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ON THE TIME CONSTANT IN A DEPENDENT FIRST PASSAGE
PERCOLATION MODEL

Julie Scholler

Abstract. We pursue the study of a random coloring first passage percolation model introduced
by Fontes and Newman. We prove that the asymptotic shape of this first passage percolation model
continuously depends on the law of the coloring. The proof uses several couplings, particularly with
greedy lattice animals.
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1. Introduction

First passage percolation model was introduced by Hammersley and Welsh [9] as a stochastic model for a
porous media. To each edge e of the simple cubic lattice, we assign a random non negative number t(e), which is
interpreted as the time to cross the edge in either direction. Classically the random variables t(e) are independent
identically distributed (i.i.d.). In this article, we study a specific dependent model introduced by Fontes and
Newman [6]. To construct it, we begin with an independent identically distributed random coloring of Zd. Then
the random variables t(e) are defined as follows: if the endpoints of the edge e are in different colors, the random
variable t(e) is equal to 1, otherwise it is equal to 0. Zd is split into color clusters representing countries and
thus one spends one unit of time to go through a border. As in the standard model, there exists a seminorm μp

(p refers to the coloring law) on Rd which governs the propagation speed.

We show that the seminorm on the unit ball is continuous with respect to the coloring law and that the
asymptotic shape is also continuous with respect to the coloring law for the Hausdorff distance.

Up to now, the seminorm continuity was studied only in the case of standard first passage percolation by
Cox [3] and later by Cox and Kesten [5]. We will not use the same method as in the previous articles. We will
proceed by taking advantage of the possibility to construct an interesting coupling of two random colorings and
of the relation of the model with greedy lattice animals.
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2. Model and results

2.1. Random colorings and the associated passage times

Let Zd be the integer lattice of dimension d ≥ 2. Let (Xu)u∈Zd be a family of positive integer valued
independent identically distributed random variables. If we consider positive integers to be colors, the joint law
of the (Xu)u∈Zd determines a random coloring of Zd. We endow Zd with the set of edges Ed defined by

Ed =

{
{u, v};u ∈ Zd, v ∈ Zd, ‖u− v‖ =

d∑
i=1

|ui − vi| = 1

}
.

Now random colorings give rise to a first passage percolation model by defining for each edge {u, v} in Ed,
t
({u, v}) := 1{Xu �=Xv}, where 1A is the indicator function of the set A.

If the coloring is regarded as representing a geographical map, then each individual color cluster represents
a single country and one can travel instantaneously inside a country but one spends one unit of time to cross a
border.

Let us note that, though the Xu, u ∈ Zd, are independent, the random variables t(e), e ∈ Ed, are not. This
is the difference with the standard first passage percolation model. We refer to Kesten’s Saint Flour Notes [12]
for a introduction to the subject and to Kesten’s survey [13] or Howard’s survey [10] for more recent results.

We define

P :=

{
(p1, p2, . . .) ∈ [0, 1]N

∗
;
+∞∑
i=1

pi = 1

}
.

Let us remark that the L1–norm, the supremum norm and the pointwise convergence lead to the same topology
on P (this can be proved with Scheffe’s Lemma [1]). Thus we will use indistinctly the L1–norm (‖ · ‖1) or the

supremum norm (| · |) on P . Let p = (p1, p2, . . .) be in P , then the law of Xu is
+∞∑
i=1

piδi.

2.2. Notation and general definitions for first passage percolation

A path γ of length k is a sequence of edges and vertices, γ = (u1, e1, . . . , ek, uk+1), such that for each integer j
between 1 and k, uj is a vertex of Zd and ej is the edge between uj and uj+1, i.e. ej = {uj, uj+1}. So the
length of a path γ, denoted by l(γ), is the number of its edges. The number of vertices of a path γ is denoted
by |γ|. Sometimes we will only consider self–avoiding paths for which the vertices are all distinct. We define the
passage time of the path γ to be the sum of the passage times through the edges of γ:

T (γ) :=
k∑

i=1

t(ei).

If u and v are vertices of Zd, then Γ (u, v) denotes the set of the paths from u to v and T (u, v) the passage time
from u to v, i.e. T (u, v) := inf {T (γ) γ ∈ Γ (u, v)} . If a path γ from u to v satisfies T (γ) = T (u, v), then γ is
called a route. Let us note that, for first passage percolation on a random coloring, T (u, v) is a minimum, that
is, for any given pair of vertices, there is always a route.

We can extend the definition of passage time between two sites of Zd to points of Rd as follows: to each
point x of Rd, we assign the nearest site x� of Zd with deterministic rules in case of equality. We define T (x, y)
to be T (x�, y�). One of the topics of interest in first passage percolation is the set B(t) of points that can be
reached from the origin by time t, i.e.

B(t) = {x ∈ Rd;T (0, x) ≤ t}.
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2.3. The seminorm µ

First of all, let us note that the joint law of the passage times induced by an i.i.d. random coloring is translation
invariant and ergodic. Moreover, the random variables t(e) are bounded by 1. In the following, Tp denotes the
passage time which corresponds to the coloring law p. With this notation, we have the next result:

Proposition 2.1. For each p in P and for each x in Rd, there exists a constant μp(x) such that

lim
n→+∞

Tp(0, nx)
n

= μp(x) a.s.

Furthermore, μp is a seminorm on Rd.

The standard basis of Rd is denoted by (ε1, . . . , εd). Let us remark that, when the joint law of the passage
times is invariant under permutations of the coordinates, the constants μ(εi) are the same. This constant μ(ε1)
is known as the time constant.

For x in Zd, the convergence follows from Kingman’s subadditive ergodic theorem [14] (we can also use
Liggett’s improved version [15]). In addition, the limit is the lower bound and is also the lower bound of the

expectation. The definition of μp can be extended to Qd by defining μp

(m
k

)
=

1
k
μp(m) for m in Zd and k

a non–zero integer. Since the function μp is 1–Lipschitz continuous on Qd, it can be extended to Rd. We can

actually check that
Tp(0, nx)

n
converges to μp(x) when n goes to infinity.

Our main result concerns the continuity with respect to the coloring law of this seminorm. To clearly state
it, we denote by B(0, 1) the closed unit ball for the euclidean norm and by ‖ · ‖∞ the infinity norm on B(0, 1),
i.e. ‖f‖∞ = sup

x∈B(0,1)

|f(x)|. Then our main result is:

Theorem 2.2. The function μ: P → C (B(0, 1),R)
p �→ (x �→ μp(x))

is continuous with respect to the infinity norm.

Remark 2.3. It follows that, for each x in Rd, the application P → R+

p �→ μp(x)
is continuous.

2.4. The asymptotic shape

In standard first passage percolation, it has been proved that B(t) grows linearly with t (possibly at an infinite
rate) and has an deterministic asymptotic shape. These results have been extended to the case of stationary
ergodic passage times with a moment condition by Boivin [2]. However, in first passage percolation on a i.i.d.
random coloring, the passage times are bounded. It is a simpler case which was remarked by Derriennic and
indicated at the end of Kesten’s Saint-Flour notes [12].

Thus, in the case of first passage percolation on a random coloring, we have the following result:

Proposition 2.4. Let Bμp = {x ∈ Rd;μp(x) ≤ 1}.
1. If μp(ε1) > 0, then the set Bμp is a deterministic convex compact set with nonempty interior and for any
ε > 0, we have

(1 − ε)Bμp ⊂ B(t)
t

⊂ (1 + ε)Bμp for t large enough a.s.

2. If μp(ε1) = 0, then μp ≡ 0 (so Bμp = Rd) and for any compact set K, we have K ⊂ B(t)
t

for t large enough
a.s.
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The set Bμp is called the asymptotic shape. At this stage, it seems natural to wonder if the asymptotic shape
converges with respect to the law p for the Hausdorff distance when μp(ε1) > 0. In fact, this result follows from
Theorem 2.2. Let us begin by recalling the definition of the Hausdorff distance. Let X and Y be two non-empty
compact sets of a metric space (E, d). We define their Hausdorff distance dH(X,Y ) by

dH(X,Y ) = max
{

sup
y∈Y

inf
x∈X

d(x, y), sup
x∈X

inf
y∈Y

d(x, y)
}
.

Theorem 2.5. For each p in P such that the asymptotic shape is compact, we have

lim
q→p

dH

(
Bμp , Bμq

)
= 0.

The article is organized as follows.

• In Section 3, we recall the condition of strict positivity of μ and some results on greedy lattice animals. Then
we define a notion of short paths, which leads to consider a sequence (μk)k∈N∗ of intermediate functions μk

and we show the continuity of the functions μk, for all positive integer k.
• Section 4 is devoted to the proofs of the theorems. We show that (μk)k∈N∗ converges uniformly to μ on

each set of an open covering of the coloring law and we use the continuity of μ to get the continuity of the
asymptotic shape with respect to the coloring law for the Hausdorff distance.

• To the last section is postponed the proof of the upper bound of the probability to have paths rather large
but of reasonable passage time. It is a useful result for the proof of the convergence of (μk)k∈N∗ to μ and
the proof is based on greedy lattice animals.

3. Preliminary results

3.1. Positivity condition

In their article [6], Fontes and Newman have given a necessary and sufficient condition for the strict positivity
of μ(ε1).

Proposition 3.1 (Fontes and Newman, 93). In the case of first passage percolation on a random coloring, we
have

μp(ε1) > 0 if and only if |p| < pc(Zd, site),

where pc(Zd, site) is the critical probability for the Bernoulli site percolation model on Zd (see Grimmett [8]).

Remark 3.2. In fact, we can see that

1. if μ(ε1) > 0, then for each integer i between 1 and d, μp(εi) > 0 and μp is a norm on Rd,
2. if μ(ε1) = 0, then for each integer i between 1 and d, μp(εi) = 0 and, for all x in Rd, μp(x) ≤ ‖x‖μp(ε1) = 0.

Thus for each x in Rd \ {0}, μp(x) > 0 if and only if |p| < pc(Zd, site).
Their proof is based on greedy lattice animals. This model was introduced by Cox, Gandolfi, Griffin et

Kesten [4].
Let {Xv}v∈Zd be an i.i.d. family of non-negative random variables. For a finite subset ξ of Zd, the weight

S (ξ) of ξ is defined by S (ξ) =
∑
v∈ξ

Xv. A greedy lattice animal of size n is a connected subset of Zd of size

n containing the origin whose weight is maximal among all such sets. This maximum weight is denoted by
W (n) := sup

|ξ|=n

∑
v∈ξ

Xv.
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To study percolation, we are interested in the limit of
W (n)
n

which is related to the renormalized supremum

of passage time over the paths containing the origin and exactly n sites. Gandolfi et Kesten [7] show that, under
the condition that, EXd

0 (log+X0)d+ε <∞ for some ε > 0, there exists a constant W <∞ such that

W (n)
n

→W almost surely and in L1.

Under slightly weaker condition, James Martin [16] shows the same results and, during the proof of Lemma 6.5
(see point (6.14)), he obtains a large deviation result when the law of the Xv is bounded.

Proposition 3.3 (J.B. Martin [16]). Let y be a positive real number.
Then for each positive integer n and for each i.i.d family {Xv}v∈Zd of non-negative random variables bounded

by y, we have

P

(
W (n)
n

≥W + 1
)

≤ n(2n+ 1)de−
n

16y2 +64
.

These results will be used in Section 5 to prove exponential decay of the probability to have paths rather large
but of reasonable passage time.

3.2. Seminorms on k–short paths

To study the seminorm μ, we introduce the notion of k–short paths and of seminorms on k–short paths. It
will be more convenient to work with them and the new seminorms get closer to μ.

3.2.1. Definition and relation to μ

For each positive integer k, a k–short path between two vertices u and v is a path γ between u and v such
that l(γ) ≤ k‖u − v‖. The set of the k–short paths between u and v is denoted by Γk(u, v). These definitions
lead to the notion of passage time on k–short paths: for each positive integer k and for each x, y in Rd, we define

T k
p (x, y) := inf {Tp(γ); γ ∈ Γk(x, y)} .

Lemma 3.4. For each p in P, there exist functions μ1
p, μ

2
p, . . . from Rd to R+ such that for each positive

integer k and for each x in Rd, we have

lim
n→+∞

T k
p (0, nx)
n

= μk
p(x) a.s. (1)

Moreover, for each x in Rd, we have

lim
k→+∞

μk
p(x) = inf

k∈N∗
μk

p(x) = μp(x). (2)

Proof of Lemma 3.4. We divide the proof into three parts. We begin by proving the existence and some prop-
erties of the functions μk

p on Zd. Then we extend the functions μk
p by continuity on Rd and we show that (1) is

still satisfied, first on Qd, then on Rd. We finish with the demonstration of the second point (2). Again we work
on Zd and we extend the result on Rd, via Qd.

Let x in Zd. For each integer k, we can apply the subadditive ergodic theorem to the family of random

variables
(
T k

p (mx, nx)
)
0≤m<n

. Thus, for each x in Zd, we have the existence of μk
p(x) as the limit of

T k
p (0, nx)
n

·
In fact, the limit is the lower bound and it is also the lower bound of the expectation. We can extend the
function μk

p to all Rd, as we did with μp. Like μp, the function μk
p is a 1–Lipschitz continuous seminorm.

Now we check that, for all x in Rd, lim
n→+∞

T k
p (0, nx)
n

= μk
p(x) a.s.
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We fix a positive integer k. For all x in Rd, we put fn(x) =
T k

p (0, nx)
n

· We proceed in two steps to study the

convergence of the sequence (fn(x))n∈N∗ , for all x in Rd. We first show the result on Qd, then we extend the
result to Rd.

Let x be in Qd, there exist x̂ in Zd and a positive integer λ such that x =
x̂

λ
· As x̂ is in Zd, we already have

lim
n→+∞ fn(x̂) = μk

p(x̂).

Now we are going to prove that lim
n→+∞ fn(x) = μk

p(x) =
1
λ
μk

p(x̂).

∣∣∣∣T k
p (0, nx)
n

− T k
p (0,

⌊
n
λ

⌋
x̂)

n

∣∣∣∣ ≤ T k
p (nx,

⌊
n
λ

⌋
x̂)

n
≤ k

n

(∥∥∥nx− ⌊n
λ

⌋
x̂
∥∥∥+ d

)

≤ k

n

(∣∣∣∣nλ −
⌊n
λ

⌋ ∣∣∣∣‖x̂‖ + d

)
≤ k

‖x̂‖ + d

n
→ 0

The first inequality is obtained by subadditivity.

Moreover,
T k

p (0,
⌊

n
λ

⌋
x̂)⌊

n
λ

⌋ ×
⌊n
λ

⌋
× λ

n
× 1
λ
→ μk

p(x̂)× 1
λ

= μk
p(x). Thus, for all x in Qd, μk

p(x) = lim
n→+∞

T k
p (0, nx)
n

·
Now we extend the result to Rd. Let us first remark that, for all x and y in Rd, we have

|fn(x) − fn(y)| ≤ T k
p (nx, xy)

n
≤ k

‖nx− ny‖ + d

n
≤ k‖x− y‖ +

dk

n
·

Let x be in Rd and ε > 0. There exists xε in Qd such that ‖x− xε‖ < ε.

|fn(x) − μk
p(x)| ≤ |fn(x) − fn(xε)| + |fn(xε) − μk

p(xε)| + |μk
p(xε) − μk

p(x)|
≤ (k + 1)ε+

kd

n
+ |fn(xε) − μk

p(xε)|.

Thanks to the result on Qd, there exists a positive integer N such that, for each integer n ≥ N , we have
|fn(x) − μk

p(x)| ≤ 3ε.

Thus, for all x in Rd, we have μk
p(x) = lim

n→+∞
T k

p (0, nx)
n

·
It remains to prove that the sequence

(
μk

p(x)
)

k∈N∗ converges to μp(x) for each x in Rd.
Fix an integer k. We have T k

p (0, nx) ≥ T k+1
p (0, nx), thus ET k

p (0, nx) ≥ ET k+1
p (0, nx) and μk

p(x) ≥ μk+1
p (x).

Since the sequences
(
μk

p(x)
)

k∈N∗ and
(
ET k

p (0, nx)
)
k∈N∗ are monotonically decreasing and bounded below, they

converge and we have

lim
k→+∞

μk
p(x) = inf

k∈N∗
μk

p(x) and lim
k→+∞

E
[
T k

p (0, nx)
]

= inf
k∈N∗

E
[
T k

p (0, nx)
]
.

Furthermore, we have lim
k→+∞

E
[
T k

p (0, nx)
]

= E[Tp(0, nx)] = inf
k∈N∗

E
[
T k

p (0, nx)
]
, by the dominated convergence

theorem.
Therefore, by using Kingman’s subadditive ergodic theorem, for each x in Zd, we have

lim
k→+∞

μk
p(x) = inf

k∈N∗
μk

p(x) = inf
k∈N∗

inf
n∈N∗

E
[
T k

p (0, nx)
]

n

= inf
n∈N∗

1
n

inf
k∈N∗

E
[
T k

p (0, nx)
]

= inf
n∈N∗

E [Tp (0, nx)]
n

= μp(x).
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Let x be in Rd and ε > 0. There exists x̂ε in Qd such that ‖x− x̂ε‖ ≤ ε. Then there exists a positive integer λ
and xε in Zd such that x̂ε =

xε

λ
· Since μp and μk

p are seminorms, we have

|μk
p(x) − μp(x)| ≤ |μk

p(x) − μk
p(x̂ε)| + |μk

p(x̂ε) − μp(x̂ε)| + |μp(x̂ε) − μp(x)|
≤ 2ε+

1
λ
|μk

p(xε) − μp(xε)|.

Thanks to the previous result, there exists a positive integer K such that for all integer k > K, we have
|μk

p(y) − μp(y)| ≤ 3ε. Therefore we have lim
k→+∞

μk
p(x) = μp(x), for each x in Rd. �

3.2.2. Continuity of the function μk

Lemma 3.5. For all positive integer k, the function μk:
P → C (B(0, 1),R)
p �→ μk

p
is continuous with respect to

the infinity norm.

It follows that the function
P → R+

p �→ μk
p(x) is continuous, for all positive integer k and for each x in Rd.

Proof of Lemma 3.5. The idea of the proof is to proceed by coupling. Let
(
Uu

)
u∈Zd be a family of independent

uniform random variables on [0; 1] and p = (p1, . . .) in P . For all u in Zd, we define

Xp
u =

+∞∑
i=1

i1{p0+···+pi−1≤Uu<p1+···+pi}

with p0 = 0 by convention. This way, the random family (Xp
u)u∈Zd corresponds to the model of first passage

percolation attached to a random coloring with law p. By using this coupling, we will prove that, if p and q
are two very close elements of P , then the probability P

(
Xp

u �= Xq
u

)
is very small. So μk

p(x) and μk
q (x) are very

close too.
Let p in P , x in B(0, 1), ε > 0 and k be a positive integer.

Put δ := δ(ε, x, k) = (4d)−
3k‖x‖

ε · We choose a positive integer S such that
+∞∑

i=S+1

pi <
δ

2
·

Let q in P such that |p− q| < δ

2(S + 1)S
· By the previous coupling, we can note that

P
(
Xp

u �= Xq
u

)
=

+∞∑
i=1

P (Xp
u = i and Xq

u �= i)

=
+∞∑
i=1

P

⎛
⎝Uu ∈

⎡
⎣i−1∑

j=0

pj ,

i∑
j=0

pj

⎡
⎣ and Uu /∈

⎡
⎣i−1∑

j=0

qj ,

i∑
j=0

qj

⎡
⎣
⎞
⎠

≤
S∑

i=1

⎛
⎝
∣∣∣∣∣∣
i−1∑
j=0

pj −
i−1∑
j=0

qj

∣∣∣∣∣∣+
∣∣∣∣∣∣

i∑
j=0

pj −
i∑

j=0

qj

∣∣∣∣∣∣
⎞
⎠+ P

⎛
⎝Uu ≥

S∑
j=0

pj

⎞
⎠

≤
S∑

i=1

(2|p0 − q0| + · · · + 2|pi−1 − qi−1| + |pi − qi|) +
+∞∑

i=S+1

pi
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≤ 2
S∑

i=1

(S + 1 − i)|pi − qi| +
+∞∑

i=S+1

pi

≤ 2|p− q|
S∑

i=1

i+
δ

2
≤ 2

δ

2(S + 1)S
S(S + 1)

2
+
δ

2
= δ.

Then we have

P
(∣∣T k

q (0, nx) − T k
p (0, nx)

∣∣ ≥ εn
)

≤ P
(
∃γ ∈ Γ (0, ·); l(γ) ≤ kn, ∃ at least

⌊εn
2

⌋
vertices u ∈ γ,Xq

u �= Xp
u

)
≤

∑
γ∈Γ (0,·), |γ|≤kn

P
(
∃ at least

⌊εn
2

⌋
vertices u ∈ γ,Xq

u �= Xp
u

)

≤ (2d)kn

(
kn⌊
εn
2

⌋)P (Xq
u �= Xp

u)
εn
2 −1 ≤ (2d)kn2knP (Xq

u �= Xp
u)

εn
2 −1

≤ (4d)nk(4d)−
3k
ε ( εn

2 −1) = (4d)
3k
ε

(
(4d)k− 3k

ε
ε
2

)n

= (4d)
3k
ε

(
(4d)−

k
2

)n

·

Thereby for all positive integers n, P
(∣∣T k

q (0, nx) − T k
p (0, nx)

∣∣ ≥ εn
)
≤ (4d)

3k
ε

(
(4d)−

k
2

)n

.

Thus
∑

n

P
(∣∣T k

q (0, nx) − T k
p (0, nx)

∣∣ ≥ εn
)
<∞.

By Borel–Cantelli’s lemma, we have
∣∣T k

q (0, nx) − T k
p (0, nx)

∣∣ < εn for n large enough a.s.
Thus for all positive integers k, we have |μk

q (x) − μk
p(x)| < ε. �

4. Proofs of Theorem 2.2 and Theorem 2.5

4.1. Seminorm continuity

We begin by showing that, for each x in Rd, the function p �→ μp(x) is continuous when |p| ≥ pc. In fact,
only the continuity of the function p �→ μp(ε1) will be useful. Then we prove separately the continuity of the
function p �→ μp on the set Ppc := {p ∈ P |p| < pc} and on the set P \ Ppc .

Pointwise continuity on P\Ppc Since, for each x in Rd, μp(x) is the infinimum of
(
μk

p(x)
)

k∈N
and the function

μk
p(x) is continuous with respect to p, then the function μp(x) is upper semi-continuous, i.e. lim sup

q→p
μq(x) ≤

μp(x). Thus if p is such that |p| ≥ pc(site), then we have 0 ≤ lim inf
q→p

μq(x) ≤ lim sup
q→p

μq(x) ≤ μp(x) = 0. Hence

lim
q→p

μq(x) = 0 = μp(x). Thus the function p �→ μp(x) is always continuous on the set P \ Ppc .

Uniform continuity on the set P\Ppc For each x in B(0, 1) and each q in P , we have |μq(x)| ≤
d∑

i=1

|xi||μq(εi)|.
So when p is such that |p| ≥ pc, we have

lim
q→p

sup
x∈B(0,1)

|μp(x) − μq(x)| ≤ lim
q→p

sup
x∈B(0,1)

d∑
i=1

|xi||μq(εi)| ≤ d lim
q→p

|μq(ε1)| = μp(ε1) = 0.

Thus lim
q→p

sup
x∈B(0,1)

|μp(x) − μq(x)| = 0, hence the continuity of the function p �→ μp on P \ Ppc .
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Uniform continuity on the set Ppc To prove the continuity of the function μ on the set Ppc , we introduce
a family of sets Eθ,S defined by, for each real number θ in (0, pc(site,Zd)) and each positive integer S,

Eθ,S :=

{
p ∈ P |p| < θ,

+∞∑
i=S+1

pi < θ

}
.

Lemma 4.1. The family
(
Eθ,S

)
0<θ<pc, S≥5

is an open covering of the set Ppc .

Proof of Lemma 4.1. Let 0 < θ < pc, S ≥ 5 and p in Eθ,S. Let φ be the application defined on P by φ(p) =

sup
i

|pi| and ψS be the application defined on P by ψS(p) =
+∞∑

i=S+1

pi. So Eθ,S = φ−1 ([0, θ[) ∩ ψ−1
S ([0, θ[).

However, for all p and q in P , we have

|φ(p) − φ(q)| =
∣∣|p| − |q|∣∣ ≤ ∣∣p− q

∣∣ ≤ ‖p− q‖1

and

|ψS(p) − ψS(q)| ≤
∣∣∣∣∣

+∞∑
i=S+1

|pi| −
+∞∑

i=S+1

|qi|
∣∣∣∣∣ ≤

+∞∑
i=S+1

|pi − qi| ≤ ‖p− q‖1.

So the functions φ and ψS are continuous. Thus, for all 0 < θ < pc and S ≥ 5, Eθ,S is an open set.
It remains to prove that

⋃
0<θ<pc

⋃
S≥5

Eθ,S = Ppc . We clearly have
⋃

0<θ<pc

⋃
S≥5

Eθ,S ⊂ Ppc . Then for all p

in Ppc , there exist a real number θ in (0, pc) and a positive integer S larger than 5 such that |p| < θ and
+∞∑

i=S+1

pi < θ. Thus p is in Eθ,S ⊂
⋃

0<θ<pc

⋃
S≥5

Eθ,S .

Therefore the family
(
Eθ,S

)
0<θ<pc, S≥5

is an open covering of the set Ppc . �

Now we prove that on each set Eθ,S , the sequence
(
μk

p

)
k∈N∗ converges uniformly to the function μp. This

way, we will have proved 2.2.

Lemma 4.2. Let θ be a real number in (0, pc) and S be a positive integer larger than 5. There exist positive
real numbers K(θ, S), C1(θ, S) and C2(θ, S), such that for each integer k > K,

‖μk
p − μp‖∞ ≤ C1e−C2k

1
5 , ∀p ∈ Eθ,S .

Proof of Lemma 4.2. Let θ be in (0, pc), S be an integer larger than 5 and p in Eθ,S . We consider x in B(0, 1).

We know thatμk
p(x) − μp(x) = lim

n→+∞E

[
T k

p (0, nx)
n

]
− lim

n→+∞E
[
Tp(0, nx)

n

]
≥ 0.

Thus 0 ≤ μk
p(x) − μp(x) ≤ sup

n≥1
E

[
T k

p (0, nx)
n

− Tp(0, nx)
n

]
. Since for all positive integers n, k, T k

p (0, nx) ≥
Tp(0, nx), then we have

E[T k
p (0, nx)] ≤ E[Tp(0, nx)] + E[T k

p (0, nx)1{Tp(0,nx)<T k
p (0,nx)}]

≤ E[Tp(0, nx)] + (n||x|| + d)P
(
Tp(0, nx) < T k

p (0, nx)
)
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because the passage times are bounded from above by 1 and there exists a deterministic path of length smaller
than n||x|| + d from 0 to nx. Thus we obtain

μk
p(x) − μp(x) ≤ sup

n≥1
P
(
Tp(0, nx) < T k

p (0, nx)
)× ‖x‖ ≤ sup

n≥1
P
(
Tp(0, nx) < T k

p (0, nx)
)
.

Note that

P
(
Tp(0, nx) < T k

p (0, nx)
) ≤ P

(∃γ ∈ Γ (0, nx), l(γ) > nk, Tp(γ) = Tp(0, nx)
)

≤ P
(∃γ ∈ Γ (0, nx), |γ| > nk, Tp(γ) = Tp(0, nx)

)
≤ P

(∃γ ∈ Γ (0, nx), |γ| > nk, Tp(γ) ≤ n
)

≤ P
(∃γ ∈ Γ (0, ·), |γ| ≥ nk, Tp(γ) ≤ n

)
= P

(∃γ ∈ Γ (0, ·), |γ| = nk, Tp(γ) ≤ n
)
.

We have the following result whose proof is put back to Section 5.

Lemma 4.3. Let θ be a real number in (0, pc) and S be an integer larger than 5.
There exist positive real numbers N(θ, S),K(θ, S), C1(θ, S), C2(θ, S) such that, for each positive integers n ≥ N
and k ≥ K, we have

Pp

(∃γ ∈ Γ (0, ·) |γ| = nk, T (γ) ≤ n
) ≤ C1e−C2(nk)

1
5 , ∀p ∈ Eθ,S.

By using this lemma, there exist positive real numbers K(θ, S), C1(θ, S), C2(θ, S) such that, for each positive
integer k > K, we have

sup
x∈B(0,1)

|μk
p(x) − μp(x)| ≤ sup

n≥1
C1e−C2(nk)

1
5 = C1e−C2k

1
5 , for all p in Eθ,S. �

Therefore we have the uniform convergence of the sequence
(
μk
)
k∈N∗ to the function μ which completes the

proof of Theorem 2.2.

4.2. Convergence for Hausdorff distance

By Proposition 3.1, the asymptotic shape is compact when p is in the set Ppc , i.e. |p| < pc. We will show the
continuity of the asymptotic shape with respect to p for the Hausdorff distance on Ppc .

Proof of Theorem 2.5. The function μp is continuous. Thus, on the compact {‖x‖ = 1}, the function μp attains
its minimum value which is positive because μp(x) equals zero if and only if x = 0, when |p| < pc. Therefore
αp := min

‖x‖=1
μp(x) is non negative.

We fix p in Ppc and ε in (0, 1). As the function μ is continuous, there exists a positive real number η1 := η1(p, d)

such that, if q in Ppc satisfies |p − q| < η1, then |αp − αq| < αp

2
· Therefore

1
αq

≤ 2
αp

· By Theorem 2.2, we

have lim
q→p

sup
x∈B(0,1)

∣∣μp(x) − μq(x)
∣∣ = 0. Thus there exists a positive real number η2 := η2 (ε, p, d) such that if q

satisfies |p− q| < η2, then sup
x∈B(0,1)

∣∣μp(x) − μq(x)
∣∣ < εα2

p

2
·

We choose η lower than η1 and η2, then we take q in Ppc such that |p− q| < η.
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Therefore we have

dH

(
Bμq , Bμp

) ≤ sup
‖x‖=1

d

(
x

μp(x)
,

x

μq(x)

)
≤ sup

‖x‖=1

{
‖x‖

∣∣μq(x) − μp(x)
∣∣

μp(x)μq(x)

}

≤ 1
αpαq

sup
y∈B(0,1)

{∣∣μq(y) − μp(y)
∣∣} ≤ εα2

p

2
× 2
α2

p

= ε. �

5. Upper bound for P
(∃γ ∈ Γ (0, n), |γ| = nk, T p(γ) ≤ n

)
Let us now prove Lemma 4.3. Let S be a positive integer larger than 5, θ be a real number in (0, pc) and p

be in the set Eθ,S. Fix m and k two positive integers.
First, note that

P
(∃r ∈ Γ (0, ·), |r| = mk, T (r) ≤ m

)
= P

(
∃r ∈ Γ (0, ·), |r| = n, T (r) ≤ n

k

)
with n = mk

= P
(

inf
r∈Γ (0,·), |r|=n

T (r) ≤ n

k

)

= P
(

1 + inf
r∈Γ (0,·), |r|=n

T (r) ≤ n

k
+ 1

)

= P
(

1 + infr∈Γ (0,·), |r|=n T (r)
n

≤ 1
k

+
1
n

)
.

To study
1 + infr∈Γ (0,·), |r|=n T (r)

n
, we do the same remark as Fontes and Newman did in their article [6]. For

any (self–avoiding) path starting from the origin an containing exactly n sites, we have

1 + T (r) ≥ number of distinct color clusters touched by r =
∑
v∈r

|Ĉv ∩ r|−1,

where Ĉv denotes the color cluster of vertex v and |A| denotes the number of vertices in A. Then, by using
Jensen’s inequality, we obtain

1 + T (r)
n

=
1 + T (r)

|r| ≥ 1
|r|

∑
v∈r

|Ĉv ∩ r|−1 ≥
[

1
|r|

∑
v∈r

|Ĉv ∩ r|
]−1

≥
[

1
|r|

∑
v∈r

|Ĉv|
]−1

.

For each color s in N∗, we define the color-s cluster at vertex v by

for s ≤ S, Ĉs
v =

{
Ĉv, if Xv = s,

∅, if Xv �= s,
and ĈS+1

v =

{
Ĉv, if Xv ≥ S + 1,
∅, if Xv < S + 1.

We identify all the colors larger than S + 1. With this notation, we have

1 + T (r)
n

≥
[

1
|r|

∑
v∈r

S+1∑
s=1

|Ĉs
v|
]−1

.

Consequently,

1 + inf |r|=n T (r)
n

≥ inf
|r|=n

[
1
|r|

∑
v∈r

S+1∑
s=1

|Ĉs
v|
]−1

=

[
sup
|r|=n

1
|r|

∑
v∈r

S+1∑
s=1

|Ĉs
v|
]−1

,

where the sup is over all self–avoiding paths r starting from the origin an containing exactly n sites.
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Thus, with α :=
1
k

+
1
n

, we have

P
(∃r ∈ Γ (0, ·), |r| = mk, T (r) ≤ m

) ≤ P

(
sup
|r|=n

1
|r|

∑
v∈r

S+1∑
s=1

|Ĉs
v| ≥

1
α

)

≤ P

(
S+1∑
s=1

sup
|r|=n

1
|r|

∑
v∈r

|Ĉs
v| ≥

1
α

)

≤
S+1∑
s=1

P

(
sup
|r|=n

1
|r|

∑
v∈r

|Ĉs
v| ≥

1
α(S + 1)

)
·

Yet, we have the following stochastic domination inequality
(
|Ĉs

v|
)

v∈Zd
≺ (|Cθ

v |
)
v∈Zd , for each color s, where

Cθ
v is the open cluster of v in Bernoulli site percolation of parameter θ. We denote by Psite

θ the corresponding
measure. Thus

P
(∃r ∈ Γ (0, ·), |r| = mk, T (r) ≤ m

) ≤ (S + 1)Psite
θ

(
sup
|r|=n

1
|r|

∑
v∈r

|Cv| ≥ 1
α(S + 1)

)
·

Let us note that the right term depends only on θ and S, not on p. To finish, we shall prove the following lemma.

Lemma 5.1. Let θ be a real number in (0, pc) and S be an integer larger than 5. There exist positive real
numbers N(θ, S),K(θ, S), C1(θ, S), C2(θ, S) such that, for each integers n ≥ N and k ≥ K,

Psite
θ

(
sup
|r|=n

1
|r|

∑
v∈r

|Cv| ≥ 1
α(S + 1)

)
≤ C1e−C2(nk)

1
5 , with α :=

1
k

+
1
n
· (3)

The idea is to use greedy lattice animals to study this probability.

Proof of Lemma 5.1. Fix 0 < θ < pc and S ≥ 5.
To prove Lemma 5.1 by means of Proposition 3.3, we need to relate the dependent family |Cv| to some

independent variables. For that, we repeat arguments of Fontes and Newman [6]. We consider an i.i.d. family
{Ỹ }v∈Zd of random lattice animals, which are equidistributed with C0, the occupied cluster of this origin in
Bernoulli site percolation. We put C̃v := v + Ỹv and Ũv := sup

{
|C̃u|;u ∈ Zd, v ∈ C̃u

}
, where the sup of an

empty set is taken to be zero.
Then we have the following stochastic domination inequality {|Cv|}v∈Zd ≺

{
|Ũv|

}
v∈Zd

and for any self–

avoiding path r, we have
1
|r|

∑
v∈r

|Ũv| ≤ 2 sup
ξ′⊃r

1
|ξ′|

∑
v∈ξ′

|C̃v|2

where the sup is all over lattice animals (i.e. connected subset of Zd) containing r. Then, by combining this
with the stochastic domination, we have

Psite
θ

(
sup
|r|=n

1
|r|

∑
v∈r

|Cv| ≥ 1
α(S + 1)

)
≤ Psite

θ

⎛
⎝ sup

|ξ|≥n

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥ 1
2α(S + 1)

⎞
⎠

≤
+∞∑
k=n

Psite
θ

⎛
⎝ sup

|ξ|=k

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥ 1
2α(S + 1)

⎞
⎠ ·

We put W := lim
n→+∞

1
n

sup
|ξ|=n

∑
v∈ξ

|Cv|2.
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To use Proposition 3.3, we need to have

1
2α(S + 1)

≥W + 1, (4)

and
the random variables must be bounded above. (5)

The point (4) is equivalent to α =
1
k

+
1
n

≤ 1
2(W + 1)(S + 1)

· Thus we take two integers N and K > 0 such

that if n ≥ N and k ≥ K,
1
k

+
1
n
≤ 1

2(W + 1)(S + 1)
· For the point (5), we truncate the random variables |C̃v|2

up to an appropriate number and we control the possibility of a too large cluster.
Indeed, in sub-critical percolation, the tail of the distribution of |C0| decays exponentially (see Kesten [11]).

For each real number θ in (0, pc), there exists a constant C(θ) > 0, such that

Psite
θ (|C0| ≥ n) ≤ e−Cn, ∀n ∈ N∗.

Thus

Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥ 1
2α(S + 1)

⎞
⎠

≤ Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥W + 1

⎞
⎠

= Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥W + 1 and ∀v ∈ [−j, j]d, |C̃v|2 < j
2
5

⎞
⎠

+ Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥W + 1 and ∃v ∈ [−j, j]d, |C̃v|2 ≥ j
2
5

⎞
⎠

≤ Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

min
(
|C̃v|2, j 2

5

)
≥W + 1

⎞
⎠+ P

(
∃v ∈ [−j, j]d, |C̃v|2 ≥ j

2
5

)
.

By Proposition 3.3, for j large enough, we have

Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥ 1
2α(S + 1)

⎞
⎠

≤ j(2j + 1)d exp

⎧⎪⎨
⎪⎩− j

16
(
j

2
5

)2 + 64

⎫⎪⎬
⎪⎭+

∑
v∈[−j,j]d

Psite
θ

(
|C̃v|2 ≥ j

2
5

)

≤ j(2j + 1)de−
1
16 j

1
5 +64 + 2dj(2j + 1)dPsite

θ

(
|C̃0| ≥ j

1
5

)
≤ j(2j + 1)d

(
e64e−

1
16 j

1
5 + 2de−C(θ)j

1
5

)

≤ j(2j + 1)dC1e−C2(θ)j
1
5 , for j large enough.
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There exist N,C3, C4(θ) > 0 such that, for all j ≥ N , we have

Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥ 1
2α(S + 1)

⎞
⎠ ≤ C3e−C4(θ)j

1
5 ·

Therefore, there exist constants K,N,C1, C2(θ) > 0 such that, for all integers n > N , k > K and j ≥ n,

Psite
θ

⎛
⎝ sup

|ξ|=j

1
|ξ|

∑
v∈ξ

|C̃v|2 ≥ 1
2α(S + 1)

⎞
⎠ ≤ C1e−C2j

1
5 , with α =

1
k

+
1
n
·

Thus, there exist constants K,N,C1, C2 > 0 such that, for all integers n > N and k > K,

Psite
θ

(
sup
|r|=n

1
|r|

∑
v∈r

|Cv| ≥ 1
2α(S + 1)

)
≤ C1e−C2n

1
5 , with α =

1
k

+
1
n
·

�

This conclude the proof of Lemma 4.3.
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