMMETRIC MONOTONE DENSITIES

Claude Lefèvre1 and Sergey Utev2

Abstract. Our first theorem states that the convolution of two symmetric densities which are
k-monotone on (0,∞) is again (symmetric) k-monotone provided 0 < k ≤ 1. We then apply this
result, together with an extremality approach, to derive sharp moment and exponential bounds for
distributions having such shape constrained densities.
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1. Main results

1.1. Symmetric monotone densities

A function f on (0,∞) is completely monotone if (−1)jf (j)(x) ≥ 0 for j = 0, 1, . . . By Bernstein’s theorem,
there exists some nondecreasing function α(y) such that f can be represented as

f(x) =
∫ ∞

0

e−xy dα(y), x > 0.

Functions f that are monotone of finite order k on (0,∞) have been studied by Williamson [22], Lévy [14]
and Gneiting [8]. f is 1-monotone means that it is nonnegative and nonincreasing. For an integer k ≥ 2, f
is k-monotone if (−1)jf (j)(x) is nonegative, nonincreasing and convex for j = 0, 1, . . . , k − 2. An analogous
representation for f still holds, namely

f(x) =
∫ ∞

0

(1 − xy)k−1
+ dα(y), x > 0,

for some nondecreasing function α(y) bounded at 0. The case of a real order k ≥ 1 was also discussed by
Williamson [22]. By extension, f is said to be k-monotone, k ≥ 1, if it can be written under the previous
integral form.
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Now, let us consider for f a density function on (0,∞). A general expression for a k-monotone density when
k is a positive integer was obtained by Lévy [14], Theorem 5; it can also be recovered from Williamson’s results.
Hereafter, we retain this representation as a definition for any positive order k. Specifically, a density f on
(0,∞) is k-monotone, k > 0, if it has the form

f(x) =
∫ ∞

0

k

y

(
1 − x

y

)k−1

+

dG(y), x > 0, (1.1)

for some distribution function G(y). In other words, f is k-monotone when it can be represented as a scale
mixture of beta(1, k) densities (given by k(1 − x)k−1, 0 < x < 1). For k = 1, this definition recovers a well-
known fact that nonincreasing densities are in a bijection with scale mixtures of uniform densities [11]. For
k = 2, this is another standard property that nonincreasing convex distributions are necessarily scale mixtures
of triangular distributions.

Let X be a random variable having a k-monotone density on (0,∞). By (1.1),

X =d (1 − U1/k)Y, (1.2)

where Y is a random variable with distribution function G, and U is a random variable uniform on (0, 1) and
independent of Y . In the theory of unimodality, X is said to have a beta(1, k)-unimodal distribution with mode
at 0 (see e.g. the book by Bertin et al. [4], p. 72, where k is a positive real). In the framework of Pakes and
Navarro [16], X is viewed as a randomly scaled version of Y with a beta(1, k) scaling factor. Recently, the
problem of estimation of a k-monotone density has been investigated when k is a positive integer; see e.g.
Balabdaoui and Wellner [1].

1.2. Convolution of symmetric monotone densities: an extension to Wintner’s theorem

The preservation of various properties under summation plays an important role in probability and statistics
(see e.g. [10, 20]). So, a natural question is whether the k-monotonicity is preserved under convolution.

This topic has been studied for usual unimodal distributions. In general, the convolution of two unimodal
distributions is not unimodal. It is easy to see, however, that the convolution of two symmetric uniform dis-
tributions is (symmetric) unimodal. A classical theorem by Wintner [23] states that the convolution of two
symmetric unimodal distributions is again (symmetric) unimodal (see also [5], p. 13).

For k-monotone densities f , it follows directly from the representation (1.1) that there exists some positive
δ such that f(x) ≥ δ for 0 < x ≤ δ. This implies, for instance, that the convolution of two exponential densities
(which are ∞-monotone) is not k-monotone for any k > 0. Now, consider the set of symmetric k-monotone
densities, i.e. densities symmetric on IR that are k-monotone on (0,∞). The example below illustrates that such
densities may not be preserved by convolution.

Example. Let X1 and X2 be two independent random variables with a Laplace distribution of density
(1/2) exp(−|x|), x ∈ IR (which is symmetric ∞-monotone). Putting SX1+X2(t) = P (X1 + X2 > t), t > 0,
one gets

SX1+X2(t) = e−t/2 + te−t/4,

hence S′′
X1+X2

(t) = te−t/4 > 0 and S
(3)
X1+X2

(t) = (1 − t)e−t/4 is not constant in sign. This means that the
convolution is monotone of order 1 (as stated by Wintner’s theorem) but not 2.

Nevertheless, our first theorem in the present paper provides a positive result on the convolution of
symmetric monotone densities. This result can be viewed as a generalization of Wintner’s theorem for uni-
modal distributions.

Theorem 1.1. The convolution of two densities that are symmetric k-monotone with 0 < k ≤ 1 is again
(symmetric) k-monotone.
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The proof is given in Section 2.1. It will consist in a careful analysis through a fractional integral operator,
with the (evident) preservation of symmetric monotonicity under mixture.

1.3. Exponential bounds for symmetric monotone densities

Let {X1, . . . , Xn} be a sequence of i.i.d. random variables having symmetric densities that are k-monotone
on (0,∞) with 0 < k ≤ 1. By (1.2), the Xi’s are distributed as a random variable

X =d B(1 − U1/k)Y, (1.3)

where B is a symmetric random variable on {−1, 1}, independent of U and Y . Our purpose is to obtain an
upper bound for large deviations of the weighted sums

n∑
i=1

aiXi, when a1, . . . , an ≥ 0 and
n∑

i=1

a2
i = 1.

This problem is partly motivated by a work of Barthe and Koldobsky [2] who derived inequalities of this type
under concavity properties of the Laplace transform of a probability measure. The approach here is different
and relies on sharp moment inequalities.

Theorem 1.2. Assume that E(Y 2r) <∞, r = 1, 2, . . ., and the sequence

(1 + 2k + 2r)E(Y 2r)/E(Y 2r+2), r = 0, 1, . . . , (1.4)

is nondecreasing in r. When k ≤ 1, then for any m = 1, 2, . . .,

E

(
n∑

i=1

aiXi

)2m

≤ E

(
n−1/2

n∑
i=1

Xi

)2m

≤ σ2mE(η2m), (1.5)

where σ2 ≡ Var(X) and η is a standard normal random variable. Furthermore, for x ≥ σ,

P

(
n∑

i=1

aiXi > x

)
≤ ck exp

(−x2/2σ2
)
, (1.6)

where
ck =

√
e kk(k + 1)/(k + 2)k+1.

The proof is given in Section 2.2. We will derive the optimal moment inequalities (1.5) by following an
approach developed in Eaton [6] (see e.g. Figiel et al. [7] for an overview on sharp moment inequalities). For the
exponential bound (1.6), we will first apply an optimal Markov type inequality which relies on the convolution
property of Theorem 1.1. As pointed out in Rio [19], using moment bounds rather than exponential ones (as in
the Chernoff bound) gives an increasing flexibility. Then, to obtain the constant ck, we will adopt an approach of
Hoeffding [9] by identifying the extremal points in the convex set of densities under concern. The latter method
is powerful for various problems, e.g. extremal moment inequalities [21] and optimal constants [17], Stein-Chen
techniques [13] and actuarial risk theory [12].

2. Proofs

2.1. Proof of Theorem 1.1

When k = 1, this is Wintner’s theorem, so assume k < 1. Let X1 and X2 be any two independent random
variables that have symmetric k-monotone densities. By (1.2),

X1 =d (1 − U
1/k
1 )Y1, and X2 =d (1 − U

1/k
2 )Y2, (2.1)
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where Y1, Y2, U1, U2 are independent, U1, U2 are (0, 1) uniforms and Y1, Y2 have symmetric distributions on IR.
The proof of the theorem is subdivided in two parts: first we will reformulate the problem in a simpler way,
then we will use a fractional integral operator.

Reformulation of the problem. As a preliminary, we observe that it suffices to consider Y1 as a binary
symmetric variable on {−1, 1} and Y2 as a binary symmetric variable on {−b, b} with 0 < b < 1. Indeed, a
simple operation of mixing and scale change then allows us to cover the general case. Moreover, b may be taken
<1 as the limit of uniformly bounded symmetric k-monotone distributions is still k-monotone. Evidently, it is
equivalent to show that |X1 +X2| has a k-monotone density.

By summation and definition of X2, for t > 0,

S|X1+X2|(t) = 2P (X1 +X2 > t) =
k

b

∫ b

−b

P (X1 > t− u)
(

1 − |u|
b

)k−1

du

=
k

b

∫ b

0

[P (X1 > t− u) + P (X1 > t+ u)]
(
1 − u

b

)k−1

du,

where 0 < b < 1. Thus, again by mixing, it suffices to prove that for any u ∈ (0, b), the function

Q(t) = P (X1 > t− u) + P (X1 > t+ u), t ≥ 0,

is k + 1-monotone (in the usual sense).
Let us derive another representation for Q. By definition of X1, if t ≥ u,

Q(t) = (1/2)[1 − (t− u)]k+ + (1/2)[1 − (t+ u)]k+,

while if 0 < t < u, as P (X1 > t− u) = 1 − P (X1 > u− t),

Q(t) = 1 − (1/2)[1 − (u − t)]k+ + (1/2)[1 − (t+ u)]k+.

Both cases can be combined to give

Q(t) = (1/2)
{
[1 − (t− u)]k+ + [1 − (t+ u)]k+

}
+ I(0≤t<u)

{
1 − (1/2)[1 − (u− t)]k+ − (1/2)[1 + (u− t)]k+

}
.

Note that for 0 ≤ t < u with u ≤ b < 1, necessarily 0 < u − t < 1, so that the two indices + in the second
term {. . .} of the right-hand side are superfluous. Finally, we introduce a binary symmetric variable B on
{−1, 1}, so that Q(t) is rewritten as

Q(t) = E(1 − t+ uB)k
+ + I(0≤t<u)

{
1 − E[1 + (u− t)B]k

}
= Q1(t) +Q2(t) say, t ≥ 0. (2.2)

Now, one can express Q1 under the form

Q1(t) = α

∫ ∞

0

(1 − t

x
)k
+ dμ1(x), t ≥ 0,

where μ1 is a binary probability measure on {1 − u, 1 + u} having point masses (1 − u)k/2α and (1 + u)k/2α
respectively, with α ≡ E(1 + uB)k. Thus, Q1/α is a k + 1-monotone function. Furthermore, we are going to
derive for Q2 the following representation:

Q2(t) =
∫ ∞

0

(x − t)k
+ ν2(x)dx, t ≥ 0, (2.3)

where ν2 is a continuous nonnegative function on its support (0, u). Thus, up to a positive constant, Q2 too is
a k + 1-monotone function. So, it remains to prove (2.3).
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Analysis through a fractional integral operator. For that, we will use the concept of right-sided Riemann-
Liouville integral of order k > 0 (see e.g. Podlubny [18]). This integral of a suitable function f on (0,∞) is
defined by

Ikf(t) =
1

Γ (k)

∫ ∞

0

(x− t)k−1
+ f(x)dx, t > 0. (2.4)

The left-sided version of this integral was used by Williamson [22] to characterize monotonicity of real order
k ≥ 1. A key property is that the family of operators satisfies the semi-group property:

Ik[I lf(t)] = Ik+lf(t), k, l > 0. (2.5)

Let us go back to (2.3), and define

J(t) =
∫ ∞

0

(x− t)−k
+ Q2(x)dx, t ≥ 0. (2.6)

Notice that Q2(t) = Γ (k + 1) Ik+1ν2(t), so that by (2.5) (as 0 < k < 1),

I1−kQ2(t) = Γ (k + 1) I1−kI1+kν2(t) = Γ (1 + k)I2ν2(t).

Thus, (2.6) can be rewritten as

J(t) = Γ (1 − k)I1−kQ2(t) = Γ (1 − k)Γ (1 + k)I2ν2(t)

= Γ (1 − k)Γ (1 + k)
∫ ∞

0

(x− t)+ ν2(x)dx, t ≥ 0. (2.7)

By definition, Q2(t) = 0 for t ≥ u (see (2.2)), hence the integrals in (2.6), (2.7) are restricted to the interval
[0, u]. In particular, J(t) = 0 for t ≥ u.

Now, we are going to prove that this function J is continuously differentiable, nonnegative, nonincreasing
and convex on (0,∞). Therefore, J admits the representation

J(t) =
∫ ∞

0

(x− t)+ J ′′(x)dx, t ≥ 0,

which corresponds to the right-hand side of (2.7) with ν2(x) = J ′′(x)/Γ (1 − k)Γ (1 + k).
We may focus on the case t ∈ (0, u). By changing the variable x to z = (u− x)/(u − t),

J(t) =
∫ u

t

(x− t)−k
{
1 − E[1 + (u − x)B]k

}
dx

= (u − t)1−k

∫ 1

0

(1 − z)−k
{
1 − E[1 + (u− t)zB]k

}
dz

= (u − t)1−kΛ(t) say. (2.8)

Note that J is continuous on (0, u) and limt↑u J(t) = 0. Thus, J is continuous on (0,∞).
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Put w ≡ (u − t)z for t ∈ (0, u), so that w ∈ (0, 1). The function R(y) = (1 + y)k being concave on |y| < 1,
Jensen’s inequality implies

E[1 + (u− t)zB]k = ER(wB) ≤ R[wE(B)] = 1,

which shows that Λ, and thus J , is nonnegative.
Consider J ′ on (0, u). From (2.8), we get

Λ′(t) = k

∫ 1

0

z(1 − z)−k E
{
B[1 + (u− t)zB]k−1

}
dz,

and as k − 1 < 0, using again the notation w inside the term E{. . .},

2E
[
B(1 + wB)k−1

]
= (1 + w)k−1 − (1 − w)k−1 < 0,

so that Λ′, and thus J ′, is negative. Moreover, limt↑u J
′(t) = 0. Indeed,

J ′(t) = (u− t)−k

∫ 1

0

(1 − z)−kφ[(u − t)z]dz,

where φ[(u− t)z] = φ(w) is given by

φ(w) = kE
[
wB(1 + wB)k−1

]
+ (k − 1)

[
1 − E(1 + wB)k

]
.

Note that w ↓ 0 as t ↑ u, uniformly over z ∈ [0, 1]. Applying Taylor’s expansion, we see that

|φ(w)| ≤ cb|w| for |w| ≤ b < 1,

for some positive constant cb. Thus, J ′ is continuous on (0,∞).
Let us examine J ′′ on (0, u). From (2.8),

J ′′(t) = k(1 − k)(u− t)−k−1

∫ 1

0

(1 − z)−kψ[(u− t)z]dz,

where ψ[(u− t)z] = ψ(w) is given by

ψ(w) = − [1 − E(1 + wB)k
]− 2E

[
wB(1 + wB)k−1

]
+ E

[
w2(1 + wB)k−2

]
= −1 +H(w) say.

So, J ′′ is continuous on (0, u). Moreover, H can be rewritten as

H(w) = E
{
(1 + wB)k−2

[
(1 + wB)2 − 2wB(1 + wB) + w2

]}
= E(1 + wB)k−2,

since B2 = 1. As Z(y) ≡ (1 + y)k−2 is convex on |y| < 1, by Jensen’s inequality

H(w) = EZ(wB) ≥ Z[wE(B)] = 1,

which implies that ψ, and thus J ′′, is nonnegative. Thus, J being continuously differentiable nonincreasing on
(0,∞), J is also convex on (0,∞).
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Remark 2.1. Although related to unimodality, multiple monotonicity is a quite different concept. In particular,
one can construct a density f that is k-monotone and has infinitely many modes. Consider the successive
intervals Δi = (4π(i− 1), 4πi], i = 1, 2, . . ., and a function h given by h(0) = 0 and h(x) = (1/2i)g[x − 4π(i −
1)], x ∈ Δi, where

g(t) =

{
θ sin(t), 0 ≤ t ≤ 2π,

sin(t/2), 2π ≤ t ≤ 4π,

for some parameter θ ∈ (0, 1]. Then, define f by stipulating that f ′ = ch(x), x ∈ (0,∞), where c is a normalizing
constant. Clearly, f has local maxima at points 4πi, i ≥ 1. Now, by adapting the method of proof followed above,
one can show that f is a k-monotone density for all k ∈ (0, 1).

2.2. Proof of Theorem 1.2

For the moment inequalities (1.5), we will exploit the assumption of symmetric k-unimodality for 0 < k ≤ 1
together with the condition (1.4). For the exponential bounds (1.6), we will also apply the convolution property
of Theorem 1.1.

Moment inequalities. To begin with, let us recall the notions of majorization and Schur-concavity (see e.g. the
book by Marshall and Olkin [15]). Let (a1, . . . , an) and (b1, . . . , bn) be two real vectors whose terms are ranged
in decreasing order and are of equal sums. The vector (a1, . . . , an) is majorized (denoted 
) by (b1, . . . , bn) if
a1 ≤ b1, a1 +a2 ≤ b1 + b2, . . . , a1 + . . .+an−1 ≤ b1 + . . .+ bn−1, with a1 + . . .+an = b1 + . . .+ bn. A real-valued
function f(x1, . . . , xn) is Schur-concave if (a1, . . . , an) 
 (b1, . . . , bn) implies f(a1, . . . , an) ≥ f(b1, . . . , bn).

Now, consider the function s(a1, . . . , an) = E(
∑n

i=1

√
aiXi)2m, for anym = 1, 2, . . . As the Xi’s are symmetric

random variables with finite moments, it is known that s(a1, . . . , an) is a Schur-concave function if the sequence

ψr ≡ E(X2r)E(η2r+2)/E(X2r+2)E(η2r), r = 0, 1, . . . ,

is nondecreasing in r (Marshall and Olkin [15], pp. 362–363). This condition is well satisfied in the case (1.3)
with 0 < k ≤ 1. Indeed, since E(η2r) = (2r)!/r!2r , and

E(1 − U1/k)s = Γ (s+ 1)Γ (k + 1)/Γ (s+ k + 1), s ≥ 0,

ψr is given here by
ψr = (1 − tr)(1 + 2k + 2r)E(Y 2r)/E(Y 2r+2),

where tr = k(1 − k)/(1 + 2k + 2r)(2r + 2). Thus, by the assumptions (1.4) and 0 < k ≤ 1, ψr is nondecreasing
in r.

The two inequalities in (1.5) follow directly from the Schur-concavity of s(a1, . . . , an). For the former, it
suffices to use the evident majorization (1/n, . . . , 1/n) 
 (a2

1, . . . , a
2
n). For the latter, working with vectors of

larger length n+N for N ≥ 1, we proceed similarly with [1/(n+N), . . . , 1/(n+N)] 
 [1/n, . . . , 1/n, 0, . . . , 0],
and we then take the limit N → ∞ to apply a CLT.

Note that alternatively, a comparison with the Gaussian variable could be made by the extremal approach
in Figiel et al. [7].

Exponential bounds. A key point is that as 0 < k ≤ 1, the random variable Σn
i=1aiXi has also a symmetric

k-monotone density. So, denote by Kk,s the set of distributions with symmetric k-monotone densities and finite
moments of order s > 0. Applying a Markov type argument, we write

P

(∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣ > x

)
≤ A(k, s)

E
∣∣∣Σn

i=1aiXi

∣∣∣s
xs

, x > 0, (2.9)
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where

A(k, s) = sup
FX∈Kk,s

sup
x>0

xsP (|X | ≥ x)
E|X |s

= sup
FX∈Kk,s

g(FX) say. (2.10)

Observe that the functional g is scale-invariant (i.e. g(FaX) = g(FX) for any a) and weakly convex (i.e.
g(p1FX1 + p2FX2 ) ≤ max[g(FX1), g(FX2 )] for any p1, p2 > 0 with p1 + p2 = 1). These properties together with
the representation (1.3) of X imply that

A(k, s) = g(F1−U1/k) = sup
x∈(0,1)

xsP (1 − U1/k ≥ x)
E(1 − U1/k)s

·

Since the function xsP (1 − U1/k ≥ x) has its supremum at point x = s/(s+ k), we then get

A(k, s) =
Γ (s+ k + 1)

Γ (s+ 1)Γ (k + 1)

(
s

s+ k

)s(
k

s+ k

)k

· (2.11)

Let us now take s = 2m in (2.9). We first note that A(k, s) is decreasing in s since, putting δ = k/(s− 1) > 0
and y = 1/(s+ k) < 1,

[A(k, s)/A(k, s− 1)]1/k = (1 − y) exp[(1/δ) log(1 + δy)] ≤ (1 − y) exp(y) ≤ 1.

Hence, we deduce that

P

(
n∑

i=1

aiXi > x

)
≤ A(k, 2)

2
inf

m=1,2,...

E(Σn
i=1aiXi)2m

x2m
, x > 0, (2.12)

where A(k, 2) = 2kk(k + 1)/(k + 2)k+1. In addition, since x2 ≥ σ2 by assumption, the infimum in (2.12) may
be taken over all m = 0, 1, 2, . . .

We are ready to insert in (2.12) the upper moment bound given in (1.5). This yields

P

(
n∑

i=1

aiXi > x

)
≤ A(k, 2)

2
inf

m=0,1,2,...

E(η)2m

(x/σ)2m
·

Moreover, a bound in Rio [19], page 40 (Thm. 2.4) gives

inf
m=0,1,2,...

E(η)2m

(x/σ)2m
≤ √

e exp(−x2/2σ2),

hence the desired exponential bound (1.6).

Remark 2.2. Assumption (1.4) is a form of sub-Gaussian condition convenient to apply the majorization
technique to the present case. Note that (1.4) depends on k; in fact, if it is satisfied for an order k̃ > k, then it is
true for k too. Furthermore, one can check that the bounding constant ck in (1.6) is decreasing in the order k.

By comparison with Barthe and Koldobsky [2], our method based on moment inequalities is applicable to
distributions that do not have a tractable Laplace transform. When the Xi’s are uniformly distributed on
[−1/2, 1/2], i.e. if k = 1 and Y = 1/2 a.s., then the upper bound in (1.6) becomes (2

√
e/9) exp (−6x2); the

factor 2
√
e/9 allows us to improve a basic inequality in Section 5 of their paper (when x ≥ σ = 1/

√
12). For

k = 0 and k = 1, the assumption (1.4) corresponds to the condition given in their Theorem 7, point (ii). When
the Xi’s have a symmetric Bernoulli law, i.e. if k = 0 and Y = 1 a.s., then (1.6) holds with c0 =

√
e/2, which

becomes a Bernstein inequality with the improved constant by Rio [19]. On another hand, it could be interesting
to see whether a similar approach is applicable to the models studied in Barthe et al. [3].
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To close, let us point out that (2.10) combined with (2.11) provides us also with a Markov type inequality
within the set of distributions Kk,s for 0 ≤ k ≤ 1. For instance, if k = 1 and s = 2, A(1, 2) = 4/9 and (2.10)
becomes the Gauss inequality. If k = 0, A(0, s) = 1 and (2.10) gives a classical Markov inequality. For unimodal
distributions, such inequalities can be found e.g. in Dharmadhikari and Joag-dev [5], Section 1.5.

Acknowledgements. We are grateful to two referees and the associate editor for very helpful remarks and suggestions. C.
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[12] C. Lefèvre and S. Loisel, On multiply monotone distributions, discrete or continuous, with applications. Working paper, ISFA,
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