
ESAIM: PS 18 (2014) 130-144 ESAIM: Probability and Statistics
DOI: 10.1051/ps/2013030 www.esaim-ps.org

DENSITY SMOOTHNESS ESTIMATION PROBLEM USING
A WAVELET APPROACH

Karol Dziedziul
1

and Bogdan Ćmiel
2

Abstract. In this paper we consider a smoothness parameter estimation problem for a density func-
tion. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an
extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness pa-
rameter). The construction of the estimator is based on wavelets coefficients. Although we believe that
the effective estimation of the smoothness parameter is impossible in general case, we can show that it
becomes possible for some classes of the density functions.
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1. Introduction

Let us define a smoothness parameter of a function f ∈ Lp(R), 1 ≤ p < ∞ or f ∈ Cb(R) in case p = ∞
(Cb(R) is the space of all continues and bounded functions) as

s∗p = s∗p(f) = sup{s : f ∈ Bsp∞}. (1.1)

We use usual convention sup ∅ = 0 and sup R = ∞. A definition of Besov spaces Bsp∞ is given below. The
smoothness parameter for Hölder–Zygmund space, i.e. p = ∞ was introduced in [12,19]. The case for p = 2 was
introduced in [11].

The smoothness and regularity of the density function or regression function is essential in analyzing the
rate of convergence of the estimators of that functions. We usually assume that the considered functions are
differentiable (see [14, 23]) or we define the smoothness in terms of Sobolev or Besov spaces (see [4, 9, 10]),
which allow us to replace a discrete smoothness scale by continuous one. The adaptive methods presented in
articles [6, 7, 12, 16] make possible to achieve the optimal rate of convergence (or almost optimal) of a density
estimator when the real smoothness is unknown. There are also non-adaptive methods of estimation which
require the knowledge of the number of derivatives or the exact value of the parameters of Sobolev or Besov
space. In practice, there is a fundamental problem with verifying the smoothness assumption. There are some
methods developed in [18], (see also a discussion in [16]), where Fourier coefficients are used to determine
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whether a function belongs to an anisotropic Sobolev space. In some classical papers [1,17] the smoothness tests
are also studied. In [1] the Sobolev spaces are used which corresponds to the Besov spaces Bs22 so it is in our
area of interest. The paper [13] gives a new light on our effort. This paper confirms the need of estimating the
family of smoothness parameters.

The effective estimation of the smoothness parameter over some wide function classes (like Besov spaces)
seems to be impossible. This problem was previously analyzed by Low [20] and Cai and Low [5]. This of course
does not mean that it is impossible in any case. We show in this paper that there exists some classes of the
density functions, where we can effectively estimate the smoothness parameter of those densities.

On the other hand we have now results of Bull [2, 3], but the relation between our result and his results are
like between a parametric estimation and a confidance interval estimation. In this paper we use the methods
developed in [11]. We concentrate on an estimation of the smoothness parameter. We define a class of the
density functions for which the smoothness estimator is strongly consistent. In consequence we can analyze an
asymptotic behaviour of such estimator and use it in the testing hypothesis problem. This will be done in next
paper. It is also worth to see that our methods allowed to take care of the “Change-point” of the function
smoothness from [17] i.e. to examine the defect of the function smoothness. Although we define the smoothness
in a global way, we can study the problem locally by using wavelet approach (for example, we can check the
smoothness in some neighbourhood of the edge of the support).

The paper is organized as follows. We introduce a wavelet analysis of the Besov spaces and a smoothness
parameter in Section 2. In Section 3 we consider a case of piecewise-smooth density function. In Section 4 we
show that our estimator is “pseudo-consistent” in general case and strongly consistent in the case, where we
assume that the density function is some piecewise-smooth function. In Section 5 we demonstrate the behaviour
of our estimator in a numerical experiment.

2. The smoothness parameter

Let be given r-regular multiresolution analysis (for the definition see [8, 21], Defs. 1, 2 in Sect. 2.2). By [21],
Theorem 3 in Section 3.8 we know that for each integer r ≥ 1 there exists r-regular multiresolution analysis
such that an associated scaling function (a father wavelet) φ and a wavelet (mother wavelet) ψ have compact
support. In this paper we assume that φ and ψ have compact support. We will use following notation:

φk(x) = φ(x − k) ψjk(x) = 2j/2ψ(2jx− k), x ∈ R.

We assume that suppψ = [0, S(r)].
Note that by [8], Corollary 5.5.2 if we have r-regular multiresolution analysis then

∞∫
−∞

xpψ(x)dx = 0 for p = 0, 1, . . . , r. (2.1)

The wavelet coefficients of some function f are denoted by

αk := αk(f) =
∫
R

φk(x)f(x)dx, βjk = βjk(f) :=
∫
R

ψjk(x)f(x)dx.

Let us recall some facts of the wavelets theory and Besov spaces Bspq, (see [15]). The full characterization of
Besov spaces by spline basis coefficients was made in [22]. We will present the Besov space Bsp,∞ characterization
in terms of wavelet coefficients.

A function f ∈ Lp(R) with the following expansion f =
∑
k∈Z

αkφk +
∞∑
j=1

∑
k∈Z

βjkψjk belongs to the Besov space

Bsp∞, for s < r and 1 ≤ p <∞ , if and only if

sup
j≥0

(2j(s−1/p+1/2)||βj·||p) <∞ and ||α||p <∞,

where ‖ · ‖p denote lp norm of the sequences βj· = {βjk}k∈Z, j ≥ 1 and α = {αk}k∈Z.
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Similar for Bs∞,∞ (see [12])

Bs∞,∞ = {f ∈ Cb(R) : {αk(f)} ∈ l∞, sup
j≥0

(2j(s+1/2)‖βj·‖∞) <∞}.

Note that if f ∈ Lp(R) (or f ∈ Cb(R)) and s∗p > 0 then by (1.1)

min{s∗p, r} = sup{s < r : sup
j≥0

2j(s−1/p+1/2)‖βj·‖p <∞}. (2.2)

Now we will prove the following theorem (conf. [11] Thm. 1.1).

Theorem 2.1. Let be given r-regular multiresolution analysis, r ≥ 1. Let 1 ≤ p ≤ ∞. If 0 < s∗p < r then the
set of indices

J := {j ≥ 1 : ‖βj·‖p �= 0}
has infinity many elements and

lim inf
j→∞, j∈J

− log2 ‖βj·‖p
j

= s∗p −
1
p

+
1
2
· (2.3)

Remark 2.2. If we use standard notation log2 0 = −∞ then we state that

lim inf
j→∞

− log2 ‖βj·‖p
j

= s∗p −
1
p

+
1
2
·

Proof. Let us fix p. The proof is similar to the one given in [11]. By (2.2) if the set J has finite number of
elements then s∗p ≥ r which contradicts the assumption 0 < s∗p < r.

Let us denote

s̃ = lim inf
j→∞, j∈J

− log2 ‖βj·‖p
j

+
1
p
− 1

2
·

If s < s̃ then there exists Ns such that for all j ≥ Ns (recall that j ∈ J)

s− 1
p

+
1
2
<

− log2 ‖βj·‖p
j

·

Consequently for all j ≥ Ns
2j(s−

1
p + 1

2 )‖βj·‖p < 1.

This shows that s̃ ≤ s∗p. On the other hand from the definition of s̃, for every ε > 0 there exists subsequence
jn ∈ J and Nε such that for jn > Nε

− log2 ‖βjn·‖p
jn

≤ s̃− 1
p

+
1
2

+ ε.

Now if we take any s > s̃ and 2ε = s− s̃ then for jn > Nε

2jn(s− 1
p + 1

2 )‖βjn·‖p > 2jn(s−s̃−ε) = 2jnε,

which implies that s̃ ≤ s∗p and completes the proof of Theorem 2.1. �

This theorem shows, how we can determine the smoothness of a given function. Of course, there is a problem
with calculating the lower limit of a sequence. In practice we are only able to calculate a finite number of some
sequence values so it is impossible to effectively approximate the lower limit of that sequence. It can be shown,
however, that in some cases we can change “lim inf” to “lim” in Theorem 2.1. For example, if function f is
a spline of degree m, then the sequence in Theorem 2.1 is convergent and the smoothness parameter is equal
to s∗p(f) = m + 1/p (we will show this in the next section). Even if we cannot change “lim inf” to “lim” (the
sequence is not convergent), then we can always evaluate smoothness parameter subjectively by observing the
behaviour of that sequence.
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3. Piecewise-smooth function case

Let us recall that supp ψ = [0;S(r)]. It is an essential assumption that a wavelet ψ satisfies following condition:
there exist 0 < δ1 < 1 such that

|ψ(x)| > 0, x ∈ (0, 1 + δ1]. (3.1)

Let us denote

Ψ1 := min
0≤n≤r

{∣∣∣∣∣
∫ δ1

0

(δ1 − u)nψ(u)du

∣∣∣∣∣
}
.

It is easy to see that if ψ ∈ C(R) satisfies (3.1) then Ψ1 > 0 and for all δ1 < η ≤ 1 + δ1 and for all 0 ≤ n ≤ r we
have ∣∣∣∣∣∣

η∫
0

(η − u)nψ(u)du

∣∣∣∣∣∣ ≥ Ψ1. (3.2)

By the moment condition (2.1) we have also equivalent form of (3.2) i.e. for all δ1 < η ≤ 1 + δ1∣∣∣∣∣∣
η∫

0

(η − u)nψ(u)du

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
S(r)∫
η

(η − u)nψ(u)du

∣∣∣∣∣∣∣ ≥ Ψ1. (3.3)

We will show that all Daubechies wavelets Nψ, where N = 2, . . . , 20 (see [8], Chapt. 6) satisfy the condition (3.1).
We have similar result for a function Nφ, (3.9). For Daubechies wavelets we will also use the notation DB2,
DB3, . . ., DB20.

Since we assume that supp Nψ = [0;S(r) = 2N − 1] it means that we use Daubechies wavelets translated by
N + 1 and hence supp Nφ = [N + 1; 3N ]

Lemma 3.1. Daubechies wavelets Nψ satisfy the condition (3.1), where N = 2, . . . , 20.

Proof. The proof is based on numerical results for a cascade algorithm for Daubechies father wavelets Nφ,
N = 2, 3, . . . (we assume that numerical error is negligible). We know that a difference in L∞ norm between
a numerical father wavelet Ñφj , for fixed j ≥ 0 given in dyadic points k2−j, k ∈ Z, interpolate by piecewise
constant or piecewise linear and a father wavelet Nφ is given by

‖Nφ− Ñφj‖L∞ ≤ C2−αj

(see [8], Prop. 6.5.2). On the other hand the main property of the wavelets ([8], Chapt. 6, Prop. 6.3.6) states
that there is a sequence bk such that

Nψ(x) =
∑
k∈Z

(−1)kb−k+1Nφ(2x − k) (3.4)

and
Nφ(x) =

∑
k∈Z

bkNφ(2x− k), x ∈ R. (3.5)

This formula is used to calculate the numerical mother wavelet Ñψj using the numerical father wavelet Ñφj .
Consequently we know a difference in L∞ norm between the numerical mother wavelet Ñψj and the mother
wavelet Nψ. If j ≥ 0 is large enough one can observe that for numerical mother wavelet Ñψj (N = 2, 3, . . . 20),
there exists βN1 < 1/2 < 1 < βN2 and cN > 0 such that

|Ñψj(x)| ≥ cN > 0, for x ∈ [βN1, βN2]. (3.6)
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Figure 1. The example of Daubechies, numerical mother wavelet for N = 12 (S(r) = 23) on
the interval [0; 1], in a dyadic points k2−10.

By (3.6) and the numerical accuracy

|Nψ(x)| ≥ cN/2 > 0, for x ∈ [βN1, βN2]. (3.7)

Hence to show (3.1) it is sufficient to prove it only for x ∈ (0, 1/2]. Since Nψ and Nφ have compact supports
by (3.4) we have

Nψ(x) = b−N−1Nφ(2x+N + 1), for x ∈ [0, 1/2]. (3.8)

We know that b−N−1 �= 0 so we have to check if

|Nφ(x)| > 0, for x ∈ (N + 1, N + 1 + 1]. (3.9)

Calculating the values of the numerical father wavelets in the interval [N + 1 + 1/2, N + 1 + 1] (recall that we
shift the wavelet by N + 1) and taking to account the numerical precision we get

|Nφ(x)| > CN > 0, x ∈ [N + 1 + 1/2, N + 1 + 1]. (3.10)

Now by (3.5) we get

|Nφ(x)| = |bN+1||Nφ(2x− (N + 1))|, x ∈ [N + 1, N + 1 + 1/2],

and by (3.10) we have

|Nφ(x)| > CN |bN+1| > 0, x ∈ [N + 1 + 1/4, N + 1 + 1/2],

and so on. Finally we get (3.9) which finishes the proof. �

Now let us introduce for m ∈ N and for arbitrary a ∈ R two functions

V 1
a (x) = V 1

m,a(x) = (x − a)m+

V 2
a (x) = V 2

m,a(x) = (a− x)m+ .
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Figure 2. The example of Daubechies, numerical father wavelet for N = 12 on the interval
[13; 14], in a dyadic points k2−10.

This functions do not belong to Lp(R) or Cb(R) but it makes sense to use them in the following lemma:

Lemma 3.2. Let be given r-regular multiresolution analysis, where r ≥ 1 and m ≤ r. If ψ(x) satisfies (3.2)
and 1 ≤ p ≤ ∞ then

lim
j→∞

− log2 ‖βij·‖p
j

= m+
1
2
,

where βijk :=
∫
R

ψjk(x)V ia (x)dx, for i = 1, 2.

Proof. Let 1 ≤ p <∞. It is sufficient to prove that for all j large enough

Ψp1
2jp(1/2+m)

≤ ‖βij·‖pp ≤
Ψp2 (S(r))p(m+1)

2jp(1/2+m)(m+ 1)p
, (3.11)

for i = 1, 2 where
Ψ2 = sup |ψ(u)|.

Note that if 	x
 = sup{n ∈ Z : n < x} then

‖β1
j·‖pp =

1
2jp(1/2+m)

∑
�2ja	−S(r)+1≤k≤�2ja	

∣∣∣∣∣∣
+∞∫

2ja−k

(u − (2ja− k))mψ(u)du

∣∣∣∣∣∣
p

,

‖β2
j·‖pp =

1
2jp(1/2+m)

∑
�2ja	−S(r)+1≤k≤�2ja	

∣∣∣∣∣∣∣
2ja−k∫
−∞

((2ja− k) − u)mψ(u)du

∣∣∣∣∣∣∣
p

.
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The right side of the inequality (3.11) is obvious. To prove the left side let us take such k that η = 2ja − k ∈
[δ1, 1 + δ1] (see (3.2)). Then

‖β1
j·‖pp ≥

1
2jp(1/2+m)

∣∣∣∣∣∣∣
S(r)∫
η

(u − η)mψ(u)du

∣∣∣∣∣∣∣
p

≥ Ψp1
2jp(1/2+m)

· (3.12)

We proceed analogously for i = 2. A case p = ∞ is a consequence of the following inequality: for all k ∈ Z,
i = 1, 2 and j ≥ 0

|βijk| ≤ ‖βij·‖∞ ≤ ‖βij·‖1. �

Using the lemma above we will prove the following corollary (by C−1 we denote measurable functions)

Corollary 3.3. Let p > 1. Let f ∈ Cm−1(R) be a bounded function with a compact support, where m ∈ N∪{0},
f ∈ Cm+1((−∞, a]) and f ∈ Cm+1([a,∞)) but f (m)(a−) �= f (m)(a+). Let be given r-regular multiresolution
analysis, where r ≥ 1 and m+ 1 ≤ r. If ψ(x) satisfies (3.2) then

lim
j→∞

− log2 ‖βj·(f)‖p
j

+
1
p
− 1

2
= s∗p(f) = m+

1
p
,

where βjk(f) :=
∫
R

ψjk(x)f(x)dx.

Remark 3.4. We will prove Corollary 3.3 in a special case for p = 2. The prove in the other cases is a simple
analogy.

Proof. Let us consider a function h ∈ Cm+1(R\{a}) with a compact support such that in a neighbourhood of a

h(x) =
(−1)m+1

(m+ 1)!
f (m+1)(a−)[(a− x)+]m+1 +

1
(m+ 1)!

f (m+1)(a+)[(x − a)+]m+1

+
(−1)m

m!
f (m)(a−)[(a− x)+]m +

1
m!
f (m)(a+)[(x − a)+]m.

Note that f − h belongs to Cm+1(R) and have a compact support. In fact,

(f − h)(m+1)(a+) = (f − h)(m+1)(a−) = 0

and
(f − h)(m)(a+) = (f − h)(m)(a−) = 0.

By Cm+1
c let us denote a space of m + 1 times differentiable functions with compact supports. We have an

embedding Cm+1
c ⊂ Wm+1

2 ⊂ Bs2,∞ for all s < m + 1, where Wm+1
2 denotes the Sobolev space. Hence we

conclude that
‖βj·(f − h)‖2 ≤ C1 · 2−(m+3/4)j

for some constant C1 and j large enough.
Let

h1(x) =
(−1)m

m!
f (m)(a−)[(a− x)+]m +

1
m!
f (m)(a+)[(x − a)+]m.
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From the proof of Lemma 3.2 it follows for the function h1 that we have

‖βj·(h1)‖2
2 =

1
22j(1/2+m)

∑
�2ja	−S(r)+1≤k≤�2ja	

∣∣∣∣∣∣ 1
m!
f (m)(a+)

+∞∫
2ja−k

(u− (2ja− k))mψ(u)du

+
(−1)m

m!
f (m)(a−)

2ja−k∫
−∞

((2ja− k) − u)mψ(u)du

∣∣∣∣∣∣∣
2

=
1

22j(1/2+m)

(
1
m!

)2 ∑
�2ja	−S(r)+1≤k≤�2ja	

∣∣∣∣∣∣f (m)(a+)

+∞∫
2ja−k

(u− (2ja− k))mψ(u)du

+ f (m)(a−)

2ja−k∫
−∞

((u − 2ja− k))mψ(u)du

∣∣∣∣∣∣∣
2

.

Hence using (3.12) in Lemma 3.2 and the moment condition (2.1)

‖βj·(h1)‖2
2 ≥ Ψ2

1

22j(1/2+m)

(
1
m!

)2

|f (m)(a+) − f (m)(a−)|2.

Once again from Lemma 3.2 it follows that for h there are constants C2 and C3 such that

C2 · 2−(m+1/2)j ≤ ‖βj·(h)‖2 ≤ C3 · 2−(m+1/2)j .

From the triangle inequality we have

‖βj·(f)‖2 ≤ ‖βj·(f − h)‖2 + ‖βj·(h)‖2 ≤ C1 · 2−(m+3/4)j + C3 · 2−(m+1/2)j ≤ 2C3 · 2−(m+1/2)j.

Since ‖βj·(h)‖2 ≥ C2 · 2−(m+1/2)j and ‖βj·(f − h)‖2 ≤ C1 · 2−(m+3/4)j then for j large enough we have

‖βj·(f)‖2 ≥ | ‖βj·(h)‖2 − ‖βj·(f − h)‖2 | = ‖βj·(h)‖2 − ‖βj·(f − h)‖2 ≥

≥ C3 · 2−(m+1/2)j − C1 · 2−(m+3/4)j ≥ 1
2
C3 · 2−(m+1/2)j

and the proof is complete. �

Remark 3.5. It is easy to see that the corollary above is true for a piecewise-smooth function f i.e. f is a
finite combination of functions from Corollary 3.3 with different points a.

Let us note that in Corollary 3.3 the lower bound for ‖βj·‖2
2 for the piecewise constant function depends on the

function

Fψ(x) =
∑

�x	−S(r)+1≤k≤�x	

(∫ ∞

x−k
ψ(u)du

)2

The graphs of functions Fψ in case of Daubechies wavelets DB2-DB20 are presented below.
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Figure 3. Function Fψ for Daubechies, numerical mother wavelets DB2-DB20, divided on four
groups due to the graphs similarities.

Since we assume that r ≥ 1 for r-multiresolution analysis then we can use only DB3-DB20. The smoothness
of Nφ is given in [8], Chapt. 7.1. One can see from the above pictures that for higher N Daubechies wavelets
perform better evaluation in Corollary 3.3 (the higher minx∈[0;1] Fψ(x) the better lower bound for ‖βj·‖2

2).

4. Estimation

We will prove the following theorem:

Theorem 4.1. Let be given r-regular multiresolution analysis, r ≥ 1. Let X1, X2, . . . , Xn be a sequence of
i.i.d random variables with density f , where n is the size of the experiment. Assume that for some a, b ∈ R,
suppf ⊂ [a; b] and ||f ||∞ <∞. If 0 < s∗p = s∗p(f) < r, where 2 ≤ p ≤ ∞ then

lim inf
j→∞

− log2 ‖β̂j·‖p
j

= s∗p −
1
p

+
1
2
.a.e.,

where β̂jk = 1
n

n∑
i=1

ψjk(Xi), and n  22j(r−1/p+1). For simplicity let

j = 	log2 n/(2(r − 1/p+ 1))
.
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Proof. Let 2 ≤ p ≤ ∞. Let us evaluate

E(β̂jk) =
1
n

n∑
i=1

E(ψjk(Xi)) =
∫
R

ψjk(x)f(x)dx = βjk,

E(β̂jk)2 =
1
n2

E

(
n∑
i=1

ψ2
jk(Xi) + 2

∑
m<l

ψjk(Xm)ψjk(Xl)

)

≤ 1
n

∫
R

ψ2
jk(x)f(x)dx +

n− 1
n

β2
jk ≤ ||f ||∞

n
+ β2

jk·

Let us denote
Kj := {k ∈ Z : supp ψjk ∩ [a; b] �= ∅} .

It is easy to see that |Kj | < L2j for some constant L. Now, using Markov’s inequality, we have

P

(∑
k∈Z

(β̂jk − βjk)2 > 2−2j(s−1/p+1/2)

)
≤

E

( ∑
k∈Kj

(β̂jk − βjk)2
)

2−2j(s−1/p+1/2)
≤ ‖f‖∞L22j(s−1/p+1)

n
·

Moreover since p ≥ 2 then

P
(
‖β̂j· − βj·‖p > 2−j(s−1/p+1/2)

)
≤ P

(
‖β̂j· − βj·‖2 > 2−j(s−1/p+1/2)

)
If we take n = 	22j(r−1/p+1)
 then, we obtain

∀ 0 < s < r

∞∑
j=0

P
(
‖β̂j· − βj·‖p > 2−j(s−1/p+1/2)

)
<∞.

By a triangle inequality ∣∣∣||β̂j·||p − ||βj·||p
∣∣∣ ≤ ‖β̂j· − βj·‖p,

so we have for all C0 and

∀ 0 < s < r

∞∑
j=0

P
(∣∣∣||β̂j·||p − ||βj·||p

∣∣∣ > C2−j(s−1/p+1/2)
)
<∞. (4.1)

Since
P
(∣∣∣||β̂j·||p − ||βj·||p

∣∣∣ > 2−j(s−1/p+1/2)
)
≥ P

(
||β̂j·||p > 2−j(s−1/p+1/2) + ||βj·||p

)
,

then

∀ 0 < s < r
∞∑
j=0

P
(
||β̂j·||p > 2−j(s−1/p+1/2) + ||βj·||p

)
<∞.

By Theorem 2.1 we know that, for each 0 < s < s∗p, there exists Ns ∈ N, such that for j > Ns ||βj·||p ≤
2−j(s−1/p+1/2) , so

∀ 0 < s < s∗p ∃ N ∈ N

∞∑
j=N

P
(
||β̂j·||p ≥ 2 · 2−j(s−1/p+1/2)

)
<∞,
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and consequently

∀ 0 < s < s∗p ∃ N ∈ N

∞∑
j=N

P

(
− log2 ||β̂j·||p

j
≤ s− 1

p
+

1
2
− 1
j

)
<∞.

Now we apply Borel–Cantelli Lemma to any given s < s∗p and we get that for almost all ω ∈ Ω

− log2 ||β̂j·(ω)||p
j

> s− 1
p

+
1
2
− 1
j

for j ≥ Ns(ω), where Ω is the probability space of the observations and β̂jk(ω) = 1
n

n∑
i=1

ψjk(Xi(ω)). We conclude

that for all 0 < s < s∗p

lim inf
j→∞

− log2 ||β̂j·||2
j

≥ s− 1
p

+
1
2
a.e. (4.2)

On the other hand, by Theorem (2.1) we know that, if s > s∗p, there exists a subsequence (jk)∞k=1, such that
||βjk·||2 ≥ 2−jk(s− 1

p + 1
2 ), so

P
(
||β̂jk·||p <

1
2
· 2−jk(s− 1

p + 1
2 )

)
= P

(
||βjk·||p − ||β̂jk·||p > ||βjk·||p −

1
2
· 2−jk(s− 1

p + 1
2 )

)
≤ P

(∣∣∣||βjk·||p − ||β̂jk·||p
∣∣∣ > 1

2
· 2−jk(s− 1

p + 1
2 )

)
.

Now using (4.1) we obtain

∀ s∗p < s < r ∃ (jk)∞k=1

∞∑
k=1

P
(
||β̂jk·||2 <

1
2
· 2−jk(s− 1

p + 1
2 )

)
<∞, (4.3)

so

∀ s∗p < s < r ∃ (jk)∞k=1

∞∑
k=1

P

(
− log2 ||β̂jk·||2

jk
> s− 1

p
+

1
2

+
1
jk

)
<∞.

From Borel–Cantelli Lemma we conclude, that for s∗p < s < r

lim inf
j→∞

− log2 ||β̂j·||p
j

≤ s− 1
p

+
1
2
a.e. (4.4)

Now let us denote

As =

{
ω ∈ Ω : lim inf

j→∞
− log2 ||β̂j·(ω)||p

j
≥ s− 1

p
+

1
2

}
·

and

Bs =

{
ω ∈ Ω : lim inf

j→∞
− log2 ||β̂j·(ω)||p

j
≤ s− 1

p
+

1
2

}
·

By (4.2) and (4.4) we know that

∀ 0 < s < s∗p P (As) = 1, and ∀ s∗p < s < r P (Bs) = 1.

Since {
ω ∈ Ω : lim inf

j→∞
− log2 ||β̂j·(ω)||p

j
= s∗p −

1
p

+
1
2

}
=

∞⋂
k=1

As∗p− 1
k
∩

∞⋂
k=1

Bs∗p+ 1
k
,
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we have

P

(
lim inf
j→∞

− log2 ||β̂j·||p
j

= s∗p −
1
p

+
1
2

)
= 1 − P

( ∞⋃
k=1

A
′
s∗p− 1

k
∪

∞⋃
k=1

B
′
s∗p+ 1

k

)

≥ 1 −
∞∑
k=1

P
(
A

′
s∗p− 1

k

)
−

∞∑
k=1

P
(
B

′
s∗p+ 1

k

)
= 1,

which completes the proof of the Theorem 4.1. �

Since lim inf
j→∞

ŝ∗p = s∗p a.e. where ŝ∗p = − log2 ‖β̂j·‖p/j + 1
p − 1

2 , we will call it “pseudo-consistent”. Using the

same technique one can prove:

Corollary 4.2. Let 2 ≤ p ≤ ∞. Let X1, X2, . . . Xn be a sequence of i.i.d random variables with density f , where
f satisfies conditions from Corollary 3.3 and ψ(x) satisfies (3.2), then

lim
j→∞

− log2 ‖β̂j·‖p
j

= n+
1
2

= s∗p −
1
p

+
1
2

a.e.,

where β̂jk = 1
n

n∑
i=1

ψjk(Xi), and n  22j(r−1/p+1).

Proof. We repeat the whole proof of the Theorem 4.1 with only one difference: condition (4.3) is now true for
almost all j ∈ N not only for some subsequence. Hence using Borel–Cantelli Lemma we obtain

∀ s∗ < s < r lim sup
j→∞

− log+
2 ||β̂j·||2
j

≤ s a.e.

Combinig this with condition (4.2) we finish the proof of Corollary 4.2. �

Remark 4.3. The Corollary above, says that ŝ∗p = − log2 ‖β̂j·‖p/j + 1
p − 1

2 is a strongly consistent estimator
of the smoothness parameter if f is a piecewise-smooth function.

5. Numerical Experiment

In this section, we will check the behaviour of the estimator in a numerical experiment, when p = 2. For
an estimation the Daubechies wavelets “DB12” with the support [0;S(r)] = [0; 23] were used. Two values of
the experiment size: n = 216 and n = 224 were used. For the calculation of the wavelets values, a dyadic
discretization was used. For obtaining wavelets values between the discretization points, a linear interpolation
was used. The distance between discretization points on the resolution level j was 2−(j+10).

Data samples was generated from the following density functions:

• Step function:

f(x) = 0.5 · �[0;1/8](x) + 1.5 · �(1/8;2/8](x) + 1 · �(2/8;3,8](x) + 1.5 · �(3/8;4/8](x)
+ 0.5 · �(4/8;5,8](x) + 1.5 · �(5/8;6/8](x) + 1 · �(6/8;7/8](x) + 0.5 · �(7/8;1](x)

• Polyline function:

f(x) = 4x · �[0;0.5](x) − 4(x− 1) · �(0.5;1](x)
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Figure 4. Estimation results for the “Step function”. From top: Density function, The esti-
mators of the smoothness parameter for 6 generations of the data with n = 216, The estimators
of the smoothness parameter for 6 generations of the data with n = 224. On the horizontal axis
(for the estimation result pictures) we have the resolution levels.

The real smoothness parameter for the “Step function” is s∗1 = 0.5 and for the “Polyline function” is s∗2 = 1.5.
The estimators were constructed for 6 artificial data samples generated for each function and they are presented
in Figures 4 and 5.

The sequence length should by as long as possible, but if it is too long, then the variances of the β̂jk is too high,
and the ||β̂j· ||2 is to high, consequently the values of the sequence are false low (can even be negative). Concerning
that the number of the resolution levels (sequence length) have been selected subjectively to compromise those



DENSITY SMOOTHNESS ESTIMATION PROBLEM USING A WAVELET APPROACH 143

Figure 5. Similar to Figure 4 but for the “Polyline function”.

requirements. In practice we can always take j = 	log2 n/(2r+ 1)
 but in our experiment we have considered a
little bit larger resolution levels to check the estimator behaviour (in the equation j = 	log2 n/(2r+ 1)
 instead
of r one can take any number higher than the real smoothness of function f).
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