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TESTING RANDOMNESS OF SPATIAL POINT PATTERNS
WITH THE RIPLEY STATISTIC
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Abstract. Aggregation patterns are often visually detected in sets of location data. These clusters
may be the result of interesting dynamics or the effect of pure randomness. We build an asymptotically
Gaussian test for the hypothesis of randomness corresponding to a homogeneous Poisson point process.
We first compute the exact first and second moment of the Ripley K-statistic under the homogeneous
Poisson point process model. Then we prove the asymptotic normality of a vector of such statistics for
different scales and compute its covariance matrix. From these results, we derive a test statistic that
is chi-square distributed. By a Monte-Carlo study, we check that the test is numerically tractable even
for large data sets and also correct when only a hundred of points are observed.
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Introduction

Analysis of point patterns is relevant in many sciences: cell biology, ecology or spatial economics. The ob-
servation of clusters in point locations is considered as a hint for non observable dynamics. For example the
clustering of tree locations in a forest may come from better soil conditions or from spreading of seeds of a same
mature individual; but clusters are also observed in random distribution as a Poisson point process sample.
It is therefore essential to distinguish between clusters resulting from relevant interactions or from complete
randomness. Ripley function [20,21] is a widely used tool to quantify the structure of point patterns, especially
in ecology, and is well referenced in handbooks [7, 8, 15, 18, 23, 25]. Up to a renormalization by the intensity
of the process, this statistic denoted here K̂(r) estimates the expectation K(r) of the number of neighbors
at distance less than r of a point in the sample. The observed K̂(r) is compared to the value of K(r) for a
homogeneous Poisson point process chosen as a null hypothesis: the Poisson point process is characterized by
an independence of point locations, modelling an absence of interactions between individuals in ecosystems. In
this case K(r) is simply the mean number of points in a ball of radius r divided by the intensity, that is πr2. If
K̂(r) is significantly larger than πr2 (respectively smaller), the process is considered as aggregated (respectively
over-dispersed) at distance r.
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In order to decide if the difference is statistically significant, we build a test of the Poisson process hypothesis;
we need information on the distribution of K̂(r) for this process. But even the variance is not known and
statistical methods generally rely on Monte-Carlo simulations. Ripley [22] used them to get confidence intervals.
Starting from previous results [24], he also gave critical values for the L function, a normalized version of K
introduced by [4]. These critical values are valid asymptotically, for a large number of points but low intensity, so
that both edge effects and point-pair dependence can be neglected. Further computations of confidence interval
bands based on simulation have been proposed in [16] and corrected in [5]. But the simulation is a practical
issue for large point patterns, because computation time is roughly proportional to the square of the number of
points (one has to calculate the distances between all pairs of points) multiplied by the number of simulations.

We propose here to compute the exact variance of the Ripley statistic. Ward and Ferrandino [30] studied this
variance. But they ignored that point pairs are not independent even though points are (Eq. A8, p. 235), thus
their derivation of the variance of K̂(r) was erroneous. A rigourous computation of the variance has been carried
out in [27] for a independent sample of uniform variables on the unit square, that is for the Poisson process
conditioned by a fixed number of points; for the Poisson process, we compute the exact covariance, considering
the Ripley statistic as a U -statistic as remarked in [22] and using the Höffding decomposition. As the variance
is not enough to build a test, we study the distribution of the statistic. We prove its asymptotic normality as
the size of the observation window grows. It is then easy to build an asymptotically Gaussian test.

Another concern is to test simultaneously the aggregation/dispersion at different scales. This is rarely correctly
achieved in practical computations with Monte-Carlo simulations. The confidence bands or test rejection zone
are often determined without taking the dependence between the numbers of neighbors at different scales into
account. Heinrich [14] proposed the first multiscale goodness-of-fit tests based on the Ripley function for Poisson
processes. He considered a set of scales (r1, . . . , rd), computed the covariance matrix of the estimates K̂(ri) and
proved the asymptotic normality for the vector (K̂(r1), . . . , K̂(rd)). He derived Kolmogorov–Smirnov, Cramer
von Mises and chi-square goodness-of-fit tests from these results. Grabarnik and Chiu [10] proposed a similar
test based on the k first neighbors of a point, that is more difficult to use in practice because the number of
neighbours is an additional parameter to tune. The test that we propose is very similar to the chi-square test of
Heinrich; the only difference lies in the correction of the bias due to edge effects. Our method of correction allows
us to compute the exact value of the covariance matrix and not only its asymptotical value, as for the Heinrich
test. This is a major improvement in practice because the level of the test is very sensitive to approximations
in the computation of the covariance matrix. A similar exact computation of the variance matrix is untractable
for the Heinrich test: only an estimation method based on subsampling of the data may be proposed as done
in [12] for the inhomogeneous case.

The paper is built as follows: Section 1 introduces the precise definition of K(r) and the current definition
of K̂(r). In Section 2, after the definition of our statistics (no edge effects correction, known or unknown
intensity), we list the main results of the paper: exact bias due to the edge effects and exact variance of K̂(r)
for a homogeneous Poisson process with known or unknown intensity; covariance between K̂(r) and K̂(r′) for
two different distances r and r′. The main theorem contains the convergence of the vector (K̂(r1), . . . , K̂(rd))
to a Gaussian distribution with explicit covariance in the following asymptotic framework: data from the same
process are collected on growing squares of observation. These results allow a simple, multiscale and efficient
test procedure of the Poisson process assumption. Section 3 provides a Monte-Carlo comparison of the tests and
Section 4 gives our conclusions. The last section contains the proofs.

1. Definition of the Ripley K-function

We recall the characterizations of the dependence of the locations for a general point process X over R
2. We

refer to the presentation of [18].
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1.1. Definitions

For a point process X , define the point process X(2) on R
2×R

2 of all the couples of two different points of the
original process. The intensity of this new process gives information on the simultaneous presence of points in
the original process. Denote ρ(2)(x, y) its density (called the second-order product density). The Poisson process
of density ρ(x) is such that ρ(2)(x, y) = ρ(x)ρ(y).

The Ripley statistic is a way to estimate the density ρ(2)(x, y). Precisely it is an estimate of the integral on
test sets of the ratio g(x, y) = ρ(2)(x, y)/ρ(x)ρ(y). The function g(x, y) characterizes the fact that the points x
and y appear simultaneously in the samples of X . If g(x, y) = 1, the points appear independently. If g(x, y) < 1,
they tend to exclude each other; if g(x, y) > 1, they appear more frequently together.

We assume the translation invariance of the point process: g(x, y) = g(x − y). In order to estimate the
function g, we define its integral as the set function K. Let A be a Borel set:

K(A) =
∫

A

g(x)dx.

If we also assume that the point process is isotropic, we define the Ripley K-function as

K(r) = K(B(x, r)),

where B(x, r) is the closed ball with center x and radius r. The translation invariance implies that K(B(x, r))
does not depend on x. For example, if the process is a Poisson process then g(x) = 1 and K(r) = πr2. We
define the Ripley statistic that estimates the K-function. Let A be a bounded Borel set of the plane R

2, m
the Lebesgue measure, ρ̂(x) an estimator of the local intensity of the process and I{·} denotes the indicator
function of a set; for a realization S of the point process X , S = {X1, . . . , XN}, a general form of the Ripley
statistic is

K̂A(r) =
1

m(A)

∑
Xi �=Xj∈S

I{d(Xi, Xj) ≤ r}
ρ̂ (Xi) ρ̂ (Xj)

·

Note that estimator K̂A(r) refers to a preexistent estimator of the local intensity ρ̂ (x), to make it unsensible to
the inhomogeneity of the intensity. In practice, ρ̂(x) is a local kernel estimator, that uses the only available local
information contained in the locations of neighbors in a fixed ball around the considered point of the sample.
This estimator is then very much dependent of the indicator function in the numerator, because they are based
on the same information. It cannot be considered as a constant close to the true value of the local intensity. This
is why we do not manage to compute the exact value of the two first moments of this statistic. We only address
the problem of testing homogeneous Poisson processes and the Ripley statistic has simplified expressions given
below.

2. Main results

This section presents the theoretical results on the Ripley statistic and the resulting test.

2.1. Definitions and assumptions

Throughout the paper, we refer to the expectation er,n, the centered indicator function h and its conditional
expectation h1. We gather here these definitions.

Let n be an integer; An denotes the square [0, n]2; U is a random location in An with an uniform random
distribution; its density is 1/n2 with respect to the Lebesgue measure dξ1dξ2 over An. V is an independent copy
of U . We denote d(x, y) the Euclidean distance between x and y in the plane. We define er,n = E( I{d(U, V ) ≤ r}),
h(x, y, r) = I {d(x, y) ≤ r} − er,n and h1(x, r) = E(h(U, V, r)| V = x).

We assume that X is a homogeneous Poisson process on R
2 with intensity ρ. We consider that the data are

available on the square An. The setting of the asymptotics was suggested by practitioners in ecological modeling
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and forestry: the accumulation of tree location data comes from measuring wider and wider sets of land and
the inter-tree distances r do not vary with n.

Let N denote the random number of observed points and S = {X1, . . . , XN} denote the sample of observed
points. We consider two cases:

1. If the intensity ρ is known, the Ripley statistic is expressed as

K̂1,n(r) =
1

n2ρ2

∑
Xi �=Xj∈S

I{d(Xi, Xj) ≤ r}.

2. If the intensity ρ is unknown, we use the unbiased estimator ρ̂2 = N(N − 1)/n4 (see [26]) and define

K̂2,n(r) =
n2

N(N − 1)

∑
Xi �=Xj∈S

I{d(Xi, Xj) ≤ r}.

2.2. Bias

It is known that a large number of neighbors of the points located near the edges of An may lie outside An

causing a bias in the estimation. We compute the bias due to this edge effect.

Proposition 2.1. Assume that r/n < 1/2.

EK̂1,n(r) − K(r) = r2

(
− 8r

3n
+

r2

2n2

)
·

EK̂2,n(r) − K(r) = r2

(
− 8r

3n
+

r2

2n2

)
− r2

(
1 + ρn2

)
e−ρn2

(
π − 8r

3n
+

r2

2n2

)
·

Notes.

• The assumption r/n < 1/2 means that at least some balls of radius r are included in the square An.
• The additional term for K2,n corresponds to the probability to draw a sample with zero or one point in the

square. This term gives a zero contribution as soon as the mean number of points ρn2 is larger than 20.
• The proof may be adapted for a convex polygon of perimeter Ln to compute the first order term of the bias;

for u = 1 or 2:

EK̂u,n(r) − K(r) = −2Lr2

3
r

n
+ O

(
r2

n2

)
·

2.3. Variance

We compute the covariance matrix of K̂u,n(r) for u = 1 or 2. We get an exact computation for the variance,
that can be used for any value of n.

Proposition 2.2. For 0 < r < r′,

var (K̂1,n(r)) =
2er,n

ρ2
+

4n2e2
r,n

ρ
+

4n2

ρ
Eh2

1(U, r),

cov (K̂1,n(r), K̂1,n(r′)) =
2er,n

ρ2
+

4n2er′,ner,n

ρ
+

4n2

ρ
cov (h1(U, r′), h1(U, r)),
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var (K̂2,n(r)) =2n4
E

(
I{N > 1}
N(N − 1)

)(
er,n − e2

r,n

)
= 4n4

E

(
I{N > 1}(N − 2)

N(N − 1)

)
Eh2

1(U, r)

+ n4e−ρn2 (
1 + ρn2

)(
1 − e−ρn2 − ρn2e−ρn2

)
e2
r,n,

cov (K̂2,n(r), K̂2,n(r′)) =2n4
E

(
I{N > 1}
N(N − 1)

)
(er,n − er′,ner,n)

+ 4n4
E

(
I{N > 1}(N − 2)

N(N − 1)

)
cov (h1(U, r′), h1(U, r))

+ n4e−ρn2 (
1 + ρn2

)(
1 − e−ρn2− ρn2e−ρn2

)
er′,ner,n,

where er,n =
πr2

n2
− 8r3

3n3
+

r4

2n4
and Eh2

1(U, r) =
r5

n5

(
8
3

π − 256
45

)
+

r6

n6

(
11
48

π − 56
9

)
+

8
3

r7

n7
− 1

4
r8

n8

Notes.

• The variances of both estimators are exact and can be computed with any precision, as inverse moments of
the Poisson variable correspond to fast converging series.

• The covariances are not explicit because the terms cov (h2
1(U, r′), h2

1(U, r)) involve parts that have to be
numerically integrated.

• The leading terms of the variances of K1,n(r) and K2,n(r) as n tends to infinity are 2πr2/n2ρ2 + 4πr4/n2ρ
and 2πr2/n2ρ2.

2.4. Central Limit Theorem

We show that a normalized vector of Ripley statistics for different r converges in distribution to a normal
vector. Let N (0, Σ) denote the Gaussian multivariate centred distribution with covariance matrix Σ.

Theorem 2.3. Let d be an integer, 0 < r1 < . . . < rd a set of reals and for u = 1 or 2, define Ku,n =
(K̂u,n(r1), . . . , K̂u,n(rd)). Then n

√
ρ(Ku,n − π(r2

1 , . . . r2
d)) converges in distribution to N (0, Σ) as n tends to

infinity, where for s and t in {1, . . . , d}

• if u = 1, Σs,t =
2π(r2

s ∧ r2
t )

ρ
+ 4π2r2

sr2
t .

• if u = 2, Σs,t =
2π(r2

s ∧ r2
t )

ρ
·

Note. The first term of the variance corresponds to a case where the couples of points are independent from
each others; this was used as an approximation without proof in [30]; our work proves that the actual variance
and limit process are different in the first case and that the approximation holds only in the second case.

2.5. Applications to test statistics

From Theorem 2.3, we deduce that Tu = Σ−1/2Ku,n is asymptotically N (0, Id) distributed. For the hypothesis

H0: X is a homogeneous Poisson process of intensity ρ

we use T 2 = ‖Tu‖2
2 as a test statistic with rejection zone for the level α:

T 2 > χ2
α(d).

where χ2
α(d) is the (1 − α)-quantile of the χ2(d) distribution.

Note. the covariance matrix Σ depends on the intensity parameter ρ, so that in the case of the unknown
parameter we have to use an estimate of ρ in the formula defining Σ.
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Figure 1. Comparison of normalized variances for K1(1), ρ = 5.

3. Simulations

We study the empirical variance of the proposed statistics by a Monte-Carlo simulation. Then we apply the
test procedure to simulated data sets, observe the number of rejections and compare it to the level of the test.

3.1. Variance

We simulate a sample of 1000 repetitions with ρ = 5 and compare (after renormalization by n
√

ρ) the
empirical variance and the exact computed variance with the limit variance for different value of n (Fig. 1).
With 1000 repetitions, the oscillations of the empirical variance are still large; we will use a larger number of
repetitions in the following study of the test.

The convergence of the computed variance to the limit value is not so fast and for applications with hundreds
of points (corresponding in Fig. 1 to n < 15) the distance between the variances is still large. A preliminary
study, not presented here, showed that the test procedure is perturbed by any small error in the covariance
matrix, as we tried simplified versions of the covariance by ignoring the contribution of points in the corner of
the observation window. It is crucial to use an accurate computation of the covariance matrix to have a correct
approximation of the square root inverse matrix Σ−1/2. Therefore we will use the exact variance formula instead
of the asymptotic formula in the test procedure.

3.2. Test level

In the known parameter case, the computation of the test statistic T1 is straightforward. In the unknown
parameter case, the computation of the test statistic T2 is done by replacing the unknown parameter ρ by
the estimator N/n2. We also choose to replace the expectation E

(
I{N > 1}/(N(N − 1))

)
by the observed

value 1/(N(N − 1)) and E
(

I{N > 1}(N − 2)/(N(N − 1))
)

by (N − 2)/(N(N − 1)), because the dispersion of
a Poisson variable is low with respect to the expectation when its parameter is large. For comparison, a chi-
square test T3 based on the unbiased Ripley estimator K̂3,n is given using the asymptotic variance as proposed
in [14]. The correction of the bias consists in dividing the indicator function not by the constant area of the
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Table 1. Percentile of rejection over 10 000 repetitions of the test with level α = 0.05.

Poisson T1 T2 T3

n = 30 ρ = 1 r = (0.2, 0.5, 1) 5.14 5.17 5.78∗

n = 10 ρ = 5 r = (0.2, 0.5, 1) 4.66 4.74 12.31∗

n = 10 ρ = 5 r = (0.1, 0.2, . . . , 1) 5.37 5.10 10.78∗

n = 10 ρ = 1 r = (1, 2, 5) 5.62∗ 5.09 56.30∗

n = 10 ρ = .2 r = (1, 1.5, 2) 6.74∗ 5.27 9.22∗

n = 10 ρ = .2 r = (0.2, 0.5, 1) 6.47∗ 6.59∗ 7.73∗

square m(An) = n2, but by the area of the intersection of the translated squares An + Xi and An + Xj . The
corresponding unbiased estimator (see [14]) is:

K̂3,n(r) =
n4

N(N − 1)

∑
Xi �=Xj∈S

I{d(Xi, Xj) ≤ r}
m((An + Xi) ∩ (An + Xj))

·

Concerning the choice for the range for distances r, there are two situations. From the theoretical point of view,
all the scales are of the same interest. One may plot the statistic K and choose the range where the empirical
values depart from expected and investigate if the difference is significative. From the practical point of view,
when observing real data, practitioners often know in advance the scale they are interested in: range from 2
to 50 meters for tree locations for example, or ten meters to one kilometer for locations of shops in a city; ...
Concerning the number d of different distances in a fixed range, it is theoretically not very useful to compute
K for a lot of them, because K is a step function so that there is a limit to the information one gathers by
refining the distances.

The test output is a Bernoulli random variable with parameter α. With a sufficient index of repetition m, the
mean number of rejection is close to a normal variable with expectation α and variance α(1−α)/m. We consider
that the test works correctly when the observed frequency of rejection is in the 95% Gaussian confidence interval
[α − 1.96

√
α(1 − α)/m, α + 1.96

√
α(1 − α)/m]. With m = 10 000 and α = 0.05, the interval is [0.0457; 0.0543].

Percentiles of rejection in Table 1 should lie in [4.57; 5.43]. Stars indicate values outside this confidence interval.
The performances of T1 (known parameter ρ) are good except when the number of points is less than 100.
The test T2 (unknown parameter ρ) performs better than T1 for small data sets. The comparison of line 5
and 6 in Table 1 shows that T2 has a bad level if the distances are so small that the corresponding balls have a
large probability to be void. The test T3 is systematically affected by edge effects. This is due to the use of an
asymptotic formula for the variance that is not sufficiently accurate even for samples with 500 points.

3.3. Test power against dependence

We investigate the power of the test T2 against the alternative of dependent point processes. In Table 2, we
simulate six Thomas cluster processes [28] and two Hardcore Strauss processes. A Thomas process is a clustered
Neyman-Scott process; the germs of the clusters are drawn as a sample of a homogeneous Poisson process of
intensity κ. For each germ, an inhomogeneous Poisson process is drawn with intensity measure μf , where f
is the density of the Gaussian two-dimensional vector centered on the germ and with independent coordinates
of standard error σ. The Thomas process results from the superimposition of these inhomogeneous Poisson
processes. The germs are not conserved. Note that this process is homogeneous, with resulting intensity ρ = κμ.
Figure 2 presents a sample of these Thomas processes compared to a sample of a Poisson process of the same
intensity. It shows that the visual inspection is not sufficient to distinguish between the processes, especially
when the number of points is more than 250. The Hardcore Strauss process is a over-dispersed Markov process
defined by a density with respect to a homogeneous Poisson process. The density of a point set is equal to zero
when two points are at distance less than a constant radius R and constant for other point sets.
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Poisson 1 Thomas 1 Thomas 2

Poisson 2 Thomas 3 Thomas 4

Poisson 3 Thomas 5 Thomas 6

Figure 2. Samples of processes of table 2. Expected number of points: first row 250 , second
row 20, third row 2000. For the processes Thomas 1 to 6 , the expected size of the clusters are
respectively 10, 5, 4, 2, 10 and 4.

We compare test T2 with Heinrich test T3 and with the Monte Carlo test Lm based on the uncorrected Besag
function L(r) estimated in the band r ∈ [0 2.5] (see [11]); the test statistic is Lm = max |L̂(r) − E(L̂(r))|
computed on this band. The value of E(L(r)) is estimated by a first Monte-Carlo sampling of size 10 000 and
the distribution of Lm is estimated by a second Monte-Carlo sampling of the same size. The rejection zone
corresponds to the largest values corresponding to 5% of the Monte-Carlo sample.

Edge effects. The first row of Table 2 shows that test T2 rejects a bit less than Heinrich test T3; this is mainly
due to the incorrect level of the test T3 as shown in the third line (28.9% rejection instead of 5% expected for
the reference Poisson process). This means that edge effects are too strong for T3 when the ratio max(r/n) is
equal to 0.2. The test T2 has a correct level, detects perfectly the large clusters of model Thomas 1 and quite
well (67%) the clusters in model Thomas 2. It performs better than the Lm test. The second row displays tests
with lesser edge effects (max(r/n) is equal to 0.1), for a sample with very few points (20 points expected). The
third line shows that the level of T2 and T3 are acceptable even for small samples. The power of the two tests
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Table 2. Percentile of rejection over 10 000 repetitions of the test with level α = 0.05 for
dependent processes compared to Poisson processes.

n = 10 T2 T3 Lm
Thomas 1 (κ, μ, σ) = (0.25, 10, 1) 94.8 97.6 89.7

250 points r = (0.5, 1, 2) Thomas 2 (κ, μ, σ) = (0.5, 5, 1) 67.2 83.3 56.8
Poisson 1 ρ = 2.5 4.9 28.9 5.1
Thomas 3 (κ, μ, σ) = (0.05, 4, 1) 60.8 62.5 52.0

20 points r = (0.2, 0.5, 1) Thomas 4 (κ, μ, σ) = (0.1, 2, 1) 32.0 33.8 23.0
Poisson 2 ρ = 0.2 6.7 7.5 5.4
Thomas 5 (κ, μ, σ) = (2, 10, 1) 72.8 87.5 24

2000 points r = (0.2, 0.5, 1) Thomas 6 (κ, μ, σ) = (5, 4, 1) 32.0 63.7 16.9
Poisson 3 ρ = 20 5.0 30.3 5.4

2000 points r = (0.5, 1, 3) Thomas 6 (κ, μ, σ) = (5, 4, 1) 42.6 16.9
Poisson 3 ρ = 20 5.3 5.4

2000 points r = (1, 2, 5) Thomas 6 (κ, μ, σ) = (5, 4, 1) 46.2 16.9
Poisson 3 ρ = 20 5.1 5.4

2000 points r = (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5) Thomas 6 (κ, μ, σ) = (5, 4, 1) 25.6 16.9
Poisson 3 ρ = 20 5.5 5.4
Thomas 7 (κ, μ, σ) = (10, 10, 1) 69.6 47.5

10 000 points r = (1, 2, 5) Thomas 8 (κ, μ, σ) = (25, 4, 1) 30.9 24.5
Poisson 4 ρ = 100 5.3 5.1

69 points r = (0.1, 0.5, 2) Strauss 1 R = 0.4 44.2 53.2 100
Poisson 5 ρ = 0.69 6.2 12.5 4.9

74 points r = (0.1, 0.5, 2) Strauss 2 R = 0.35 21.2 29.9 100
Poisson 6 ρ = 0.74 5.4 11.9 4.8

are similar and quite good for a sample of Thomas 3 (clusters of expected size 4); they still detect around 30%
of the samples of Thomas 4, that is much closer to a Poisson process (clusters of expected size 2).

Comparison with the Lm estimator. In [11], the authors claim that estimators based on maximum absolute
deviation as Lm work better for small samples when edge effects are not corrected by the band correction, that
discards the data in the band of width r from the edges of the square of observation. We see in row 1 and 2
that the test T2 performs better than the Monte-Carlo test Lm, even for small sample. This is not contradictory
with the conclusions of [11], as our edge effects correction does not discard data. The simulation is also different
because we do not fix the number of points as it was done in [11]. For small samples the variation of the number
of points is significative and may explain the different conclusions. We think that for very small sample, test Lm
is advantageous because it is very easy to compute with a perfect level by construction. But for medium size
sample of 250 points, T2 is easier to compute, with a perfect level and better power.

Effect of the number of points. In row 3, we study samples with a larger number of points (2000 points
expected) in the same space and with the same range of distance. First notice that is not easier to distinguish
between Poisson and cluster models when the number of points increases because the clusters are forced to
overlap. The performance of T2 is a bit lower than for 250 points but still acceptable. T3 has an incorrect level
and Lm has a weak power.

Effect of the range of distance. In row 4 and 5, we change the range of distance in T2 for the same process
Thomas 6. We do not compute T3 because its level is worse than in row 1. We see that the performance of T2

increases when the range of distance is larger with the best result for the value r = 5 corresponding to the
maximal ratio r/n = 1/2. In row 3, we see that T2 outperforms the Lm estimator even if they are computed on
a similar range of distance.
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Effect of the number of distances. In row 6, we keep the same process Thomas 6 and the same range
of distance but we increase the number of distances. The level of the test is correct, but the power is lower.
Notice that increasing the number of distances does not necessarily increase the information (only the jumps
in the function K̂ are informative), but it is still surprising that the performances decrease so fast. This could
be a consequence of instabilities in the computation of the inverse square root of the covariance matrix as its
dimension increases.

Larger set of points. In row 7, we study a small sample (100 repetitions) of processes with a larger number of
points (10 000 points expected) with the largest range of distance. Comparing the three processes with cluster
size equal to 4, (Thomas 3, 6 and 8), we confirm that the power decreases when the number of clusters increases.
Clusters of size 10 of Thomas 7 are still well detected. Lm has a low power.

Test of over-dispersion. In row 8 and 9, we study a sample (10 000 repetitions) of hardcore Strauss processes
with intensity β = 1 and hardcore radius equal to 0.4 and 0.35. The Kolmogorov Smirnov test Lm is considered
as very powerful in this context [15]. We observe that Lm rejects perfectly the sample where T2 and T3 have
poor performances. Here again, T3 seems to have a better power, but its level is not correct as can be seen with
Poisson simulation with the corresponding mean number of points.

3.4. Test power against inhomogeneity

In [13], Ho and Chiu propose to test inhomogeneity versus homogeneity with goodness-of-fit tests for the
uniform distribution. A general study of those tests is [6]. The advantage is that the distribution is free of edge
effects. As our test is also free of edge effects, we investigate here its power against inhomogeneous Poisson
processes. Function K being the same for homogeneous and heterogeneous Poisson process, how could the
method work for testing homogeneous Poisson versus heterogeneous? Simply because our definition of K̂ was
adapted to the homogeneous case and has a different distribution under inhomogeneous Poisson assumptions.

We derive our models from those of [9]. In this paper, the authors consider five types of intensity functions
si(x) for inhomogeneous Poisson processes on the segment [0, 1]. We simulate inhomogeneous Poisson processes
on the square [0, 1] × [0, 1] with intensity 100si(x)si(y). The functions si(x) are:

s1(x) = (1 + ε) I{0 ≤ x < 0.125}+ (1 − ε) I{0.125 ≤ x < 0.25} + I{0.25 ≤ x ≤ 1}

s2(x) =
1

1 + 1.27ε

⎛⎝1 + ε

11∑
j=1

hj I{x < pj}
⎞⎠

s3(x) = (1 − ε) I{0 ≤ x ≤ 1} +
ε

0.284

⎛⎝ 11∑
j=1

gj

(
1 +

|x − pj |
wj

)−4
⎞⎠

s4(x) = (1 − ε) I{0 ≤ x < 0.75}+ (1 + 3ε) I{0.75 ≤ x ≤ 1}
s5(x) = (1 − ε) + εβxβ−1

Parameters pj , hj , gj and wj are constant parameters defining the different functions (their values are the same
than in [9]). Parameter ε corresponds to the strength of heterogeneity within a model. Parameter β modifies
the shape of function s5. Functions s1, s2 and s4 are step functions, function s3 shows steep pikes and function
s5 is smooth. All functions have integral equal to 1, so that the expected number of points in the samples is 100.
The last column corresponds to the level, that is the homogeneous Poisson process with intensity 100.

The powers of the test T2 are comparable to those of the tests proposed in [9], for the same expected number
of points. They are better for models s2 and s5, the same for model s4 and worse for models s1 and s3. Notice
that the comparison can not be made rigorous, as the Poisson processes in [9] were defined on the line. The
range of distance r has been lowered for Heinrich test T3 to keep the level acceptable (for r = (0.1, 0.2, 0.5) the
observed level is 55%). Even then T3 performs worse than T2. The Lm test performs better than T2 for step
functions. This may come from the fact that it uses a finer grid of distances r.
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Table 3. Percentile of rejection over 10 000 repetitions of the test with level α = 0.05 for 12
inhomogeneous Poisson processes and the reference homogeneous Poisson process.

model s1 s1 s1 s2 s2 s3 s3 s3 s4 s4 s5 s5 ρ
ε 0.5 0.8 1 0.5 2 0.2 0.4 0.6 0.2 0.4 1 0.6
β 1.5 2
T2, r = (0.1, 0.2, 0.5) 18.3 55.8 84.3 86.5 100 20.9 61.7 90.1 67.6 100 85.9 73.0 5.5
T3, r = (0.03, 0.05, 0.1) 13.7 39.3 71.1 76.4 99.5 20.3 67.4 94.1 45.6 99.8 70.7 61 6.8
Lm 28.9 72.6 95.8 88.7 100 18.3 67.1 97.2 29.7 99.7 88.0 73.6 4.6

4. Conclusion

We provide an efficient test of the null hypothesis of a homogeneous Poisson process for point patterns in a
square domain, by proposing a new correction of edge effects. Sample correction (for each point of the data) has
rarely been questioned since Ripley’s original paper, except by authors claiming test statistics with no correction
as more powerful (see [1,11]). Instead of correcting on each sample to reduce or cancel the bias, we compute the
exact bias, so that we avoid to increase of the variance by discarding some of the observed points. The resulting
test is efficient on samples with a few dozens of points as encountered in actual data sets.

This is a theoretical and practical improvement on Monte-Carlo methods as it is quicker and often more
powerful. Monte-Carlo simulation of the distribution is a good method for small samples but becomes tedious
when the number of points increases. Marcon and Puech [17] computed K for a 36,000-point data set (the
largest ever published as far as we know), but had to limit the number of simulations to 20. With a personal
computer, calculating the distribution of Lm with 10 000 simulations of a 10 000-points set is 2 days long. But
it takes approximatively 3 minutes to compute T2 for three distances with optimized C++ code and 5 minutes
with a R routine [19].

Our work should be extended in two directions: to other domain shapes that are of interest for the practitioners
and to 3-dimensional data for high resolution medical imaging. A further study of the asymptotics of the
distribution of K̂(r) for dependent point process models such as Markov or Cox processes should also be
achieved to inform on the power of the test.

5. Proofs

5.1. Proof of Proposition 2.1

Let U and V be two independent uniform variables on An. The expectations of the Ripley statistics are

EK̂1,n(r) =
1

n2ρ2
E

⎛⎝ ∑
Xi �=Xj∈S

I{d(Xi, Xj) ≤ r}
⎞⎠ =

E (N(N − 1))
n2ρ2

E( I{d(U, V ) ≤ r}) = n2er,n.

EK̂2,n(r) = n2
E

⎛⎝ 1
N(N − 1)

∑
Xi �=Xj∈S

I{d(Xi, Xj) ≤ r}
⎞⎠ = n2

P (N > 1) E( I{d(U, V ) ≤ r})

= n2
(
1 − (1 + ρn2)e−ρn2

)
er,n.

The following lemma allows to conclude:

Lemma 5.1.

er,n =
πr2

n2
− 8r3

3n3
+

r4

2n4
·
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Figure 3. Zones in the square.

Proof. We split An into four parts to compute er,n:

er,n =
∫

ξ∈A1
n

∫
η∈An

I{d(ξ, η) ≤ r} 1
n4

dξdη (5.1)

+
∫

ξ∈A2
n

∫
η∈An

I{d(ξ, η) ≤ r} 1
n4

dξdη (5.2)

+
∫

ξ∈A3
n

∫
η∈An

I{d(ξ, η) ≤ r} 1
n4

dξdη (5.3)

+
∫

ξ∈A4
n

∫
η∈An

I{d(ξ, η) ≤ r} 1
n4

dξdη (5.4)

where (see Fig. 2)

• (interior) A1
n ={ξ, ξ is at distance larger than r from the boundary}

• (one edge) A2
n ={ξ, ξ is at distance less than r from an edge, larger than r from the others}

• (two edges) A3
n ={ξ, ξ is at distance less than r from two edges and larger than r from the corner}

• (corner) A4
n ={ξ, ξ is at distance less than r from the corner}

Note that A2
n, A3

n and A4
n are composed of four parts that contribute identically. We establish formulas only

for one of these parts.

Lemma 5.2. Define function g(x) = arccos(x) − x
√

1 − x2.
If ξ ∈ A1

n, ∫
η∈An

I {d(ξ, η) ≤ r}dη = πr2.

If ξ ∈ A2
n, with n − r < ξ1 < n, x1 = 1

r (n − ξ1),∫
η∈An

I{d(ξ, η) ≤ r}dη = r2(π − g(x1))

If ξ ∈ A3
n, with n − r < ξ1 < n, n − r < ξ2 < n and (x1, x2) = 1

r (n − ξ1, n − ξ2),∫
η∈An

I{d(ξ, η) ≤ r}dη = r2(π − g(x1) − g(x2)).
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If ξ ∈ A4
n, with n − r < ξ1 < n, n − r < ξ2 < n and (x1, x2) = 1

r (n − ξ1, n − ξ2),∫
η∈An

I{d(ξ, η) ≤ r}dη = r2

(
3π

4
+ x1x2 − g(x1) + g(x2)

2

)
·

Note. For 0 ≤ x ≤ 1, function g(x) is the area of the intersection of a ball of radius 1 with a half plane, when
the center of the ball lies outside the half plane at a distance x from its boundary.

Proof. Let B(ξ, r) denote the ball of center ξ and radius r. For the interior points ξ ∈ A1
n, B(ξ, r) ⊂ An.

Let ξ ∈ A2
n. We compute the area of B(ξ, r) ∩ An.∫

η∈An

I{d(ξ, η) ≤ r}dη =
πr2

2
+ 2r2

∫ x1

0

√
1 − t2dt = r2

(
π − arccos(x1) + x1

√
1 − x2

1

)
= r2 (π − g(x1))·

Note that r2g(x) is the part of the ball that lies out of the square An if the center is at distance xr from the
edge of the square.

Let ξ ∈ A3
n. Here the ball intersects two edges of the square and the area of B(ξ, r) ∩ An is∫

η∈An

I{d(ξ, η) ≤ r}dη = r2 (π − g(x1) − g(x2)) .

Let ξ ∈ A4
n. Divide the ball into four quarters along axes parallel to the coordinate axes. One of the quarter is

inside the square, two intersect the edges, leaving outside an area equal to (g(x1) + g(x2))/2. The area of the
intersection of the last quarter with the square is x1x2 so that the area of B(ξ, r) ∩ An is∫

η∈An

I{d(ξ, η) ≤ r}dη = r2

(
3π

4
+ x1x2 − g(x1) + g(x2)

2

)
· �

Proof of Lemma 5.1(continued). The left-hand side of (5.1) is m(A1
n)πr2 = π(n − 2r)2r2. Recall that A2

n is
composed of four parts that contribute identically. Using the integration formula of the arccos function, we get
the integral of g:

G(x) =
∫ x

0

g(u)du = x arccos(x) −
√

1 − x2 +
1
3
(1 − x2)3/2 +

2
3
·

Then the contribution (5.2) is equal to

4r

∫ n−r

r

dξ2

∫ 1

0

r2(π − g(x))dx = 4r3(n − 2r)(π − G(1)) =
(

4π − 8
3

)
r3(n − 2r).

We consider A3
n; the domain of integration is symmetric in (x1, x2) so that the contribution (5.3) is equal to

4r4

∫ 1

0

dx1

∫ 1

√
1−x2

1

(π − 2g(x1))dx2 =r4

(
4π
(
1 − π

4

)
− 8G(1) + 8

∫ 1

0

g(x1)
√

1 − x2
1dx1

)
.

But
∫ 1

0

g(x1)
√

1 − x2
1dx1 =

π2

16
, so that contribution (5.3) is equal to r4

(
4π − π2

2
− 16

3

)
·

We consider A4
n; the contribution (5.4) is equal to

4r4

∫ 1

0

dx1

∫ √
1−x2

1

0

(
3π

4
+ x1x2 − g(x1)

)
dx2 = r4

(
3π2

4
+

1
2
− 4

∫ 1

0

g(x1)
√

1 − x2
1dx1

)
= r4

(
π2

2
+

1
2

)
·

Gathering the four contributions, we get

er,n =
r2

n2

(
π

(
1 − 2r

n

)2

+
(

4π − 8
3

)
r

n

(
1 − 2r

n

)
+
(

4π − 29
6

)
r2

n2

)
=

r2

n2

(
π − 8

3
r

n
+

1
2

r2

n2

)
· �
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5.2. Proof of Proposition 2.2

For u = 1 or 2, we decompose the variance of Ku,An(r) by conditioning the variable with respect to the
number N of points in the sample. Conditionally to N , Ku,An(r) has the form of a U -statistic. Then we apply
the Höffding decomposition to this U -statistic. We use the relation

var (K̂u,An(r)) = var E(K̂u,An(r)|N) + Evar (K̂u,An(r)|N).

We first consider the conditional expectation of K̂u,An(r).

E(K̂1,n(r)|N) =
1

n2ρ2

⎛⎝ N∑
i�=j=1

E I{d(Xi, Xj) ≤ r}
⎞⎠ =

N(N − 1)er,n

n2ρ2
,

E(K̂2,n(r)|N) =
n2

N(N − 1)

N∑
i�=j=1

E I{d(Ui, Uj) ≤ r} = n2er,n I{N > 1}.

Because N is a Poisson variable with intensity ρn2

EN2(N − 1)2 ρ4n8 + 4ρ3n6 + 2ρ2n4.

varN(N − 1) = 4ρ3n6 + 2ρ2n4. (5.5)

Then

var E(K̂1,n(r)|N) =
(4ρn2 + 2)e2

r,n

ρ2
· (5.6)

var E(K̂2,n(r)|N) =n4
P{N > 1}(1 − P{N > 1})e2

r,n = n4e−ρn2
(1 + ρn2)

(
1 − e−ρn2 (

1 + ρn2
))

e2
r,n. (5.7)

We compute the conditional variances.

var (K̂1,n(r)|N) =
1

n4ρ4
var

⎛⎝ N∑
i�=j=1

h(Xi, Xj, r)

⎞⎠ ,

var (K̂2,n(r)|N) =
n4

N2(N − 1)2
var

⎛⎝ N∑
i�=j=1

h(Xi, Xj , r)

⎞⎠ .

Conditionally to N , the locations of the points are independent and uniformly distributed variables Ui over An.
We introduce the Höffding decomposition of the U -statistic kernel h:

h(x, y, r) = h1(x, r) + h1(y, r) + h2(x, y, r),

where h1(x) = E(h(U, V, r)|V = x), (U, V ) being two independent uniform random variables on An.
Then Eh1(U, r) = 0 and E(h2(U, V, r)|U) = E(h2(U, V, r)|V ) = 0, so that

varh(U, V, r) = varh1(U, r) + varh1(V, r) + varh2(U, V, r) = 2Eh2
1(U, r) + varh2(U, V, r).

From
N∑

i�=j=1

h(Ui, Uj , r) = 2(N − 1)
N∑

i=1

h1(Ui, r) +
N∑

i�=j=1

h2(Ui, Uj, r).
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we get

var (K̂1,n(r)|N) =
4(N − 1)2

n4ρ4
var

(
N∑

i=1

h1(Ui, r)

)
+

1
n4ρ4

var

⎛⎝ N∑
i�=j=1

h2(Ui, Uj , r)

⎞⎠
=

4N(N − 1)2

n4ρ4
Eh2

1(U, r) +
2

n4ρ4

N∑
i�=j=1

varh2(Ui, Uj, r)

=
4N(N − 1)2

n4ρ4
Eh2

1(U, r) +
2N(N − 1)

n4ρ4
(varh(U, V, r) − 2Eh2

1(U, r))

=
4N(N − 1)(N − 2)

n4ρ4
Eh2

1(U, r) +
2N(N − 1)

n4ρ4
varh(U, V, r),

Note that the factor 2 in the second line may be surprising in the variance of a sum of independent variables,
but each variance term appears four times in the expansion of the variance of the sum over i 	= j. Now
var h(U, V, r) = er,n − e2

r,n and using factorial moments of the Poisson distribution

E var (K̂1,n(r)|N) =
4n2

ρ
Eh2

1(U, r) +
2
ρ2

(
er,n − e2

r,n

)
. (5.8)

Lemma 5.3 gives the exact value of Eh2
1(U, r). Its proof is postponed at the end of the paper.

Lemma 5.3.

Eh2
1(U, r) =

r5

n5

(
8
3

π − 256
45

)
+

r6

n6

(
11
48

π − 56
9

)
+

8
3

r7

n7
− 1

4
r8

n8
·

With relations (5.6) and (5.8), we get

var (K̂1,n(r)) =
2er,n

ρ2
+

4n2e2
r,n

ρ
+

4n2

ρ
Eh2

1(Uj , r)

=
1
n2

(
2πr2

ρ2
+

4π2r4

ρ

)
− 1

n3

(
16
3

r3

ρ2
+
(

32π

3
+

1024
45

)
r5

ρ

)
+

1
n4

(
r4

ρ2
+
(

59π

12
+

32
9

)
r6

ρ

)
·

Similarly

var (K̂2,n(r)|N) =
4n4 I{N > 1}(N − 2)

N(N − 1)
Eh2

1(U, r) +
2n4 I{N > 1}

N(N − 1)
varh(U, V, r),

E var (K̂2,n(r)|N) = 4n4
E

(
I{N > 1}(N − 2)

N(N − 1)

)
Eh2

1(U, r) + 2n4
E

(
I{N > 1}
N(N − 1)

)(
er,n − e2

r,n

)
.

From this and relation (5.7), we get

var (K̂2,n(r)) = 2n4
E

(
I{N > 1}
N(N − 1)

)(
er,n − e2

r,n

)
+ 4n4

E

(
I{N > 1}(N − 2)

N(N − 1)

)
Eh2

1(Uj , r)

+n4e−ρn2 (
1 + ρn2

) (
1 − e−ρn2 − ρn2e−ρn2

)
e2
r,n.

We now apply the same decomposition to cov (K̂1,n(r), K̂1,n(r′)),

cov (E(K̂1,n(r′)|N), E(K̂1,n(r)|N)) =
(4ρn2 + 2)er′,ner,n

ρ2
· (5.9)
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cov (K̂1,n(r′), K̂1,n(r)|N) =
4(N − 1)2

n4ρ4
cov

(
N∑

i=1

h1(Ui, r
′),

N∑
i=1

h1(Ui, r)

)

+
1

n4ρ4
cov

⎛⎝ N∑
i�=j=1

h2(Ui, Uj , r
′),

N∑
i�=j=1

h2(Ui, Uj, r)

⎞⎠
=

4N(N − 1)(N − 2)
n4ρ4

cov (h1(U, r′), h1(U, r))

+
2N(N − 1)

n4ρ4
cov (h(U, V, r′), h(U, V, r)).

E cov (K̂1,n(r′), K̂1,n(r)|N) =
4n2

ρ
cov (h1(U, r′), h1(U, r)) +

2
ρ2

(er,n − er′,ner,n)·

To compute cov (h1(U, r′), h1(U, r)), the square An should now be split into 16 different zones according to the
4 zones of the preceding section with respect to r and the 4 zones with respect to r′. Because of inclusions, the
actual number of zones to consider reduces to 9. The corresponding computation is easy in the center zone, but
can not be achieved in a close form in the edge bands and in the corner. We consider the following zones:

• (interior) A1,1
n ={ξ, ξ is at distance larger than r′ from the boundary},

• (interior-edge) A1,2
n ={ξ, ξ is at distance between r and r′ from an edge, larger than r′ from the others},

• (edge) A2,2
n ={ξ, ξ is at distance less than r from an edge, larger than r′ from the others},

• (corner) A3,3
n ={ξ, ξ is at distance less than r′ from two edges}.

Denoting x1 = 1
r (n − ξ1) and x′

1 = 1
r′ (n − ξ1) we get

h1(Xj , r
′)h1(Xj , r) =

(
πr′2

n2
− er′,n

)(
πr2

n2
− er,n

)
on A1,1

n ,

=
(

πr′2

n2
− er′,n − r′2

n2
g(x′

1)
)(

πr2

n2
− er,n

)
on A1,2

n ,

=
(

πr′2

n2
− er′,n − r′2

n2
g(x′

1)
)(

πr2

n2
− er,n − r2

n2
g(x1)

)
on A2,2

n .

Denote br,n =
(

π − n2

r2
er,n

)
=

8r

3n
− r2

2n2
·

cov (h1(Xj , r
′), h1(Xj , r)) = C(A1,1

n ) + C(A1,2
n ) + C(A2,2

n ) + C(A3,3
n )

C(A1,1
n ) =

r′2r2

n4

(
1 − 2r′

n

)2

br′,nbr,n

C(A1,2
n ) = 4

(
1 − 2r′

n

)
r′3r2

n5
br,n

∫ 1

r/r′
(br′,n − g(x′

1))dx′
1

C(A2,2
n ) = 4

(
1 − 2r′

n

)
r3r′2

n5

∫ 1

0

(br′,n − g(rx1/r′))(br,n − g(x1))dx1.

The first integral may be expressed in terms of function G, the second integral is elliptic and has to be numerically
evaluated; as the integrand is bounded and very smooth this can be achieved without difficulties. To compute
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the term C(A3,3
n ), we rewrite the different values of function h1 with the help of indicator functions:

hA1(x, r) = br,n I{x1 ≥ 1; x2 ≥ 1}
hA2(x, r) = (br,n − g(x2)) I{x1 ≥ 1; x2 < 1} + (br,n − g(x1)) I{x2 ≥ 1; x1 < 1}
hA3(x, r) = (br,n − g(x1) − g(x2)) I{x1 < 1; x2 < 1; x2

1 + x2
2 ≥ 1}

hA4(x, r) = (br,n − π/4 + x1x2 − (g(x1) + g(x2))/2) I{x2
1 + x2

2 < 1}

For x′ = 1
r′ (n − ξ1, n − ξ2), C(A3,3

n ) = 4
r2r′4

n6

∫ 1

0

∫ 1

0

4∑
i=1

hAi(r′x′/r, r) ×
4∑

i=3

hAi(x′, r′)dx′
1dx′

2

and this integral also can be numerically evaluated.

Note. The whole computation of this term of the covariance could be numerically achieved, but we gain some
useful precision with an exact computation whenever it is possible.

The case of the covariance of K2,n(r) is analogous:

cov (E(K̂2,n(r′)|N), E(K̂2,n(r)|N)) = n4e−ρn2 (
1 + ρn2

)
(1 −e−ρn2

(1 + ρn2))er′,ner,n.

E cov (K̂2,n(r′), K̂2,n(r)|N) = 4n4
E

(
I{N > 1}(N − 2)

N(N − 1)

)
cov (h1(U, r′), h1(U, r))

+ 2n4
E

(
I{N > 1}
N(N − 1)

)
(er,n − er′,ner,n) .

5.3. Proof of Theorem 2.3

We show that any linear combination of the K1,n(rt) is asymptotically normal. Let Λ = (λ1, . . . λd) be a
vector of real coefficients. Define Z1 =

∑d
t=1 λtK1,n(rt). We use the Bernstein blocks technique [3]: we divide

the square An into squares of side p with p = o(n). These squares are separated by gaps of width 2rd so that
the sums over couples of points in each square are independent. The couples of points with at least one point in
the gaps give a negligible contribution, so that the statistic Z1 is equivalent to a sum of independent variables
and asymptotically normal.

Set p = n1/4. Assume that the Euclidean division of n by (p + 2rd) gives a quotient a and a remainder q.
For l = 0, . . . , a, we define the segment Il = [(p + 2rd)l, (p + 2rd)l + p − 1]. We order the set {0, . . . , a}2 by the
lexicographic order. To any integer i such that 1 ≤ i ≤ k = (a + 1)2, corresponds an element (j1, j2) of this set;
we define the block Pi,n = Ijl

× Ij2 and Q = An\ ∪i Pi,n the set of points that are in none of the Pi,n’s. For
each block Pi,n and Q, we define the partial sums:

ui,n =
1

nρ3/2

∑
Xl �=Xm∈Pi,n

d∑
t=1

λt I{d(Xl, Xm) ≤ rt},

vi,n =
1

nρ3/2

∑
Xl∈Pi,n,Xm∈Q

d∑
t=1

λt I{d(Xl, Xm) ≤ rt}

wn =
1

nρ3/2

∑
Xl �=Xm∈Q

d∑
t=1

λt I{d(Xl, Xm) ≤ rt}.

then

n
√

ρ(Z1 − EZ1) =
k∑

i=1

(ui,n − Eui,n) +
k∑

i=1

(vi,n − Evi,n) + wn − Ewn,

We show that the sum of the ui,n converges in distribution to a Gaussian variable and that the other term are
negligible in L2. We check the conditions of the following CLT adapted from [2].



784 G. LANG AND E. MARCON

Theorem 5.4. Let (zi,n)0≤i≤k(n) be an array of random variables satisfying

1. There exists δ > 0 such that
∑k(n)

i=0 E|zi,n|2+δ tends to 0 as n tends to infinity,
2.
∑k(n)

i=0 var zi,n tends to σ2 as n tends to infinity,

then
∑k(n)

i=0 zi,n tends in distribution to N (0, σ2) as n tends to infinity.

To check Condition 1, we compute the fourth order moment of ui,n −Eui,n. Let Ni be the number of points of
S that fall in Pi,n. Denote f(x, y) =

∑d
t=1 λt ( I{d(x, y) ≤ rt} − er,p) =

∑d
t=1 λt h(x, y, rt), then

E((ui,n − Eui,n)4|Ni) =
1

n4ρ6
E

⎛⎝ Ni∑
l �=m=1

f(Ul, Um)

⎞⎠4

Denote f1 and f2 the decomposing functions of f : E(f1(Ul)) = 0, E(f1(Ul)f2(Ul, Um)) = E(f1(Um)f2(Ul, Um)) =
0, for Ul and Um two independent uniform variables on Pi,n.

Ni∑
l �=m=1

f(Ul, Um) = 2(Ni − 1)
Ni∑
l=1

f1(Ul) +
Ni∑

l �=m=1

f2(Ul, Um).

Lemma 5.5. f1 is bounded by Cp−2. f2 is bounded by a constant and f2(x, y) ≤ Cp−2 as soon as ‖x− y‖ > r.

Proof. All the quantities computed in Lemma 5.2 for the four different cases are bounded by a constant so that
E({ I{d(U1, U2) ≤ r}|U1) = O(p−2). As er,p = O(p−2), this is also true for h1(x, r) for any r and then for f1.
Because f2(x, y) = f(x, y) − f1(x) − f1(y), it is bounded by a constant and f2(x, y) = O(p−2) as soon as the
indicator function vanishes.

Define M1 = E

(∑Ni

l=1 f1(Ul)
)4

. Then M1 = NiE(f4
1 (U))+6Ni(Ni−1)E(f2

1 (U))2 and E(Ni−1)4M1 = O(p2).

Define M2 = E

(∑Ni

l �=m=1 f2(Ul, Um)
)4

. Because f2 is zero mean with respect to one coordinate, only the
products where variables appear at least two times contribute.

M2 = 8
Ni∑

l �=m=1

Ef4
2 (Ul, Um) + 48

Ni∑
l �=m �=u=1

Ef2
2 (Ul, Uu)f2

2 (Uu, Um)

+ 96
Ni∑

l �=m �=u=1

Ef2
2 (Ul, Um)f2(Um, Uu)f2(Uu, Ul)

+ 12
Ni∑

l �=m �=u�=v=1

Ef2
2 (Ul, Um)f2

2 (Uu, Uv)

+ 48
Ni∑

l �=m �=u�=v=1

Ef2(Ul, Um)f2(Um, Uu)f2(Uu, Uv)f2(Uv, Ul).

Consider the first sum

Ni∑
l �=m=1

Ef4
2 (Ul, Um) ≤

Ni∑
l �=m=1

P{d(Ul, Um) ≤ r} + CP{d(Ul, Um) > r}p−8 ≤ CNi(Ni − 1)p−2.
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In all the sums, the main term comes from sets of points with all interdistance less than r and the resulting
magnitude of the expectation is O(p2), so that

k∑
i=0

E(ui,n − Eui,n)4 = O(n−2).

Thus condition 1 is realised. To check condition 2, note that the vector (K1,Pi(r1), . . . , K1,Pi(rd)) has a
covariance matrix Σp defined by Proposition 2.2 by substituting p to n in the expressions. The ui,n =
p2√ρ

n

∑d
t=1 λt(K1,Pi(rt) − EK1,Pi(rt)) are i.i.d variables with variance equal to p4ρ

n2 ΛtΣpΛ. But p2ρΣp tends
to Σ as p tends to infinity and

k∑
i=0

varui,n =
kp4ρ

n2
ΛtΣpΛ −→ ΛtΣΛ

so that
∑k

i=1 ui,n tends in distribution to N (0, ΛtΣΛ).
Note that the vi,n are k independent variables. Denote Ni,rd

the number of points Xl in the boundary region
Pi,rd

of Pi,n such that the ball B(Xl, rd) intersects Q and let D(Xl) denote this intersection. Note that

ENi,rd
= ρm(Pi,rd

) ≤ Cprd.

var vi,n ≤ C

n2
E

⎛⎝Ni,rd∑
l=1

NQ∑
m=1

I{Xm ∈ D(Xl)}
⎞⎠2

≤ C

n2
(T1 + T2),

where

T1 = E

Ni,rd∑
l=1

NQ∑
m=1

NQ∑
u=1

I{Xm ∈ D(Xl)} I{Xu ∈ D(Xl)}

T2 = E

Ni,rd∑
l=1

Ni,rd∑
m=1

NQ∑
u=1

I{Xu ∈ D(Xl) ∩ D(Xm)}.

T1 ≤ ENi,rd
EN2

QP
2{Xm ∈ D(Xl)|Xm ∈ Q} ≤ ρ3m(Pi,rd

)(m2(Q) + m(Q))
(

πr2
d

2m(Q)

)2

= O(p).

T2 = E

Ni,rd∑
l=1

Ni,rd∑
m=1

NQ∑
u=1

I{Xm ∈ B(Xl, 2rd)} I{Xu ∈ D(Xl) ∩ D(Xm)}

≤ EN2
i,rd

P{Xm ∈ B(Xl, rd)|Xm ∈ Pi,rd
}ENQP{Xu ∈ D(Xl)|Xu ∈ Q}

≤ ρ3(m2(Pi,rd
) + m(Pi,rd

))
(

πr2
d

m(Pi,rd
)

)
m(Q)

(
πr2

d

2m(Q)

)
= O(p)

and var
(∑k

i=1 vi,n

)
= O

(
kp/n2

)
= O

(
p−1
)
, so that this sum is negligible in L2. Similarly

var (wn) ≤ C

n2
E

⎛⎝ NQ∑
l �=m=1

I{Xm ∈ B(Xl, rd)}
⎞⎠2

≤ C

n2
(T1 + T2),



786 G. LANG AND E. MARCON

where

T1 = E

NQ∑
l=1

NQ∑
m=1

I{Xm ∈ B(Xl, rd)}

≤ ENQ(NQ − 1)P{Xm ∈ B(Xl, rd)|Xm ∈ Q} ≤ m2(Q)
πr2

d

m(Q)
.

T2 = E

NQ∑
l=1

NQ∑
m=1

NQ∑
u=1

I{Xm ∈ B(Xl, rd)} I{Xu ∈ B(Xl, rd)}

≤ EN2
Q(NQ − 1)P2{Xm ∈ B(Xl, rd)|Xm ∈ Q} ≤ (m3(Q) + 2m2(Q))

(
πr2

d

m(Q)

)2

.

Note that m(Q) = O(
√

kn). Then var (wn) = O
(
m(Q)/n2

)
= O

(
p−1
)

and wn is negligible in L2.
Consider now K2,n(r). Define Z2 =

∑d
t=1 λtK2,n(rt) = AN,nZ1 where AN,n = n4ρ2

N(N−1) · We have E(A−1
N,n) = 1

and from (5.5), var (A−1
N,n) =

4
n2ρ

+
2

n4ρ2
· For δ > 0, the Markov inequality gives

P(|A−1
N,n − 1| > δ) ≤ var (A−1

N,n)
δ2

·

Then, with δ = n−1/4,
∞∑

n=1

P(|A−1
N,n−1| > n−1/4) <

∞∑
n=1

4
n3/2ρ

+
2

n7/2ρ2
< ∞. From the Borel–Cantelli lemma, we

get that A−1
N,n converges a.s. to 1. By the Slutsky lemma, AN,nZ1 converges in distribution to N (0, ΛtΣΛ). �

5.4. Proof of Lemma 5.3

This lemma is equivalent to Result 1 of [27], substituting r/n to the parameter h and substracting e2
r,n. From

the computation of the bias, denoting xi = 1
r (n − ξi), we get

h1(ξ, r) =
πr2

n2
− er,n on A1

n

=
r2

n2
(π − g(x1)) − er,n on A2

n

=
r2

n2
(π − g(x1) − g(x2)) − er,n on A3

n

=
r2

n2

(
3π

4
+ x1x2 − g(x1) + g(x2)

2

)
− er,n on A4

n

Integrating on the four zones, we get

E(h1(Xj , r))2 = π2

(
1 − 2r

n

)2
r4

n4
− e2

r,n + T1 + T2 + T3

T1 = 4
(

1 − 2r

n

)
r5

n5

∫ 1

0

(π − g(x1))2dx1

T2 = 4
r6

n6

∫ 1

0

dx1

∫ 1

√
1−x2

1

(π − g(x1) − g(x2))2dx2

T3 = 4
r6

n6

∫ 1

0

dx1

∫ √
1−x2

1

0

(
3π

4
+ x1x2 − g(x1) + g(x2)

2

)2

dx2.
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To rewrite these three terms with the notations of [27], we denote θ = arccos(x1) and φ = arccos(x2).

T1 = 4
(

1 − 2r

n

)
r5

n5

∫ π/2

0

(π − θ + cos(θ) sin(θ))2 sin(θ)dθ

T2 = 4
r6

n6

∫ π/2

0

sin(θ)dθ

∫ π/2−θ

0

(π − θ + cos(θ) sin(θ) − φ + cos(φ) sin(φ))2 sin(φ)dφ

T3 =
r6

n6

∫ π/2

0

sin(θ)dθ

∫ π/2

π/2−θ

(3π/2 + 2 cos(θ) cos(φ) − θ − φ + cos(θ) sin(θ) + cos(φ) sin(φ))2 sin(φ)dφ

=
r6

n6

∫ π/2

0

cos(θ′)dθ′
∫ θ′

0

(π/2 + 2 sin(θ′) sin(φ′) + θ′ + φ′ + cos(θ′) sin(θ′) + cos(φ′) sin(φ′))2 cos(φ′)dφ′.

changing variables by θ′ = π/2 − θ and φ′ = π/2 − φ. Then formulas (5), (6) and (7) in [27] give respectively

T1 =
(

1 − 2r

n

)
r5

n5

(
4π2 − 256

45
− 8π

3

)
(5.10)

T2 =
r6

n6

(
−π3

4
+ 4π2 − 9π

2
− 512

45

)
(5.11)

T3 =
r6

n6

(
π3

4
+

19π

48
+

8
9

)
· (5.12)

Note that the upper bound of the second integral in formula (7) of [27] is a mistyping. Gathering the expression
of er,n, (5.10)–(5.12) gives the result.
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