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MODERATE DEVIATIONS FOR A CURIE–WEISS MODEL WITH DYNAMICAL
EXTERNAL FIELD ∗

Anselm Reichenbachs1

Abstract. In the present paper we prove moderate deviations for a Curie–Weiss model with external
magnetic field generated by a dynamical system, as introduced by Dombry and Guillotin-Plantard
in [C. Dombry and N. Guillotin-Plantard, Markov Process. Related Fields 15 (2009) 1–30]. The results
extend those already obtained for the Curie–Weiss model without external field by Eichelsbacher and
Löwe in [P. Eichelsbacher and M. Löwe, Markov Process. Related Fields 10 (2004) 345–366]. The Curie–
Weiss model with dynamical external field is related to the so called dynamic Z-random walks (see [N.
Guillotin-Plantard and R. Schott, Theory and applications, Elsevier B. V., Amsterdam (2006).]). We
also prove a moderate deviation result for the dynamic Z-random walk, completing the list of limit
theorems for this object.
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1. Introduction

Mean field models from statistical mechanics have attained much interest in the recent decades among
probabilists. This is due to the fact that even in simple models as the Curie–Weiss model of ferromagnetism
interesting critical phenomena can be observed on the level of probabilistic limit theorems, which might have
role model character for more intricate lattice based models. In recent years there is increasing interest in
the rigorous treatment of probabilistic models from spin glass theory, i.e. models which have an additional
random parameter in the Gibbs measure, also called the disorder parameter. A natural extension of models
from classical equilibrium statistical mechanics towards some additonal random mechanism is to consider an
additional random external field in the hamiltonian. In this paper, we are interested in the extension of certain
limit theorems already known for Curie–Weiss models without external field to a situation, where we have
additional randomness in terms of an external field driven by a dynamical system [5]. We note here that mean
field models with random external field also exhibit interesting behaviour on the level of so called “metastates”,
see [11] for recent results.

We consider the following physical model: For a fixed positive integer d and a finite subset Λ ⊂ Z
d a

ferromagnetic crystal is described by a configuration space ΩΛ = ΩΛ, Ω called spin space, and random variables
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ΣΛ
i : ΩΛ −→ Ω, ΣΛ

i (σ) = σi. ΣΛ
i is called the spin at site i. We restrict ourselves to the classical Curie–

Weiss model, where the spins take values in Ω = {+1,−1}. The crystal is exposed to an external magnetic
field, described by a dynamical system S = (E,A, μ, T ), i.e. a probability space (E,A, μ), a measure-preserving
transformation T : E → E and a measurable function f : E → [0, 1]. We denote by β > 0 the inverse temperature
und by J > 0 a coupling constant. For a spin configuration, i.e. a realization (ΣΛ

i )i∈Λ = (σi)i∈Λ and x ∈ E we
define the Hamiltonian (see [5]), which specifies the energy of a given configuration σ = (σi)i∈Λ:

HΛ,x(σ) = − βJ

2|Λ|

(∑
i∈Λ

σi

)2

− 1
2

∑
i∈Λ

log
(

f(T ix)
1 − f(T ix)

)
σi.

The energy is due to the interaction of the spins and the force of the external magnetic field. The probability
of observing the system in state σ = (σi)i∈Λ is specified by the Gibbs measure

PΛ,x(σ) ≡ PΛ,x,β(σ) =
1

ZΛ,x
exp (− [HΛ,x(σ)]) 2

The normalizing factor ZΛ,x is called partition function. Equivalently one can say that the distribution of σ
shall have the density PΛ,x(σ) with respect to the n-fold product measure Pn(σ) =

∏n
i=1 ρ(σi) on Ωn, with

ρ(1) = ρ(−1) = 1
2 . The single site measure ρ is called the a priori measure. So the Gibbs measure turns

the independent situation in a dependent one and the parameter β somehow determines the strength of this
dependence. For each configuration σ = (σi)i∈Λ we define the total magnetization MΛ =

∑
i∈Λ ΣΛ

i . Without
loss of generality we set d = 1, Λ = {1, . . . , n} in the sequel and we write n instead of Λ, as well as Σ

(n)
i ,

Pn,x and Mn. So we consider a spin model on the complete graph with n edges. This model belongs to the
class of mean field models, i.e. the spatial interaction is the same for every pair of spins (J constant). For
x ∈ E the sequence

{
log
(

f(T ix)
1−f(T ix)

)}
i≥1

specifies a magnetic field, which is inhomogeneous in space. The

special case f ≡ 1
2 corresponds to the Curie–Weiss model with zero external field. Furthermore, any external

field
{
g(T ix)

}
i≥1

can be considered choosing the function f = eg

1−eg ·
Another way of looking at this model is to put the summand of the Hamiltonian depending on the external

field into the a priori measure. By a suitable normalization one gets a mean field model with random and site
dependent a priori measure, which motivates the definition of a “dynamic Z-random walk” in the following way
(for further details see [5] or [12]): Consider a dynamical system S = (E,A, μ, T ), where (E,A, μ) is a probability
space and T is a measure preserving transformation defined on E. Let f : E → [0, 1] be a measurable function.
For each x ∈ E denote by Px the distribution of the time inhomogeneous random walk

S0 = 0, Sn =
n∑

i=1

Xi for n ≥ 1,

where (Xi)i∈Λ are independent random variables with step distribution

Px(Xi = z) =

⎧⎪⎨⎪⎩
f(T ix), if z = 1
1 − f(T ix), if z = −1
0, otherwise.

In the case β = 0 (infinite temperature) Pn,x is equal to the product measure

n∏
i=1

(
f(T ix)δ1 + (1 − f(T ix))δ−1

)
.

2In the case that β is fixed we keep quiet about this dependency in the notation of the measure.
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Then Mn is a sum of independent Ber(f(T ix))−distributed random variables σi and it defines a dynamic
Z-random walk ([12]).

For a general introduction to the theory of large deviations and its applications to statistical mechanics we
refer to the book [8]. Let us recall the definition of a large deviation principle:

Let E be a metric space, endowed with the Borel sigma-field B(E) and (γn)n be a sequence of positive reals
with γn → ∞ as n → ∞. A sequence of probability measures (μn)n∈N on E is said to satisfy a large deviation
principle (LDP for short) with speed γn and rate function I : E → [0, +∞] if the following properties are
satisfied:

• I has compact level sets Φ(s) = {x ∈ E : I(x) ≤ s}, s ∈ E.
• For every open set G ⊂ E it holds

lim inf
n→∞

1
γn

log μn(G) ≥ − inf
x∈G

I(x).

• For every closed set A ⊂ E it holds

lim sup
n→∞

1
γn

log μn(A) ≤ − inf
x∈A

I(x).

Similarly we say that a sequence of random variables (Yn)n∈N with values in E obeys a large deviation principle
with speed γn and rate function I : E → [0, +∞] if the sequence of their distributions does. We will speak about
a moderate deviation principle (MDP), whenever the scaling of the corresponding random variable is between
that of an ordinary law of large numbers and that of a central limit theorem.

In [12] the authors proved a LDP for the mean magnetization Mn/n in the above defined Curie–Weiss model
with dynamical external field. We briefly recall these statements and outline the main ideas of the proofs.

Using the Gärtner–Ellis Theorem (Birkhoff’s theorem implies the needed convergence of the logarithmic
moment generating function) the authors proved the following result in [12]:

For μ-almost every x ∈ E, the sequence (Sn/n)n∈N satisfies a LDP with speed n and rate function

Λ∗
x(y) = sup

λ∈R

{〈λ, y〉 − Λx(λ)},

where
Λx(λ) = IE

(
log
(
feλ + (1 − f)e−λ

)
| T
)
(x),

T being the σ-field generated by the fixed points of the transformation T .
Under further assumptions on the dynamical system one can apply a stronger version of Birkhoff’s theorem

(see [14]), which states pointwise convergence against a constant instead of μ-almost sure convergence. The
result reads as follows:

Suppose that the above defined dynamical system S = (E,A, μ, T ) is uniquely ergodic, with compact metric
space E, continuous transformation T and continuous function f . Then the above LDP holds for every point
x ∈ E with deterministic rate function

Λ(λ) =
∫

E

log
(
f(y)eλ + (1 − f)e−λ

)
dμ(y).

The authors in [12] also prove a functional central limit theorem for the dynamic random walk.
The first result in the present paper is a MDP for the dynamic random walk. To this end, we consider the

centered random variables X̂i = Xi−(2f(T ix)−1) and first define precisely what a MDP is in our case of partial
sums of independent random variables. We say that 1

an
Ŝn = 1

an

∑n
i=1 X̂i obeys a MDP with rate function I and
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speed a2
n

n → ∞, under the quenched measure Px, if (an)n is an increasing sequence of reals such that an√
n
↗ ∞,

an

n ↘ 0 and for all A ∈ B(R)

− inf
t∈A◦

I(t) ≤ lim inf
n→∞

n

a2
n

log Px

(
1
an

Ŝn ∈ A

)
≤ lim sup

n→∞
n

a2
n

log Px

(
1
an

Ŝn ∈ A

)
≤ − inf

t∈A
I(t).

Our deviation results will depend on the speed of convergence in Birkhoff’s Ergodic Theorem. One defines for
every α ∈ [0, 1] the class of μ-integrable functions

Cα(S) :=

{
h : E → R :

∣∣∣∣∣
n∑

k=1

(
h(T kx) −

∫
E

h dμ

)∣∣∣∣∣ = o(nα) ∀x ∈ E

}
.

We get the following theorem.

Theorem 1.1 (Moderate deviations for the dynamic random walk under the quenched measure). Suppose that
f(1− f) ∈ C1(S) and a :=

∫
E 4f(1− f)dμ > 0. Then for all x ∈ E , 1

an
Ŝn obeys a MDP with speed a2

n

n and rate

function I(t) = t2

2a ·
Corollary 1.2. If the dynamical system S is uniquely ergodic with compact metric space E, f is continuous
and a :=

∫
E 4f(1 − f)dμ > 0, then the assertion of Theorem 1.1 holds.

Remark 1.3.

(i) In the case f ≡ 1
2 Theorem 1.1 reproduces the classical MDP for i.i.d. random variables Xi with

P (X1 = 1) = 1
2 = P (X1 = −1).

(ii) Note that a MDP under the annealed measure, i.e. under the measure P(dy) =
∫

E Px(dy) dμ(x), can be
obtained combining Theorems 2.1 and 2.2 in [4] with Theorem 1.1 above.

Now the LDP for the dynamic random walk on the integers yields a LDP for the mean magnetization Mn/n
via Varadhan’s lemma, since its distribution is absolutely continuous with respect to the distribution of the
dynamic random walk and equal to

dPMn
n,x

dP
Sn
x

(y) =
1

Ẑn,x

exp
[
βJ

2n
y2

]
,

where Ẑn,x = IEx

{
exp

[
βJ
2n (Sn)2

]}
is a normalizing constant, i.e. the integrand is a continuous and bounded

function on [−1.1]. So Mn/n under Pn,x obeys a LDP with speed n and rate function

Iβ,x(s) = Λ∗(s) − βJ

2
s2 − inf

z∈R

{
Λ∗(z) − βJ

2
z2

}
, (1.1)

where Λ∗ denotes the Fenchel–Legendre transform from above.
The authors also prove central limit theorems for the associated magnetization. Analogously to the treatment

in [9] and [10], the asymptotic behaviour of Mn depends on the extremal points of a function G, which is a
transformation of the rate function of the above LDP for the mean magnetization and defined by

G(s) =
βJ

2
s2 −

∫
E

L(f(y), βJs) dμ(y).

Furthermore, one defines for every n ≥ 1 the function

Gn(s) =
βJ

2
s2 − 1

n
log IEx(exp(βJsSn)) (1.2)

=
βJ

2
s2 − 1

n

n∑
i=1

L(f(T ix), βJs), (1.3)
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where

L(φ, s) :=

{
[0, 1] × R → R

(φ, s) �→ log(φes + (1 − φ)e−s).
(1.4)

The function G is real analytic, and the set where G achieves its minimum is non-empty and finite (see Thm. 3.1
in [5]). So we denote by g = min{G(s) : s ∈ R} the value of the global minimum (which is nonpositive since
G(0) = 0) and by m1, . . . , mr the minimizers of G. Furthermore, one defines the type 2ki and the strength
λi > 0 of the minimum mi by

2ki = min{j ≥ 0 | G(j)(mi) �= 0}
λi = G(2ki)(mi).

Usually, multiple minima occur for values of β larger than some critical value βc and this phenomenon is called
a “phase transition”. For an explicit class of dynamical systems, the authors in [5] can compute a critical
temperature βc for the model. But the situation for β > βc, i.e. multiple minima of G, seems not to be well
understood as we try to outline in the following: In [10] Ellis and Newman proved a law of large numbers (for the
Curie–Weiss model with constant external field), i.e. they showed that the mean magnetization converges weakly
to a linear combination of the minima of maximal type of G, whose weights can be written explicitly in terms of
the types and strenghts of the corresponding minima. On the other hand, an LDP for the mean magnetization
of this model also yields weak convergence to the zeros of the respective rate function. Interestingly enough,
Ellis et al. recently proved in [2] (Thm. A.1) by means of convex analysis, that the set of global minimizers
of G coincides with the set of zeros of the LDP rate function. This general theorem can also be applied to
the Curie–Weiss model with dynamical external field and yields coincidence of the set of zeros of the above
LDP rate function (1.1) and the set of minimizers of G. Astonishingly, in the treatment of the Curie–Weiss
model with dynamical external field in [5], the authors claimed that the mean magnetization did not converge
in distribution in the case of multiple minima of G. Nevertheless, they proved exponential equivalence of Mn/n
to a linear combination of the minimizers of G, i.e. for every continuous bounded function h, the expectation
of h(Mn/n) under Pn,x is equivalent, as n → ∞, to∑r

i=1 bi,nh(mi)∑r
i=1 bi,n

·

For details on the n-dependent weights bi,n see Theorem 3.2 in [5].
For the case of a unique minimum m of G, the following limit theorem for the fluctuations of Mn/n around

m has been proved in [5] (Thm. 3.3): Assume that the unique minimum m of G is of type 2k and strenght λ and
that for every j ∈ {1, . . . , 2k}, the function ∂j

∂sj L(f(.), βJm) belongs to the set Cj/2k(S). Then, the following
convergence of measures holds:

Mn − nm

n1−1/2k
⇒ Z(2k, λ̃),

where Z(2k, λ̃) is a probability measure with density function

C exp
(
−λ̃s2k/(2k)!

)
,

C being a normalizing constant and

λ̃ =

⎧⎨⎩
(

1
λ − 1

βJ

)−1

, if k = 1

λ, if k ≥ 2.

The purpose of the present paper is to analyze the asymptotic behaviour of Mn on a moderate deviation scale.
Our first result considers a smoothed version of the mean magnetization, called the Hubbard–Stratonovich
transform.
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Theorem 1.4 (Moderate deviations for the Hubbard–Stratonovich transform, conditioned version). Let m be a
(local or global) minimum of G of type 2k and strength λ and assume that for every j ∈ {1, . . . , 2k} the function
y �→ ∂j

∂sj L(f(y), βJm) belongs to the class C j
2k

(S). Let W be a N (0, 1
βJ )-distributed random variable, defined on

some probability space (Ω,F , Q) and independent of Mn for every n ≥ 1. Write Qn,x := Pn,x ⊗ Q. Then there
exists an A = A(m) > 0 such that for all 0 < a < A and for all 1 − 1

2k < α < 1 the sequence of measures{
Qn,x

(
Mn − nm

nα
+

W

nα− 1
2
∈ •

∣∣∣∣ Mn − nm

nα
+

W

nα− 1
2
∈ [−an1−α, an1−α]

)}
n∈N

satisfies a MDP with speed n1−2k+2kα and rate function

I(z) ≡ Ik,λ,β,J(z) := λ
z2k

(2k)!
·

In the case of a unique minimum of G we get a MDP for the mean magnetization out of Theorem 1.4 using some
transfer principle, Proposition A.1 in [7]. In the case of multiple minima a similar, general transfer principle for
conditional measures is still an open question. In the recent preprint [13] such a transfer principle was proved
under additional conditions on the inverse temperature for the random field Curie–Weiss model (Lem. 5.2 (ii)).

Theorem 1.5 (Moderate deviations for the Curie–Weiss model with dynamical external field, unconditioned
version). Assume that G has a unique global minimum m of type 2k and strength λ �= βJ and that for all
j ∈ {1, . . . , 2k} the function y �→ ∂j

∂sj L(f(y), βJm) belongs to the class C j
2k

(S). Then for all 1 − 1
2k < α < 1 the

sequence of measures {
Pn,x

(
Mn − nm

nα
∈ •
)}

n∈N

satisfies a MDP with speed n1−2k+2kα and rate function

I(z) ≡ Ik,λ,β,J (z) :=

{
z2

2σ2 , k = 1
λ z2k

(2k)! , k ≥ 2,

where σ2 = 1
λ − 1

βJ ·

Remark 1.6.

(i) Theorem 1.5 can be seen as a refinement of the scaling limits in [5] (Thm. 3.3).
(ii) Comparing Theorem 1.1 with Theorem 1.5 we see that the MDP for the rescaled dynamic Z-random walk

has the same kind of rate function, i.e. the Gaussian rate, as the MDP for the rescaled total magnetization
under the Curie–Weiss measure with dynamical external field in the case k = 1. This is due to the fact that
the case k = 1 corresponds to the high temperature phase (small β) where one has only weak correlation
among the individual spins. The case k ≥ 2 corresponds to the high temperature regime and one observes
a phase transition even on the level of the MDP rate function.

2. Auxiliary results

In this section we state several lemmas that we will need in the proofs of our main theorems. The first lemma
contains some important information about the sequence of functions Gn and the function G, as defined in the
introduction of the present paper. For the proof we refer to Theorem 3.1, Lemma 3.2 and Lemma 3.4 in [5]
respectively.
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Lemma 2.1.

(i) The function G is real analytic and the set where G attains its global minimum is non-empty and finite.
(ii) The sequence of functions (Gn)n≥1 converges uniformly to G on compacta of R as n → ∞. Furthermore,

the sequence of derivative functions (G(k)
n )n≥1 converges uniformly to G(k) for every k ≥ 1 on compacta of

R as n → ∞.
(iii) Let A ⊂ R be a closed subset containing no global minima of G. Then there exists ε > 0 such that

eng

∫
A

e−nGn(s) ds = O(e−nε),

where g is the value of the global minimum of G.

The following Lemma is a key ingredient for the proof of our MDPs. It is based on the Taylor expansion of G
and a slight generalization of Lemma 3.3 in [5]. We skip the proof since it differs only minorly from the one
given in [5].

Lemma 2.2. Let m be a (local or global) minimum of G of type 2k and strenght λ. Suppose that for every
j ∈ {1, . . . , 2k} the function y �→ ∂j

∂sj L(f(y), βJm) belongs to the set C j
2k

(S). Let 1 − 1
2k < α < 1. Then the

following assertions hold:

(i) For every s ∈ R

lim
n→∞ n2k(1−α)(Gn(m + sn−(1−α)) − Gn(m)) = λ

s2k

(2k)!
· (2.1)

The convergence is uniform on compact intervals of the form [−M, M ].
(ii) There exist r > 0 and N ∈ N such that for all n ≥ N and s ∈

[
−rn(1−α), rn(1−α)

]
the following lower

bound is valid:

n2k(1−α)(Gn(m + sn−(1−α)) − Gn(m)) ≥ λ

2
s2k

(2k)!
−

2k−1∑
j=1

|s|j . (2.2)

The following lemma concerns a well known transformation of our mean field measure, sometimes called the
Hubbard–Stratonovich transform in the literature. For the proof we refer to Lemma 3.1 in [5].

Lemma 2.3. Let W be a N (0, 1
βJ )-distributed random variable, defined on some probability space (Ω,F , Q)

and independent of Mn for every n ≥ 1, and let m and α be some real numbers. Then the random variable

Mn − nm

nα
+

W

nα−1/2

under the measure Qn,x := Pn,x ⊗ Q has a density with respect to the Lebesgue measure given by

exp(−nGn(m + sn−(1−α)))∫
R

exp(−nGn(m + sn−(1−α)))ds
· (2.3)

The usefulness of the previous lemma lies in the fact that one can often prove MDPs for the convolution, using
the Taylor series expansion of G. Clearly, the type 2k and strength λ of the global minimum m of G will therefore
play an important role. We next state two lemmas which ensure that it does not matter whether we consider
the sequence of measures Pn,x ◦

(
Mn−nm

nα

)−1
or the sequence Pn,x ⊗Q ◦

(
Mn−nm

nα + W
nα−1/2

)−1
as long as k ≥ 2.

Lemma 2.4. If the sequence of random variables Mn−nm
nα + W

nα−1/2 satisfies a MDP with respect to Qn,x =
Pn,x ⊗Q with speed nγ , γ < 2α−1 and rate function I, then so does Mn−nm

nα with respect to Pn,x and the speeds
and rate functions agree.
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Proof. The proof is based on exponential equivalence and can be found in [7]. Nevertheless we give the proof
in order to allude to the problems that arise in the case k = 1. One shows that the two sequences Mn−nm

nα +
W

nα−1/2 and Mn−nm
nα are exponentially equivalent and therefore have the same moderate deviation behaviour (see

Thm. 4.2.13 in [3]). For all ε > 0 the following estimate holds:

Pn,x ⊗ Q

(∣∣∣∣Mn − nm

nα
+

W

nα−1/2
− Mn − nm

nα

∣∣∣∣ > ε

)
= Pn,x ⊗ Q

(∣∣∣∣ W

nα−1/2

∣∣∣∣ > ε

)
= Q

(
|W | > εnα− 1

2

)
≤
√

2βJ

π

1
εnα− 1

2
exp

(
−βJ

2
ε2n2α−1

)
·

This implies

lim sup
n→∞

1
nγ

log Pn,x ⊗ Q

(∣∣∣∣Mn − nm

nα
+

W

nα−1/2
− Mn − nm

nα

∣∣∣∣ > ε

)

≤ lim sup
n→∞

⎛⎜⎝−βJ
2 ε2n2α−1 − log

(√
π

2βJ εnα− 1
2

)
nγ

⎞⎟⎠ = lim sup
n→∞

⎛⎜⎝−βJ

2
ε2n(2α−1)−γ −

log
(√

π
2βJ nα− 1

2

)
nγ

⎞⎟⎠ = −∞,

since γ < 2α − 1 by assumption. �

In the case k = 1 the speed of the MDP in Theorems 1.4 and 1.5 is of the same order as the variance of the
respective Gaussian random variable. Therefore the above argument for exponential equivalence fails. In [7] the
authors proved a “transfer principle” for LDP which can be applied in this special case (see Prop. A.1 in [7]).
The application of this Proposition reads as follows (for the proof see Lem. 3.6 in [7]):

Lemma 2.5. Suppose that Mn−nm
nα + W

nα−1/2 satisfies a MDP with respect to Qn,x = Pn,x ⊗Q with speed n2α−1

and rate function λ z2

2 for λ �= βJ . Then so does Mn−nm
nα with respect to Pn,x with the same speed and rate

function y2

2σ2 , where σ2 = 1
λ − 1

βJ .

Our last lemma can be considered as a starting point of the Laplace method in the theory of large deviations.
It will be used in the proof of our main theorems.

Lemma 2.6. Let f : R → R be a continuous function, M > 0 a real number and γn → ∞ a sequence of positive
integers. Then

lim
n→∞

1
γn

log
∫
{|x|≤M}

exp [γnf(x)] dx = max
{|x|≤M}

f(x).

3. Proofs

In this section we first give the proof of our moderate deviation result 1.1 for the dynamic random walk.
Thereafter we prove our main Theorems 1.4 and 1.5, i.e. MDPs for the fluctuations of the mean magnetization
around the minimizer of G. Our proofs use Laplace method, an equivalent formulation of a LDP which is based
on the asymptotic analysis of the scaled logarithms of certain expectations. We refer to the book [6] for a
detailed introduction to this approach to large deviation theory. The Laplace method has been successfully
applied in the context of the Blume–Emery–Griffiths model in [1], where the authors prove MDP’s for the case
of size dependent temperatures, i.e. the limit results are obtained as the pair (β, J) converges along appropriate
sequences (βn, Jn) to points belonging to various subsets of the phase diagram. Our proof has been inspired by
this approach since we have a similar n-dependence in the Hubbard–Stratonovich transform via the functions Gn.
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Proof of Theorem 1.1. In order to apply Gärtner–Ellis–Theorem [3] we consider the Laplace transform of our
random variable of interest. Let us fix x ∈ E and write λi ≡ λi(x) = f(T ix). We then get for each t ∈ R

log IEx

[
et

a2
n
n (Ŝn/an)

]
=

n∑
i=1

log IEx [tan(Xi − 2λi + 1)/n]

=
n∑

i=1

log
(
λietan(1−2λi+1)/n + (1 − λi)etan(−2λi)/n

)
=

−tan 2
∑n

i=1 λi

n
+

n∑
i=1

log
(
1 + λi(e2tan/n − 1)

)
.

For n large enough we have λi(e2tan/n − 1) ∈ [0, 1] so that we can use Taylor expansion for the logarithm.

log
(
1 + λi

(
e2tan/n − 1

))
= λi(e2tan/n − 1) − λ2

i

2
(e2tan/n − 1)2 +

λ3
i

3
(e2tan/n − 1)3 + o

(
λ4

i (e
2tan/n − 1)4

)
= λi

2tan

n
+ λi

(2t)2a2
n

2n2
+ λi

(2t)3a3
n

3!n3
+ o

(
λia

4
n

n4

)
− λ2

i

(2t)2a2
n

2n2

− λ2
i

(2t)3a3
n

2n3
+ o

(
λ2

i a
4
n

n4

)
+ λ3

i

(2t)3a3
n

3n3
+ o

(
λ3

i a
4
n

n4

)
(3.1)

= λi
2tan

n
+ λi

(2t)2a2
n

2n2
− λ2

i

(2t)2a2
n

2n2
+ o

(
λi(1 − λi)

a3
n

n3

)
(3.2)

= λi
2tan

n
+ λi(1 − λi)

(2t)2a2
n

2n2
+ o

(
λi(1 − λi)

n3

)
.

Here we used Taylor series for the exponential function at 0 in (3.1) and the following estimate in equation (3.2).∣∣∣∣λi
(2t)3a3

n

3!n3
− λ2

i

(2t)3a3
n

3!n3
+ λ3

i

(2t)3a3
n

3n3

∣∣∣∣ =
∣∣∣∣λ2

i

(2t)3a3
n

3!n3

(
1 − 3λi + 2λ2

i

)∣∣∣∣
=
∣∣∣∣(2t)3a3

n

3!n3
λi(1 − λi)(1 − 2λi)

∣∣∣∣
≤
∣∣∣∣(2t)3a3

n

3!n3
λi(1 − λi)

∣∣∣∣ ·
We therefore finally get

log
(
1 + λi

(
e2tan/n − 1

))
=

(2t)2a2
n

∑n
i=1 λi(1 − λi)
2n2

+ o

(
a3

n

∑n
i=1 λi(1 − λi)

n3

)
=

t2a2
n

2n
·
∑n

i=1 4f(T ix)(1 − f(T ix))
n

+ o

(
a3

n

n2
·
∑n

i=1 f(T ix)(1 − f(T ix))
n

)
for all t ∈ R and n → ∞. Thus

lim
n→∞

n

a2
n

log
(
1 + λi

(
e2tan/n − 1

))
=

t2a

2
(3.3)

since f(1 − f) ∈ C1(S) and an/n → 0 as n → ∞ by assumption. An application of the Gärtner–Ellis–Theorem
(see Thm. 3.2.6 in [3]) now yields a MDP for 1

an
Ŝn with speed a2

n

n and rate function

I(t) = sup
x

{
xt − t2a

2

}
=

t2

2a
· �
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Proof of Theorem 1.4. We would like to prove a MDP for the sequence of measures{
Qn,x

(
Mn − nm

nα
+

W

nα− 1
2
∈ •

∣∣∣∣ Mn − nm

nα
+

W

nα− 1
2
∈ [−an1−α, an1−α]

)}
n∈N

,

for some A = A(m) and all 0 < a < A. Lemma 2.3 yields for every Borel set B

Qn,x

(
Mn − nm

nα
+

W

nα− 1
2
∈ B

∣∣∣∣ Mn − nm

nα
+

W

nα− 1
2
∈ [−an1−α, an1−α]

)
=

∫
B∩[−an1−α,an1−α] exp(−nGn(m + sn−(1−α))) ds∫ an1−α

−an1−α exp(−nGn(m + sn−(1−α))) ds
·

We will prove a MDP for this sequence of measures via Laplace principle. Theorem 1.2.3 in [6] states that it
satisfies a MDP with the respective speed and rate funtion if and only if it satisfies the Laplace principle. So let
Ψ ∈ Cb(R) be a continuous and bounded function. To verify the Laplace principle we have to show that

lim
n→∞

1
n1−2k+2kα

log
∫

R

exp
[
n1−2k+2kαΨ(s)

]
Qn,x

(
Yn ∈ ds |Yn ∈ [−an1−α, an1−α]

)
= sup

s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
, (3.4)

where we used the abbreviation Yn := Mn−nm
nα + W

nα− 1
2
·

We substitute the density of Qn,x(Yn ∈ • |Yn ∈ [−an1−α, an1−α]) on the left hand side of (3.4) and thus have
to analyze the following object:

1
n1−2k+2kα

log

⎧⎨⎩
∫ an1−α

−an1−α exp
[
n1−2k+2kαΨ(s) − nGn(m + sn−(1−α))

]
ds∫ an1−α

−an1−α exp
[
−nGn(m + sn−(1−α))

]
ds

⎫⎬⎭ ,

or equivalently

1
n1−2k+2kα

log

⎧⎨⎩
∫ an1−α

−an1−α exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
ds∫ an1−α

−an1−α exp
[
−n(Gn(m + sn−(1−α)) − Gn(m))

]
ds

⎫⎬⎭ . (3.5)

We consider the nominator and the denominator in (3.5) seperately.

Lemma 2.2 states that there exist r > 0, N ∈ N and a polynomial H(s) = λ
2

s2k

(2k)! −
∑2k−1

j=1 |s|j such that for all
n ≥ N and for all s with |s| < rn1−α the following estimate holds:

n2k(1−α)(Gn(m + sn−(1−α)) − Gn(m)) ≥ H(s). (3.6)

We choose A(m) := r. Since the leading coefficient of H is positive, H(s) → ∞ for |s| → ∞. Since H(s) → ∞
and λ s2k

(2k)! → ∞ for |s| → ∞, there exists M > 0 such that

sup
|s|>M

{Ψ(s) − H(s)} ≤ −
∣∣∣∣sup
s∈R

{Ψ(s) − λ
s2k

(2k)!
}
∣∣∣∣− 1
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and the supremum of Ψ − λ s2k

(2k)! over R is attained on the interval [−M, M ]. This and inequality (3.6) together
imply that for all 0 < a < A and for all n ≥ N with an(1−α) > M it holds

sup
{M<|s|<an(1−α)}

{
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

}
= sup

{M<|s|<an(1−α)}

{
n1−2k+2kα

[
Ψ(s) − n2k(1−α)(Gn(m + sn−(1−α)) − Gn(m))

]}
≤ −n1−2k+2kα

(∣∣∣∣sup
s∈R

{Ψ(s) − λ
s2k

(2k)!
}
∣∣∣∣+ 1

)
. (3.7)

Now let 0 < a < A, with A = A(m) being the constant chosen above. Lemma 2.2 then implies that for all δ > 0
and n large enough ∣∣∣∣n2k(1−α)(Gn(m + sn−(1−α)) − Gn(m)) − λ

s2k

(2k)!

∣∣∣∣ < δ,

for all s ∈ [−M, M ], where M is the constant chosen in (3.7). Thus

exp
(
−n1−2k+2kα · δ

) ∫
{|s|≤M}

exp
(

n1−2k+2kα

[
Ψ(s) − λ

s2k

(2k)!

])
ds

≤
∫
{|s|≤M}

exp
(
n1−2k+2kα

[
Ψ(s) − n2k(1−α)(Gn(m + sn−(1−α)) − Gn(m))

])
ds

≤ exp
(
n1−2k+2kα · δ

) ∫
{|s|≤M}

exp
(

n1−2k+2kα

[
Ψ(s) − λ

s2k

(2k)!

])
ds. (3.8)

Estimate (3.7) implies for n large enough∫
{M<|s|<an1−α}

exp
(
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

)
ds

≤ 2an1−α exp
(
−n1−2k+2kα

(∣∣∣∣sup
s∈R

{Ψ(s) − λ
s2k

(2k)!
}
∣∣∣∣+ 1

))
. (3.9)

For sufficiently large n we get via the estimates (3.8) and (3.9)

exp
(
−n1−2k+2kα · δ

) ∫
{|s|≤M}

exp
(

n1−2k+2kα

[
Ψ(s) − λ

s2k

(2k)!

])
ds

≤
∫ an1−α

−an1−α

exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn(1−α)) − Gn(m))

]
ds

≤ exp
(
n1−2k+2kα · δ

) ∫
|s|≤M

exp
(

n1−2k+2kα

[
Ψ(s) − λ

s2k

(2k)!

])
ds

+ 2an1−α exp
(
−n1−2k+2kα

(∣∣∣∣sup
s∈R

{Ψ(s) − λ
s2k

(2k)!
}
∣∣∣∣+ 1

))
.

Lemma 2.6 and the fact that the supremum of Ψ − λ s2k

(2k)! is attained on the interval [−M, M ] now yield

lim
n→∞

1
n1−2k+2kα

log
∫
{|s|≤M}

exp
(

n1−2k+2kα

[
Ψ(s) − λ

s2k

(2k)!

])
ds = sup

s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
·
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Therefore

sup
s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
− δ

≤ lim inf
n→∞

1
n1−2k+2kα

log
∫ an1−α

−an1−α

exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
ds

≤ lim sup
n→∞

1
n1−2k+2kα

log
∫ an1−α

−an1−α

exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
ds

≤ sup
s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
+ δ.

Since this equality is valid for all δ > 0 we finally get

lim
n→∞

1
n1−2k+2kα

log
∫ an1−α

−an1−α

exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
ds

= sup
s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
·

Considering the special case Ψ ≡ 0 yields

lim
n→∞

1
n1−2k+2kα

log
∫ an1−α

−an1−α

exp
[
−n(Gn(m + sn−(1−α)) − Gn(m))

]
ds = 0.

Taking these two limits together we get (3.4), which proves the assertion. �

Proof of Theorem 1.5. The Lemmas 2.4 and 2.5 state that it suffices to prove a MDP for the sequence of
measures {

Qn,x

(
Mn − nm

nα
+

W

nα− 1
2
∈ •

)}
n∈N

.

By Theorem 1.4 we already know that for some A(m) and all 0 < a < A(m) the sequence{
Qn,x

(
Mn − nm

nα
+

W

nα− 1
2
∈ •

∣∣∣∣ Mn − nm

nα
+

W

nα− 1
2
∈ [−an1−α, an1−α]

)}
n∈N

obeys a MDP with the above speed and rate function. We now prove the MDP again via Laplace method, i.e.
we consider for Ψ ∈ Cb(R)

1
n1−2k+2kα

log
∫

R

exp
[
n1−2k+2kαΨ(s)

]
dQn,x(s)

=
1

n1−2k+2kα
log

{∫
R

exp
[
n1−2k+2kαΨ(s) − nGn(m + sn−(1−α))

]
ds∫

R
exp

[
−nGn(m + sn−(1−α))

]
ds

}
or equivalently

1
n1−2k+2kα

log

{∫
R

exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
ds∫

R
exp

[
−n(Gn(m + sn−(1−α)) − Gn(m))

]
ds

}
and we study the nominator and the denominator seperately. To this end we apply the conditioned version of
the MDP as stated in Theorem 1.4 and the remaining work consists in controlling the missing integrals. For
that purpose we make use of the assumed uniqueness of the global minimum of G. Define

h(s) := exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
.
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We then get

lim inf
n→∞

1
n1−2k+2kα

log
∫

[−an1−α,an1−α]

h(s) ds

≤ lim sup
n→∞

1
n1−2k+2kα

log
{∫

[−an1−α,an1−α]

h(s) ds +
∫
{|s|>an1−α}

h(s) ds

}
= max

{
lim sup

n→∞
1

n1−2k+2kα
log
∫

[−an1−α,an1−α]

h(s) ds , lim sup
n→∞

1
n1−2k+2kα

log
∫
{|s|>an1−α}

h(s) ds

}
. (3.10)

Theorem 1.4 implies

lim
n→∞

1
n1−2k+2kα

log
∫

[−an1−α,an1−α]

h(s) ds = sup
s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
,

since this is the Laplace principle for the conditional Hubbard–Stratonovich transform. We now show that the
second argument of the maximum in (3.10) converges to −∞ as n → ∞. Thereby we make use of the uniqueness
of the global minimum m of G. Lemma 2.1 (iii) implies

1
n1−2k+2kα

log
∫
{|s|>an1−α}

h(s) ds

=
1

n1−2k+2kα
log
∫
{|s|>an1−α}

exp
[
n1−2k+2kαΨ(s) − n(Gn(m + sn−(1−α)) − Gn(m))

]
ds

=
1

n1−2k+2kα
log
∫
{|t−m|>a}

exp
[
n1−2k+2kαΨ((t − m)n1−α) − n(Gn(t) − Gn(m))

]
n1−α dt

≤ 1
n1−2k+2kα

log

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩exp
[
n1−2k+2kα‖Ψ‖∞

]
· n1−αenGn(m)

∫
{|t−m|>a}

exp(−nGn(t)) dt︸ ︷︷ ︸
=O(e−nε−ng)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= ‖Ψ‖∞ +

1
n1−2k+2kα

log
{
n1−αO (exp [−n(ε + (g − Gn(m)))])

}
= ‖Ψ‖∞ +

log(n1−α)
n1−2k+2kα︸ ︷︷ ︸

→0

+
1

n1−2k+2kα
log

⎧⎨⎩O

⎛⎝exp

⎡⎣−n(ε + (g − Gn(m))︸ ︷︷ ︸
→0

)

⎤⎦⎞⎠⎫⎬⎭
−→
n→∞ −∞, (3.11)

since the set {|t − m| > a} does not contain a minimum of G. This together with inequality (3.10) yields

lim
n→∞

1
n1−2k+2kα

log
∫

R

h(s) ds = lim
n→∞

1
n1−2k+2kα

log
∫

[−an1−α,an1−α]

h(s) ds

= sup
s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
.

Considering the special case Ψ ≡ 0 implies

lim
n→∞

1
n1−2k+2kα

log
∫

R

exp
[
−n(Gn(m + sn−(1−α)) − Gn(m))

]
ds = 0
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These two limits together yield

lim
n→∞

1
n1−2k+2kα

log
∫

R

exp
[
n1−2k+2kαΨ(s)

]
dQn,x(s) = sup

s∈R

{
Ψ(s) − λ

s2k

(2k)!

}
·

By Lemma 2.4 and Lemma 2.5 we get the assertion for the cases k ≥ 2 and k = 1 respectively. �

For illustrational purposes we give a concrete example of a dynamical system and compute the rate function
of the respective MDP explicitly. Note that this dynamical system has already been considered in [5]. We refer
to this paper in order to check that our conditions imposed in Theorem 1.5 hold true for this concrete example.

4. Example: Irrational rotation on the torus

In [5] the authors consider the dynamical system (T,B(T), λT, Tα). There T = R/Z = [0, 1[ denotes the
one-dimensional torus, λT the restricted Lebesgue measure and Tα the irrational rotation with angle α of type
η (see Def. 5.3 in [5]), i.e. x �→ x + α mod 1.

Let f(x) = x be the identity on T. In [5] it is proved that the Curie–Weiss model with dynamical external
field according to this dynamical system exhibits a phase transition at the critical temperature βc = 3

2J .

Theorem 4.1 (MDP for the irrational rotation on the one-dimensional torus). For the above defined dynamical
system the following assertions hold true.

1. For β < βc, η < 2 and for all 1
2 < α < 1 the sequence of measures{

Pn,x

(
Mn

nα
∈ •
)}

n∈N

satisfies a MDP with scale n2α−1 and rate function

I(z) =
z2

2σ2
,

where σ2 = 2
3−2βJ .

2. For β = βc, η < 4/3 and for all 3
4 < α < 1 the sequence of measures{

Pn,x

(
Mn

nα
∈ •
)}

n∈N

satisfies a MDP with scale n4α−3 and rate function

I(z) =
9
80

z4·
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