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ADAPTIVE DENSITY ESTIMATION FOR CLUSTERING WITH GAUSSIAN
MIXTURES
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2

Abstract. Gaussian mixture models are widely used to study clustering problems. These model-based
clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures.
In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically
selecting the number of mixture components. In the present paper, a collection of univariate densities
whose logarithm is locally β-Hölder with moment and tail conditions are considered. We show that this
penalized estimator is minimax adaptive to the β regularity of such densities in the Hellinger sense.
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1. Introduction

Clustering methods consists of discovering clusters among observations. Many cluster analysis methods have
been proposed in statistics and learning theory, roughly fall into three categories. The first one is based on
similarity or dissimilarity distances, the best-known are partitioned clustering methods as k-means and the
hierarchical clustering methods (see for instance Sects. 14.3.6 and 14.3.12 in [10]). The second category consists
of density level set clustering methods which consider clusters as the connected components of high density
regions (see [9]). The third category is composed of model-based clustering methods which define clusters as
observations having most likely the same distribution. In this last case, each subpopulation is assumed to be
distributed from a parametric density, like a Gaussian one and thus the unknown data density is a mixture
of these distributions (see for instance [17]). The data clustering is then deduced thanks to the maximum a
posteriori (MAP) rule. The clustering problem being based on the data density estimation, it is then essential
that this density be efficiently estimated.

Because of their wide range flexibility, Gaussian mixture densities are widely used to model the unknown
distribution of continuous data for clustering analysis (see for instance [12, 17]). By recasting the clustering
problem into a model selection problem, we have proposed in [16] a non asymptotic penalized criterion. We
proved that the selected Gaussian mixture estimator fulfills an oracle inequality. The aim of this new paper is
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to investigate the adaptive properties of this estimator in order to justify the validity of our clustering method.
More precisely, adapting a recent approximation result, we show that one version of our estimator is minimax
adaptive to the regularity parameter of a particular class of Hölder spaces defined below. As far as we know,
such a minimax adaptive result has never been shown for a density estimator used for model-based clustering
methods.

The particular unidimensional case we study in this paper is now presented. Let us consider n independent
identically distributed random variablesX1, . . . , Xn with values in R. Their common unknown density s belongs
to the set S of all density functions with respect to the Lebesgue measure on R. The considered unidimensional
Gaussian mixtures are characterized by their number of components m and their means parameters, which are
assumed to be bounded. These mixture densities are grouped into a model collection (Sm)m∈Mn , subsets of S,
defined by

Sm =

{
x ∈ R �→

m∑
u=1

puψσ(x− μu);μu ∈ [−μ̄(m), μ̄(m)], σ = λ(m); pu ∈ [0, 1],
m∑

u=1

pu = 1

}
(1)

where ψ is the Gaussian kernel defined by ψ(x) = π− 1
2 exp(−x2) for all x ∈ R and ψσ(·) = σ−1ψ

( ·
σ

)
for all

σ > 0. Contrary to [16], the Gaussian mixtures in a model Sm have a common known variance λ2(m) (the
case of unequal variances for mixture components is discussed in Rem. 2.10). The number of free parameters,
common to all the mixture densities of a given model Sm is called dimension and is denoted D(m) := 2m− 1.
Considering a non asymptotic point of view (see for instance [13]), the bound μ̄(m) and the variance λ2(m) of
each model Sm and also the maximum number of mixture components in the collection may depend on n. The
model collection is indexed by the set Mn which controls the number of the mixture components. For instance,
Mn could be taken as an interval of integers of the form [2, . . . ,mmax(n)] where mmax is an increasing function
of n. Such mixture families are called sieves according to the terminology introduced by Grenander [7].

Over each model Sm, a maximum likelihood estimator (MLE) ŝm is obtained by minimizing the empirical
contrast

γn(t) = − 1
n

n∑
i=1

ln {t(Xi)} .

The loss function associated to the likelihood contrast is the Kullback–Leibler divergence: For two densities s
and t in S, the Kullback–Leibler divergence is defined by

KL(s, t) =
∫

ln
{
s(x)
t(x)

}
s(x) dx

if sdx is absolutely continuous with respect to tdx and +∞ otherwise. The Hellinger distance between two
densities g and h of S is denoted dH(g, h) = 1√

2

∥∥∥√g −√
h
∥∥∥

2
.

Ideally, we would like to estimate the true density s by ŝm� (called oracle) where m� minimizes over Mn the
Kullback–Leibler risk:

m� ∈ argmin
m∈Mn

Es[KL(s, ŝm)].

Nevertheless m� and also the associated density ŝm� are unknown since they depend on the true density s. Thus
we select m̂ which minimizes over Mn the penalized criterion

crit(m) = γn(ŝm) + pen(m)

where the penalty function pen : m ∈ Mn �→ pen(m) ∈ R+ has to be chosen such that the Kullback–Leibler
risk Es[KL(s, ŝm̂)] of ŝm̂ is close to the oracle risk Es[KL(s, ŝm�)]. The construction of such penalties is proposed
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in Theorem 2.2 in [16]. This result can be stated as follows for our collection of univariate Gaussian mixtures
defined by (1):

Theorem 1.1. There exists four absolute constants κ, C, c1 and c2 such that, if

pen(m) ≥ κ
D(m)
n

{
1 + 2A2 + ln

(
1

1 ∧ D(m)
n A2

)}

where

A = c2 +

√
ln

(
c1μ̄(m)
λ(m)

)
, (2)

then the model m̂ minimizing
crit(m) = γn(ŝm) + pen(m)

over Mn exists and

E
[
d 2

H(s, ŝm̂)
]
≤ C

[
inf

m∈Mn

{KL(s,Sm) + pen(m)} +
1
n

]
· (3)

Note that a similar result can be found in [16] for multivariate data clustering with variable selection. The method
has been successfully implemented and tested in practice in [15]. It consists of determining the estimator ŝm

using an Em algorithm for each model. Then the penalized criterion allows to select ŝm̂. Since this penalized
criterion depends on an unknown constant, this last is calibrated using a slope heuristics method as detailed
in [1].

Minimax adaptive estimation has been intensively studied in nonparametric statistics, see for instance [13,18]
for adaptive minimax methods based on l0 penalization. A natural optimality criterion is the minimax risk, first
introduced by [19]. Let

R(s̃n,Hβ) = sup
s∈Hβ

Es[d2
H(s, s̃n)]

be the maximal Hellinger risk of an estimator s̃n of s. The minimax Hellinger risk on a density class Hβ is then
defined by

Rn(Hβ) = inf
s̃n

R(s̃n,Hβ)

where the infimum is taken over all the possible estimators s̃n of s. An estimator is said to be minimax on Hβ if
its maximal risk over Hβ reaches the minimax risk on this density class. Let us now consider a collection (Hβ)β∈B
of density classes indexed by a set B of regularity parameters β. An estimator is said to be minimax adaptive if
it reaches the minimax risk over Hβ for all β of B, without using the knowledge of β. In order to motivate the
clustering method based on Gaussian mixture estimator ŝm̂ proposed in [16], we prove in this new paper that this
estimator is minimax adaptive over a particular collection of Hölder density classes (Hβ)β∈B defined below. Of
course, adaptive density estimation in one dimension is now a classical problem and several adaptive estimators
have been already proposed such as kernel estimators or thresholding wavelet estimators. Nevertheless, although
these alternative methods maybe perform better than our penalized estimator ŝm̂ concerning density estimation
in general, these are of no interest for clustering purposes.

The link between model selection and adaptive estimation is made through approximation theory. Indeed,
an adaptive estimation is possible only for functional classes Hβ that can be efficiently approximated by our
Gaussian mixture collection. Convolution is widely used in approximation theory and many results are known
on this topic. It is well known that the convolution of a density f with scaled versions ψσ of the Gaussian
kernel ψ converges to f (see for instance [3], Chap. 20). The so-called quasi-interpolation method consists of
replacing the functions ψσ ∗ f by infinite linear combinations of scaled and translated Gaussian kernels (see for
instance [3], Chap. 36). In a recent paper of Hangelbroek and Ron [8], a nonlinear approximation algorithm
based on finite combinations of scaled and translated Gaussian kernels is defined to give some approximation
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results in Lp norm on some particular density classes. Nevertheless, all these results cannot be straightly applied
to study the approximation capacities of Gaussian mixtures. Indeed, the coefficients in these linear combinations
are not necessary positive and their sum is not constrained to be equal to one. Furthermore, the approximation
results provided by all these methods are not given for the Kullback–Leibler divergence as required by our
statistical context.

The approximation capacity of Gaussian mixtures has also been studied in non parametric Bayesian works.
Lemma 3.1 in [5] gives a discretization result for Gaussian mixtures: assume that s is a location or location-scale
mixture with a mixing distribution compactly supported or with sub-Gaussian tails, s can be approximated by
a finite Gaussian mixture with a small number of components, the error being controlled in L1 and L∞ norms.
In [6], these authors take advantage of this method for approximating by finite Gaussian mixtures some twice
continuously differentiable functions with additional regularity conditions. More recently, Kruijer et al. [11]
prove an approximation result for finite Gaussian mixtures for densities whose logarithm is locally Hölder.
Their approximation result is given for the Kullback–Leibler divergence. This last result can be successfully
adapted in our context to control the bias term in the right side term of the oracle inequality (3) on these
particular density classes. Concerning approximation, the contribution of our work consists of checking that the
non explicit constants of the approximation bounds given in [11] are actually uniform over a density class Hβ

which we define below. For easier reading, the proofs of the approximation results we need are not all given in
this paper, they can be found in detail in the preprint version [14] of this work.

The paper is organized as follows: The main results are presented in Section 2. The density classes Hβ are
introduced in Section 2.1 and an approximation result adapted from [11] is given in Section 2.2. Next, a lower
bound for the minimax risk is given in Section 2.3 and the adaptive property of our penalized Gaussian mixture
estimator on the density classes Hβ is addressed in Section 2.4. The approximation result, the lower bound
and the adaptive result are respectively proved in Sections 4, 5 and 6. Some technical results are also given in
Appendices 6 and A.2.

2. Main results

2.1. The density classes H(β, P)

The adaptation result given below requires a slightly modified version of the approximation result by finite
Gaussian mixtures proved in [11]. This approximation result concerns densities whose logarithm is locally
β-Hölder and that fulfills additional tail, moments and monotonicity conditions. More precisely, let β > 0 and
let r = �β� be the largest integer less than β and k ∈ N such that β ∈ (2k, 2k + 2]. Let also P be the set of
parameters {γ, l+, L, ε, C, α, ξ,M} where L is a polynomial function on R and the other parameters are positive
constants. We then define the density class H(β,P) of all densities f satisfying the following conditions:

1. Smoothness. ln f is assumed to be locally β-Hölder: for all x and y such that |y − x| ≤ γ,∣∣∣(ln f)(r)(x) − (ln f)(r)(y)
∣∣∣ ≤ r!L(x)|y − x|β−r. (4)

Furthermore for all j ∈ {0, . . . , r},
|(ln f)(j)(0)| ≤ l+. (5)

2. Moments. The derivative functions (ln f)(j) for j = 1, . . . , r and the polynomial function L fulfill

∫
R

∣∣∣(ln f)(j)(x)
∣∣∣ 2β+ε

j

f(x)dx ≤ C ,

∫
R

|L(x)|2+
ε
β f(x)dx ≤ C. (6)

3. Tail. For all x ∈ R,
f(x) ≤Mψ(x). (7)
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4. Monotonicity. f is strictly positive, f is nondecreasing on (−∞,−α) and nonincreasing on (α,∞), and
f(x) ≥ ξ for all x ∈ [−α, α].

Remark 2.1. The monotonicity assumption can be relaxed by assuming that there exist two constants c > 0
and σ̄ > 0 such that ∀0 < σ < σ̄, ∀x ∈ R,

Kσf(x)
f(x)

≥ c.

This condition corresponds to the first point given in Lemma A.4 in Appendix 6 which is a key point to prove
the approximation result. In the following, the strong monotonicity condition is assumed in the definition of the
density class H(β,P) to simplify the proofs of the lower bound.

Remark 2.2. For easier reading, the monotonicity assumption is stated on a symmetric interval but it could be
possible to consider this assumption on a general interval [α1, α2] with α1 < α2. This monotonicity assumption
allows us to lower bound the convolution f ∗ ψσ by f up to a multiplicative constant according to Remark 3
in [4].

Remark 2.3. These density classes are more restrictive than those considered in [11]: Indeed the upper bounds
in (6) have to be uniform over the density class H(β,P) and we also need the additional Condition (5). These
restrictions allow us to control the Kullback–Leibler divergence between a density of H(β,P) and a convenient
finite Gaussian mixture, uniformly over H(β,P). Note that Condition (7) is here assumed on R but it could be
assumed only outside an interval as in [11].

Remark 2.4. In the sequel, P ′ is said to be ”larger than” P if at least one of the following conditions is fulfilled:

• at least one constant among M , C or l+ of P ′ is larger than the corresponding one of P ,
• the constant γ of P ′ is smaller than the corresponding one of P ,
• for all x ∈ R, L(x) ≤ L′(x) where L (resp. L′) belongs to P (resp. P ′)

2.2. Approximation result

For any function f , Kσf denotes the convolution f ∗ ψσ and Δσf is the error term Kσf − f . As explained
in [11], for a β-smooth density f with β ≤ 2 and under reasonable regularity assumptions, it is possible to
define a finite location-scale Gaussian mixture ℘σ such that KL(f, ℘σ) = O

(
σ2β

)
. The usual approach consists

of discretizing the continuous mixture Kσf . But as ‖f−Kσf‖∞ remains of order σ2 when β > 2, this approach
appears to be inefficient for smoother densities. An alternative strategy is proposed in Kruijer et al. [11], based
on the following successive convolutions of f : f0 = f and for all j ≥ 0, fj+1 = f − Δσfj . In their paper, the
density is approximated by a discretized version of the continuous mixture Kσfk where k ∈ N is such that
β ∈ (2k, 2k + 2].

In our framework, Lemma 4 in [11] cannot be directly used since the upper bound over the Kullback–Leibler
divergence between f and the finite Gaussian mixture is not uniform over H(β,P). Thus, some additional
work is necessary to obtain an uniform version of this approximation result. Another reason for revisiting the
approximation results given in [11] is that these ones are stated for σ ≤ σ̄ where σ̄ depends on the approximated
density f . Thus we also need to check that it is possible to choose the same σ̄ for all the densities of H (β,P).
The proof of Theorem 2.5 consists of carefully following the method proposed in [11] in order to obtain this
uniform version. The main steps of the proof are given in Section 4. A complete and self-contained proof is
detailed in our preprint version [14].

Theorem 2.5. There exists a positive constant σ̄(β) < 1 such that for all f ∈ H(β,P) and for all σ < σ̄(β),
there exists a finite Gaussian mixture of density ℘σ with less than Gβσ

−1| lnσ| 32 support points, with the same
variance σ for each component and with means belonging to [−μσ, μσ] where

μσ ≤ G̃β | lnσ|
1
2
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such that

KL(f, ℘σ) =
∫

R

f(x) ln
(
f(x)
℘σ(x)

)
dx ≤ cβ σ2β (8)

where cβ is uniform on H (β,P) and continuous on β. The constant σ̄(β) only depends on H(β,P) and is a
continuous function of β. Moreover, Gβ and G̃β are two positive constants that only depend on H(β,P), and
are both increasing functions of β.

The two constants Gβ and G̃β are explicitly defined by equations (24) and (25) in the proof of Theorem 2.5 in
Section 4.2.

2.3. Lower bound

In order to show that the MLE penalized estimator ŝm̂ is adaptive to the smoothness parameter β, a lower
bound of the minimax risk Rn(H(β,P)) is required. For all 0 < β < β̄, a “large enough” parameter set P(β, β̄) is
found such that for all β ∈ [β, β̄] , H(β,P(β, β̄)) is well defined and a lower bound is given for the density classes
H

(
β,P(β, β̄)

)
. Note that in Theorem 2.5, the constants cβ, σ̄(β), Gβ and G̃β cannot be bounded uniformly for

all β ∈ R+. Nevertheless, it can be proved that ŝm̂ is minimax adaptive on a range of regularity [β, β̄].
First, the parameter set P(β, β̄) has to be defined rigorously. Its definition is rather technical since it depends

on the way the lower bound is proved. The proof is based on the construction of some oscillating functions,
this standard method is presented for instance in [13] (see Sect. 7.5). Let us take some infinitely differentiable
function ϕ : R → R with compact support included into (1

4 ,
3
4 ) such that

∫
R

ϕ(x)dx = 0 and
∫

R

ϕ(x)2dx = 1.

We set A = max
0≤k≤r+1

‖ϕ(k)‖∞ > 1 and letD be some positive even integer. For any positive integer j ∈ {1, . . . , D},
we consider the function

ϕj : R → R

x �→ ξD−β

A ϕ
(

D
α (x + α

2 ) − (j − 1)
)
.

Moreover, let T (α, ξ) be the space of functions ω : R → R+ such that w is nondecreasing on (−∞,−α
2 ),

nonincreasing on (α
2 ,+∞), ω(x) = 2ξ for all x ∈

[
− 3α

4 ,
3α
4

]
, and ω(−α) = ω(α) = ξ.

Next, let P̃ =
{

α
4 , ln(2ξ), L̃, ε̃, C̃, α, ξ, M̃

}
be a parameter set such that T (α, ξ)

⋂
H(β, P̃) is nonempty.

Based on a function ω ∈ T (α, ξ)
⋂

H(β, P̃) and the functions ϕj , we consider the functional space J (β,D) ={
fθ; θ ∈ {0, 1}D

}
where for all θ ∈ {0, 1}D and for all x ∈ R,

fθ(x) = ω(x)+
D∑

j=1

(2θj − 1)ϕj(x). (9)

Proposition 2.6. There exists a parameter set P(β, β̄) such that for all D ∈ N∗ and for all β ∈ [β, β̄],

J (β,D) ⊂ H
(
β,P(β, β̄)

)
.

Remark 2.7. Note that if such a parameter set exists, Proposition 2.6 is also true for all the parameter sets
larger than it (in the sense given in Rem. 2.4). A key point to prove the lower bound stated in the next theorem
is that the parameter set P(β, β̄) does not depend on D.
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Theorem 2.8. Suppose that one observes independent random variables X1, . . . , Xn with common density s
with respect the Lebesgue measure on R. For any β ∈ [β, β̄] and any parameter set P(β, β̄) given by Proposi-
tion 2.6, there exists a positive constant κβ such that

Rn(H(β,P(β, β̄))) := inf
s̃

sup
s

E[d2
H(s, s̃)] ≥ κβ n− 2β

2β+1

where the supremum (resp. the infimum) is taken over all densities s in H(β,P(β, β̄)) (resp. over all possible
estimators s̃ of s).

Proposition 2.6 and Theorem 2.8 are proved in Section 5.1 and Section 5.2 respectively. After establishing
Proposition 2.6, the Hellinger distance and the Kullback–Leibler divergence between two functions of J (β,D)
are controlled in Lemma 5.3 and Lemma 5.4 respectively. These controls are required to combine a corollary of
a Birgé’s Lemma (see [2]) and the so-called Varshamov–Gilbert’s Lemma. These last two results can be found
in [13] (see Cor. 2.19 and Lem. 4.7), they are also reminded in Appendix A.2.

2.4. Adaptive density estimation

In a non asymptotic model selection approach, the model collection may increase with the sample size n,
leading to an adaptive procedure. As it was already explained, the adaptive properties of ŝm̂ are studied on a
range of regularity [β, β̄]. Preliminary, we fix 0 < β < β̄ and we also choose aβ̄ > 1 large enough such that

Gβ̄

aβ̄

(
ln aβ̄

ln 2
+ 3

)3/2

≤ 1, (10)

where Gβ̄ is defined in Theorem 2.5. The parameters of the Gaussian mixture models (Sm)m∈Mn are now
specified in order to apply the approximation results provided by Theorem 2.5:

Sm =

{
x ∈ R �→

m∑
u=1

puψσ(x− μu);μu ∈ [−μ̄(m), μ̄(m)], σ = λ(m), pu ∈ [0, 1],
m∑

u=1

pu = 1

}

where λ(m) := aβ̄m
−1(lnm)3/2 and μ̄(m) := G̃β̄ | lnλ(m)|1/2 (G̃β̄ is defined in Thm. 2.5) for all m. Since the

sample size is n, it is natural to suppose that the number of mixture components m is less than n and we
also assume that the mixtures have at least two components: Mn = {2, . . . , n}. Note that when the sample
size n increases, mixtures with small component variances and many components m are available in the model
collection. This obviously improves the approximation capacity of the Gaussian mixtures.

Theorem 2.9. Assume that n ≥ 3 and let ŝm̂ be the penalized maximum likelihood estimator minimizing the
penalized criterion defined in Theorem 1.1. Then there exists a constant cβ,β̄ such that for all β ∈ [β, β̄] and for
all s ∈ H(β,P(β, β̄)),

E
[
d 2

H(s, ŝm̂)
]
≤ cβ,β̄ (lnn)

5β
2β+1 n

−2β
2β+1 .

Theorem 2.9 shows that the penalized estimator ŝm̂ is minimax adaptive to the regularity β of the density
classes defined in Section 2.1, up to a power of ln(n). This logarithm term is due to the penalty shape given in
Theorem 1.1. It is not detected in practice as shown in [15] and we suspect that it could be removed from the
penalty shape. Note that the non parametric Bayesian estimator defined in [11] has a similar rate of convergence
with a greater power of the logarithm term.

Remark 2.10. Contrary to [16], the Gaussian mixtures considered in this paper have a common and known
variance λ(m). An analogous result of Theorem 2.9 for Gaussian mixtures with unknown and unequal variances
can be easily stated. More precisely, let us consider

S̃m =

{
x ∈ R �→

m∑
u=1

puψσu(x− μu);μu ∈ [−μ̄(m), μ̄(m)], σu ∈ [λ(m), λ̄], pu ∈ [0, 1],
m∑

u=1

pu = 1

}
.
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Since Sm is included in S̃m, the approximation results for Sm are also valid for S̃m. Starting from the oracle
inequality given in [16] for S̃m (the constant A being modified, see [14]), we then deduce that the penalized
estimator ŝm̂, defined on the models S̃m, is minimax adaptive to the regularity β of the density classes defined
in Section 2.1. Note that this result is actually weaker than Theorem 2.9 since the models S̃m are larger than
the models Sm ; one should obtain adaptation on a much larger class than uniform Hölderness.

3. Conclusion

In this paper, the penalized estimator ŝm̂, defined in [16] for Gaussian mixture models having the same and
known component variance, is shown to be adaptive to the regularity of density classes Hβ whose elements are
univariate densities whose logarithm is locally β-Hölder. To prove this result, the approximation result given
in [11] has been adapted to control the bias term between Gaussian mixture models and the density spaces Hβ .
A lower bound for the minimax risk on the density classes Hβ has also been stated to finally prove that our
estimator reaches the minimax rate.

As noted in Remark 2.10, a similar (but weaker) result can be given for the adaptation of penalized estimators
defined on Gaussian mixture models with unknown and unequal component variances. In this context, the
approximation method of [11] probably does not provide the most general result; one should obtain adaptation
on a much larger class than uniform Hölderness. This question could be tackled in future works.

In [16], a Gaussian mixture estimator, fulfilling an oracle inequality as (3), is proposed in the context of
multivariate data clustering. In a future work, it would be interesting to extend our adaptive result to this
multivariate case. This requires to state an approximation result as Theorem 2.5 on multivariate density classes
which have to be determined, that is obviously a technical task.

4. Proof of the approximation result

In this section, the density space H(β,P) is fixed. To make the proofs and the results easier to read, we use
the notation cβ (resp. σ̄(β)) for denoting constants (resp. upper bound on σ) that only depends on β and P .
We also use the notation cβ,p (resp. σ̄(β, p)) if it also depends on an other parameter p. We also denote as lj(.)
the jth derivative dj

dxj ln f(x) of ln f and we consider a subset Aσ defined by

Aσ :=
{
x ∈ R; |lj(x)| ≤ Bσ−j | lnσ|−j/2, j = 1 . . . r, L(x) ≤ Bσ−β | lnσ|−β/2

}
if β > 1 and Aσ :=

{
x ∈ R; L(x) ≤ Bσ−β | lnσ|−β/2

}
otherwise.

4.1. Approximation by a continuous mixture

The aim of this section consists of controlling uniformly the Kullback–Leibler divergence between a density f
of H(β,P) and a continuous Gaussian mixture. Lemmas 1 and 2, and Theorem 1 in [11] are here adapted in
Lemma 4.1, Lemma 4.2 and Proposition 4.4 respectively. The goal is to obtain approximation bounds with
constants which are uniform over H(β,P). The proofs of Lemma 4.1 and Lemma 4.2 are available in [14],
they are not reported in this paper. On the other hand, an alternative and simpler proof of Proposition 4.4 is
proposed in this section.

Lemma 4.1. Let β > 0 and k ∈ N such that β ∈ (2k, 2k+2]. For all H > 0, there exists σ̄(β,H) > 0 such that
for all σ < σ̄(β,H), for all f ∈ H (β,P) and for all x ∈ Aσ we have

(Kσfk)(x) = f(x)
[
1 +Rf (x)Oβ,H(σβ)

]
+Oβ,H

(
σH

)
with Rf (x) = ar+1L(x) if β ≤ 1, and

Rf (x) = ar+1L(x) +
r∑

j=1

aj |lj(x)|
β
j
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otherwise. In both cases, the aj’s are nonnegative constants that are uniform on H (β,P). Furthermore, σ̄(β,H)
is a continuous function of β and H.

For a density f belonging to H(β,P), Lemma 4.1 shows that the convolutionKσfk is close to f on a subspace of R

where the derivative functions of ln f and L are efficiently controlled. Furthermore, the control on the difference
Kσfk − f is uniform over H(β,P), which is required to upper bound the Kullback–Leibler divergence between
f and Kσfk. Thus Kσfk seems to be a good candidate to approximate the density function f . Nevertheless, the
function fk is not a density function: Its integral over R is equal to 1 (see Lem. A.3) but it can take negative
values. To remedy this problem, Kruijer et al. [11] define a density function hk as follows: Considering the
subspace

Jσ,k =
{
x ∈ R; fk(x) >

1
2
f(x)

}
,

the following positive function is defined

∀x ∈ R, gk(x) = fk(x)�Jσ,k
(x) +

1
2
f(x)�Jc

σ,k
(x)

and it is normalized to obtain a density function

∀x ∈ R, hk(x) =
gk(x)∫
gk(u)du

· (11)

Now, the result of Lemma 4.1 has to be extended for the convolution Kσhk. For this purpose, the integral
of Kt

σf for all nonnegative integers t ≤ k is controlled over Ac
σ and Ec

σ where Aσ is defined by (4) and
Eσ = {x ∈ R; f(x) ≥ σH1} with H1 > 4β.

Lemma 4.2. Let β > 0 and k ∈ N such that β ∈ (2k, 2k + 2]. There exists σ̄(β,H1) > 0 such that for all
σ ≤ σ̄(β,H1), for all f ∈ H(β,P) and for all nonnegative integers t ≤ k,∫

Ac
σ

(
Kt

σf
)
(x)dx = Oβ

(
σ2β

)
(12)

and ∫
Ec

σ

(
Kt

σf
)
(x)dx = Oβ,H1

(
σ2β

)
. (13)

Furthermore, for σ ≤ σ̄(β,H1), Aσ ∩ Eσ ⊂ Jσ,k and∫
R

gk(x) dx = 1 +Oβ,H1

(
σ2β

)
. (14)

Thus, for all H > 0, there exists σ̄(β,H1, H) > 0 such that for all σ ≤ σ̄(β,H1, H) and for all x ∈ Aσ ∩Eσ,

|(Kσhk)(x) − f(x)| = f(x)Rf (x)Oβ,H1,H

(
σβ

)
+Oβ,H1,H

(
σH

)
. (15)

Furthermore, σ̄(β,H1) and σ̄(β,H1, H) are both continuous functions of β, H1 and H for the last one.

Remark 4.3. The left term in (14) does not depend on H1 whereas the right term does. Indeed, the presence
of H1 here is only technical and by choosing for instance H1 = 4β + 1, it gives that there exists a positive
constant σ̄(β), continuous in β such that for all σ ≤ σ̄(β),∫

R

gk(x)dx = 1 +Oβ

(
σ2β

)
. (16)
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Now, a control of the Kullback–Leibler divergence between a density f of H(β,P) and the associated contin-
uous mixture Kσhk is established, uniformly over H(β,P).

Proposition 4.4. Let β > 0 and k ∈ N such that β ∈ (2k, 2k + 2]. There exists a positive constant σ̄(β) such
that for all f ∈ H(β,P) and all σ < σ̄(β),

KL(f,Kσhk) =
∫

R

f(x) ln
(

f(x)
Kσhk(x)

)
dx = Oβ

(
σ2β

)
where hk is defined by (11) and where σ̄(β) can be chosen as a continuous function of β.

Proof. Preliminary, we remark that if p and q are two densities and S is a set, then∫
S

p ln
(
p

q

)
≤

∫
S

p
p− q

q
=

∫
S

(p− q)2

q
+
q(p− q)

q
=

∫
S

(p− q)2

q
+

∫
Sc

(q − p)

since
∫

S
p = 1 −

∫
Sc p,

∫
S
q = 1 −

∫
Sc q and

∫
S
(p− q) =

∫
Sc(q − p). We use this inequality with the densities f

and Kσhk, and the sets Aσ and Eσ, where Eσ is defined with H1 = 4β + 1, to obtain the following control of
KL(f,Kσhk):∫

R

f(x) ln
(

f(x)
Kσhk(x)

)
dx =

∫
Aσ∩Eσ

f(x) ln
(

f(x)
Kσhk(x)

)
dx+

∫
Ac

σ∪Ec
σ

f(x) ln
(

f(x)
Kσhk(x)

)
dx

≤
∫

Aσ∩Eσ

[f(x) −Kσhk(x)]2

Kσhk(x)
dx (17)

+
∫

Ac
σ∪Ec

σ

[Kσhk(x) − f(x)]dx (18)

+
∫

Ac
σ∪Ec

σ

f(x) ln
(

f(x)
Kσhk(x)

)
dx. (19)

• Control of (17): Let H > 0. According to Lemma 4.2 with H1 = 4β+1, there exists σ̄(β,H) > 0 such that for
all x ∈ Aσ ∩Eσ and for all σ < σ̄(β,H), [Kσhk(x) − f(x)]2 ≤

[
Λβ,Hf(x)Rf (x)σβ +Ωβ,Hσ

H
]2

where Λβ,H and
Ωβ,H are two constants. Moreover, according to Lemma A.4, there exists σ̄(β) > 0 such that for all σ < σ̄(β),

Kσhk(x) ≥ D

1 +Aβσ2β
f(x)

with D = ξ
√

π
6M . Thus for all σ < σ̄(β,H) ∧ σ̄(β),

[f(x) −Kσhk(x)]2

Kσhk(x)
≤
Λ2

β,H

D
(1 +Aβσ

2β)σ2βRf (x)2f(x) +
Ω2

β,H

D
(1 +Aβσ

2β)σ2H 1
f(x)

+
2Λβ,HΩβ,H

D
(1 +Aβσ

2β)σβ+HRf (x).

Then, ∫
Aσ∩Eσ

[f(x) −Kσhk(x)]2

Kσhk(x)
dx ≤

Λ2
β,H

D
(1 +Aβσ

2β)σ2β

∫
Aσ∩Eσ

Rf (x)2f(x)dx

+
Ω2

β,H

D
(1 +Aβσ

2β)σ2H−2(4β+1)

∫
Aσ∩Eσ

f(x)dx

+
2Λβ,HΩβ,H

D
(1 +Aβσ

2β)σβ+H−4β−1

∫
Aσ∩Eσ

Rf (x)f(x)dx. (20)

Thus the two integrals
∫

Aσ∩Eσ
Rf (x)2f(x)dx and

∫
Aσ∩Eσ

Rf (x)f(x)dx have to be controlled.
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The first integral can be decomposed into

∫
Aσ∩Eσ

Rf (x)2f(x)dx =
∫

Aσ∩Eσ

⎡
⎣ar+1L(x) +

r∑
j=1

aj |lj(x)|
β
j

⎤
⎦

2

f(x)dx

= a2
r+1

∫
Aσ∩Eσ

L(x)2f(x)dx +
r∑

j=1

a2
j

∫
Aσ∩Eσ

|lj(x)|
2β
j f(x)dx

+2
r∑

j=1

ar+1aj

∫
Aσ∩Eσ

|lj(x)|
β
j L(x)f(x)dx

+
r∑

j,j′=1
j �=j′

aj′aj

∫
Aσ∩Eσ

|lj(x)|
β
j |lj′(x)|

β

j′ f(x)dx.

Using the Hölder inequality and Condition (6), for all j = 1, . . . , r,

∫
Aσ∩Eσ

|lj(x)|
2β
j f(x)dx ≤

[∫
R

|lj(x)|
2β+ε

j f(x)dx
] 2β

2β+ε
[∫

R

f(x)dx
] ε

2β+ε

≤ C
2β

2β+ε (21)

and
∫

Aσ∩Eσ
L(x)2f(x)dx ≤

[∫
R
L(x)2+

ε
β f(x)dx

] 2β
2β+ε [∫

R
f(x)dx

] ε
2β+ε ≤ C

2β
2β+ε . Next, using the Cauchy–

Schwarz inequality and (21), for all j, j′ ∈ {1, . . . , r}, j �= j′,

∫
Aσ∩Eσ

|lj(x)|
β
j |lj′(x)|

β

j′ f(x)dx ≤
[∫

R

|lj(x)|
2β
j f(x)dx

] 1
2
[∫

R

|lj′ (x)|
2β

j′ f(x)dx
] 1

2

≤ C
2β

2β+ε

and for all j ∈ {1, . . . , r},

∫
Aσ∩Eσ

|lj(x)|
β
j L(x)f(x)dx ≤

[∫
R

|lj(x)|
2β
j f(x)dx

] 1
2
[∫

R

L(x)2f(x)dx
] 1

2

≤ C
2β

2β+ε .

Finally,
∫

Aσ∩Eσ
Rf (x)2f(x)dx ≤

(
r+1∑
j=1

aj

)2

C
2β

2β+ε .

For the second integral,

∫
Aσ∩Eσ

Rf (x)f(x)dx =
∫

Aσ∩Eσ

⎡
⎣ar+1L(x) +

r∑
j=1

aj |lj(x)|
β
j

⎤
⎦ f(x)dx

≤ ar+1

√∫
R

L(x)2f(x)dx

√∫
R

f(x)dx+
r∑

j=1

aj

√∫
R

|lj(x)|
2β
j f(x)dx

√∫
R

f(x)dx

≤
r+1∑
j=1

ajC
β

2β+ε .
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Finally, (20) becomes

∫
Aσ∩Eσ

[f(x) −Kσhk(x)]2

Kσhk(x)
dx ≤

Λ2
β,H

D
(1 +Aβσ

2β)σ2β

⎛
⎝r+1∑

j=1

aj

⎞
⎠

2

C
2β

2β+ε

+
Ω2

β,H

D
(1 +Aβσ

2β)σ2H−8β−2

+
2Λβ,HΩβ,H

D
(1 +Aβσ

2β)σH−3β−1

⎛
⎝r+1∑

j=1

aj

⎞
⎠C

β
2β+ε .

By taking H = 5β + 1, it gives that there exists σ̄(β) > 0 such that for all σ < σ̄(β),

∫
Aσ∩Eσ

[f(x) −Kσhk(x)]2

Kσhk(x)
dx = Oβ

(
σ2β

)
.

• Control of (18): According to Lemma A.3,

hk(x) =
(∫

R

gk(x)dx
)−1 {

fk(x)�Jσ,k
(x) +

1
2
f(x)�Jc

σ,k
(x)

}

≤
{

2
k∑

i=0

(−1)i
(
k+1
i+1

)
Ki

σf(x)

}
�Jσ,k

(x) + f(x)�Jc
σ,k

(x)

thus

Kσhk(x) ≤ 2
k+1∑
j=1

(
k+1

j

)
Kj

σf(x) +Kσf(x).

According to (12) and (13) in Lemma 4.2 with H1 = 4β + 1, there exists σ̄(β) > 0 such that for all σ < σ̄(β),

∫
Ac

σ∪Ec
σ

[Kσhk(x) − f(x)]dx ≤
∫

Ac
σ∪Ec

σ

Kσhk(x)dx +
∫

Ac
σ∪Ec

σ

f(x)dx

≤ 2
k+1∑
j=1

(
k+1

j

) ∫
Ac

σ∪Ec
σ

Kj
σf(x)dx +

∫
Ac

σ∪Ec
σ

Kσf(x)dx+
∫

Ac
σ∪Ec

σ

f(x)dx

≤ 2
k+1∑
j=2

(
k+1

j

) ∫
Ac

σ

Kj
σf(x)dx + [2(k + 1) + 1]

∫
Ac

σ

Kσf(x)dx +
∫

Ac
σ

K0
σf(x)dx

+2
k+1∑
j=2

(
k+1

j

) ∫
Ec

σ

Kj
σf(x)dx + [2(k + 1) + 1]

∫
Ec

σ

Kσf(x)dx +
∫

Ec
σ

K0
σf(x)dx

≤ 2

⎡
⎣2

k+1∑
j=2

(
k+1

j

)
+ 2(k + 2)

⎤
⎦ cβσ2β .
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• Control of (19): According to Lemma A.4, for all σ < σ̄(β), Kσhk(x) ≥ D
1+Aβσ2β f(x) then

∫
Ac

σ∪Ec
σ

f(x) ln
(

f(x)
Kσhk(x)

)
dx ≤ ln

(
1 +Aβσ

2β

D

)∫
Ac

σ∪Ec
σ

f(x)dx

≤ ln
(

1 +Aβσ
2β

D

){∫
Ac

σ

K0
σf(x)dx +

∫
Ec

σ

K0
σf(x)dx

}

≤ ln
(

1 +Aβσ
2β

D

)
2cβσ2β .

In conclusion, there exists σ̄(β) > 0 such that for all σ < σ̄(β), KL(f,Kσhk) = Oβ

(
σ2β

)
.

�

4.2. Proof of Theorem 2.5

The proof of Theorem 2.5 consists of using a discretization result (Prop. A.1) to replace the continuous
mixture Kσhk given in Proposition 4.4 by a finite Gaussian mixture ℘σ. To show this result, we do not exactly
follow the lines of the proof of Lemma 4 in [11] and we use an alternative discretization result. It seems that
some little modifications are required to make their proof correct because the argument that fk ≤ 2kf0 (middle
of p. 1252) cannot be checked so easily. Furthermore, as explained before, we need an uniform version of their
result. One last reason is that we need to compute precisely the constants Gβ and G̃β to prove Theorem 2.9.

Proof. For the definition of Eσ, we choose H1 = 4(β+1). Let h̃k be the restriction of hk on an interval [−μσ, μσ],
normalized in order to have a density function:

h̃k : x ∈ R �→
(∫

[−μσ,μσ ]

hk(y)dy

)−1

hk(x)�[−μσ ,μσ ](x)

where μσ depends on σ and will be chosen below such that

μσ ≥ σ. (22)

Let ε ∈ (0, π−1/2). According to Proposition A.1 in Appendix A.1, there exists a discrete distribution F̃ on
[−μσ, μσ] with at most 54μσσ

−1e2 [− ln (
√
πε) ∨ 1] support points such that

‖h̃k ∗ ψσ − F̃ ∗ ψσ‖∞ ≤ 2ε
σ
. (23)

Denoting ℘̃(x)dx =
(∫

[−μσ,μσ ] hk(x)dx
)
F̃ ∗ ψσ(x), it gives for all x ∈ R,

|Kσhk(x) − ℘̃(x)| =

(∫
[−μσ ,μσ]

hk(x)dx

) ∣∣∣∣∣ hk∫
[−μσ,μσ ] hk(y)dy

∗ ψσ(x) − F̃ ∗ ψσ(x)

∣∣∣∣∣
≤

∣∣∣∣∣ hk�[−μσ,μσ ]∫
[−μσ ,μσ]

hk(y)dy
∗ ψσ(x) − F̃ ∗ ψσ(x)

∣∣∣∣∣ +
(
hk�[−μσ,μσ]c

)
∗ ψσ(x).

By applying Lemma A.6 with p = 1
2 , it follows that for all σ ≤ 1 − 2−1/k and for all x ∈ R,

hk(x) ≤ 4M
(

4√
3

)k

ψ
(x

2

)
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and thus
(
hk�[−μσ ,μσ]c

)
∗ ψσ(x) ≤ 4M

(
4√
3

)k

ψ(μσ

2 ). Now, we choose μσ := 2

√
ln

(
4M√

π

(
4√
3

)k
σ
ε

)
in order to

obtain that
∥∥(hk�[−μσ ,μσ]c

)
∗ ψσ

∥∥
∞ ≤ ε

σ . This last inequality together with (23) yields

‖Kσhk − ℘̃‖∞ ≤ 3ε
σ
·

We also define the function t := ℘̃+ σ6β+5ψσ and the finite Gaussian mixture with density

℘(x) :=
t(x)∫

R
t(y)dy

=
℘̃(x) + σ6β+5ψσ(x)∫

[−μσ,μσ ] hk(y)dy + σ6β+5
·

Then we want to upper bound

KL(f, ℘) =
∫

R

f(x) ln
(
f(x)
℘(x)

)
dx

=
∫

R

f(x) ln
(

f(x)
Kσhk(x)

)
dx+

∫
R

f(x) ln
(
Kσhk(x)
t(x)

)
dx+

∫
R

f(x) ln
(
t(x)
℘(x)

)
dx

=
∫

R

f(x) ln
(

f(x)
Kσhk(x)

)
dx

+
∫

Ec
σ

f(x) ln
(
Kσhk(x)
t(x)

)
dx+

∫
Eσ

f(x) ln
(
Kσhk(x)
t(x)

)
dx+

∫
R

f(x) ln
(
t(x)
℘(x)

)
dx

= I1 + I2 + I3 + I4 .

• Control of I1 : According to Proposition 4.4, for all σ < σ̄(β),

∫
R

f(x) ln
(

f(x)
Kσhk(x)

)
dx = Oβ

(
σ2β

)
.

• Control of I2 : According to Lemma A.6, Kσhk(x) ≤ 4M
(

4√
3

)k

for σ small enough and since s(x) ≥
σ6β+5ψσ(x),

I2 ≤
∫

Ec
σ

f(x) ln

⎛
⎜⎝ 4M

(
4√
3

)k

σ6β+5ψσ(x)

⎞
⎟⎠ dx

≤
(∫

Ec
σ

f(x)dx

)[
(6β + 4)| lnσ| + ln

(
4M

(
4√
3

)k
)]

+
∫

Ec
σ

f(x)
x2

σ2
dx.

For the second integral,

∫
Ec

σ

x2

σ2
f(x)dx ≤ σ

H1
2 −2

∫
Ec

σ

x2
√
f(x)dx

≤ σ2β

∫
R

x2
√
Mψ(x)dx

≤ 4π
√
Mσ2β .
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Similarly,
∫

Ec
σ
f(x)dx ≤ σ2β+2

√
2M and finally

I2 ≤
{

ln

(
4M

(
4√
3

)k
)

+ (6β + 4)| lnσ|
}
√

2Mσ2β+2 + 4π
√
Mσ2β .

Thus I2 = Oβ

(
σ2β

)
.

• Control of I3 : On the one hand,

|Kσhk(x) − t(x)| ≤ |Kσhk(x) − ℘̃(x)| + |℘̃(x) − t(x)|
≤ 3εσ−1 + σ6β+5ψσ(x)

≤ 3εσ−1 + σ6β+4π−1/2.

On the other hand, according to Lemma A.4, for all x ∈ R and for all σ < σ̄(β), Kσhk(x) ≥ ξ
√

π
6M(1+Aβσ2β)f(x).

Since x ∈ Eσ then Kσhk(x) ≥ ξ
√

π
6M(1+Aβσ2β)

σ4(β+1). Thus, t(x) ≥ ℘̃(x) ≥ Kσhk(x) − 3εσ−1 ≥ σ4(β+1)√π
6M(1+Aβσ2β)

−
3εσ−1. Finally,

I3 ≤
∫

Eσ

f(x)
Kσhk(x) − t(x)

t(x)
dx

≤ 3εσ−1 + σ6β+4π−1/2

σ4(β+1)

2(1+Aβσ2β) − 3εσ−1

∫
Eσ

f(x) dx

≤ 3εσ−1 + σ6β+4π−1/2

σ4(β+1)

2(1+Aβσ2β) − 3εσ−1
.

Let δ′ := 1 + β
2(β+1) and we set ε := σδ′4(β+1)+1. It yields

I3 ≤ (π−1/2 + 3)σ6β+4

σ4(β+1)

2(1+Aβσ2β)
− 3σ6β+4

= Oβ

(
σ2β

)
.

• Control of I4 : Note that t(x)
℘(x) =

∫
[−μσ ,μσ ] hk(y)dy + σ6β+5 ≤ 1 + σ6β+5 and thus

I4 ≤
∫

R

f(x) ln
(
1 + σ6β+5

)
dx

≤ σ6β+5 ≤ σ2β .

Finally, we obtain that KL(f, ℘) = Oβ

(
σ2β

)
. Moreover, according to the choice of ε, we have that

μσ = 2

√√√√ln

(
4M√
π

(
4√
3

)k
σ

ε

)

= 2

√√√√ln

(
4M√
π

(
4√
3

)k

σ−(6β+4)

)

= G̃β | lnσ|
1
2

where

G̃β = 2

√
ln

(
4M√
π

)
+ k ln

(
4√
3

)
+ (6β + 4). (24)
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Thus there exists σ̄(β) continuous in β such that (22) is fulfilled for σ < σ̄(β). Furthermore, the mixture ℘
has kσ components such that

kσ ≤ 54μσσ
−1e2

[
1 ∨ ln

(
1√
πε

)]
+ 1

≤ G̃β | lnσ|
1
2 54σ−1e2

[
1 ∨ ln

(
1√

πσ6β+5

)]
+ 1

= Gβσ
−1| lnσ| 32 . (25)

�

5. Proof of the lower bound

5.1. Proof of Proposition 2.6

Note that for every j, ϕj is supported by

Jj :=
[
−α

2
+
α

D
(j − 1) +

α

4D
,−α

2
+
α

D
j − α

4D

]
� Ij =

[
−α

2
+
α

D
(j − 1),−α

2
+
α

D
j
]

and thus the supports of the ϕj , 1 ≤ j ≤ D are disjoint. We also note that for all x ∈ [−α
2 ,

α
2 ]c, fθ(x) = ω(x)

and for all x ∈ [−α
2 ,

α
2 ], there exists an unique j ∈ {1, . . . , D} such that fθ(x) = 2ξ + (2θj − 1)ϕj(x) where

ϕj(x) = 0 if x ∈ Ij\Jj . The proof of Proposition 2.6 is decomposed into two lemmas.

Lemma 5.1. Density function and monotonicity conditions.
For all D ∈ N∗ and all θ ∈ {0, 1}D, the function fθ defined by (9) is a positive density function such that for
all x ∈ [−α

2 ,
α
2 ], fθ(x) ∈ [ξ, 3ξ]. This function fulfills also the following monotonicity conditions:

1. ∀x ∈ [−α, α], fθ(x) ≥ ξ and ∀x ∈ [−α, α]c, fθ(x) ≤ ξ.
2. fθ is nondecreasing on (−∞,−α) and nonincreasing on (α,∞).
3. ∀x ∈ R, fθ(x) ≤Mψ(x) with M = M̃ ∨ 3

√
πξ exp(α2/4).

Proof. For all x ∈ [−α
2 ,

α
2 ]c, fθ(x) = ω(x) > 0 since ω is positive. Moreover, for all x ∈ [−α

2 ,
α
2 ], ∃!j ∈ {1, . . . , D}

such that x ∈ Ij . Then,
fθ(x) = ω(x) + (2θj − 1)ϕj(x) = 2ξ + (2θj − 1)ϕj(x).

Thus

|fθ(x) − 2ξ| = |(2θj − 1)| |ϕj(x)|

=
∣∣∣∣ξD−β

A
ϕ

(
D

α

(
x+

α

2

)
− (j − 1)

)∣∣∣∣
≤ ξD−β

≤ ξ

since D−β ≤ 1. Thus for all x ∈ [−α
2 ,

α
2 ], fθ(x) ∈ [ξ, 3ξ]. Finally, fθ is a positive function on R. Moreover,

∫
R

fθ(x)dx =
∫

R

ω(x)dx+
D∑

j=1

(2θj − 1)
∫

Ij

ϕj(x)dx

=
∫

R

ω(x)dx+
D∑

j=1

(2θj − 1)
ξD−β

A

α

D

∫
R

ϕ(y)dy

= 1

because
∫

R
ω(x)dx = 1 and

∫
R
ϕ(y)dy = 0. Thus, fθ is a density function.
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Since fθ(x) = ω(x) and ω is nondecreasing on (−∞,−α), the function fθ is a nondecreasing function on
(−∞,−α). Moreover,

∀x < −α, fθ(x) ≤ fθ(−α) = ω(−α) = ξ.

In the same way, the function fθ is nonincreasing on (α,∞) and

∀x > α, fθ(x) ≤ fθ(α) = ω(α) = ξ.

For all x ∈ [−α, α],

• if x ∈ [−α,−α
2 ), fθ(x) = ω(x) ≥ ω(−α) = ξ because ω is nondecreasing and ω(−α) = ξ;

• if x ∈ (α
2 , α], fθ(x) = ω(x) ≥ ω(α) = ξ because ω is nonincreasing and ω(α) = ξ;

• if x ∈ [−α
2 ,

α
2 ], fθ(x) ∈ [ξ, 3ξ] thus fθ(x) ≥ ξ.

For the last point, we have that for all x ∈ [−α
2 ,

α
2 ]c, fθ(x) = ω(x) ≤ M̃ψ(x). Moreover, for all x ∈ [−α

2 ,
α
2 ],

fθ(x) ≤ 3ξ ≤ 3ξ
√
π exp(α2/4)ψ(x). Finally, for all x ∈ R, fθ(x) ≤ M(ξ, α, M̃)ψ(x) with M(ξ, α, M̃) :=

M̃ ∨ 3
√
πξ exp(α2/4). �

Lemma 5.2. Let β ∈ [β, β̄]. For all θ ∈ {0, 1}D, the function ln fθ is locally β-Hölder: for all x, y such that
|x− y| ≤ α

4 ,
|(ln fθ)(r)(x) − (ln fθ)(r)(y)| ≤ L(β, β̄, L̃, α)r!|x − y|β−r

where L(β, β̄, L̃, α) does not depend on D. Moreover, there exists a constant C(β, β̄, C̃, α), which can be taken
identical for every D, such that for any integer j = 1, . . . , r and for all D ∈ N∗,∫

R

|(ln fθ)(j)(x)|
2β+ε̃

j fθ(x)dx ≤ C(β, β̄, C̃, α),

and ∫
R

|L(β, β̄, L̃, α)|
2β+ε̃

β fθ(x)dx ≤ C(β, β̄, C̃, α).

If D is a positive even integer, for any integer j = 0, . . . , r, |(ln fθ)(j)(0)| ≤ ln(2ξ).

Proof. Let j ∈ {1, . . . , D} and 1 ≤ t ≤ r + 1. We start by upper bounding supx∈Ij
|(ln fθ)(t)(x)|. According to

Lemma B.3, for all x ∈ Ij ,

(ln fθ)(t)(x) = fθ(x)−2t−1 ∑
(η0,...,ηt)∈Ξt

ρ(η0, . . . , ηt)
t∏

u=0

(
f

(u)
θ (x)

)ηu

with

Ξt =

{
(η0, . . . , ηt) ∈ Nt+1;

t∑
u=0

uηu = t,
t∑

u=0

ηu = 2t−1

}
.

For all u ∈ {1, . . . , t},

|f (u)
θ | ≤ ξD−β

A

(
D

α

)u

‖ϕ(u)‖∞ ≤ ξDu−β

αu
·

Then, for all (η0, . . . , ηt) ∈ Ξt,∣∣∣∣∣
t∏

u=0

(f (u)
θ )ηu

∣∣∣∣∣ ≤ D
∑ t

u=1 uηu−β
∑ t

u=1 ηuξ
∑ t

u=1 ηuα−∑ t
u=1 uηu × |fθ|η0

≤ ξ2
t−1−η0Dt−β(2t−1−η0)α−t × |fθ(x)|η0
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since
∑t

u=1 uηu = t and
∑t

u=1 ηu = 2t−1 − η0. Since fθ(x) ∈ [ξ, 3ξ] and 2t−1 − η0 ≥ 1,

|(ln fθ)(t)(x)| ≤
∑

(η0,...,ηt)∈Ξt

|ρ(η0, . . . , ηt)|
∣∣∣∣∣

t∏
u=1

(
f

(u)
θ (x)

)ηu

∣∣∣∣∣ |fθ(x)|η0−2t−1

≤
∑

(η0,...,ηt)∈Ξt

|ρ(η0, . . . , ηt)|ξ2
t−1−η0Dt−β(2t−1−η0)α−tξη0−2t−1

≤
∑

(η0,...,ηt)∈Ξt

|ρ(η0, . . . , ηt)|Dt−β(2t−1−η0)α−t.

Denoting B(t) := card(Ξt) and B(t) := max(η0,...,ηt)∈Ξt
|ρ(η0, . . . , ηt)|, it leads to

supx∈Ij
|(ln fθ)(t)(x)| ≤ B(t)B(t)Dt−βα−t. (26)

We now use this preliminary result to prove that ln fθ is locally β-Holder. Let (x, y) ∈ R2 such that |x−y| ≤ α
4 .

• If x, y ∈ [−α
2 ,

α
2 ]c,

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| = |(lnω)(r)(x) − (lnω)(r)(y)|
≤ L̃r!|x − y|β−r,

since lnω is locally β-Holder with γω = α
4 and a constant L̃.

• If y ∈ [−α
2 ,

α
2 ]c and x ∈ Ij :

– If |x− y| < α
4D then x ∈ Ij\Jj . Thus, ln fθ(x) = lnω(x) and

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| = |(lnω)(r)(x) − (lnω)(r)(y)|
≤ L̃r!|x − y|β−r.

– If α
4D ≤ |x− y| < α

4 , lnω(y) = ln (2ξ) since x ∈ [−3α/4,−α/2]∪ [α/2, 3α/4] thus if r ≥ 1,

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| ≤ ‖(ln fθ)(r)‖∞,[−α/2,α/2] + ‖(lnω)(r)‖∞,[α/2,3α/4]

≤ B(r)B(r)Dr−βα−r

(
4D
α

)β−r

|x− y|β−r + 0

≤ B(r)B(r)
r!

4β−rα−β r! |x− y|β−r

and if r = 0,

|(ln fθ)(x) − (ln fθ)(y)| ≤ |ln (2ξ) − ln (2ξ + (2θj − 1)ϕj(y))|
≤

∣∣− ln
(
1 + (2ξ)−1(2θj − 1)ϕj(y)

)∣∣
≤

∣∣(2ξ)−1(2θj − 1)ϕj(y)
∣∣

≤ (2ξ)−1ξD−β(4D)βα−β |x− y|β

≤ 4βα−β |x− y|β =
B(1)B(1)

0!
4βα−β0! |x− y|β−r.

• For all x, y ∈ [−α/2, α/2], ∃!(j, j′) ∈ {1, . . . , D}2 such that x ∈ Ij and y ∈ Ij′ .
– If |x− y| ≤ α

4D ,
• if j′ �= j, x ∈ Ij\Jj and y ∈ Ij′\Jj′ , thus

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| = 0.
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• if j′ = j,

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| ≤ |x− y|β−r|x− y|r+1−β ‖ ln f (r+1)
θ ‖∞,[−α/2,α/2]

≤ α−β+r+1(4D)β−r−1B(r + 1)B(r + 1)
r!

Dr+1−β

αr+1
r!|x − y|β−r

≤ B(r + 1)B(r + 1)
r!

4β−r−1α−βr!|x − y|β−r

– If α
4D < |x− y| < α

4 : if r = 0,

|(ln fθ)(x) − (ln fθ)(y)| =
∣∣∣∣ln

(
1 + (2ξ)−1(2θj − 1)ϕj(x)
1 + (2ξ)−1(2θj − 1)ϕj(y)

)∣∣∣∣
≤

∣∣∣∣(2ξ)−1(2θj − 1)[ϕj(x) − ϕj(y)]
1 + (2ξ)−1(2θj − 1)ϕj(y)

∣∣∣∣
≤ 2‖ϕj‖∞

ξ

≤ 2D−β(4D)βα−β |x− y|β

≤ 24βα−β |x− y|β = 24βα−β B(1)B(1)
0!

0!|x− y|β

and if r ≥ 1

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| ≤ 2‖(ln fθ)(r)‖∞,[−α/2,α/2]

≤ 2B(r)B(r)
Dr−β

αr

(
4D
α

)β−r

|x− y|β−r

≤ 2
B(r)B(r)

r!
4βα−βr!|x − y|β−r.

Finally, for all β ∈ [β, β̄], for all (x, y) ∈ R2 such that |x− y| < α
4 ,

|(ln fθ)(r)(x) − (ln fθ)(r)(y)| ≤ L(β, β̄, α)r!|x − y|β−r

with

L(β, β̄, L̃, α) := L̃ ∨ max
β∈[β,β̄]

(
2
B(�β�)B(�β�)

�β�!

(
4
α

)β
)
.

According to (26), for any integer j ∈ {1, . . . , r}, ‖(ln fθ)(j)‖∞,[−α/2,α/2] ≤ B(j)B(j)α−j thus it yields∫
R

|(ln fθ)(j)(x)|
2β+ε̃

j fθ(x)dx ≤
∫

[−α/2,α/2]c
|(lnω)(j)(x)|

2β+ε̃
j ω(x)dx +

[
B(j)B(j)α−j

] 2β+ε̃
j

∫
[−α/2,α/2]

fθ(x)dx

≤ C̃ +
[
B(j)B(j)α−j

] 2β+ε̃
j .

Thus there exists a constant C(β, β̄, C̃, ε̃, α) such that for any integer j ∈ {1, . . . , r},∫
R

|(ln fθ)(j)(x)|
2β+ε

j fθ(x)dx ≤ C̃ + max
1≤j≤r+1

[B(j)B(j)]
2β+ε̃

j ≤ C(β, β̄, C̃, ε̃, α)

and ∫
R

|L(β, β̄, L̃, α)|2+
ε̃
β fθ(x)dx = |L(β, β̄, L̃, α)|2+

ε̃
β ≤ C(β, β̄, C̃, ε̃, α).

The last point assumes that D is even, thus 0 ∈ ID/2\JD/2. Then, ln fθ is equal to ln(2ξ) in a neighborhood
of 0 and for all j ∈ {1, . . . , r}, |(ln fθ)(j)(0)| = 0. �
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Lemmas 5.1 and 5.2 show that for any positive even integerD and for all β ∈ [β, β̄], J (β,D) ⊂ H
(
β,P(β, β̄)

)
where

P(β, β̄) =
{α

4
, ln(2ξ), L(β, β̄, L̃, α), ε̃, C(β, β̄, C̃, ε̃, α), α, ξ,M(ξ, α, M̃)

}
.

5.2. Proof of Theorem 2.8

Lemma 5.3. Let θ, θ′ ∈ {0, 1}D. The Hellinger distance between two functions fθ and fθ′ of J (β,D) fulfills
1. d2

H(fθ, fθ′) ≤ ξα
8A2D

−2β,

2. ∀θ �= θ′, d2
H(fθ, fθ′) ≥ ξα(2A)−2δ(θ, θ′)D−(2β+1) where δ(θ, θ′) =

D∑
j=1

�θj 
=θ′
j

is the Hamming distance

between θ and θ′.

Proof.
The Hellinger distance between fθ and fθ′ can be decomposed as follows:

d2
H(fθ, fθ′) =

1
2

∫
[−α/2,α/2]

[√
fθ(x) −

√
fθ′(x)

]2

dx+
1
2

∫
[−α/2,α/2]c

[√
ω(x) −

√
ω(x)

]2

dx

=
1
2

D∑
j=1

∫
Ij

[√
2ξ + (2θj − 1)ϕj(x) −

√
2ξ + (2θ′j − 1)ϕj(x)

]2

dx.

Since the quantity between the brackets is equal to zero if θj = θ′j , it gives

d2
H(fθ, fθ′) =

1
2

D∑
j=1

∫
Ij

[√
2ξ + ϕj(x) −

√
2ξ − ϕj(x)

]2

dx �θj 
=θ′
j

=
1
2

D∑
j=1

∫
Ij

[
4ξ − 2

√
(2ξ)2 − ϕj(x)2

]
dx �θj 
=θ′

j
.

Note that
(

ϕj(x)
2ξ

)2

≤ 1 for all x ∈ Ij and ‖ϕj‖∞ = ξD−β

A ‖ϕ‖∞ ≤ ξ. Then,

√
(2ξ)2 − ϕj(x)2 = 2ξ

√
1 −

(
ϕj(x)

2ξ

)2

≥ 1
4

[
1 −

(
ϕj(x)

2ξ

)2
]

since
√

1 − y ≥ 1 − y for all y ∈ [0, 1]. Thus,∫
Ij

[
4ξ − 2

√
(2ξ)2 − ϕj(x)2

]
dx ≤

∫
Ij

[
4ξ − 4ξ +

ϕ2
j(x)
4ξ

]
dx

≤ (4ξ)−1

∫
Ij

[(
ξD−β

A

)2

ϕ2

(
D

α
(x+ 1) − (j − 1)

)]
dx

≤ (4ξ)−1

(
ξD−β

A

)2
α

D

since
∫

R
ϕ2(y)dy = 1. Finally,

d2
H(fθ, fθ′) ≤ (4ξ)−1

(
ξD−β

A

)2
α

D

1
2
δ(θ, θ′)

≤ ξα

8A2
D−2β

since δ(θ, θ′) ≤ D.
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For the lower bound, we have

√
(2ξ)2 − ϕj(x)2 = 2ξ

√
1 −

(
ϕj(x)

2ξ

)2

≤ 2ξ

[
1 − 1

2

(
ϕj(x)

2ξ

)2
]

since
√

1 − y ≤ 1 − 1
2y for all y ∈ [0, 1]. Thus,∫

Ij

[
4ξ − 2

√
(2ξ)2 − ϕj(x)2

]
dx ≥

∫
Ij

[
4ξ − 4ξ +

ϕ2
j(x)
2ξ

]
dx

≥ (2ξ)−1

(
ξD−β

A

)2
α

D

∫
R

ϕ2(y)dy

≥ (2ξ)−1

(
ξD−β

A

)2
α

D

and finally

d2
H(fθ, fθ′) ≥ (2ξ)−1

(
ξ
D−β

A

)2
α

D

1
2

D∑
j=1

�θj 
=θ′
j

≥ ξα(2A)−2D−(2β+1)δ(θ, θ′).

�
Lemma 5.4. Let θ, θ′ ∈ {0, 1}D. The Kullback–Leibler divergence between two functions fθ and fθ′ of J (β,D)
fulfills

KL(fθ, fθ′) ≤ 5ξα
4A2

D−2β.

Proof. According to equation (9) and since fθ(x) = fθ′(x) = ω(x) for all x ∈ [−α/2, α/2]c, the Kullback–Leibler
divergence between fθ and fθ′ is given by

KL(fθ, fθ′) =
∫

R

fθ(x) ln
(
fθ(x)
fθ′(x)

)
dx

=
∫

[−α/2,α/2]

fθ(x) ln
(
fθ(x)
fθ′(x)

)
dx+

∫
[−α/2,α/2]c

ω(x) ln
(
ω(x)
ω(x)

)
dx

=
∫

[−α/2,α/2]

fθ(x) ln
(
fθ(x)
fθ′(x)

)
dx.

Then for all x ∈ [−α/2, α/2] and for all θ ∈ {0, 1}D, fθ(x) ∈ [ξ, 3ξ] according to Lemma 5.1 thus
∥∥∥ fθ

fθ′

∥∥∥
∞,[−1,1]

≤
3. According to Lemma 7.23 in [13],

KL(fθ, fθ′) ≤ 2
[
2 + ln

(∥∥∥∥ fθ

fθ′

∥∥∥∥
∞

)]
d2

H (fθ, fθ′) .

Lemma 5.1 gives that for all x ∈ [−α/2, α/2], fθ(x) ∈ [ξ, 3ξ] and furthermore, fθ = fθ′ on [−α/2, α/2]c. Thus,

KL(fθ, fθ′) ≤ 2

[
2 + ln

(
sup

[−α/2,α/2]

∣∣∣∣ fθ(x)
fθ′(x)

∣∣∣∣
)]

d2
H (fθ, fθ′)

≤ 10 d2
H (fθ, fθ′)

≤ 5ξα
4A2

D−2β

according to Lemma 5.3. �
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Proof of Theorem 2.8. The proof consists of applying Corollary B.2 given in Appendix A.2 with the
space J (β,D), the Hellinger distance dH , p = 2 and the finite subset C = {fθ, θ ∈ Θ} where Θ is the
subset of {0, 1}D provided by Lemma B.1. Then, it has to be checked that

n max
θ,θ′∈Θ

KL(fθ, fθ′) ≤ κ ln |Θ|.

According to Lemma B.1, ln |Θ| > D
8 and κ ≥ 1

2 . Moreover, KL(fθ, fθ′) ≤ 5ξα
4A2D

−2β and thus D is chosen
such that

n
5ξα
4A2

D−2β ≤ D

16
⇔ 20ξαn

A2
≤ D2β+1.

Since 3ξα ≤ 1, 20ξαnA−2 ≤ 20
3 n ≤ 7n and we finally choose D = min{2k; k ∈ N∗, (2k)2β+1 ≥ 7n}. It follows

that for any estimator s̃,

sup
θ∈Θ

Es[d2
H(fθ, s̃)] ≥ 2−2(1 − κ)

[
min

θ,θ′∈Θ,θ 
=θ′
dH(fθ, fθ′)

]2

≥ 2−2(1 − κ)ξα(2A)−2D−(2β+1) min
θ,θ′∈Θ,θ 
=θ′

δ(θ, θ′)

≥ 2−2(1 − κ)ξα(2A)−2D−(2β+1)D

4

≥ (1 − κ)ξα
A2

2−6−2β (7n)−
2β

2β+1

according to Lemma B.1. �

6. Proof of Theorem 2.9

Under the hypotheses of Section 2.4, let P(β, β̄) be the parameter set given in Proposition 2.6. In order to
prove Theorem 2.9, we start with the following lemma that makes the connection between the models Sm and
the approximation result given in Theorem 2.5.

Lemma 6.1. There exists a positive constant cβ,β̄ such that for all β ∈ [β, β̄] and for all s ∈ H
(
β,P(β, β̄)

)
,

KL(s,Sm) ≤ cβ,β̄ λ(m)2β .

Proof. According to Theorem 2.5, the level σ̄(β) under which the approximation (8) is valid is a continuous
function of β. Thus we can define the positive constant σ̄(β, β̄) := inf

β∈[β,β̄]
σ̄(β). Next, let

m0(β, β̄) := inf
{
m ≥ 2; λ(m) < σ̄(β, β̄)

}
and consider m ≥ m0(β, β̄). Then Theorem 2.5 can be applied for σ = λ(m): for all β ∈ [β, β̄] and for all

s ∈ H
(
β,P(β, β̄)

)
, there exists a mixture ℘ with less than Gβλ(m)−1 |lnλ(m)|

3
2 components, with means

belonging to [−μ̄(m), μ̄(m)] and with the same variance λ2(m) for each component such that

KL(s, ℘) ≤ cβ λ(m)2β .

Since Gβ is a non decreasing function of β, the number of components is less than

Gβ̄λ(m)−1 |lnλ(m)|
3
2 ≤ Gβ̄

[aβ̄

m
(lnm)

3
2

]−1 ∣∣∣ln{aβ̄

m
(lnm)

3
2

}∣∣∣ 3
2

≤ m
Gβ̄

aβ̄

[
ln aβ̄

lnm
+ 1 +

3
2
| ln lnm|

lnm

] 3
2

≤ m
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according to the definition of λ(m) and Condition (10). This shows that ℘ ∈ Sm and thus KL(s,Sm) ≤ cβ λ(m)2β

for all m ≥ m0(β, β̄). Since cβ is continuous in β, there exists cβ,β̄ > 0 such that for all β ∈ [β, β̄], for all
s ∈ H

(
β,P(β, β̄)

)
, and for all m ≥ m0(β, β̄),

KL(s,Sm) ≤ cβ,β̄λ(m)2β . (27)

It remains to show the same result for m ≤ m0(β, β̄) : let tm be a mixture of Sm, for all β ∈ [β, β̄] and for all
s ∈ H

(
β,P(β, β̄)

)
,

KL(s,Sm) ≤ KL(s, tm)

≤
∫
Mψ(x) ln

(
Mψ(x)
tm(x)

)
< +∞.

Then it can be easily shown that (27) is valid for all m ≥ 1 by changing the constant cβ,β̄ . �

Proof of Theorem 2.9. In order to upper bound the right-hand side of the oracle inequality (3), we first control
the constant A defined by (2) that depends on the parameters of the Gaussian mixture model Sm :

A2 ≤ 4
{
c22 + ln

(
c1μ̄(m)
λ(m)

)}
.

For the last term, we note that

ln
(
c1μ̄(m)
λ(m)

)
=

1
2

ln
(

(c1G̃β̄)2
| lnλ(m)|
λ2(m)

)
≤ cβ̄ ln(m)

since λ(m) := aβ̄

m (lnm)
3
2 . Thus A2 is upper bounded by cβ̄ ln(m). For the observation of a sample with size n,

the model collection is indexed by Mn = {2, . . . , n} and then m ≤ n. Thus for all m ∈ Mn,

pen(m) = κ
2m− 1
n

{
1 + 2A2 + ln

(
1

1 ∧ D(m)
n A2

)}

≤ cβ̄
m

n
[lnn+ lnm]

≤ 2cβ̄
m

n
ln(n).

According to Lemma 6.1 and the definition of λ(m), the oracle inequality is upper bounded by

E
[
d 2

H(s, ŝm̂)
]
≤ C inf

m∈Mn

[
KL(s,Sm) + pen(m) +

1
n

]

≤ cβ,β̄ inf
m∈Mn

[
(lnm)3β

m2β
+m

lnn
n

]
.

Let mn := inf
{
m ≥ 2 ;m ∈ N; ; (ln m)3β

m2β ≤ m ln n
n

}
. Note that if mn = 2, then E

[
d 2

H(s, ŝm̂)
]
≤ 4cβ,β̄

ln n
n and this

case is completed. Assuming now that mn > 2, we want to check that mn ≤ n. According to the definition
of mn,

(mn − 1)2β+1

[ln(mn − 1)]3β
<

n

lnn
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thus [
(mn − 1)

ln(mn − 1)

]�
<

n

lnn

where � = 3β if β > 1 and � = 2β + 1 otherwise. Next, since (mn−1)
ln(mn−1) > 1,

(mn − 1)
ln(mn − 1)

<
n

lnn

in all cases. Assuming that n ≥ 3, it follows that mn ≤ n. Since mn ∈ Mn,

E
[
d 2

H(s, ŝm̂)
]
≤ 2cβ,β̄

[ln(mn − 1)]3β

(mn − 1)2β

≤ 2cβ,β̄22β [lnmn]3β

m2β
n

≤ 22β+1cβ,β̄ [lnmn]3β

[
lnn
n

(lnm)−3β

] 2β
2β+1

≤ c̃β,β̄ n
− 2β

2β+1 (lnn)
5β

2β+1 . �

Appendix A. Appendices for the approximation result

A.1. Measure discretization

The following result is adapted from Lemma 2 in [6]. It allows us to approximate a general Gaussian mixture
by a finite Gaussian mixture with a limited number of components.

Proposition A.1. Let F be a probability measure on [−a, a] and σ > 0 such that σ < a. Let ε ∈ (0, π− 1
2 ). Then

there exists a discrete distribution F ′ on [−a, a] with at most 54aσ−1e2
[
1 ∨ ln

(
1√
πε

)]
support points such that

‖F ∗ ψσ − F ′ ∗ ψσ‖∞ ≤ 2ε
σ
.

Proof. The interval [−a, a] can be partitioned into k = � 2a
σ � disjoint consecutive subintervals I1, . . . , Ik of

length σ and a final subinterval Ik+1 of length l ≤ σ: Ii = [ai, ai + σ[, i = 1, . . . , k and Ik+1 = [ak+1, ak+1 + l].

We decompose F on this partition F =
k+1∑
i=1

F (Ii)Fi where each Fi is a probability measure concentrated on Ii.

Then, F ∗ψσ(x) =
k+1∑
i=1

F (Ii)(Fi ∗ψσ)(x). Let Zi be a random variable distributed according to Fi, and let Gi be

the law of Wi = (Zi − ai)/σ. Thus Gi is a probability measure on [0, 1] for i = 1, . . . , k and on [0, l/σ] ⊂ [0, 1]

for i = k + 1. Lemma A.2 is applied for each measure Gi and with D = ln
(

1√
πε

)− 1
2
. We obtain discrete

distributions G′
i such that ‖Gi ∗ ψ −G′

i ∗ ψ‖∞ ≤ 2ε. Let F ′
i be the law of ai + σW ′

i if W ′
i has law G′

i and set
F ′ =

∑k+1
i=1 F (Ii)F ′

i . We have

Fi ∗ ψσ(x) = E [ψσ(x − Zi)] = E

[
1
σ
ψ

(
x− Zi

σ

)]
= E

[
1
σ
ψ

(
x− ai

σ
−Wi

)]
=

1
σ
Gi ∗ ψ

(
x− ai

σ

)

and F ′
i ∗ ψσ(x) = 1

σG
′
i ∗ ψ

(
x−ai

σ

)
. Thus

|Fi ∗ ψσ(x) − F ′
i ∗ ψσ(x)| =

1
σ

∣∣∣∣Gi ∗ ψ
(
x− ai

σ

)
−G′

i ∗ ψ
(
x− ai

σ

)∣∣∣∣ ≤ 1
σ
‖Gi ∗ ψ −G′

i ∗ ψ‖∞ ≤ 2ε
σ
.
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Then

|F ∗ ψσ(x) − F ′ ∗ ψσ(x)| =

∣∣∣∣∣
k+1∑
i=1

F (Ii) [Fi ∗ ψσ(x) − F ′
i ∗ ψσ(x)]

∣∣∣∣∣
≤ 2ε

σ

k+1∑
i=1

F (Ii).

Thus ‖F ∗ ψσ − F ′ ∗ ψσ‖∞ ≤ 2ε
σ and the number of support points of the discrete distribution F ′ is upper

bounded by

k+1∑
i=1

18

[
1 ∨ ln

(
1√
πε

)−1/2
]2

e2 ln
(

1√
πε

)
= (k + 1)18

[
1 ∨ ln

(
1√
πε

)−1
]
e2 ln

(
1√
πε

)

≤ 54aσ−1e2
[
1 ∨ ln

(
1√
πε

)]
. �

The following lemma is an adaptation of Lemma 3.1 in [5], the complete proof can be found in [14]. For this
lemma, one introduces the inverse function of ψσ(.) defined by ψ−1

σ (y) = σ
√
− ln(

√
πy) on (0, π− 1

2 ].

Lemma A.2. Let F be a probability measure on [0, B]. Let ε ∈ (0, π− 1
2 ) and let D be a positive constant such

that B ≤ Dψ−1(ε). Then there exists a discrete distribution F ′ on [0, B] with at most 18(1 ∨ D)2e2 ln
(

1√
πε

)
support points such that

‖F ∗ ψ − F ′ ∗ ψ‖∞ ≤ 2ε.

A.2. Technical results for f , fk, gk, hk and their convolutions

The proofs of the following technical lemmas are given in [14].

Lemma A.3. Let f0 = f and ∀k ∈ N∗, fk+1 = f −Δσfk with Δσfk = Kσfk − fk.

1. For all x ∈ R, fk(x) =
k∑

i=0

(
k+1
i+1

)
(−1)iKi

σf(x).

2. For all k ∈ N,
∫

R
fk(x)dx = 1.

3. For all i ∈ N and for all x ∈ R, Ki
σf(x) ≤ M√

π
and thus |fk(x)| ≤ (2k+1 − 1) M√

π
.

Lemma A.4. Let β > 0 and k ∈ N such that β ∈ (2k, 2k+2]. Let f be a density function belonging to H(β,P)
where P = {γ, l+, L, ε, C, α, ξ,M}.
1. Let σ̄ > 0 such that if Y is distributed from a centered Gaussian density with variance σ̄2, then P (0 < Y <

2α) = 1
3 . For all σ < σ̄,

Kσf(x) ≥ ξ
√
π

3M
f(x).

2. There exists σ̄(β) > 0 and Aβ > 0 such that for all σ < σ̄(β),

Kσhk(x) ≥ ξ
√
π

6M(1 +Aβσ2β)
f(x).

Furthermore, σ̄(β) can be chosen as a continuous function of β.

Remark A.5. The first result of Lemma A.4 is based on the monotonicity assumption on f . It comes from
Remark 3 of [4]. In the second result, the constants σ̄(β) and Aβ are due to the result (14) in Lemma 4.2.
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Lemma A.6. Let p ∈ (0, 1). For all x ∈ R, we have that

• for all i ∈ N and for all σ < 1 − p1/i, Ki
σf(x) ≤M

(
2√
3

)i

ψ(px).

• for all σ < 1 − p1/k,

max
(
fk(x), gk(x),

1
2
hk(x)

)
≤ 2M

(
4√
3

)k

ψ(px).

Appendix B. Appendices for the lower bound result

The two following results are crucial for establishing the lower bound: The first one is the so-called Varshamov–
Gilbert’s lemma and the second one is a corollary of a lemma given in [2]. They correspond to Lemma 4.7 and
Corollary 2.19 in [13] respectively.

Lemma B.1. Let {0, 1}D be equipped with Hamming distance δ. Given α ∈ (0, 1), there exists some subset Θ
of {0, 1}D with the following properties

{
δ(θ, θ′) > (1−α)D

2 for every (θ, θ′) ∈ Θ, θ �= θ′

ln |Θ| > ρD
2

where ρ = (1 + α) ln(1 + α) + (1 − α) ln(1 − α). In particular ρ > 1
4 when α = 1

2 .

Corollary B.2. Let (S, d) be some pseudo-metric space, {Ps, s ∈ S} be some statistical model. Let κ denote an
absolute constant (given in Cor. 2.18 of [13]). Then for any estimator s̃ and any finite subset C of S such that
max
s,t∈C

KL(Ps,Pt) ≤ κ ln |C|, the following lower bound holds for every p > 1

sup
s∈C

Es[dp(s, s̃)] ≥ 2−p(1 − κ)
[

min
s,t∈C,s
=t

d(s, t)
]p

.

The following lemma, used to prove Proposition 2.6, gives an expression of the derivatives of the logarithm
of a function. The proof can be found in [14].

Lemma B.3. Let i ∈ N∗ and let t be a strictly positive function, t ∈ Ci. Then

(ln t)(i)(x) =
Pi(x)
t(x)2i−1

where

Pi(x) =
∑

(η0,...,ηi)∈Ξi

ρ(η0, . . . , ηi)
i∏

j=0

[
t(j)(x)

]ηj

with

Ξi =

⎧⎨
⎩(η0, . . . , ηi) ∈ Ni+1;

i∑
j=0

ηj = 2i−1,

i∑
j=0

jηj = i

⎫⎬
⎭

and ρ(η0, . . . , ηi)’s are the polynomial coefficients.
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