SURVIVAL PROBABILITIES OF AUTOREGRESSIVE PROCESSES

Christoph Baumgarten ${ }^{1}$

Abstract

Given an autoregressive process X of order p (i.e. $X_{n}=a_{1} X_{n-1}+\cdots+a_{p} X_{n-p}+Y_{n}$ where the random variables Y_{1}, Y_{2}, \ldots are i.i.d.), we study the asymptotic behaviour of the probability that the process does not exceed a constant barrier up to time N (survival or persistence probability). Depending on the coefficients a_{1}, \ldots, a_{p} and the distribution of Y_{1}, we state conditions under which the survival probability decays polynomially, faster than polynomially or converges to a positive constant. Special emphasis is put on $\operatorname{AR}(2)$ processes.

Mathematics Subject Classification. 60G15, 60G50.
Received May 31, 2012. Revised October 8, 2012.

1. Introduction

For fixed $p \geq 1$, define $X_{n}=\sum_{k=1}^{p} a_{k} X_{n-k}+Y_{n}, n \geq 0$ with the convention that $X_{n}=0$ for $n \leq 0$. Throughout the paper, we assume that $\left(Y_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. (nondegenerate) random variables. $\left(X_{n}\right)_{n \geq 1}$ is called an autoregressive process of order $p(\mathrm{AR}(p)$-process). We sometimes refer to the random variables $\left(Y_{n}\right)_{n \geq 1}$ as innovations. Denote by $p_{N}(x)$ the probability that the process X stays below x until time N, i.e.

$$
p_{N}(x):=\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right), \quad N \geq 1, x \geq 0
$$

We refer to p_{N} as the survival probability up to time N, and we write p_{N} instead of $p_{N}(0)$ in the sequel.
The aim of this paper is to study the asymptotic behaviour of $p_{N}(x)$ as $N \rightarrow \infty$. Sometimes, the problem of determining the asymptotic behaviour of $p_{N}(x)$ is referred to as one-sided exit or one-sided barrier problem since $p_{N}(x)=\mathbb{P}\left(\tau_{x}>N\right)$ where $\tau_{x}:=\inf \left\{n \geq 0: X_{n}>x\right\}$. Such asymptotic results are known in a number of special cases such as random walks, integrated random walks, fractional Brownian motion and AR(1)-processes. The study of survival probabilities is motivated by several applications such as the inviscid Burgers equation [16] or zeros of random polynomials [5]. We refer to the recent survey of Aurzada and Simon [2] and [12] for further information, applications and references. For instance, if X is a random walk ($p=1, a_{1}=1$), it holds that $p_{N}(x) \sim c(x) N^{-1 / 2}$ if $\mathbb{E}\left[Y_{1}\right]=0$ and $\mathbb{E}\left[Y_{1}^{2}\right]=1$ (see e.g. Thm. XII.7.1a in [9]). In [14], the authors study AR(1)processes with $a_{1} \in(0,1)$ and show that $p_{N}(x)$ decays at least exponentially for a large class of distributions. Bounds on the exponential rate of decay for $\operatorname{AR}(1)$-processes with Gaussian innovations can be found in [1].

[^0]Besides, the decay of the survival probability is known for integrated random walks $\left(p=2, a_{1}=2, a_{2}=-1\right)$: if $\mathbb{E}\left[Y_{1}\right]=0, \mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$, it holds that $p_{N}(x) \asymp N^{-1 / 4}$ (see [4] and the references therein).

Taken as a whole, very little is known about the decay of p_{N} for AR processes except in the few cases mentioned above. As noted in Dembo et al. [4], this would be of much interest in view of the frequent appearance of AR-processes and survival probabilities in physical and ecomomic models. Here we investigate the behaviour of the survival probability for such processes under various conditions on the distribution of the innovations. Since an $\operatorname{AR}(p)$-process X can be written as $X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k}$ where the $\left(c_{n}\right)$ solve the difference equation $c_{n}=a_{1} c_{n-1}+\cdots+a_{p} c_{n-p}$ with suitable inital conditions, we search criteria for the sequence (c_{n}) that allow us to characterize the survival probability. Specifically, we are interested in the following question for $\operatorname{AR}(p)-$ processes: when is p_{N} of polynomial order, when does p_{N} converge to a positive limit and when is the decay faster than any polynomial? This classification seems natural if one recalls the results for AR(1)-processes $X_{n}=\rho X_{n-1}+Y_{n}$ where $c_{n}=\rho^{n}$ for all n. In this case, the behaviour of the survival probability ranges from exponential decay for $\rho<1$, polynomial decay if $\rho=1$ and $\mathbb{E}\left[Y_{1}\right]=0$ to convergence to a positive constant if $\rho>1$.

As we will see, the sequence $\left(c_{n}\right)$ often has a much more complex form if $p \geq 2$ so that results for $\operatorname{AR}(1)-$ processes generally cannot be extended directly to higher order processes. We will derive criteria that allow for the classification of the asymptotic behaviour of the p_{N} as above. Particular emphasis is put on AR(2)-processes.

Let us introduce some notation and conventions: If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are two functions, we write $f \precsim g(x \rightarrow \infty)$ if $\limsup _{x \rightarrow \infty} f(x) / g(x)<\infty$ and $f \asymp g$ if $f \precsim g$ and $g \precsim f$. Moreover, $f \sim g(x \rightarrow \infty)$ if $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. If $\left(X_{t}\right)_{t \geq 0}$ is a stochastic process, it will often be convenient to write $X(t)$ instead of X_{t}. If X and Y are random variables, we write $X \stackrel{d}{=} Y$ to denote equality in distribution.

The remainder of this article is organized as follows. After presenting the main results for $\mathrm{AR}(2)$ processes below, we start with some preliminaries on autoregressive processes in Section 2. In Section 3, we state general conditions ensuring that p_{N} decays exponentially or at least faster than any polynomial. Special emphasis is put on the case that $\left(c_{n}\right)_{n \geq 0}$ is absolutely summable and $\operatorname{AR}(2)$-processes. We also prove exponential lower bounds for certain classes of AR-processes. We then determine the region where the survival probability decays polynomially for $\mathrm{AR}(2)$-processes in Section 4 , before briefly treating the case that p_{N} converges to a positive constant in Section 5.

1.1. Main results for $\mathbf{A R}(2)$ processes

Let us illustrate our main result when X is $\operatorname{AR}(2)$, i.e. $X_{n}=a_{1} X_{n-1}+a_{2} X_{n-2}+Y_{n}$ with $\left(Y_{n}\right)_{n \geq 1}$ i.i.d. Recall that $X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k}$ for $n \geq 1$. We decompose \mathbb{R}^{2} into three disjoint regions C, E and P (see Fig. 1) defined as follows:

$$
\begin{aligned}
C:= & \left\{\left(a_{1}, a_{2}\right): a_{1} \geq 2, a_{1}^{2}+4 a_{2}>0\right\} \cup\left\{\left(a_{1}, a_{2}\right): a_{1} \in(0,2), a_{1}+a_{2}>1\right\} \\
& \cup\left\{\left(a_{1}, a_{2}\right): a_{1}^{2}+4 a_{2}=0, a_{1}>2\right\} \cup\left\{\left(a_{1}, a_{2}\right): a_{1}=0, a_{2}>1\right\}, \\
P:= & \left\{\left(a_{1}, a_{2}\right): a_{1}+a_{2}=1, a_{2} \in[-1,1]\right\}, \\
E: & =\mathbb{R}^{2} \backslash(C \cup P) .
\end{aligned}
$$

Depending on the membership of $\left(a_{1}, a_{2}\right)$ to one of these sets, we can characterize the behaviour of the survival probability under certain conditions on the law of Y_{1}.

If $\left(a_{1}, a_{2}\right) \in P$, the survival probability decays polynomially if $\mathbb{E}\left[Y_{1}\right]=0$ under suitable moment conditions. The choice $a_{1}=2, a_{2}=-1$ corresponds to an integrated random walk where $p_{N} \asymp N^{-1 / 4}$ if $\mathbb{E}\left[Y_{1}\right]=0$ and $\mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$, see [4]. If $a_{1}+a_{2}=1$ with $\left|a_{2}\right|<1$, we will see that X can be seen as a perturbed random walk since $c_{n}=c+C \epsilon^{n}$ where $|\epsilon|<1$. Moreover, X can also be written as an integrated AR(1)-process. The process corresponding to $a_{1}=0, a_{2}=1$ describes two independent random walks such that its survival probability is the square of that of a random walk.

Figure 1. The regions C and $E . P$ corresponds to the dotted line. The dashed line is the boundary of C whereas E is open.

Theorem 1.1. Let $\left(a_{1}, a_{2}\right) \in P \backslash\{(2,-1)\}$. Assume that $\mathbb{E}\left[Y_{1}\right]=0$ and that $\mathbb{E}\left[\mathrm{e}^{\left|Y_{1}\right|^{\alpha}}\right]<\infty$ for some $\alpha>0$. Then

$$
p_{N}=N^{-1 / 2+o(1)} \quad\left(\left|a_{2}\right|<1\right), \quad p_{N} \asymp N^{-1} \quad\left(a_{2}=1\right) .
$$

Next, we also prove that the survival probability decays faster than any polynomial if $\left(a_{1}, a_{2}\right) \in E$ under certain conditions on the law of Y_{1}.

Theorem 1.2. Let $\left(a_{1}, a_{2}\right) \in E$. Assume that $\mathbb{P}\left(Y_{1}>0\right) \in(0,1), \mathbb{E}\left[\mathrm{e}^{\left|Y_{1}\right|^{\alpha}}\right]<\infty$ for some $\alpha>0$ and that the characteristic function φ of Y_{1} satisfies $\varphi(t) \rightarrow 0$ as $|t| \rightarrow \infty$. Then $p_{N} \precsim \exp (-\lambda N / \log N)$ for some $\lambda=\lambda\left(a_{1}, a_{2}\right)>0$.

Actually, we can show that p_{N} decays at least exponentially on most parts of E under various conditions on Y_{1}. The reason for the rapid decay of the survival probability on E can be explained as follows: either $c_{n} \rightarrow 0$ exponentially fast or $\left(c_{n}\right)$ oscillates and diverges to $\pm \infty$.

If $\left(a_{1}, a_{2}\right) \in C$, we will see that $c_{n}=\exp (\lambda n(1+o(1))$ for some $\lambda>0$. One therefore expects that the process stays below a constant barrier at all times with positive probability. This is confirmed by the following theorem:

Theorem 1.3. Let $\left(a_{1}, a_{2}\right) \in C$. Assume that $\mathbb{P}\left(Y_{1}<0\right)>0$ and $\mathbb{P}\left(Y_{1} \geq x\right) \precsim(\log x)^{-\alpha}$ as $x \rightarrow \infty$ for some $\alpha>1$. Then it holds that

$$
\mathbb{P}\left(\sup _{n \geq 1} X_{n} \leq x\right)=\lim _{N \rightarrow \infty} p_{N}(x)>0, \quad x \geq 0
$$

Note that the assumption $\mathbb{E}\left[Y_{1}\right]=0$ is essential for the polynomial behaviour of p_{N} if $\left(a_{1}, a_{2}\right) \in P$. For instance, if $\left(S_{n}\right)_{n \geq 1}$ is a random walk, it is known that the survival probability can decay polynomially or exponentially if $\mathbb{E}\left[S_{1}\right]>0[6]$ whereas it converges to a positive constant if $\mathbb{E}\left[S_{1}\right]<0$. In contrast, if $\left(a_{1}, a_{2}\right) \in E \cup C$, the behaviour of p_{N} is more stable in the sense that Theorems 1.3 and 1.2 do not rely on the condition $\mathbb{E}\left[Y_{1}\right]=0$.

The best results can be obtained if the innovations are Gaussian. In that case, one can actually prove that p_{N} admits an exponential upper bound for all $\left(a_{1}, a_{2}\right) \in E$. Summing up, this leads to the following theorem:

Theorem 1.4. If Y_{1} is Gaussian with zero mean, the following statements hold:

1. $\lim _{N \rightarrow \infty} p_{N}=p_{\infty}>0$ if and only if $\left(a_{1}, a_{2}\right) \in C$,
2. $p_{N} \sim c N^{-1}$ iff $\left(a_{1}, a_{2}\right)=(0,1)$, and $p_{N} \asymp N^{-1 / 4}$ iff $\left(a_{1}, a_{2}\right)=(2,-1)$,
3. $p_{N}=N^{-1 / 2+o(1)}$ if and only if $\left(a_{1}, a_{2}\right) \in P$ and $\left|a_{2}\right|<1$, and
4. $p_{N} \precsim \mathrm{e}^{-\lambda N}$ for some $\lambda>0$ if and only if $\left(a_{1}, a_{2}\right) \in E$.

The theorems above are mostly corollaries to more general theorems that are also applicable to $\operatorname{AR}(p)-$ processes if $p \geq 3$ (see e.g. Thms. 3.2 and 3.10 and Props. 3.17 and 5.1 below). We will indicate possible extensions troughout the article. The main advantage of focussing on $\operatorname{AR}(2)$-processes consists of the fact that we have an explicit solution of the difference equation for the sequence $\left(c_{n}\right)_{n \geq 0}$. For instance, this allows us to explicitly describe the parameters $\left(a_{1}, a_{2}\right)$ such that $c_{n} \rightarrow 0$.

Even for $\mathrm{AR}(2)$-processes, one is forced to distinguish a variety of cases that require different treatment. It is clear that this becomes much more complicated for processes of higher order. Finally, let us mention that the class of $\mathrm{AR}(p)$-processes contains p-times integrated centered random walks $S^{(p)}$ as a special case (i.e. $S^{(1)}$ is a centered random walk, and $\left.S_{n}^{(p)}=\sum_{k=1}^{n} S_{k}^{(p-1)}\right)$. Here, the behaviour of the survival probability is not known for $p \geq 3$.

2. Autoregressive processes

We begin by recalling a few facts about $\operatorname{AR}(p)$-processes. For fixed $p \geq 1$, define $X_{n}=\sum_{k=1}^{p} a_{k} X_{n-k}+Y_{n}$, $n \geq 0$ with the convention that $X_{n}=0$ for $n \leq 0$ where $\left(Y_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. random variables. One verifies that $X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k}$ where

$$
c_{n}=0, \quad n<0, \quad c_{0}=1, \quad c_{n}=\sum_{k=1}^{p} a_{k} c_{n-k}, \quad n \geq 1
$$

In other words, $\left(c_{n}\right)_{n \geq 0}$ solves the linear difference equation

$$
c_{n}=a_{1} c_{n-1}+\ldots a_{p} c_{n-p}, n \geq p
$$

with initial conditions

$$
c_{0}=1, \quad c_{1}=a_{1} c_{0}, \quad c_{2}=a_{1} c_{1}+a_{2} c_{0}, \quad \ldots, \quad c_{p-1}=a_{1} c_{p-2}+\cdots+a_{p-1} c_{0}
$$

Solving this equation amounts to finding the roots $s_{1}, \ldots, s_{p} \in \mathbb{C}$ of the characteristic polynomial $f_{p}(\cdot)$, given by $f_{p}(x):=x^{p}-\sum_{k=1}^{p} a_{k} x^{p-k}, x \in \mathbb{R}$. If $p=2$, the roots s_{1}, s_{2} of $f_{2}(\lambda)=\lambda^{2}-a_{1} \lambda-a_{2}$ are given by

$$
\begin{equation*}
s_{1}:=\left(a_{1}+h\right) / 2, \quad s_{2}:=\left(a_{1}-h\right) / 2, \quad h:=\sqrt{a_{1}^{2}+4 a_{2}} \in \mathbb{C} \tag{1}
\end{equation*}
$$

Taking into account the inital conditions $c_{0}=1, c_{1}=a_{1}$, one can show that

$$
c_{n}=\left\{\begin{array}{lll}
h^{-1}\left(s_{1}^{n+1}-s_{2}^{n+1}\right), & n \geq 0, & a_{1}^{2}+4 a_{2} \neq 0 \tag{2}\\
\left(a_{1} / 2\right)^{n}(n+1), & n \geq 0, & a_{1}^{2}+4 a_{2}=0
\end{array}\right.
$$

If $a_{1}^{2}+4 a_{2}<0$, writing $s_{1}=r \mathrm{e}^{i \varphi}$ and $s_{2}=\bar{s}_{1}=r \mathrm{e}^{-i \varphi}$ in polar form, elementary manipulations show that the solution is given by

$$
\begin{equation*}
c_{n}=2\left|a_{2}\right|^{(n+1) / 2} \sin ((n+1) \varphi) / \tilde{h}, \tag{3}
\end{equation*}
$$

where

$$
\tilde{h}=\sqrt{-\left(a_{1}^{2}+4 a_{2}\right)}>0, \quad \varphi= \begin{cases}\arctan \left(\tilde{h} / a_{1}\right) \in(0, \pi / 2), & a_{1}>0 \\ \pi / 2, & a_{1}=0 \\ \pi+\arctan \left(\tilde{h} / a_{1}\right) \in(\pi / 2, \pi), & a_{1}<0\end{cases}
$$

Remark 2.1. It holds that $c_{n} \rightarrow 0$ if and only if $\max \left\{\left|s_{1}\right|,\left|s_{2}\right|\right\}<1$ which is equivalent to the conditions

$$
a_{1}+a_{2}<1, \quad a_{2}<1+a_{1}, \quad a_{2}>-1,
$$

see Theorem 2.37 of [7].

Figure 2. The region of parameters $\left(a_{1}, a_{2}\right)$ where $c_{n} \rightarrow 0$.

Remark 2.2. Note that the convention that $X_{n}=0$ for $n<0$ is not standard to define autoregressive processes. It is often customary to define $\operatorname{AR}(p)$-processes as follows, see e.g. Chapter 3 in [3]: If $\left(Y_{n}\right)_{n \in \mathbb{Z}}$ is a sequence of i.i.d. random variables, $X=\left(X_{n}\right)_{n \in \mathbb{Z}}$ is $\operatorname{AR}(p)$ if

$$
X_{n}=a_{1} X_{n-1}+\cdots+a_{p} X_{n-p}+Y_{n}, \quad n \in \mathbb{Z}
$$

Moreover, X is called causal if there exists a deterministic sequence $\left(c_{n}\right)_{n \geq 0}$ with $\sum\left|c_{n}\right|<\infty$ such that $X_{n}=\sum_{k=0}^{\infty} c_{n} Y_{n-k}$.

By Theorem 3.1.1 of [3], X is causal if and only if the polynomial $p(z)=1-a_{1} z-\cdots-a_{p} z^{p}$ has no zeros in $\{z \in \mathbb{C}:|z| \leq 1\}$. In that case, the coefficients c_{n} are determined by the following relation $\sum_{k=0}^{\infty} c_{k} z^{k}=1 / p(z)$ for $|z| \leq 1$. Equating the coefficients of z^{k}, one easily verifies (or see Sect. 3.3 in [3]) that the sequence $\left(c_{n}\right)_{n \geq 0}$ satisfies the same recursion equation with the same initial conditions as above. Hence, if X is a causal $\operatorname{AR}(p)-$ process, we can decompose it for $n \geq 1$ in the following way:

$$
X_{n}=\sum_{k=0}^{n-1} c_{k} Y_{n-k}+\sum_{k=n}^{\infty} c_{k} Y_{n-k}=\sum_{k=1}^{n} c_{n-k} Y_{k}+\sum_{k=0}^{\infty} c_{n+k} Y_{-k}=X_{n}^{(1)}+X_{n}^{(2)}
$$

Note that $X^{(1)}$ and $X^{(2)}$ are independent and that $X^{(1)}$ is an $\operatorname{AR}(p)$-process in the sense of this article. The term $X^{(2)}$ can be seen as a small perturbation since $\mathbb{E}\left[\left|X_{n}^{(2)}\right|\right] \leq \mathbb{E}\left[\left|Y_{1}\right|\right] \sum_{k=n}^{\infty} c_{k} \rightarrow 0$.

Moreover, the fact that $c_{n} \rightarrow 0$ allows us to apply Theorem 3.5 below if $X \operatorname{AR}(p)$ in the sense of Brockwell and Davis. By using the alternative definition above, we can also define autoregressive processes when c_{n} does not go to zero and we get a much larger class of processes including, for example, random walks.

We will use different methods to prove certain statements about the survival probability depending on the parameters $\left(a_{1}, a_{2}\right)$. To this end, set

$$
\begin{aligned}
& E_{1}:=\left\{\left(a_{1}, a_{2}\right): a_{1}<0, a_{2}>0, a_{2}>1+a_{1}\right\}, \quad E_{2}:=(-\infty, 0]^{2}, \\
& E_{3}:=\left\{\left(a_{1}, a_{2}\right): a_{1}>0, a_{1}^{2}+4 a_{2}<0\right\}
\end{aligned}
$$

Figure 3 will be helpful to visualize the regions that will be considered separately below.

Figure 3. The regions E_{1}, E_{2}, E_{3} and C.

Let us also comment briefly on the dependence of the survival probability on the barrier x for $\operatorname{AR}(p)$-processes. In principle, the behaviour of the survival probability can vary significantly for different barriers. An extreme example is an $\operatorname{AR}(1)$-process $Z_{n}=\rho Z_{n-1}+Y_{n}$ where $\rho \in(0,1)$ with $\mathbb{P}\left(Y_{1}=1\right)=\mathbb{P}\left(Y_{1}=-1\right)=1 / 2$. It is known that $p_{N} \precsim \exp (-\lambda N)$ for some $\lambda>0$ (see Thm. 3.1 below), whereas $p_{N}(x)=1$ for all $x \geq 1 /(1-\rho)$ since $\left|X_{n}\right|=\left|\sum_{k=1}^{n} \rho^{n-k} Y_{k}\right| \leq \sum_{k=0}^{\infty} \rho^{k}=1 /(1-\rho)$.

On the other hand, if $c_{n} \geq \delta>0$ for all $n \geq 0$ and $\mathbb{P}\left(Y_{1} \leq-\epsilon\right)>0$ for some $\epsilon>0$, one can show that $p_{N}(x) \asymp p_{N}$ as $N \rightarrow \infty$ for all $x \geq 0$. Indeed, note that if $Y_{1} \leq-\epsilon$, it follows that $X_{n}=c_{n-1} Y_{1}+\sum_{k=2}^{n} c_{n-k} Y_{k} \leq$ $-\epsilon \delta+\sum_{k=2}^{n} c_{n-k} Y_{k}$, so that

$$
\begin{aligned}
p_{N}=\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq 0\right) & \geq \mathbb{P}\left(Y_{1} \leq-\epsilon\right) \mathbb{P}\left(\sup _{n=2, \ldots, N} \sum_{k=2}^{n} c_{n-k} Y_{k} \leq \delta \epsilon\right) \\
& \geq \mathbb{P}\left(Y_{1} \leq-\epsilon\right) p_{N}(\delta \epsilon) .
\end{aligned}
$$

Iteration shows that $p_{N} \geq \mathbb{P}\left(Y_{1} \leq-\epsilon\right)^{L} p_{N}(L \delta \epsilon)$ for $L=1, \ldots, N$. Hence, if $x \geq 0$, take L with $L \delta \epsilon \geq x$ to get that $\mathbb{P}\left(Y_{1} \leq-\epsilon\right)^{L} p_{N}(x) \leq p_{N} \leq p_{N}(x)$ for all N large enough.

3. Exponential bounds

3.1. Exponential upper bounds

Let us begin with a trivial observation: If $a_{1} \leq 0, \ldots, a_{p} \leq 0$, we have that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq 0\right) \leq \mathbb{P}\left(Y_{1} \leq 0\right)^{N},
$$

since $X_{1} \leq 0, \ldots, X_{n} \leq 0$ implies that $Y_{k} \leq-a_{1} X_{k-1}-\cdots-a_{p} X_{k-p} \leq 0$ for all $k=1, \ldots, n$. If $p=2$, this shows that p_{N} decays exponentially on E_{2}, see Figure 3.

As we will see in the sequel, exponential decay of p_{N} occurs for two differnt reasons: first, if $c_{n} \rightarrow 0$ and second, if $\left(c_{n}\right)_{n \geq 0}$ oscillates and diverges exponentially fast.

Let us first consider the case that c_{n} goes to zero. Recall that for $\operatorname{AR}(1)-$ processes $\left(Z_{n}\right)_{n \geq 1}$ with $Z_{n}=$ $\rho Z_{n-1}+Y_{n}$ for $\rho \in(0,1), c_{n}=\rho^{n} \rightarrow 0$ and p_{N} decays exponentially under mild assumptions on the distribution of Y_{1} by Theorem 1 of [14]:
Theorem 3.1. Let $0<\rho<1, x \geq 0$ and assume that $\mathbb{E}\left[\left(Y_{1}^{-}\right)^{\delta}\right]<\infty$ for some $\delta \in(0,1)$ and $\mathbb{P}\left(Y_{1}>x(1-\rho)\right)>0$. Then $\mathbb{E}\left[\exp \left(\alpha \tau_{x}\right)\right]<\infty$ for some $\alpha>0$.

We now state a similar weaker result that provides a simple criterion for $\operatorname{AR}(p)$-processes to ensure that p_{N} decays faster to zero than any polynomial.
Theorem 3.2. Let $\left(c_{k}\right)_{k \geq 0}$ denote a sequence with $c_{0}=1$ and $A:=\sum_{k=0}^{\infty}\left|c_{k}\right|<\infty$ such that $\sum_{k=q}^{\infty}\left|c_{k}\right| \leq C \mathrm{e}^{-\lambda q}$ for every $q \geq 1$ where $C, \lambda>0$ are constants. Assume that there is $\gamma>0$ with $\min \left\{\mathbb{P}\left(Y_{1}<-\gamma\right), \mathbb{P}\left(Y_{1}>\gamma\right)\right\}>0$ and that $\mathbb{E}\left[\left|Y_{1}\right|^{\delta}\right]<\infty$ for some $\delta>0$. Let $X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k}$. Then for $x \in[0, \gamma A)$, there is $c(x)>0$ such that

$$
p_{N}(x) \precsim \exp (-c(x) \sqrt{N}), \quad N \rightarrow \infty .
$$

Moreover, if $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ for some $\alpha>0$ and $x \in[0, \gamma A)$, there is $c(x)>0$ such that

$$
p_{N}(x) \precsim \exp (-c(x) N / \log N), \quad N \rightarrow \infty .
$$

Proof. For $q \geq 1$, define $Z_{q, n}=\sum_{k=n-q}^{n} c_{n-k} Y_{k}$ for $n \geq q+1$. Note that $Z_{q, n}$ is measurable w.r.t. $\sigma\left(Y_{n-q}, \ldots, Y_{n}\right)$ which implies that $\left(Z_{q, n(q+1)}\right)_{n \geq 1}$ defines a sequence of i.i.d. random variables with $Z_{q, q+1}=X_{q+1}$. We will show that $Z_{q, n}$ is a good approximation of X_{n} if q is large. We then obtain an estimate on $p_{N}(x)$ by computing the survival probability of the independent random variables $\left(Z_{q,(q+1) n+1}\right)_{n \geq 1}$.

First, observe that

$$
\begin{align*}
\mathbb{P}\left(\sup _{n=q+2, \ldots, N}\left|X_{n}-Z_{q, n}\right|>u\right) & \leq \sum_{n=q+2}^{N} \mathbb{P}\left(\left|\sum_{k=1}^{n-q-1} c_{n-k} Y_{k}\right|>u\right) \\
& =\sum_{n=q+2}^{N} \mathbb{P}\left(\left|\sum_{k=q+1}^{n-1} c_{k} Y_{k}\right|>u\right)=: h_{N}(u) . \tag{4}
\end{align*}
$$

In the first equality, we have used that the Y_{k} are i.i.d., and therefore exchangeable.
Hence,

$$
\begin{align*}
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) & \leq \mathbb{P}\left(\sup _{n=q+2, \ldots, N} Z_{q, n} \leq x+\epsilon\right)+h_{N}(\epsilon) \\
& \leq \mathbb{P}\left(\sup _{n=1, \ldots,\lfloor(N-1) /(q+1)\rfloor} Z_{q, n(q+1)+1} \leq x+\epsilon\right)+h_{N}(\epsilon) \\
& =\mathbb{P}\left(Z_{q, q+2} \leq x+\epsilon\right)^{\lfloor(N-1) /(q+1)\rfloor}+h_{N}(\epsilon), \tag{5}
\end{align*}
$$

where we have used the fact that $\left(Z_{q, n(q+1)+1}\right)_{n \geq 1}$ is an i.i.d. sequence. Since the $\left(Y_{n}\right)$ are i.i.d. (and therefore exchangeable), we get for $y \in \mathbb{R}$ that

$$
\begin{equation*}
\mathbb{P}\left(Z_{q, q+2} \leq y\right)=\mathbb{P}\left(\sum_{k=0}^{q} c_{k} Y_{k+1} \leq y\right) \rightarrow \mathbb{P}\left(\sum_{k=0}^{\infty} c_{k} Y_{k+1} \leq y\right), \quad q \rightarrow \infty, \tag{6}
\end{equation*}
$$

since the series $\sum_{k=0}^{\infty} c_{k} Y_{k+1}=: Z$ converges a.s. by Kolmogorov's Three Series Theorem. Next, $\mathbb{P}(Z \leq y)<1$ for every $0 \leq y<\gamma A$ by Theorem 3.7.5 of [13]. Then for $0 \leq y<\gamma A$, by (6), there is $\rho=\rho(y)<1$ such that $\mathbb{P}\left(Z_{q, q+2} \leq y\right) \leq \rho$ for all q sufficiently large.

Note that

$$
\sup _{n=q+1, \ldots, N}\left|\sum_{k=q+1}^{n} c_{k} Y_{k}\right| \leq \sup _{l=q+1, \ldots, N}\left|Y_{k}\right| \sum_{k=q+1}^{\infty}\left|c_{k}\right| \leq C \mathrm{e}^{-\lambda q} \sup _{l=q+1, \ldots, N}\left|Y_{k}\right|
$$

so we see that

$$
\begin{equation*}
h_{N}(u) \leq \sum_{n=q+1}^{N} \mathbb{P}\left(\sup _{k=q+1, \ldots, N}\left|Y_{k}\right|>\mathrm{e}^{\lambda q} u / C\right) \leq N^{2} \mathbb{P}\left(\left|Y_{1}\right|>\mathrm{e}^{\lambda q} u / C\right) \tag{7}
\end{equation*}
$$

Let $q=q_{N}:=\lfloor\beta \sqrt{N}\rfloor-1, \beta>0$. If $u>0$ is such that $x+u<\gamma A$, we deduce from (5) and (7) (using Chebychev's inequality) that

$$
p_{N}(x) \leq \rho^{\sqrt{N} / \beta}+N^{2} \mathbb{E}\left[\left|Y_{1}\right|^{\delta}\right](u / C)^{-\delta} \mathrm{e}^{-\delta \lambda \beta \sqrt{N}}
$$

By choosing β sufficiently large, the theorem follows under the assumption $\left|Y_{1}\right|^{\delta}$ is integrable. If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$, the estimate on h_{N} becomes

$$
h_{N}(u) \leq N^{2} \mathbb{P}\left(\left|Y_{1}\right|>\mathrm{e}^{\lambda q} u / C\right) \leq N^{2} \exp \left(-\mathrm{e}^{\alpha \lambda q}(u / C)^{\alpha}\right) \mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]
$$

In particular, with $q=q_{N}=\lfloor\kappa \log N\rfloor$, if κ is large enough, this implies together with (5) that, for some $c(x)>0$,

$$
p_{N}(x) \precsim N^{2} \mathrm{e}^{-N^{2}}+\rho^{\left\lfloor N /\left(q_{N}+1\right)\right\rfloor} \precsim \exp (-c(x) N / \log N), \quad N \rightarrow \infty .
$$

The proof of Theorem 3.2 reveals that fast decay of p_{N} can be explained intuitively as follows: if we write $X_{n}=\sum_{k=1}^{n-q-1} c_{n-k} Y_{k}+\sum_{k=n-q}^{n} c_{n-k} Y_{k}$, the first summand is typically small if q is large and $c_{n} \rightarrow 0$. Hence,

$$
\left.\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq\right)\right) \approx \mathbb{P}\left(\sup _{n=q+1, \ldots, N} \sum_{k=n-q}^{n} c_{n-k} Y_{k} \leq 0\right) \approx \mathbb{P}\left(\sum_{k=1}^{q+1} c_{n-k} Y_{k} \leq 0\right)^{N / q}
$$

Remark 3.3. If $\left(c_{k}\right)_{k \geq 0}$ denote a sequence with $c_{0}=1$ and $\sum_{k=0}^{\infty}\left|c_{k}\right|<\infty$ and $\left|Y_{1}\right| \leq M$ a.s. for some $M<\infty$, one can prove in an analogous way that even $p_{N} \precsim \exp (-c N)$ for some $c>0$ since $h_{N}(u)$ in the proof of Theorem 3.2 vanishes for q large enough.

Remark 3.4. As it was already remarked in [14], if $\left(c_{k}\right)_{k \geq 0}$ denotes a sequence of positive numbers, one has that

$$
X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k} \geq \sum_{k=1}^{n} c_{n-k} Y_{k} 1_{\left\{Y_{k} \leq M\right\}}=\sum_{k=1}^{n} c_{n-k} \tilde{Y}_{k}=: \tilde{X}_{n}
$$

such that $\mathbb{P}\left(X_{n} \leq x, \forall n \leq N\right) \leq \mathbb{P}\left(\tilde{X}_{n} \leq x, \forall n \leq N\right)$. Hence, if the c_{n} are positive, one can assume without loss of generality that the innovations are bounded from above in order to establish an upper bound on the survival probability. Hence, the moment conditions of Theorem 3.2 only apply to Y_{1}^{-}in that case.

For AR(2)-processes, Theorem 3.2 is applicable if $a_{1}+a_{2}<1, a_{2}<a_{1}+1$ and $a_{2}>-1, c f$. Remark 2.1 and Figure 2. Moreover, the preceding theorem can be generalized easily to cover more general processes (such as autoregressive moving average models ARMA (p, q) and moving average processes of infinte order MA (∞), see Sect. 3 in [3]):

Theorem 3.5. Let $\left(c_{k}\right)_{k \in \mathbb{Z}}$ denote a sequence with $c_{0}=1, A:=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|<\infty$ and $\sum_{|k| \geq q}\left|c_{k}\right| \leq$ $C \mathrm{e}^{-\lambda q}$ for all $q \geq 1$ and some $\lambda>0$. Let $\left(Y_{k}\right)_{k \in \mathbb{Z}}$ be a sequence of i.i.d. random variables such that
$\min \left\{\mathbb{P}\left(Y_{1}>\gamma\right), \mathbb{P}\left(Y_{1}<-\gamma\right)\right\}>0$ for some $\gamma>0$ and $\mathbb{E}\left[\left|Y_{1}\right|^{\delta}\right]<\infty$ for some $\delta>0$. Let $X_{n}:=$ $\sum_{k=-\infty}^{\infty} c_{n-k} Y_{k}$ for $n \in \mathbb{Z}$. If $x \in[0, \gamma A)$, it holds for some $c(x)>0$ that

$$
\mathbb{P}\left(\sup _{|n| \leq N} X_{n} \leq x\right) \precsim \exp (-c(x) \sqrt{N}), \quad N \rightarrow \infty
$$

Moreover, if $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ for some $\alpha>0$ and $x \in[0, \gamma A)$, there is $c(x)>0$ such that

$$
\mathbb{P}\left(\sup _{|n| \leq N} X_{n} \leq x\right) \precsim \exp (-c(x) N / \log N), \quad N \rightarrow \infty .
$$

Proof. X_{n} is well defined for every $n \in \mathbb{Z}$ by Kolmogorov's Three Series Theorem. The proof is then very similar to that of Theorem 3.2. We define $Z_{q, n}:=\sum_{k=n-q}^{n+q} c_{n-k} Y_{k}$. Note that $\left(Z_{q, n(2 q+1)}\right)_{n \in \mathbb{Z}}$ are i.i.d. random variables with $Z_{q, 0}=\sum_{k=-q}^{q} c_{k} Y_{k}$. The remainder of the proof is along the same lines of the proof of Theorem 3.2.

In certain special cases, we can improve Theorem 3.2. Namely, if $\left(c_{n}\right)$ is a sequence of positive numbers and $c_{n}=\rho^{n}(1+o(1))$ where $\rho \in(0,1)$, it follows from Theorem 3.1 that p_{N} goes to zero exponentially fast under mild assumptions on Y_{1} :

Proposition 3.6. Let $\left(c_{n}\right)_{n \geq 0}$ be a sequence such that $\alpha C \rho^{n} \leq c_{n} \leq C \rho^{n}$ for all $n \geq 0$ where $\rho \in(0,1), 0<\alpha<$ 1 , $C>0$. Assume that $\mathbb{E}\left[\left(Y_{1}^{-}\right)^{\delta}\right]<\infty$ for some $\delta \in(0,1)$. Let $x \geq 0$ be such that $\mathbb{P}\left(Y_{1} \geq x(1-\rho) /(\alpha C)\right)>0$, and $X_{n}:=\sum_{k=1}^{n} c_{n-k} Y_{k}$. Then there is some $\lambda=\lambda(x)>0$ such that $p_{N}(x) \precsim \exp (-\lambda N)$.

Proof. Define the i.i.d. random variables $\tilde{Y}_{k}:=Y_{k} 1_{\left\{Y_{k}<0\right\}}+\alpha Y_{k} 1_{\left\{Y_{k}>0\right\}}, k \geq 1$. Since $c_{k} \geq 0$ for all k, we obtain that

$$
X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k} \geq \sum_{k=1}^{n} C \rho^{n-k} Y_{k} 1_{\left\{Y_{k}<0\right\}}+\sum_{k=1}^{n} \alpha C \rho^{n-k} Y_{k} 1_{\left\{Y_{k}>0\right\}}=C \sum_{k=1}^{n} \rho^{n-k} \tilde{Y}_{k}=: C Z_{n}
$$

where $Z_{n}:=\rho Z_{n-1}+\tilde{Y}_{n}$. In particular, we conclude that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq x / C\right)
$$

Now $\mathbb{P}\left(\tilde{Y}_{1}>x(1-\rho) / C\right)=\mathbb{P}\left(Y_{1} \geq x(1-\rho) /(\alpha C)\right)>0$ by the choice of x. Hence, the result follows from Theorem 1 of [14] (Thm. 3.1 above).

The preceding proposition yields the following corollary for $\mathrm{AR}(2)$-processes:
Corollary 3.7. Let $a_{1} \in(0,2), a_{2}<0$ with $a_{1}+a_{2}<1$ and $a_{1}^{2}+4 a_{2}>0$. Assume that $\mathbb{E}\left[\left(Y_{1}^{-}\right)^{\delta}\right]<\infty$ for some $\delta \in(0,1)$ and $\mathbb{P}\left(Y_{1} \geq y\right)>0$ for every y. For every $x \geq 0$, there is $\lambda=\lambda(x)>0$ such that $p_{N}(x) \precsim \exp (-\lambda N)$.

Proof. It is not hard to check that $0<s_{2}<s_{1}<1$. Hence, $c_{n}=s_{1}^{n}\left(s_{1}-s_{2}\left(s_{2} / s_{1}\right)^{n}\right) / h$ and $h^{-1}\left(s_{1}-s_{2}\right) s_{1}^{n} \leq$ $c_{n} \leq h^{-1} s_{1}^{n+1}$ for all n. The result follows from Proposition 3.6.

If $\left|Y_{1}\right| \leq M$ a.s., the preceding corollary is not applicable. However, we already know that $p_{N} \precsim \mathrm{e}^{-c N}$ for some $c>0$ in that case, see Remark 3.3.

Let us now establish exponential upper bounds for p_{N} for certain distributions if the sequence $\left(c_{n}\right)$ oscillates and diverges exponentially. The proof relies on the following proposition.

Proposition 3.8. Let $\rho \in(-1,1)(\rho \neq 0)$ and set $Z:=\sum_{n=1}^{\infty} \rho^{n} Y_{n}$. Moreover, suppose that $\mathbb{E}\left[\left|Y_{1}\right|^{a}\right]<\infty$ for some $a>0$. Let φ denote the characteristic function of Y_{1} and assume that there are $\Delta \in(0,|\rho|)$ and $t_{0}>0$ such that $|\varphi(t)| \leq \Delta$ forall $|t| \geq t_{0}$. It follows that $\mathbb{P}(|Z| \leq \epsilon) \precsim \epsilon$ as $\epsilon \downarrow 0$.

Proof. Z is well-defined and its characterisitic function $\tilde{\varphi}$ is given by $\tilde{\varphi}(t)=\prod_{n=1}^{\infty} \varphi\left(\rho^{n} t\right)$, see e.g. Section 3.7 of [13]. Let us show that $\tilde{\varphi}$ is absolutely integrable. If this holds, by Theorem 3.2.2 of [13], Z admits a continuous density g given by

$$
g(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{-i x t} \tilde{\varphi}(t) \mathrm{d} t, \quad x \in \mathbb{R}
$$

In particular, g is bounded implying that $\mathbb{P}(|Z| \leq \epsilon) \leq C \epsilon$ for any $\epsilon \geq 0$.
To prove the integrability of $\tilde{\varphi}$, let Δ and t_{0} be as in the statement of the proposition and note that

$$
|\tilde{\varphi}(t)|=\prod_{n=1}^{\infty}\left|\varphi\left(\rho^{n} t\right)\right| \leq \Delta^{N(t)}
$$

where $N(t)=\#\left\{n \geq 1:\left|\rho^{n} t\right| \geq t_{0}\right\}$. One verifies that $N(t)=\left\lfloor\left(\log (t)-\log \left(t_{0}\right)\right) / \log (1 /|\rho|)\right\rfloor$ so that

$$
|\tilde{\varphi}(t)| \leq \exp \left(\log \Delta\left(\frac{\log |t|-\log \left(t_{0}\right)}{\log (1 /|\rho|)}-1\right)\right)=C|t|^{-\alpha}
$$

where C depends on t_{0}, ρ and Δ only and $\alpha:=\log (1 / \Delta) / \log (1 /|\rho|)>1$. This shows that $|\tilde{\varphi}(t)|$ is integrable over \mathbb{R}.

Remark 3.9. Recall that $\lim _{|t| \rightarrow \infty} \mathbb{E}\left[\mathrm{e}^{i t X}\right]=0$ if X has an absolutely continuous distribution, see e.g. Section 2.2 in [13]. However, if the distribution of X is purely discrete, $\lim \sup _{|t| \rightarrow \infty}\left|\mathbb{E}\left[\mathrm{e}^{i t X}\right]\right|=1$, and in general, it is a very challenging problem to find conditions such that the random series $\sum_{k=1}^{\infty} \rho^{n} Y_{n}$ has a density. This question has attracted a lot of attention for so-called infinite Bernoulli convolutions. We refer to [15] for a survey.

We can now prove the following theorem.
Theorem 3.10. Let $X_{n}:=\sum_{k=1}^{n} c_{n-k} Y_{k}$ where $c_{n}=d \rho^{n}+\beta_{n} r^{n}$ where $d \neq 0, \rho<-1$ and $|\rho|>|r|$ and $\left|\beta_{n}\right| \mathrm{e}^{-\lambda n} \rightarrow 0$ as $n \rightarrow \infty$ for every $\lambda>0$. Assume $\mathbb{E}\left[\left|Y_{1}\right|^{a}\right]<\infty$ for some $a>0$. Moreover, suppose that the characteristic function φ of Y_{1} satisfies the inequality $|\varphi(t)| \leq \Delta<1 /|\rho|$ for all $|t|$ large enough. Then there is a constant $C>0$ such that for every $x \geq 0$, it holds that

$$
\liminf _{N \rightarrow \infty}-N^{-1} \log \mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \geq C
$$

If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ for some $\alpha>0$, then

$$
C \geq\left\{\begin{array}{lr}
\log |\rho / r|, & |r|>1 \\
\log |\rho|, & \text { else }
\end{array}\right.
$$

Proof. Assume w.l.o.g. that $d=1$ (write $\left.X_{n}=\sum_{k=1}^{n}\left(c_{n-k} / d\right)\left(d Y_{k}\right)\right)$. Let $\hat{\beta}_{n}:=\sup \left\{\left|\beta_{0}\right|, \ldots,\left|\beta_{n}\right|\right\}$ and $E_{N}:=\left\{\left|Y_{1}\right| \leq f_{N}, \ldots,\left|Y_{N}\right| \leq f_{N}\right\}$ where $1 \leq f_{N} \rightarrow \infty$ is to be specified later. On E_{N}, it holds for $n=1, \ldots, N$ that

$$
\begin{aligned}
X_{n} & =\sum_{k=1}^{n} c_{n-k} Y_{k}=\sum_{k=1}^{n} \rho^{n-k} Y_{k}+\sum_{k=1}^{n} \beta_{n-k} r^{n-k} Y_{k} \\
& \geq \sum_{k=1}^{n} \rho^{n-k} Y_{k}-\hat{\beta}_{n} f_{N} \sum_{k=1}^{n}|r|^{n-k} \geq \sum_{k=1}^{n} \rho^{n-k} Y_{k}-\hat{\beta}_{N} f_{N} \sum_{k=0}^{N}|r|^{k}
\end{aligned}
$$

Case 1. Consider first the case that $\beta_{n} \neq 0$ for some n. Let $R_{N}:=\sum_{k=0}^{N}|r|^{k}$. Then

$$
\begin{equation*}
p_{N}(x) \leq \mathbb{P}\left(E_{N}^{c}\right)+\mathbb{P}\left(\sup _{n=1, \ldots, N} \sum_{k=1}^{n} \rho^{n-k} Y_{k} \leq x+\hat{\beta}_{N} f_{N} R_{N}, E_{N}\right) \tag{8}
\end{equation*}
$$

Note that $Z_{n}:=\sum_{k=1}^{n} \rho^{n-k} Y_{k}$ is an AR(1)-process satisfying $Z_{n}=\rho Z_{n-1}+Y_{n}$. Let us begin with the following useful observation: if $Z_{N-1} \leq z$ and $Z_{N} \leq z$ for some large $z>0$, we have with high probability that $\left|Z_{N-1}\right| \leq z$. This will allow us to reduce the estimation of $p_{N}(x)$ to controlling $\mathbb{P}\left(\left|Z_{N}\right| \leq z_{N}\right)$ where $z_{N} \rightarrow \infty$ as $N \rightarrow \infty$. To be precise, note that

$$
\begin{align*}
\left\{Z_{N-1} \leq z, Z_{N} \leq z\right\} & \subseteq\left\{\left|Z_{N-1}\right| \leq z\right\} \cup\left\{Z_{N-1}<-z, Z_{N} \leq z\right\} \\
& \subseteq\left\{\left|Z_{N-1}\right| \leq z\right\} \cup\left\{Y_{N} \leq(1-|\rho|) z\right\} \tag{9}
\end{align*}
$$

For the last inclusion, we have used that the event $\left\{Z_{N-1}<-z, Z_{N} \leq z\right\}$ implies that $z \geq Z_{N}=\rho Z_{N-1}+Y_{N} \geq$ $-\rho z+Y_{N}$. Hence, combining this with (8), we obtain that

$$
\begin{align*}
p_{N}(x) & \leq \mathbb{P}\left(E_{N}^{c}\right)+\mathbb{P}\left(Z_{N-1} \leq x+\hat{\beta}_{N} f_{N} R_{N}, Z_{N} \leq x+\hat{\beta}_{N} f_{N} R_{N}\right) \\
& \leq \mathbb{P}\left(E_{N}^{c}\right)+\mathbb{P}\left(\left|Z_{N-1}\right| \leq x+\hat{\beta}_{N} f_{N} R_{N}\right)+\mathbb{P}\left(Y_{N} \leq(1-|\rho|)\left(x+\hat{\beta}_{N} f_{N} R_{N}\right)\right) \tag{10}
\end{align*}
$$

It remains to estimate the three probabilities above. Clearly,

$$
\mathbb{P}\left(E_{N}^{c}\right)=\mathbb{P}\left(\bigcup_{n=1}^{N}\left\{\left|Y_{N}\right|>f_{N}\right\}\right) \leq N \mathbb{P}\left(\left|Y_{1}\right|>f_{N}\right)
$$

Next, since $|\rho|>1$ and $\hat{\beta}_{N} \geq \beta>0$ for some $\beta>0$ and for all $N \geq N_{0}$ large enough and $R_{N} \geq 1$, it follows that

$$
\mathbb{P}\left(Y_{N} \leq(1-|\rho|)\left(x+\hat{\beta}_{N} f_{N} R_{N}\right)\right) \leq \mathbb{P}\left(\left|Y_{1}\right| \geq(|\rho|-1) \beta f_{N}\right), \quad N \geq N_{0}
$$

For large N, using the last two inequalities in (10), we arrive at

$$
\begin{equation*}
p_{N}(x) \leq(N+1) \mathbb{P}\left(\left|Y_{1}\right| \geq C_{1} f_{N}\right)+\mathbb{P}\left(\left|Z_{N-1}\right| \leq 2 \hat{\beta}_{N} f_{N} R_{N}\right) \tag{11}
\end{equation*}
$$

where $C_{1}:=\min \{1,(|\rho|-1) \beta\}$. Set $\tilde{Z}_{n}:=\rho^{-n} Z_{n}=\sum_{k=1}^{n} \rho^{-k} Y_{k}$. Then

$$
\mathbb{P}\left(\left|Z_{N-1}\right| \leq 2 \hat{\beta}_{N} f_{N} R_{N}\right)=\mathbb{P}\left(\left|\tilde{Z}_{N-1}\right| \leq 2|\rho|^{-(N-1)} \hat{\beta}_{N} f_{N} R_{N}\right)
$$

Note that \tilde{Z}_{n} converges a.s. to a random variable \tilde{Z}_{∞} by Kolmogorov's Three Series Theorem. Moreover, for u, $v>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\left|\tilde{Z}_{\infty}\right| \leq u+v\right) \geq \mathbb{P}\left(\left|\tilde{Z}_{\infty}-\tilde{Z}_{N}\right| \leq u+v-\left|\tilde{Z}_{N}\right|,\left|\tilde{Z}_{N}\right| \leq u\right) \\
& \quad \geq \mathbb{P}\left(\left|\tilde{Z}_{\infty}-\tilde{Z}_{N}\right| \leq v,\left|\tilde{Z}_{N}\right| \leq u\right)=\mathbb{P}\left(\left|\tilde{Z}_{\infty}-\tilde{Z}_{N}\right| \leq v\right) \mathbb{P}\left(\left|\tilde{Z}_{N}\right| \leq u\right)
\end{aligned}
$$

The last equality follows from the independence of increments of \tilde{Z}. Hence,

$$
\mathbb{P}\left(\left|\tilde{Z}_{N}\right| \leq u\right) \leq \frac{\mathbb{P}\left(\left|\tilde{Z}_{\infty}\right| \leq u+v\right)}{1-\mathbb{P}\left(\left|\tilde{Z}_{\infty}-\tilde{Z}_{N}\right|>v\right)}, \quad u, v>0, N \geq 1
$$

Using this inequality with $u=v=C_{2}|\rho|^{-N} \hat{\beta}_{N} f_{N} R_{N}$, we obtain that

$$
\begin{aligned}
\mathbb{P}\left(\left|\tilde{Z}_{N-1}\right| \leq 2|\rho|^{-(N-1)} \hat{\beta}_{N} f_{N} R_{N}\right) & \leq \frac{\mathbb{P}\left(\left|\tilde{Z}_{\infty}\right| \leq 4|\rho|^{-(N-1)} \hat{\beta}_{N} f_{N} R_{N}\right)}{1-\mathbb{P}\left(\left|\tilde{Z}_{\infty}-\tilde{Z}_{N-1}\right|>2|\rho|^{-(N-1)} \hat{\beta}_{N} f_{N} R_{N}\right)} \\
& \leq 2 \mathbb{P}\left(\left|\tilde{Z}_{\infty}\right| \leq 4|\rho|^{-(N-1)} \hat{\beta}_{N} f_{N} R_{N}\right)
\end{aligned}
$$

where the last inequality holds for all N sufficiently large in view of the following estimates: Since $R_{N} \geq 1$, $\hat{\beta}_{N} \geq \beta>0$ for large $N, \mathbb{E}\left[\left|Y_{1}\right|^{a}\right]<\infty$ (w.l.o.g. $a \in(0,1)$) and $f_{N} \rightarrow \infty$, we have that

$$
\begin{aligned}
& \mathbb{P}\left(\left|\tilde{Z}_{\infty}-\tilde{Z}_{N-1}\right|>2|\rho|^{-(N-1)} \hat{\beta}_{N} f_{N} R_{N}\right) \leq \mathbb{P}\left(\left|\sum_{n=N}^{\infty} \rho^{-n} Y_{n}\right|^{a}>\left(2 \beta|\rho|^{-(N-1)} f_{N}\right)^{a}\right) \\
& \leq \mathbb{P}\left(\sum_{n=N}^{\infty}|\rho|^{-a n}\left|Y_{n}\right|^{a}>\left(2 \beta|\rho|^{-(N-1)} f_{N}\right)^{a}\right) \leq \frac{\sum_{n=N}^{\infty}|\rho|^{-a n} \mathbb{E}\left[\left|Y_{1}\right|^{a}\right]}{\left(2 \beta|\rho|^{-(N-1)} f_{N}\right)^{a}} \\
& \leq C_{2} \frac{|\rho|^{-a N}}{|\rho|^{-a N} f_{N}^{a}}=C_{2} \frac{1}{f_{N}^{a}} \rightarrow 0 .
\end{aligned}
$$

In the first inequality, we have used that $(x+y)^{a} \leq x^{a}+y^{a}$ for $x, y \geq 0$ and $a \in(0,1)$. We have shown that (11) implies for all N large enough that

$$
\begin{equation*}
p_{N}(x) \leq(N+1) \mathbb{P}\left(\left|Y_{1}\right| \geq C_{1} f_{N}\right)+2 \mathbb{P}\left(\left|\tilde{Z}_{\infty}\right| \leq C_{3}|\rho|^{-N} \hat{\beta}_{N} f_{N} R_{N}\right) \tag{12}
\end{equation*}
$$

If $f_{N} \rightarrow \infty$ is chosen such that $|\rho|^{-N} \hat{\beta}_{N} f_{N} R_{N} \rightarrow 0$, we conclude from (12) (recall that $\Delta<1 /|\rho|$) and Proposition 3.8 that

$$
\begin{equation*}
p_{N}(x) \leq(N+1) \mathbb{P}\left(\left|Y_{1}\right| \geq C_{1} f_{N}\right)+C_{4}|\rho|^{-N} \hat{\beta}_{N} f_{N} R_{N}, \quad N \rightarrow \infty \tag{13}
\end{equation*}
$$

Let us now state the suitable choice for f_{N}. First, recall that by assumption, we have that $\hat{\beta}_{N}=\mathrm{e}^{o(N)}$.
Assume first that $|r| \leq 1$. Then $R_{N} \leq N$. One can set $f_{N}:=\delta^{N}$ where $1<\delta<|\rho|$, use Chebychev's inequality (recall that $\mathbb{E}\left[\left|Y_{1}\right|^{a}\right]<\infty$) and (13) to show that

$$
p_{N}(x) \precsim N \delta^{-a N}+|\rho / \delta|^{-N} \mathrm{e}^{o(N)} N=\mathrm{e}^{o(N)}\left(\delta^{a} \wedge(|\rho| / \delta)\right)^{-N}, \quad N \rightarrow \infty
$$

If $|r|>1, R_{N} \asymp|r|^{N}$, take $f_{N}:=\delta^{N}$ where $1<\delta<|\rho / r|$, and as above, one sees that

$$
p_{N}(x) \precsim N \delta^{-a N}+|\rho /(\delta r)|^{-N} \mathrm{e}^{o(N)}=\mathrm{e}^{o(N)}\left(\delta^{a} \wedge(|\rho /(r \delta)|)^{-N}, \quad N \rightarrow \infty .\right.
$$

If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ for some $\alpha>0$, it suffices to take $f_{N}:=N^{2 / \alpha}$ to obtain

$$
p_{N}(x) \leq(N+1) \mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right] \exp \left(-C_{1}^{\alpha} N^{2}\right)+C_{3}|\rho|^{-N} \mathrm{e}^{o(N)} N^{2 / \alpha} R_{N}
$$

and it is then easy to conclude that $\liminf -N^{-1} \log p_{N}(x) \geq-\log (1 /|\rho|)=\log (|\rho|)$ if $|r| \leq 1$, and $\lim \inf -N^{-1} \log p_{N}(x) \geq \log (|\rho / r|)$ if $|r|>1$.
Case 2. Finally, assume that $\beta_{n}=0$ for all n. Then $X_{n}=Z_{n}=\sum_{k=1}^{n} \rho^{n-k} Y_{k}$. Let $0 \leq f_{N} \rightarrow \infty$ to be specified later. Clearly, for large N,

$$
\begin{aligned}
\mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq x\right) & \leq \mathbb{P}\left(Z_{N-1} \leq x, Z_{N} \leq x\right) \leq \mathbb{P}\left(Z_{N-1} \leq f_{N}, Z_{N} \leq f_{N}\right) \\
& \leq \mathbb{P}\left(\left|Z_{N-1}\right| \leq f_{N}\right)+\mathbb{P}\left(Y_{1} \leq(1-|\rho|) f_{N}\right)
\end{aligned}
$$

where we have used (9) in the last inequality. But the last line is just a special case of (10) with $x=0, \hat{\beta}_{N}=$ $R_{N}=1$, so we can proceed as above.

We can apply Theorem 3.10 to prove that p_{N} decays exponentially for $\left(a_{1}, a_{2}\right) \in E_{1}, c f$. Figure 3 .

Corollary 3.11. Let $\left(a_{1}, a_{2}\right) \in E_{1}$. Assume that Y_{1} satisfies the conditions of Theorem 3.10. Then there is a constant $C>0$ such that for every $x \geq 0$, it holds that

$$
\liminf _{N \rightarrow \infty}-N^{-1} \log \mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \geq C
$$

If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ for some $\alpha>0$, then

$$
C \geq \begin{cases}\log \left(\left|s_{2}\right| / s_{1}\right), & a_{1}+a_{2}>1, \\ \log \left|s_{2}\right|, & \text { else. }\end{cases}
$$

Proof. For $\left(a_{1}, a_{2}\right) \in E_{1}$, we have that $s_{2}<-1$ and $\left|s_{2}\right|>s_{1}>0$. Hence, we can apply Theorem 3.10 with $\rho=s_{2}$ and $r=s_{1}$. To get the lower bound on C, note that $|r|=s_{1} \leq 1$ amounts to $a_{1}+a_{2} \leq 1$.

Remark 3.12. One can show by direct computation that the correlation coefficient ρ_{n} of X_{n-1} and X_{n}, given by

$$
\rho_{n}=\mathbb{E}\left[X_{n-1} X_{n}\right] / \sqrt{\mathbb{E}\left[X_{n-1}^{2}\right] \mathbb{E}\left[X_{n}^{2}\right]},
$$

satisfies $\rho_{n}=-1+O\left(\left|s_{1} / s_{2}\right|^{n}\right)$. Clearly, $p_{N} \leq \mathbb{P}\left(X_{N-1} \leq 0, X_{N} \leq 0\right)$, and if Y_{1} is a centered Gaussian random variable, we get in view of a well-known formula for Gaussian random variables (see e.g. Exercise 8.5.1 in [10]) that

$$
\mathbb{P}\left(X_{N-1} \leq 0, X_{N} \leq 0\right)=\frac{1}{2 \pi}\left(\frac{\pi}{2}+\arcsin \rho_{N}\right) .
$$

Since $\pi / 2+\arcsin x \sim \sqrt{2(1+x)}$ as $x \downarrow-1$ (by l'Hôpital's rule), it follows that $p_{N} \precsim\left|s_{1} / s_{2}\right|^{N / 2}$.
Note that the previous results do not cover the case $a_{1}+1=a_{2}$ if $a_{2} \in(0,1)$. Let us now turn to this particular case. One verifies that $c_{n}=\left(a_{1}^{n+1}+(-1)^{n}\right) /\left(a_{1}+1\right)$, i.e. c_{n} oscillates but does not diverge as in Theorem 3.10. We show that p_{N} still decreases at least exponentially in this case.

Proposition 3.13. Let $a_{1}+1=a_{2}$ and set $Z_{n}=a_{2} Z_{n-1}+Y_{n}$ for $n \geq 1$. Then, for all $x \geq 0$ and $N \geq 1$,

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq 2 x\right) .
$$

In particular, if $a_{2} \in(0,1), \mathbb{E}\left[\left(Y_{1}^{-}\right)^{\delta}\right]<\infty$ for some $\delta>0$ and $\mathbb{P}\left(Y_{1} \geq 2 x\left(1-a_{2}\right)\right)>0$, it holds that $p_{N}(x) \precsim \exp (-\lambda N)$ for some $\lambda=\lambda(x)>0$.

Proof. Note that $X_{n+1}+X_{n}=\left(a_{1}+1\right) X_{n}+a_{2} X_{n-1}+Y_{n+1}=a_{2}\left(X_{n}+X_{n-1}\right)+Y_{n+1}$. Hence, $\left(Z_{n}\right)_{n \geq 1}$ can be written in the form $Z_{n}:=X_{n}+X_{n-1}$. In particular, $X_{n} \leq x$ for $n=1, \ldots, N$ implies that $Z_{n} \leq 2 x$ for $n=1, \ldots, N$.

If $a_{2} \in(0,1)$, we deduce from Theorem 3.1 that $p_{N}(x)$ decays exponentially under the conditions stated above.

In fact, the idea of proof of Proposition 3.13 can be generalized as follows: if X is $\operatorname{AR}(p)$, one can try to determine $b_{1}, b_{2}>0$ such that $\left(Z_{n}\right)_{n \geq 1}$ is $\operatorname{AR}(p-1)$ where $Z_{n}:=b_{1} X_{n}+b_{2} X_{n-1}$. Then we always have that $X_{n} \leq 0$ for $n=1, \ldots, N$ implies $Z_{n} \leq 0$ for $n=1, \ldots, N$. We carry this out for $p=2$.
Proposition 3.14. Let $a_{1}^{2}+4 a_{2}>0$. Moreover, assume that either $a_{1}, a_{2}<0$ or that $a_{1}+a_{2}<1$ if $a_{2}>0$. Then $s_{2}<0,-a_{2} / s_{2}<1$ and $Z_{n}:=X_{n}-s_{2} X_{n-1}$ satisfies $Z_{n}=-a_{2} / s_{2} Z_{n-1}+Y_{n}$. In particular,

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq\left(1-s_{2}\right) x\right), \quad x \geq 0 .
$$

Proof. Let us determine $b_{1}, b_{2}>0$ such that $\left(Z_{n}\right)_{n \geq 1}$ defined by $Z_{n}:=b_{1} X_{n}+b_{2} X_{n-1}$ is an $\operatorname{AR}(1)$-process. We have that

$$
Z_{n}=\left(b_{1} a_{1}+b_{2}\right) X_{n-1}+b_{1} a_{2} X_{n-2}+b_{1} Y_{n}=\frac{b_{1} a_{1}+b_{2}}{b_{1}} b_{1} X_{n-1}+\frac{b_{1} a_{2}}{b_{2}} b_{2} X_{n-2}+b_{1} Y_{n}
$$

Hence, if $\left(b_{1} a_{1}+b_{2}\right) / b_{1}=b_{1} a_{2} / b_{2}$, it follows that

$$
Z_{n}=\frac{b_{1} a_{2}}{b_{2}} Z_{n-1}+b_{1} Y_{n}=\frac{a_{2}}{\lambda} Z_{n-1}+b_{1} Y_{n}
$$

where $\lambda:=b_{2} / b_{1}>0$ satisfies $a_{1}+\lambda=a_{2} / \lambda$, i.e. $\lambda^{2}+a_{1} \lambda-a_{2}=0$. The solutions to this equation are $-s_{1}$ and $-s_{2}$. Since $a_{1}^{2}+4 a_{2}>0$, we have that $s_{2}<s_{1}$. Hence, we can find $\lambda>0$ such that Z defines an AR(1)-process if and if only $s_{2}<0$, and $\lambda=-s_{2}$ in that case. Now $s_{2}<0$ amounts to $a_{1} \leq 0$ or $a_{1}, a_{2}>0$ since $h>0$.

It follows that

$$
\bigcap_{n=1}^{N}\left\{X_{n} \leq x\right\} \subseteq \bigcap_{n=1}^{N}\left\{Z_{n} \leq\left(b_{1}+b_{2}\right) x\right\}=\bigcap_{n=1}^{N}\left\{Z_{n} \leq b_{1}\left(1-s_{2}\right) x\right\}, \quad x \geq 0
$$

Finally, $a_{2} / \lambda<1$ if and only if $a_{1}+2 a_{2}<h$. If $a_{1}, a_{2}>0$, this amounts to $a_{1}+a_{2}<1$.
In the remaining cases, we necessarily have that $a_{1} \leq 0$. If also $a_{1}+2 a_{2} \leq 0$ (in particular, if $a_{1}, a_{2} \leq 0$), the inequality is obviously satisfied. Finally, if $a_{1}+2 a_{2}>0, a_{1}+2 a_{2}<h$ is equivalent to $a_{1}^{2}+4 a_{1} a_{2}+4 a_{2}^{2}<a_{1}^{2}+4 a_{2}$, i.e. $a_{1}+a_{2}<1$ since $a_{2}>0$. The assertion of the proposition follows if we set $b_{1}=1$ and $b_{2}=-s_{2}$.

The preceding proposition allows us to find exponential upper bounds for the survival probability p_{N} for a wide class of distributions. Specifically, we obtain exponential upper bounds for certain parameters a_{1} and a_{2} and distributions that do not fulfill the requirements of Theorem 3.10. Let us record this result as a corollary:

Corollary 3.15. Let a_{1}, a_{2} be such that $a_{2}>0$ and $a_{1}+a_{2}<1$. Assume that $\mathbb{E}\left[\left(Y_{1}^{-}\right)^{\alpha}\right]<\infty$ for some $\alpha>0$. Let $x \geq 0$ such that $\mathbb{P}\left(Y_{1}>x\left(1-s_{2}\right)\left(1-a_{2} / s_{2}\right)\right)>0$. Then $p_{N}(x) \precsim \exp (-\lambda N)$ for some $\lambda=\lambda(x)>0$.

Proof. Set $\rho:=-a_{2} / s_{2}$ and let $\left(Z_{n}\right)_{n \geq 1}$ satisfy $Z_{n}=\rho Z_{n-1}+Y_{n}$. By Proposition 3.14, we have that $\rho \in(0,1)$ and that $p_{N}(x) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq x\left(1-s_{2}\right)\right)$. The claim now follows from Theorem 3.1.

Let us finally turn to the region $a_{1}>0$ and $a_{1}^{2}+4 a_{2}<0\left(E_{3}\right.$ in Fig. 3) so that the expression for c_{n} involves the function sine, cf. (3).

Proposition 3.16. Let $\left(a_{1}, a_{2}\right) \in E_{3}$. Assume that $\mathbb{P}\left(Y_{1}>0\right)>0$. Then there exists $\lambda>0$ such that $p_{N} \precsim$ $\exp (-\lambda N)$ as $N \rightarrow \infty$.

Proof. The recursion $X_{n}=a_{1} X_{n-1}+a_{2} X_{n-2}+Y_{n}$ allows us to express X_{n} as follows $(n \geq k+2)$:

$$
X_{n}=\alpha_{k} X_{n-k}+\beta_{k} X_{n-k-1}+L_{k}\left(Y_{n-k+1}, \ldots, Y_{n}\right)
$$

where $L_{k}\left(x_{1}, \ldots, x_{k}\right)$ is some linear combination of x_{1}, \ldots, x_{k}. Clearly, $\alpha_{1}=a_{1}, \beta_{1}=a_{2}$ and $L_{1}\left(x_{1}\right)=x_{1}$ and iteratively, we get that $\alpha_{k+1}=a_{1} \alpha_{k}+\beta_{k}, \beta_{k+1}=a_{2} \alpha_{k}$ and $L_{k+1}\left(x_{1}, \ldots, x_{k+1}\right)=\alpha_{k} x_{1}+L_{k}\left(x_{2}, \ldots, x_{k+1}\right)$ for $k \geq 1$. In particular, $\alpha_{k}=a_{1} \alpha_{k-1}+a_{2} \alpha_{k-2}$ for $k \geq 2$ with $\alpha_{0}=1$ and $\alpha_{1}=a_{1}$, hence,

$$
\alpha_{k}=c_{k}, \quad \beta_{k}=a_{2} c_{k-1}, \quad L_{k}\left(x_{1}, \ldots, x_{k}\right)=\sum_{j=1}^{k} c_{k-j} x_{j}
$$

Let $q:=\inf \left\{k \geq 1: c_{k} \leq 0\right\} \geq 2$. Assume for a moment that $q<\infty$ by (3). Then, if $X_{n} \leq 0$ for all $n \leq N$, it follows that

$$
\begin{aligned}
0 & \geq X_{n}=c_{q} X_{n-q}+a_{2} c_{q-1} X_{n-q-1}+L_{q}\left(Y_{n-q+1}, \ldots, Y_{n}\right) \\
& \geq 0+0+L_{q}\left(Y_{n-q+1}, \ldots, Y_{n}\right), \quad n=q+2, \ldots, N,
\end{aligned}
$$

where we have used the fact that $a_{2} c_{q-1}<0$ by the definition of q and the fact that $a_{2}<0$ on E_{3}.
In particular, we have that

$$
\begin{aligned}
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq 0\right) & \leq \mathbb{P}\left(\sup _{n=q+2, \ldots, N} L_{q}\left(Y_{n-q+1}, \ldots, Y_{n}\right) \leq 0\right) \\
& \leq \mathbb{P}\left(\sup _{k=1, \ldots,\lfloor(N-2) / q\rfloor} L_{q}\left(Y_{(k-1) q+3}, \ldots, Y_{k q+2}\right) \leq 0\right) \\
& \leq \mathbb{P}\left(L_{q}\left(Y_{3}, \ldots, Y_{q+2}\right) \leq 0\right)^{\lfloor(N-2) / q\rfloor},
\end{aligned}
$$

since $\left(L_{q}\left(Y_{(k-1) q+3}, \ldots, Y_{k q+2}\right)_{k=1,2 \ldots}\right.$ are i.i.d. Next, note that X_{q} and $L_{q}\left(Y_{3}, \ldots, Y_{q+2}\right)$ have the same law. Hence, using that $c_{0}, \ldots, c_{q-1}>0$ and $\mathbb{P}\left(Y_{1}>0\right)>0$, we have that

$$
\mathbb{P}\left(X_{q}>0\right)=\mathbb{P}\left(\sum_{k=1}^{q} c_{q-k} Y_{k}>0\right) \geq \mathbb{P}\left(Y_{1}>0\right)^{q}>0 .
$$

It remains to show that $q<\infty$. Let $\varphi \in(0, \pi / 2)$ (since $a_{1}>0$) be the angle associated with $\left(a_{1}, a_{2}\right)$ in (3). It follows from (3) that $c_{n} \leq 0$ for some n if $\sin ((n+1) \varphi) \leq 0$. Take $n=\lceil\pi / \varphi\rceil$. Clearly, $\pi<(n+1) \varphi \leq$ $(\pi / \varphi+2) \varphi<2 \pi$ since $\varphi<\pi / 2$. In particular, we have shown that $q \leq\lceil\pi / \varphi\rceil$.

We are now ready to give a Proof of Theorem 1.2 which is a corollary of the previous results. A look at Figure 3 will be helpful to distinguish the different cases.

Proof of Theorem 1.2. On E_{1}, the assertion follows from Corollary 3.11. On $E_{2}=(-\infty, 0]^{2}$, the assertion is trivial. If $\left(a_{1}, a_{2}\right) \in E_{3}$, we can apply Proposition 3.16. The remaining cases covered by Theorem 3.2 and Proposition 3.13 (the latter is needed for the strip $a_{2}=1+a_{1}$ with $a_{1} \in(-1,0)$ only).

Note that we have established exponential upper bounds on p_{N} under various conditions on the distribution of Y_{1} in the region where c_{n} goes to 0 for $\mathrm{AR}(2)$-processes ($c f$. Rem. 2.1) except for the the curve $a_{1}^{2}+4 a_{2}=0$ where $a_{1} \in(-2,2)$ and $c_{n}=\left(a_{1} / 2\right)^{n}(n+1)$. By Theorem 3.2, we know that $p_{N} \precsim \exp (-\lambda N / \log N)$ in that case if $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]$ is finite. If Y_{1} has a Gaussian law with zero mean, the next proposition establishes an exponential upper bound on p_{N} in that case. In particular, in combination with the Theorems 1.1, 1.2 and 1.3, we directly obtain Theorem 1.4.

Proposition 3.17. Let Y_{1} have a Gaussian law. Let $\rho \in(0,1)$ and $\left(\alpha_{n}\right)_{n \geq 0}$ denote a sequence of positive numbers with the following properties

$$
\alpha_{n+m} \leq C \alpha_{n} \alpha_{m} \quad(n, m \geq 0), \quad \lim _{n \rightarrow \infty} \mathrm{e}^{-\lambda n} \alpha_{n}=0 \quad \forall \lambda>0 .
$$

Set $X_{n}:=\sum_{k=1}^{n} \alpha_{n-k} \rho^{n-k} Y_{k}$. It holds that

$$
\liminf _{N \rightarrow \infty}-N^{-1} \log \mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right)>0, \quad x \in \mathbb{R}
$$

Proof. Clearly, we may suppose that $\mathbb{E}\left[\left(Y_{1}-\mathbb{E}\left[Y_{1}\right]\right)^{2}\right]=1$. Moreover, it suffices to consider the case $\mathbb{E}\left[Y_{1}\right]=0$. To see this, set $\sum_{k=1}^{n} \alpha_{n-k} \rho^{n-k}\left(Y_{k}-\mu\right)$. If $\mu:=\mathbb{E}\left[Y_{1}\right]<0$, we have that

$$
X_{n}=\sum_{k=1}^{n} \alpha_{n-k} \rho^{n-k}\left(Y_{k}-\mu\right)+\mu \sum_{k=0}^{n-1} \alpha_{k} \rho^{k} \geq \tilde{X}_{n}+\mu \sum_{k=0}^{\infty} \alpha_{k} \rho^{k}
$$

where $A:=\sum_{k=0}^{\infty} \alpha_{k} \rho^{k}<\infty$ since $\rho<1$ and $\alpha_{n}=\mathrm{e}^{o(n)}$. Hence,

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} \tilde{X}_{n} \leq x-\mu A\right)
$$

Similarly, if $\mu>0, X_{n} \geq \tilde{X}_{n}$ for all n, and therefore

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} \tilde{X}_{n} \leq x\right)
$$

Hence, we can assume from now on that $\mathbb{E}\left[Y_{1}\right]=0$ and $\mathbb{E}\left[Y_{1}^{2}\right]=1$. Let $\rho<\delta<1$ and set

$$
\gamma_{n}:=\sqrt{\frac{\sum_{k=0}^{n-1} \rho^{2 k} \alpha_{k}^{2}}{\sum_{k=0}^{n-1} \delta^{2 k}}}, \quad Z_{n}:=\gamma_{n} \sum_{k=1}^{n} \delta^{n-k} Y_{k}
$$

We would like to apply Slepian's inequality (Cor. 3.12 in [11]) to compare the probabilities that X and Z stay below 0 until time N. By construction, we have that $\mathbb{E}\left[X_{n}^{2}\right]=\mathbb{E}\left[Z_{n}^{2}\right]$ for all $n \geq 1$. Next, note that $\gamma_{n} \geq \alpha_{0} \sqrt{1-\delta^{2}}$ for all $n \geq 1$. Hence, if $n>m \geq 1$, we have that

$$
\mathbb{E}\left[Z_{n} Z_{m}\right]=\gamma_{n} \gamma_{m} \sum_{k=1}^{m} \delta^{n-k} \delta^{m-k} \geq \alpha_{0}^{2}\left(1-\delta^{2}\right) \delta^{n-m} \sum_{k=1}^{m} \delta^{2(m-k)} \geq C_{1} \delta^{n-m}
$$

where $C_{1}:=\alpha_{0}^{2}\left(1-\delta^{2}\right)$. Moreover,

$$
\begin{aligned}
\mathbb{E}\left[X_{n} X_{m}\right] & =\sum_{k=1}^{m} \alpha_{n-k} \alpha_{m-k} \rho^{m-k} \rho^{n-k}=\rho^{n-m} \sum_{k=1}^{m} \alpha_{(n-m)+m-k} \alpha_{m-k} \rho^{2(m-k)} \\
& \leq C \rho^{n-m} \alpha_{n-m} \sum_{k=1}^{m} \alpha_{m-k}^{2} \rho^{2(m-k)} \leq C \rho^{n-m} \alpha_{n-m} \sum_{k=0}^{\infty} \alpha_{k}^{2} \rho^{2 k}=: C_{2} \rho^{n-m} \alpha_{n-m}
\end{aligned}
$$

In the last equality, we have used that $\sum_{k=0}^{\infty} \alpha_{k}^{2} \rho^{2 k}$ converges since $\alpha_{n}=\mathrm{e}^{o(n)}$. Now $C_{1} \delta^{n-m} \geq C_{2} \alpha_{n-m} \rho^{n-m}$ holds whenever $n-m \geq q$ for some $q \geq 1$ since $\delta>\rho$ and a_{n} grows slower than any exponential. In particular, $\mathbb{E}\left[X_{n} X_{m}\right] \leq \mathbb{E}\left[Z_{n} Z_{m}\right]$ whenever $|n-m| \geq q$.
Hence, using Slepian's inequality, we obtain that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots,\lfloor N / q\rfloor} X_{n q} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots,\lfloor N / q\rfloor} Z_{n q} \leq x\right)
$$

Let $\tilde{Z}_{n}:=\delta^{-n q} Z_{n q} / \gamma_{n q}=\sum_{k=1}^{n q} \delta^{-k} Y_{k}$. One verifies easily that $\left(\tilde{Z}_{n}\right)_{n \geq 1}$ is equal in distribution to $\left(B\left(t_{n}\right)\right)_{n \geq 1}$ where $\left(B_{t}\right)_{t \geq 0}$ is a one-dimensional Brownian motion and $t_{n}:=\sum_{k=1}^{n q} \bar{\delta}^{-2 k}=C_{\delta}\left(\delta^{-2 n q}-1\right)$, so

$$
\begin{aligned}
p_{N} & \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n q} \leq x\right)=\mathbb{P}\left(\bigcap_{n=1}^{N}\left\{\tilde{Z}_{n} \leq x \delta^{-n q} / \gamma_{n q}\right\}\right) \\
& =\mathbb{P}\left(\bigcap_{n=1}^{N}\left\{B\left(C_{\delta}\left(\delta^{-2 q n}-1\right)\right) \leq x \delta^{-n q} / \gamma_{n q}\right\}\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} B\left(\delta^{-2 q n}-1\right) \leq \tilde{x}\right)
\end{aligned}
$$

where we have used the scaling property of Brownian motion and the fact that $\gamma_{n} \geq C_{1} \alpha_{0} / \delta^{n}$ for all n (i.e. $\left.\tilde{x}:=x /\left(C_{1} \alpha_{0} C_{\delta}^{1 / 2}\right)\right)$. Next, note that

$$
\begin{aligned}
\mathbb{P}\left(\sup _{n=1, \ldots, N} B\left(\delta^{-2 q n}\right) \leq 0\right) & \geq \mathbb{P}\left(B_{1} \leq-\tilde{x}, \sup _{n=1, \ldots, N} B\left(\delta^{-2 q n}\right)-B_{1} \leq \tilde{x}\right) \\
& =\mathbb{P}\left(B_{1} \leq-\tilde{x}\right) \mathbb{P}\left(\sup _{n=1, \ldots, N} B\left(\delta^{-2 q n}-1\right) \leq \tilde{x}\right)
\end{aligned}
$$

An application of Slepian's inequality together with a subadditivity argument (see e.g. Eq. 2.6 of [1]) yields that

$$
\lim _{N \rightarrow \infty}-N^{-1} \log \mathbb{P}\left(\sup _{n=1, \ldots, N} B\left(a^{n}\right) \leq 0\right)>0, \quad a>1
$$

so the claim follows.

3.2. Exponential lower bounds

Let us now comment on exponential lower bounds for AR-processes. In general, we cannot expect to find exponential lower bounds in the whole region where we have established exponential upper bounds. The following example illustrates this point for $\mathrm{AR}(2)-$ processes.

Example 3.18. If X is $\operatorname{AR}(p)$ and the innovation Y_{1} takes only the values $\pm y$ for some $y>0$ and $a_{1}<-1$, then $p_{2}=\mathbb{P}\left(X_{1} \leq 0, X_{2} \leq 0\right)=0$. Indeed, on $\left\{X_{1} \leq 0\right\}=\left\{Y_{1}=-y\right\}$, we have that $X_{2}=a_{1} Y_{1}+Y_{2} \geq-y a_{1}-y=$ $-y\left(a_{1}+1\right)>0$.

Similarly, if $a_{1} \in[-1,0]$ and $a_{1}\left(a_{1}+1\right)+a_{2}<-1$, one has that $p_{3}=0$.
Let us also remark that if X is $\operatorname{AR}(p)$ with $a_{1} \geq 0, \ldots, a_{p} \geq 0$, it is trivial to obtain the exponential lower bound $p_{N}(x) \geq p_{N} \geq \mathbb{P}\left(Y_{1} \leq 0\right)^{N}$.

The following theorem states a simple condition on the coefficients a_{1}, \ldots, a_{p} such that the survival probability cannot decay faster than exponentially.

Theorem 3.19. If X is $A R(p)$ with $\sum_{k=1}^{p}\left|a_{k}\right|<1$, it holds that $p_{N} \succsim c^{N}$ for all N where $c \in(0,1)$. Moreover, if $a_{k}>0$ for some $k \in\{1, \ldots, p\}$, one may take

$$
c:=\sup \left\{\mathbb{P}\left(Y_{1} \in\left[\alpha\left(1-a_{+}\right), \alpha\left|a_{-}\right|\right]\right): \alpha<0\right\}
$$

where (with the convention that $\sum_{\emptyset}=0$)

$$
a_{+}:=\sum_{k \in I_{+}} a_{k}, \quad a_{-}:=\sum_{k \in I_{-}} a_{k}, \quad I_{+}=\left\{k: a_{k}>0\right\}, \quad I_{-}=\left\{k: a_{k}<0\right\}
$$

Proof. The goal is to find intervals $\left(\left[\alpha_{n}, \beta_{n}\right]\right)_{n \geq 1}$ such that

$$
\begin{equation*}
\bigcap_{k=1}^{n}\left\{Y_{k} \in\left[\alpha_{k}, \beta_{k}\right]\right\} \subseteq \bigcap_{k=1}^{n}\left\{X_{k} \in\left[\gamma_{k}, 0\right]\right\}, \quad n \geq 1 \tag{14}
\end{equation*}
$$

If (14) holds and $\mathbb{P}\left(Y_{n} \in\left[\alpha_{n}, \beta_{n}\right]\right) \geq c>0$ for all $n \geq N_{0}$, we immediately obtain that $p_{N} \succsim c^{N}$.
Using the recursive definition of X, we can iteratively define the sequences $\left(\alpha_{n}\right)_{n \geq 1},\left(\beta_{n}\right)_{n \geq 1},\left(\gamma_{n}\right)_{n \geq 1}$ as follows: Start with $\gamma_{1}=\alpha_{1}<\beta_{1} \leq 0$. Define successively (with the convention $\gamma_{n}=0$ for $n \leq 0$)

$$
\beta_{k}:=-\sum_{j \in I_{-}} a_{j} \gamma_{k-j}, \quad \alpha_{k}<\beta_{k}, \quad \gamma_{k}:=\sum_{j \in I_{+}} a_{j} \gamma_{k-j}+\alpha_{k} .
$$

It is clear that $\gamma_{k} \leq 0$ and $\beta_{k} \leq 0$ for all k. We claim that (14) holds for this choice of $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right)$. For $n=1$, this is obvious, and inductively, if the statement holds for some $n-1 \geq 1$, we have that

$$
X_{n}=\sum_{j=1}^{p} a_{k} X_{n-j}+Y_{n} \leq \sum_{j \in I_{-}}^{p} a_{j} X_{n-j}+\beta_{n} \leq \sum_{j \in I_{-}} a_{j} \gamma_{n-j}+\beta_{n}=0
$$

and

$$
X_{n}=\sum_{j=1}^{p} a_{k} X_{n-j}+Y_{n} \geq \sum_{j \in I_{+}}^{p} a_{j} X_{n-j}+\alpha_{n} \geq \sum_{j \in I_{+}} a_{j} \gamma_{n-j}+\alpha_{n}=\gamma_{n}
$$

Note that the above inequalities hold even if $I_{+}=\emptyset$ or if $I_{-}=\emptyset$. Fix $\alpha_{1}=\gamma_{1}<\beta_{1}=0$ and let $\alpha_{k}=-\alpha_{1}\left(a_{+}-1\right)$ for all $k \geq 2$. We claim that $\gamma_{k} \geq \alpha_{1}$. Inductively, if the claim holds for all $k \leq n-1$, we have that

$$
\gamma_{n}=\sum_{j \in I_{+}} a_{j} \gamma_{n-j}-\alpha_{1}\left(a_{+}-1\right) \geq \alpha_{1} a_{+}-\alpha_{1}\left(a_{+}-1\right)=\alpha_{1}
$$

It follows that $\beta_{n} \geq-\alpha_{1} a_{-}$and in particular, $\alpha_{k}<\beta_{k}$ since

$$
\alpha_{k}-\beta_{k} \leq-\alpha_{1}\left(a_{+}-1\right)+\alpha_{1} a_{-}=-\alpha_{1}\left(\sum_{k=1}^{p}\left|a_{k}\right|-1\right)<0
$$

In view of (14), we obtain that

$$
\begin{aligned}
\mathbb{P}\left(\sup _{k=1, \ldots, n} X_{k} \leq 0\right) & \geq \prod_{k=1}^{n} \mathbb{P}\left(Y_{k} \in\left[\alpha_{k}, \beta_{k}\right]\right) \\
& \geq \mathbb{P}\left(Y_{1} \in\left[\alpha_{1}, 0\right]\right) \mathbb{P}\left(Y_{1} \in\left[-\alpha_{1}\left(a_{+}-1\right),-\alpha_{1} a_{-}\right]\right)^{n-1}
\end{aligned}
$$

Remark 3.20. In general, there is no reason to believe that the lower bound of Theorem 3.19 is sharp.
Corollary 3.21. Let $\left(Y_{n}\right)_{n \geq 0}$ be a sequence of i.i.d. standard Gaussian random variables. Using the notation of Theorem 3.19, if I_{-}and \bar{I}_{+}are nonempty, we have that $p_{N} \geq c^{N}$ where

$$
c=\mathbb{P}\left(\alpha^{*}\left(1-a_{+}\right) \leq Y_{1} \leq \alpha^{*}\left|a_{-}\right|\right)=\mathbb{P}\left(-\sqrt{\frac{-\log A^{2}}{1-A^{2}}} \leq Y_{1} \leq-A \sqrt{\frac{-\log A^{2}}{1-A^{2}}}\right)
$$

and

$$
\alpha^{*}:=-\sqrt{\frac{\log \left(1-a_{+}\right)^{2}-\log \left|a_{-}\right|^{2}}{\left(1-a_{+}\right)^{2}-\left|a_{-}\right|^{2}}}<0, \quad A:=\frac{\left|a_{-}\right|}{1-a_{+}} \in(0,1)
$$

Proof. By Theorem 3.19, we have to determine

$$
\sup _{\alpha \leq 0} \mathbb{P}\left(\alpha\left(1-a_{+}\right) \leq Y_{1} \leq \alpha\left|a_{-}\right|\right)=\sup _{\alpha \leq 0}\left\{\Phi\left(\alpha\left|a_{-}\right|\right)-\Phi\left(\alpha\left(1-a_{+}\right)\right)\right\}
$$

where Φ is the cdf of a standard normal random variable. It is not hard to verify that the unique maximum is attained at

$$
\alpha^{*}:=-\sqrt{\frac{\log \left(1-a_{+}\right)^{2}-\log \left|a_{-}\right|^{2}}{\left(1-a_{+}\right)^{2}-\left|a_{-}\right|^{2}}}<0 .
$$

4. Polynomial order

If X is an $\mathrm{AR}(2)-$ process and $\mathbb{E}\left[Y_{1}\right]=0$, it is known that p_{N} decays polynomially if X is a centered random walk $\left(a_{1}=1, a_{2}=0\right)$ or an integrated random walk $\left(a_{1}=2, a_{2}=-1\right)$ under suitable moment conditions. To be more precise, if $S_{n}=\sum_{k=1}^{n} Y_{k}$ is a random walk and $\theta \in(0,1)$, it holds that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq 0\right) \sim N^{-(1-\theta)} \ell(N) \Longleftrightarrow \mathbb{P}\left(S_{N} \leq 0\right) \rightarrow \theta
$$

where ℓ is a function slowly varying at infinity, see e.g. [2]. Moreover, the process $X_{n}=2 X_{n-1}-X_{n-1}+Y_{n}$ is given by $X_{n}=\sum_{k=1}^{n}(n-k+1) Y_{k}=\sum_{k=1}^{n} S_{k}$ where $\left(S_{n}\right)_{n \geq 1}$ is the usual random walk. X is called integrated random walk. Several authors have studied the asymptotic behaviour of p_{N} in that case if $\mathbb{E}\left[Y_{1}\right]=0$. We refer to the recent article [4] and the references therein. In particlar, it is shown in [4] that $p_{N} \asymp N^{-1 / 4}$ if $\mathbb{E}\left[Y_{1}\right]=0$ and $\mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$.

4.1. Integrated processes

In this subsection, we will prove that $p_{N}=N^{-1 / 2+o(1)}$ under suitable moment conditions if $a_{1}+a_{2}=1$ and $\left|a_{2}\right|<1$. As we will see shortly, these $\mathrm{AR}(2)-$ processes can be written as integrated $\mathrm{AR}(1)-$ processes.

Let us begin by characterizing the behaviour of the sequence $\left(c_{n}\right)_{n \geq 0}$ for such a_{1}, a_{2}. Instead of manipulating the explicit expression for c_{n} to determine these values of a_{1} and a_{2}, we give a short proof of the following lemma.

Lemma 4.1. The sequence $\left(c_{n}\right)$ converges to a constant $c \neq 0$ if and only if $a_{1}+a_{2}=1$ and $\left|a_{2}\right|<1$. In that case, $\lim _{n \rightarrow \infty} c_{n}=1 /\left(1+a_{2}\right)$. Moreover, if $a_{1}+a_{2}=1$, $c_{n}=\left(1-\left(-a_{2}\right)^{n+1}\right) /\left(1+a_{2}\right)$ if $a_{2} \neq-1$ and $c_{n}=n+1$ if $a_{2}=-1$ for $n \geq 0$.

Proof. Assume that $a_{1}+a_{2}=1$. Then $c_{n+1}=\left(a_{1}+a_{2}-a_{2}\right) c_{n}+a_{2} c_{n-1}=c_{n}-a_{2}\left(c_{n}-c_{n-1}\right)$, i.e. $c_{n+1}-c_{n}=$ $-a_{2}\left(c_{n}-c_{n-1}\right)$. Iteration yields $c_{n+1}-c_{n}=\left(-a_{2}\right)^{n}\left(c_{1}-c_{0}\right)=\left(-a_{2}\right)^{n+1}$. Hence,

$$
c_{n}=1+\sum_{k=1}^{n}\left(c_{k}-c_{k-1}\right)= \begin{cases}1+\sum_{k=1}^{n}\left(-a_{2}\right)^{k}=\frac{1-\left(-a_{2}\right)^{n+1}}{1-\left(-a_{2}\right)}, & a_{2} \neq-1 \\ n+1, & a_{2}=-1\end{cases}
$$

and therefore, $c_{n} \rightarrow c=1 /\left(1+a_{2}\right) \neq 0$ if and only if $\left|a_{2}\right|<1$. On the other hand, if $\lim c_{n}=c \neq 0$, then the recursion equation implies that $c=a_{1} c+a_{2} c$, i.e. $a_{1}+a_{2}=1$. By the preceding lines, convergence implies that $\left|a_{2}\right|<1$.

In particular, the preceding lemma shows that

$$
X_{n}=\frac{1}{1+a_{2}}\left(\sum_{k=1}^{n} Y_{k}-\sum_{k=1}^{n}\left(-a_{2}\right)^{n-k+1} Y_{k}\right), \quad n \geq 1
$$

and since $\left|a_{2}\right|<1$, one expects that the behaviour of X is similar to that of a random walk.
Moreover, $\operatorname{AR}(2)$-processes with $a_{1}+a_{2}=1$ and $\left|a_{2}\right|<1$ can also be regarded as integrated $\operatorname{AR}(1)$-processes. Let us explain this in more detail. If \tilde{X} is $\operatorname{AR}(p)$ with coefficients a_{1}, \ldots, a_{p}, set $X_{n}:=\sum_{k=1}^{n} \tilde{X}_{k}$.

$$
\begin{aligned}
X_{n} & =X_{n-1}+\sum_{k=1}^{p} a_{k} \tilde{X}_{n-k}+Y_{n}=X_{n-1}+\sum_{k=1}^{p} a_{k}\left(X_{n-k}-X_{n-k-1}\right)+Y_{n} \\
& =\left(1+a_{1}\right) X_{n-1}+\sum_{k=2}^{p}\left(a_{k}-a_{k-1}\right) X_{n-k}-a_{p} X_{n-p-1}+Y_{n}
\end{aligned}
$$

i.e. X is $\operatorname{AR}(p+1)$ and the transfomation of the coefficients $T_{p}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p+1}$ is given by

$$
\begin{equation*}
T_{p}\left(a_{1}, \ldots, a_{p}\right)=\left(a_{1}+1, a_{2}-a_{1}, \ldots, a_{p}-a_{p-1},-a_{p}\right) \tag{15}
\end{equation*}
$$

Note that T_{p} is one-to-one and that $T_{p}\left(\mathbb{R}^{p}\right)$ is an affine subspace of \mathbb{R}^{p+1}.
Now, if \tilde{X} is $\operatorname{AR}(1)$ with $\tilde{X}_{n}=\rho \tilde{X}_{n-1}+Y_{n}$, we have that X with $X_{n}=\sum_{k=1}^{n} \tilde{X}_{k}$ is $\operatorname{AR}(2)$ with coefficients $T_{1}(\rho)=(\rho-1,-\rho)=:\left(a_{1}, a_{2}\right)$. In other words, $\operatorname{AR}(2)$ processes with $a_{1}+a_{2}=1$ and $\left|a_{2}\right|<1$ are integrated AR (1)-processes with $|\rho|<1$.

The next theorem states conditions under which the survival probability of an integrated process behaves like $N^{-1 / 2+o(1)}$.

Theorem 4.2. Assume that $\mathbb{E}\left[Y_{1}\right]=0$. Let $\tilde{X}_{n}=\sum_{k=1}^{n} \tilde{c}_{n-k} Y_{k}$ where $\sum_{k=1}^{\infty} k\left|\tilde{c}_{k}\right|<\infty$ and $\sum_{k=0}^{\infty} \tilde{c}_{k} \neq 0$. Set $X_{n}:=\sum_{k=1}^{n} \tilde{X}_{k}$.

1. If $\left|Y_{1}\right| \leq M<\infty$ a.s., there is $x_{0} \geq 0$ such that for all $x \geq x_{0}$, it holds that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \asymp N^{-1 / 2}, \quad N \rightarrow \infty
$$

2. If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$, it holds for all $x \geq 0$ that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \precsim N^{-1 / 2}(\log N)^{1 / \alpha}, \quad N \rightarrow \infty .
$$

3. If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ and $\sum_{k=0}^{n} \tilde{c}_{k} \geq 0$ for all $n \geq 0$, it holds for all $x \geq 0$ that

$$
N^{-1 / 2}(\log N)^{-1 / \alpha+o(1)} \precsim \mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right), \quad N \rightarrow \infty
$$

Proof. First, note that

$$
X_{n}=\sum_{k=1}^{n} \sum_{j=1}^{k} \tilde{c}_{k-j} Y_{j}=\sum_{j=1}^{n} Y_{j} \sum_{k=j}^{n} \tilde{c}_{k-j}=\sum_{j=1}^{n} Y_{j} \sum_{k=0}^{n-j} \tilde{c}_{k}=\sum_{k=1}^{n} c_{n-k} Y_{k}
$$

where $c_{n}:=\sum_{k=0}^{n} \tilde{c}_{k} \rightarrow c=\sum_{k=0}^{\infty} \tilde{c}_{k} \neq 0$. Set $S_{n}:=\sum_{k=1}^{n} c Y_{k}$, so that for all $n \geq 1$,

$$
\left|S_{n}-X_{n}\right|=\left|\sum_{k=1}^{n}\left(c-c_{n-k}\right) Y_{k}\right|
$$

In particular, if $\left|Y_{1}\right| \leq M<\infty$ a.s., it follows that

$$
\left|S_{n}-X_{n}\right| \leq M \sum_{k=0}^{n-1}\left|c-c_{k}\right| \leq M \sum_{k=0}^{n-1} \sum_{j=k+1}^{\infty}\left|\tilde{c}_{j}\right|=M \sum_{j=1}^{\infty} j\left|\tilde{c}_{j}\right|=: \tilde{M}<\infty
$$

Hence, we get for $x \geq \tilde{M}$ that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq 0\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq x+\tilde{M}\right)
$$

and the proof of part 1 . is complete since S is a centered random walk with finite variance.

The proof of part 2. is similar. Let $E_{N}:=\left\{\left|Y_{k}\right| \leq(2 \log N)^{1 / \alpha}, k=1, \ldots, N\right\}$. On E_{N}, we get as above that

$$
\begin{equation*}
\left|S_{n}-X_{n}\right| \leq(2 \log N)^{1 / \alpha} \sum_{k=0}^{n-1}\left|c-c_{k}\right| \leq(2 \log N)^{1 / \alpha} \sum_{j=1}^{\infty} j\left|\tilde{c}_{j}\right|=: C(\log N)^{1 / \alpha} \tag{16}
\end{equation*}
$$

Hence,

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \leq \mathbb{P}\left(E_{N}^{c}\right)+\mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq x+C(\log N)^{1 / \alpha}\right)
$$

By Chebyshev's inequality,

$$
\mathbb{P}\left(E_{N}^{c}\right) \leq N \mathbb{P}\left(\left|Y_{1}\right| \geq(2 \log N)^{1 / \alpha}\right) \leq N \mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right] N^{-2} \asymp N^{-1}
$$

Finally, by Lemma 4.4 below, it holds that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq x+C(\log N)^{1 / \alpha}\right) \precsim(\log N)^{1 / \alpha} N^{-1 / 2},
$$

which proves part 2 .
It suffices to prove the lower bound of part 3 for $x=0$. Moreover, we use that independent random variables Y_{1}, \ldots, Y_{N} are associated for every $N, c f$. [8]. Since $c_{n}=\sum_{k=0}^{n} \tilde{c}_{k} \geq 0$ for every n by assumption, the function

$$
f_{K, L}\left(x_{1}, \ldots, x_{N}\right) \mapsto\left\{\begin{array}{ll}
-1, & \sum_{k=1}^{n} c_{n-k} x_{k} \leq 0 \\
0, & \text { else }
\end{array} \quad \text { for all } n=K, \ldots, L\right.
$$

is nondecreasing in every component. Hence, the very definition of associated random variables implies for $1 \leq N_{0}<N$ that

$$
\operatorname{cov}\left(f_{1, N_{0}}\left(Y_{1}, \ldots, Y_{N}\right), f_{N_{0}+1, N}\left(Y_{1}, \ldots, Y_{N}\right)\right) \geq 0
$$

or equivalently,

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq 0\right) \geq \mathbb{P}\left(\sup _{n=1, \ldots, N_{0}} X_{n} \leq 0\right) \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} X_{n} \leq 0\right)
$$

Hence, we can bound the survival probability p_{N} of X from below as follows:

$$
\begin{align*}
p_{N} & \geq p_{N_{0}} \cdot \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} X_{n} \leq 0, E_{N}\right) \\
& \geq p_{N_{0}} \cdot \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} S_{n} \leq-C(\log N)^{1 / \alpha}, E_{N}\right) \tag{17}
\end{align*}
$$

Note that we have used (16) in the second inequality. Next,

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} S_{n} \leq-C(\log N)^{1 / \alpha}, E_{N}\right) \\
& \quad \geq \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} S_{n} \leq-C(\log N)^{1 / \alpha}\right)-\mathbb{P}\left(E_{N}^{c}\right) \\
& \quad \geq \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} S_{n}-S_{N_{0}} \leq 0, S_{N_{0}} \leq-C(\log N)^{1 / \alpha}\right)-\mathbb{P}\left(E_{N}^{c}\right) \\
& \quad \geq \mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq 0\right) \mathbb{P}\left(S_{N_{0}} \leq-C(\log N)^{1 / \alpha}\right)-\mathbb{P}\left(E_{N}^{c}\right)
\end{aligned}
$$

Let $N_{0}:=\lfloor\log N\rfloor^{2 / \alpha}$. Then $\mathbb{P}\left(S_{N_{0}} \leq-C(\log N)^{1 / \alpha}\right) \geq \mathbb{P}\left(S_{N_{0}} / \sqrt{N_{0}} \leq-C\right)$ and the r.h.s. converges to a constant by the CLT. Using the estimate on $\mathbb{P}\left(E_{N}^{c}\right)$ from above and (17), we have for N large enough that

$$
\begin{equation*}
p_{N} \geq C_{1} p_{N_{0}} \cdot N^{-1 / 2}=C_{1} \mathbb{P}\left(\sup _{n=1, \ldots,\lfloor\log N\rfloor^{2 / \alpha}} X_{n} \leq 0\right) N^{-1 / 2} \tag{18}
\end{equation*}
$$

Since $c_{n} \geq 0$ for all n, we can now use the trivial estimate $p_{N_{0}} \geq \mathbb{P}\left(Y_{1} \leq 0\right)^{N_{0}}=\mathrm{e}^{-\kappa N_{0}}$ implying for N large enough that

$$
p_{N} \geq C_{1} \exp \left(-\kappa\lfloor\log N\rfloor^{2 / \alpha}\right) N^{-1 / 2}
$$

Using this as an a priori estimate for $p_{N_{0}}$, we get for large N in view of (18) that

$$
\begin{aligned}
p_{N} & \geq C_{1}^{2} \exp \left(-\kappa\left\lfloor\log N_{0}\right\rfloor^{2 / \alpha}\right) N_{0}^{-1 / 2} N^{-1 / 2} \\
& =C_{1}^{2} \exp \left(-\kappa\left\lfloor\log \left(\lfloor\log N\rfloor^{1 / \alpha}\right)\right\rfloor^{2 / \alpha}\right)\lfloor\log N\rfloor^{-1 / \alpha} N^{-1 / 2} \\
& \geq C_{2} \exp \left(-C_{3}(\log \log N)^{2 / \alpha}\right)(\log N)^{-1 / \alpha} N^{-1 / 2}
\end{aligned}
$$

Using this improved estimate again to obtain a lower bound on $p_{N_{0}}$, we deduce from (18) that $p_{N} \succsim$ $(\log N)^{-1 / \alpha+o(1)} N^{-1 / 2}$.

Remark 4.3. One cannot expect to get a useful lower bound without any restriction on the weights c_{n}. For instance, if Y_{1} takes only values ± 1 and $X_{n}=\sum_{k=1}^{n} c_{n-k} Y_{k}$ with $c_{0}=1, c_{1}=-3$, then $\mathbb{P}\left(X_{1} \leq 0, X_{2} \leq 0\right)=$ $\mathbb{P}\left(X_{1} \leq 0, X_{1}+X_{2} \leq 0\right)=0$.

In order to complete the proof of Theorem 4.2, let us prove the following lemma.
Lemma 4.4. Let $\left(f_{n}\right)_{n \geq 1}$ denote a sequence of positive numbers with $f_{N} \rightarrow \infty$ and $f_{N} / \sqrt{N} \rightarrow 0$ as $N \rightarrow \infty$. Let $\left(S_{n}\right)_{n \geq 1}$ denote a centered random walk with $\mathbb{E}\left[S_{1}^{2}\right] \in(0, \infty)$ and let $M_{n}:=\max \left\{S_{1}, \ldots, S_{n}\right\}$. There are a constants C, N_{0} independent of the sequence $\left(f_{n}\right)$ such that

$$
\mathbb{P}\left(M_{N} \leq f_{N}\right) \leq C f_{N} N^{-1 / 2}, \quad f_{N}, N \geq N_{0}
$$

Proof. Since independent random variables are associated [8], we have for $1 \leq N_{0}<N$ that

$$
\mathbb{P}\left(S_{n} \leq 0, \forall n=1, \ldots, N\right) \geq \mathbb{P}\left(S_{n} \leq 0, \forall n=1, \ldots, N_{0}\right) \mathbb{P}\left(S_{n} \leq 0, \forall n=N_{0}+1, \ldots, N\right)
$$

Now

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{n=N_{0}+1, \ldots, N} S_{n} \leq 0\right) \geq \mathbb{P}\left(S_{N_{0}} \leq-f_{N}, \sup _{n=N_{0}+1, \ldots, N} S_{n}-S_{N_{0}} \leq f_{N}\right) \\
& \quad=\mathbb{P}\left(S_{N_{0}} \leq-f_{N}\right) \mathbb{P}\left(\sup _{n=1, \ldots, N-N_{0}} S_{n} \leq f_{N}\right) \geq \mathbb{P}\left(S_{N_{0}} \leq-f_{N}\right) \mathbb{P}\left(M_{N} \leq f_{N}\right)
\end{aligned}
$$

Hence, we get that

$$
\mathbb{P}\left(M_{N} \leq f_{N}\right) \leq \frac{\mathbb{P}\left(M_{N} \leq 0\right)}{\mathbb{P}\left(M_{N_{0}} \leq 0\right) \mathbb{P}\left(S_{N_{0}} \leq-f_{N}\right)}
$$

With $N_{0}=\lfloor f(N)\rfloor^{2}$, it follows from the CLT that $\mathbb{P}\left(S_{N_{0}} \leq-f_{N}\right) \rightarrow \mathbb{P}(Z \leq-1)$ where Z is a centered Gaussian with variance $\mathbb{E}\left[Y_{1}^{2}\right]$. Moreover, since $\mathbb{P}\left(M_{N} \leq 0\right) \sim c N^{-1 / 2}$, we conclude that

$$
\frac{\mathbb{P}\left(M_{N} \leq 0\right)}{\mathbb{P}\left(M_{N_{0}} \leq 0\right) \mathbb{P}\left(S_{N_{0}} \leq-f_{N}\right)} \sim \frac{N^{-1 / 2}}{N_{0}^{-1 / 2} \mathbb{P}(Z \leq-1)} \sim \frac{f_{N} N^{-1 / 2}}{\mathbb{P}(Z \leq-1)}
$$

Corollary 4.5. Assume that $\mathbb{E}\left[Y_{1}\right]=0$. Let $a_{1}+a_{2}=1$ with $\left|a_{2}\right|<1$ and $x \geq 0$.

1. If $\left|Y_{1}\right| \leq M$ a.s., it holds that $p_{N}(x) \asymp N^{-1 / 2}$ as $N \rightarrow \infty$.
2. If $\mathbb{E}\left[\exp \left(\left|Y_{1}\right|^{\alpha}\right)\right]<\infty$ for some $\alpha>0$, it holds that $p_{N}(x)=N^{-1 / 2+o(1)}$ as $N \rightarrow \infty$.

Proof. If X is $\operatorname{AR}(2)$ with coefficients a_{1}, a_{2} as in the statement of the corollary, we have seen that $X_{n}=\sum_{k=1}^{n} Z_{k}$ where Z is $\operatorname{AR}(1)$ with $Z_{n}=-a_{2} Z_{n-1}+Y_{n}$, i.e. $Z_{n}=\sum_{k=1}^{n}\left(-a_{2}\right)^{n-k} Y_{k}$. Since $\sum_{k=0}^{n}\left(-a_{2}\right)^{k}>0$ for all n, it is not hard to see that part 2 and part 3 of Theorem 4.2 imply part 2 of the corollary. Similarly, by part 1 of Theorem 4.2 and the fact that $p_{N}(x) \asymp p_{N}$ (see the comment at the end of Sect. 2), we obtain part 1 of the corollary.

In analogy to the results for random walks, it is very likely that the assertion of Corollary 4.5 remains true under the much weaker integrability assumption $\mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$. Depending on the sign of a_{1}, we can improve the preceding corollary by proving an upper or lower bound of order $N^{-1 / 2}$:

Proposition 4.6. Let $a_{1}+a_{2}=1$ with $\left|a_{2}\right|<1$. Assume that $\mathbb{E}\left[Y_{1}\right]=0, \mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$.

1. If $a_{2}>0$, we have that $p_{N}(x) \precsim N^{-1 / 2}$ for all $x \geq 0$.
2. If $a_{2}<0$, we have that $p_{N}(x) \succsim N^{-1 / 2}$ for all $x \geq 0$.

Proof. For $n \geq 1$, set $S_{n}:=X_{n}+a_{2} X_{n-1}$ and note that

$$
S_{n}=a_{1} X_{n-1}+a_{2} X_{n-2}+Y_{n}+a_{2} X_{n-1}=X_{n-1}+a_{2} X_{n-2}+Y_{n}=S_{n-1}+Y_{n},
$$

i.e. $\left(S_{n}\right)_{n \geq 1}$ defines a centered random walk. Moreover, since $a_{1}+a_{2}=1$, we have, for $n \geq 1$, that

$$
X_{n}=\left(a_{1}-1\right) X_{n-1}+X_{n-1}+a_{2} X_{n-2}+Y_{n}=\left(a_{1}-1\right) X_{n-1}+S_{n-1}+Y_{n}=-a_{2} X_{n-1}+S_{n}
$$

In particular, if $a_{2}>0$, it holds that $X_{n} \leq x$ for $n=1, \ldots, N$ implies that $S_{n} \leq a_{2} x$ for $n=1, \ldots, N$ and therefore,

$$
p_{N}(x) \leq \mathbb{P}\left(\sup _{n=1, \ldots, N} S_{n} \leq a_{2} x\right) \precsim N^{-1 / 2} .
$$

Similarly, if $a_{2}<0, S_{n} \leq 0$ for $n=1, \ldots, N$ implies that $X_{n} \leq 0$ for $n=1, \ldots, N$, which yields the lower bound.

Let us finally remark that Theorem 4.2 is also applicable to integrated $\operatorname{AR}(p)$-processes such that the roots s_{1}, \ldots, s_{p} of the corresponding characteristic polynomial lie inside the unit disc. Let us just state the simplest case of bounded innovations Y_{n}. Set

$$
\Delta_{p}:=\left\{\left(a_{1}, \ldots, a_{p}\right): \max _{k=1, \ldots, p}\left|s_{k}\right|<1\right\}
$$

where s_{1}, \ldots, s_{p} are the roots of the characteristic polynomial, see page 148 .
Corollary 4.7. Let X be the $A R(p)$-process corresponding to $\left(a_{1}, \ldots, a_{p}\right) \in \Delta_{p}$. Assume that $\left|Y_{1}\right| \leq M<\infty$ a.s. Then there is $x_{0} \geq 0$ such that for all $x \geq x_{0}$, we have that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} \sum_{k=1}^{n} X_{k} \leq x\right) \asymp N^{-1 / 2} .
$$

Since we know the region Δ_{2} explicitly ($c f$. Fig. 2), we obtain the following result for $\operatorname{AR}(3)$-processes:
Corollary 4.8. Let X be $A R(3)$ with a_{1}, a_{2}, a_{3} satisfying

$$
a_{1}+a_{2}+a_{3}=1, \quad a_{2}<\min \left\{1,3-2 a_{1}\right\}, \quad a_{2}>-a_{1}
$$

Assume that $\left|Y_{1}\right| \leq M$ a.s. for some $M<\infty$. Then there is $x_{0} \geq 0$ such that $p_{N}(x) \asymp N^{-1 / 2}$ for all $x \geq x_{0}$.
Proof. Let us show that X is an integrated $\operatorname{AR}(2)$ process \tilde{X} with parameters in Δ_{2}. Since $a_{1}+a_{2}+a_{3}=1$, we have that $T_{2}\left(a_{1}-1, a_{1}+a_{2}-1\right)=\left(a_{1}, a_{2}, a_{3}\right)$ where T_{2} was defined in (15). Hence, by Corollary 4.7, we only need to show that

$$
\left(a_{1}-1, a_{1}+a_{2}-1\right) \in \Delta_{2}=\left\{\left(\tilde{a}_{1}, \tilde{a}_{2}\right): \tilde{a}_{1}+\tilde{a}_{2}<1, \tilde{a}_{2}<1+\tilde{a}_{2}, \tilde{a}_{2}>-1\right\},
$$

(see Rem. 2.1) whenever $\left(a_{1}, a_{2}, a_{3}\right)$ satisfy the constraints stated in the corollary. Let $\tilde{a}_{1}=a_{1}-1$ and $\tilde{a}_{2}=$ $a_{1}+a_{2}-1$. Now $a_{2}<3-2 a_{1}$ amounts to $\tilde{a}_{1}+\tilde{a}_{2}=2 a_{1}+a_{2}-2<1$. Next, $\tilde{a}_{2}<1+\tilde{a}_{1}$ is equivalent to $a_{2}<1$, whereas $\tilde{a}_{2}>-1$ translates into $a_{1}>-a_{2}$.

4.2. The case $a_{1}=0$

We still have to consider the case $X_{n}=X_{n-2}+Y_{n}$ which is a special case of the equation $X_{n}=\rho X_{n-2}+Y_{n}$. The solution of the latter equation is given by

$$
X_{n}= \begin{cases}\sum_{j=1}^{k} \rho^{k-j} Y_{2 j-1}, & n=2 k-1, k \in \mathbb{N} \\ \sum_{j=1}^{k} \rho^{k-j} Y_{2 j}, & n=2 k, k \in \mathbb{N}\end{cases}
$$

In particular, $\left(X_{2 n}\right)$ and $\left(X_{2 n-1}\right)$ define two independent sequences with the same law as $\left(Z_{n}\right)_{n \geq 1}$ given by $Z_{n}=\rho Z_{n-1}+Y_{n}$. Hence,

$$
\begin{align*}
\mathbb{P}\left(\sup _{n=1, \ldots, 2 N} X_{n} \leq x\right) & =\left(\mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq x\right)\right)^{2} \tag{19}\\
\mathbb{P}\left(\sup _{n=1, \ldots, 2 N-1} X_{n} \leq x\right) & =\mathbb{P}\left(\sup _{n=1, \ldots, N} Z_{n} \leq x\right) \mathbb{P}\left(\sup _{n=1, \ldots, N-1} Z_{n} \leq x\right)
\end{align*}
$$

In particular, the behaviour of the survival probability can be determined by the survival probabilities of $\operatorname{AR}(1)-$ processes. If $\rho=1, X$ defines two indpendent random walk, so we immediately obtain the following lemma:
Lemma 4.9. Let $\mathbb{E}\left[Y_{1}\right]=0, \mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$. $X_{n}=X_{n-2}+Y_{n}$. Then for any $x \geq 0$, there is a constant $c(x)$ such that

$$
\mathbb{P}\left(\sup _{n=1, \ldots, N} X_{n} \leq x\right) \sim c(x) N^{-1}, \quad N \rightarrow \infty
$$

Proof. By the preceding discussion, $\left(X_{2 n}\right)$ and $\left(X_{2 n-1}\right)$ define two independent centered random walks with finite variance that have the same law. It is then well known that $\mathbb{P}\left(\sup _{n=1, \ldots, N} \sum_{k=1}^{n} Y_{k} \leq x\right) \sim d(x) N^{-1 / 2}$. The assertion follows in view of (19).

Remark 4.10. By the same reasoning, if $X_{n}=X_{n-p}+Y_{n}(p \geq 1)$, we have that $p_{N}(x) \sim c(x) N^{-p / 2}$ for any $x \geq 0$ if $\mathbb{E}\left[Y_{1}\right]=0$ and $\mathbb{E}\left[Y_{1}^{2}\right] \in(0, \infty)$.

5. A positive limit

We now turn to the case that the survival probability converges to a positive limit, i.e. $p_{N}(x) \rightarrow p_{\infty}(x)>0$ as $N \rightarrow \infty$, implying that the process $\left(X_{n}\right)_{n \geq 1}$ stays below x at all times with positive probability. If $X_{n}=$ $\sum_{k=1}^{n} c_{n-k} Y_{k}$, one would expect that this happens if $0<c_{n} \rightarrow \infty$ and $c_{n}-c_{n-1} \rightarrow \infty$. Indeed, if c_{n} is very large compared to c_{k} for $k \leq n-1$, then $Y_{1} \leq-\delta$ for some $\delta>0$ implies that $X_{n} \leq-\delta c_{n}+\sum_{k=2}^{n} c_{n-k} Y_{k}$, and one expects that the expression on the r.h.s. stays below a fixed barrier with high probability. In fact, we can transform this idea directly into a proof.

Proposition 5.1. Let $\left(\alpha_{n}\right)_{n \geq 0}$ denote a sequence of positive numbers. Let $\rho>1$ and assume that $\mathbb{P}\left(Y_{1}<0\right)>0$ and $\mathbb{P}\left(Y_{1} \geq x\right) \precsim(\log x)^{-\alpha}$ as $x \rightarrow \infty$ for some $\alpha>1$. Let $X_{n}:=\sum_{k=1}^{n} \rho^{n-k} \alpha_{n-k} Y_{k}$.

1. If $\left(\alpha_{n}\right)_{n \geq 0}$ is nondecreasing, there is a constant $c>0$ such that

$$
\mathbb{P}\left(\bigcap_{n=1}^{\infty}\left\{X_{n} \leq-c \alpha_{n-1} \rho^{n-1}\right\}\right)>0 .
$$

2. If $0<l \leq \alpha_{n} \leq u<\infty$ for all $n \geq 0$, there is a constant $c>0$ such that

$$
\mathbb{P}\left(\bigcap_{n=1}^{\infty}\left\{X_{n} \leq-c \rho^{n-1}\right\}\right)>0 .
$$

Proof. We first prove part 1 . Let $\delta>0$ such that $\mathbb{P}\left(Y_{1} \leq-\delta\right)>0$. Let $\beta>0$ denote a sequence of positive numbers with $\beta \sum_{k=1}^{\infty} k^{-2} \leq \delta / 2$. Then

$$
A_{N}:=\left\{Y_{1} \leq-\delta\right\} \cap \bigcap_{n=2}^{N}\left\{Y_{n} \leq \rho^{n-1} \beta n^{-2}\right\} \subseteq \bigcap_{n=1}^{N}\left\{X_{n} \leq-\delta \alpha_{n-1} \rho^{n-1} / 2\right\}
$$

Indeed, since $\left(\alpha_{n}\right)$ is nondecreasing, the event A_{N} implies that $X_{1}=\alpha_{0} Y_{1} \leq-\alpha_{0} \delta$ and for all $n=2, \ldots, N$ that

$$
\begin{aligned}
X_{n} & =\rho^{n-1} \alpha_{n-1} Y_{1}+\sum_{k=2}^{n} \rho^{n-k} \alpha_{n-k} Y_{k} \leq-\delta \alpha_{n-1} \rho^{n-1}+\rho^{n-1} \sum_{k=2}^{n} \alpha_{n-k} \beta k^{-2} \\
& \leq-\delta \alpha_{n-1} \rho^{n-1}+\rho^{n-1} \alpha_{n-1} \beta \sum_{k=1}^{\infty} k^{-2}=\alpha_{n-1} \rho^{n-1}\left(\beta \sum_{k=1}^{\infty} k^{-2}-\delta\right) \leq-\delta \alpha_{n-1} \rho^{n-1} / 2 .
\end{aligned}
$$

Finally, in view of the assumption on the tail behaviour of Y_{1}, it is not hard to show that

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(A_{N}\right)=\mathbb{P}\left(Y_{1} \leq-\delta\right) \lim _{N \rightarrow \infty} \prod_{n=2}^{N}\left(1-\mathbb{P}\left(Y_{1}>\beta \rho^{n-1} n^{-2}\right)\right)>0
$$

The proof of part 2 is very similar. Let A_{N} be defined as above. Then, using the bounds on $\left(\alpha_{n}\right)$, we get for $n=2, \ldots, N$ that

$$
\begin{aligned}
X_{n} & \leq-\delta \alpha_{n-1} \rho^{n-1}+\rho^{n-1} \sum_{k=2}^{n} \alpha_{n-k} \beta k^{-2} \leq-\delta l \rho^{n-1}+\rho^{n-1} u \beta \sum_{k=1}^{\infty} k^{-2} \\
& =\rho^{n-1}\left(\beta u \sum_{k=1}^{\infty} k^{-2}-\delta l\right) .
\end{aligned}
$$

For $\beta>0$ sufficiently small, this implies that $X_{n} \leq-(\delta l / 2) \rho^{n-1}$ for all $n=2, \ldots, N$.
We can now prove Theorem 1.3 showing that the survival probability converges to a positive constant if X is $\operatorname{AR}(2)$ with $\left(a_{1}, a_{2}\right) \in C$ (cf. Fig. 1) under mild conditions.

Proof of Theorem 1.3. Let $\left(a_{1}, a_{2}\right) \in C$. Assume first that $a_{1}>0$ and $a_{2} \in \mathbb{R}$ such that $a_{1}^{2}+4 a_{2}>0$. Moreover, assume that either $a_{1} \geq 2$ or $a_{1}+a_{2}>1$ if $a_{1}<2$. Recall from (2) that $c_{n}=s_{1}^{n+1} / h-s_{2}^{n+1} / h$ where $h>0$ since $a_{1}^{2}+4 a_{2}>0$. Note that $s_{1}=\left(a_{1}+h\right) / 2>1$ if and only if either $a_{1} \geq 2$ or if $a_{1}+a_{2}>1$ in case $a_{1}<2$. Moreover $\left|s_{2}\right|<s_{1}$ if and only if $a_{1}>0$ and $h>0$. Hence, in view of our assumptions, we have that
$c_{n}=s_{1}^{n} s_{1} / h\left(1-\left(s_{2} / s_{1}\right)^{n+1}\right)=: s_{1}^{n} \alpha_{n} \geq 0$ for all n. Note that $\alpha_{n} \rightarrow s_{1} / h>0$. Hence, the assertion follows by part 2 of Proposition 5.1.

If $a_{1}^{2}+4 a_{2}=0$ and $a_{1}>2, c_{n}=\left(a_{1} / 2\right)^{n}(n+1)$ by (2). Hence, the result follows from part 1 of Proposition 5.1 with $\rho=a_{1} / 2>1$ and $\alpha_{n}=n+1$.

Finally, if $a_{1}=0$ and $a_{2}>1$, the claim follows in view of (19) and Proposition 5.1.

References

[1] F. Aurzada and C. Baumgarten, Survival probabilities of weighted random walks. ALEA Lat. Amer. J. Probab. Math. Stat. 8 (2011) 235-258.
[2] F. Aurzada and T. Simon, Persistence probabilities and exponents. arXiv:1203.6554 (2012).
[3] P.J. Brockwell and R.A. Davis, Time series: theory and methods. Springer Series in Statistics. Springer-Verlag, New York (1987).
[4] A. Dembo, J. Ding and F. Gao, Persistence of iterated partial sums. Ann. Inst. Henri Poincaré B. To appear (2012).
[5] A. Dembo, B. Poonen, Q.-M. Shao and O. Zeitouni, Random polynomials having few or no real zeros. J. Amer. Math. Soc. 15 857-892 (2002). Electronic.
[6] R.A. Doney, On the asymptotic behaviour of first passage times for transient random walk. Probab. Theory Related Fields $\mathbf{8 1}$ (1989) 239-246,.
[7] S.N. Elaydi, An introduction to difference equations. Undergraduate Texts in Mathematics. Second edition, Springer-Verlag, New York (1999).
[8] J.D. Esary, F. Proschan and D.W. Walkup, Association of random variables, with applications. Ann. Math. Statist. 38 (1967) 1466-1474.
[9] W. Feller, An introduction to probability theory and its applications. Second edition, John Wiley and Sons Inc., New York (1971).
[10] G.R. Grimmett and D.R. Stirzaker, One thousand exercises in probability. Oxford University Press, Oxford (2001).
[11] M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer-Verlag, Berlin Heidelberg New York (1991).
[12] W.V. Li and Q.-M. Shao, Recent developments on lower tail probabilities for Gaussian processes. Cosmos 1 (2005) 95-106.
[13] E. Lukacs, Characteristic functions. Second edition, revised and enlarged. Hafner Publishing Co., New York (1970).
[14] A. Novikov and N. Kordzakhia, Martingales and first passage times of AR(1) sequences. Stochast. 80 (2008) 197-210.
[15] Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions. In Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), vol. 46 of Progr. Probab. Birkhäuser, Basel (2000) 39-65.
[16] Ya. G. Sinaй, Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys. 148 (1992) $601-621$.

[^0]: Keywords and phrases. Autoregressive process, autoregressive moving average, boundary crossing probability, one-sided exit problem, persistence probablity, survival probability.
 1 Technische Universität Braunschweig, Institut für Mathematische Stochastik, Pockelsstrasse 14, 38106 Braunschweig, Germany. baumgart@math.tu-berlin.de

