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MEANS IN COMPLETE MANIFOLDS: UNIQUENESS AND APPROXIMATION

Marc Arnaudon1 and Laurent Miclo2

Abstract. Let M be a complete Riemannian manifold, N ∈ N and p ≥ 1. We prove that almost

everywhere on x = (x1, . . . , xN) ∈ MN for Lebesgue measure in MN , the measure μ(x) =
1

N

N∑
k=1

δxk

has a unique p–mean ep(x). As a consequence, if X = (X1, . . . , XN ) is a MN -valued random variable
with absolutely continuous law, then almost surely μ(X(ω)) has a unique p–mean. In particular if
(Xn)n≥1 is an independent sample of an absolutely continuous law in M , then the process ep,n(ω) =
ep(X1(ω), . . . , Xn(ω)) is well-defined. Assume M is compact and consider a probability measure ν
in M . Using partial simulated annealing, we define a continuous semimartingale which converges in
probability to the set of minimizers of the integral of distance at power p with respect to ν. When the
set is a singleton, it converges to the p–mean.
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1. Introduction

Finding the mean of the median or more generaly the p–mean ep of a probability measure in a manifold (the
point which minimizes integral with respect to this measure of distance at power p) has numerous applications.
There is not much to say for the mean in R

d, almost the only case where there is a closed formula, and the
most important case as the most useful estimator in statistics when the measure is uniform law on a sample.
For medians in R

d the situation is more complicated. Uniqueness holds as soon as the support of the probability
measure is not carried by a line. The first algorithm for computing e1 is due to Weisfeld in [24]. As for the
computation of e∞ (the center of the smallest ball containing the support of the measure), Badŏiu and Clarkson
gave a fast and simple algorithm in [6]. For many applications in biology, signal processing, information geometry,
extension to other spaces is necessary. The median in Hilbert space is computed in [9]. In nonlinear spaces with
convexity assumptions, uniqueness has been established in [18] for the mean, [1] for the p–mean. Many algorithms
of computation now exist. As far as deterministic algorithms are concerned, one can cite [2, 12, 13, 19] for the
mean in Riemannian manifolds, [3] for the mean in Finsler manifolds, [11] and more generally [25] for the
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median, [5] for e∞. Stochastic algorithms avoid to compute the gradient of the functional to minimize. They
can be found in [4, 23]. For other functionals to minimize, see [8].

In this paper we investigate the case of non necessarily convex, complete Riemannian manifolds. Our first
result (Thm. 2.1) concerns uniqueness of the p–mean of the uniform measure on a finite set {x1, . . . , xn} of
points, almost everywhere on x = (x1, . . . , xn) for the Lebesgue measure. This generalizes Bhattacharya and
Patrangenaru result on the circle ([7], case p = 2). See also [10] for more general uniqueness criterions on the
circle.

For computation of the p–mean, usual deterministic algorithms are not possible any more, due to the fact that
the functional to minimize may have many local minima. So restricting to symmetric spaces we use a simulated
annealing method with a continuous stochastic process, together with an estimation of the gradient to minimize
via a drift moving faster and faster. With this method we are able to define a process which converges in
distribution to the p–mean for p ∈ [1,∞) (Thm. 4.3, and Thm. 3.2 for more general but smooth functionals).

The main applications are in signal processing with polarimetric signal, but also for the group of rotations
of R

n, so as to determine averages on rotations. Also this solves many problems of optimization which may
arise in economy, decision support, operation research. Notice that on the circle, fast computation of the mean
has been performed in [17]. In fact this is a case where a closed formula can be found. For general case the
situation is much more complicated and the convergence of our processes is slower and weaker. Jump processes
and algorithms related to the continuous processes presented here will be investigated in a forthcoming paper.

2. Uniqueness of p–means for uniform measures with finite support

Let M be a d–dimensional complete Riemannian manifold with Riemannian distance denoted by ρ. For ν a
probability measure on M and p ≥ 1, we define

Hp,ν : M → R+ ∪ {+∞},
y �→

∫
M

ρp(y, z) ν(dz). (2.1)

Either Hp,ν ≡ ∞ or for all y ∈ M , Hp,ν(y) < ∞. In the latter case we denote by Qp,ν the set of minimizers
of Hp,ν . When Qp,ν has only one element we denote it by ep,ν and call it the p–mean of ν. When there is no
possible confusion we let ep = ep,ν . For x = (x1, . . . , xN ) ∈ MN , we let

μ(x) =
1
N

N∑
k=1

δxk
. (2.2)

Clearly Hp,μ(x) is finite.

Theorem 2.1. Assume p > 1 or {d > 1 and N > 2}. For almost all x ∈ MN , Qp,μ(x) has a unique element
ep,μ(x)

Remark 2.2. This theorem extends Theorem 4.15 in [26] where the same result has been established for p = 1
and M compact.

Proof. We begin with the case p > 1.
Since μ(x) has a finite support, we can assume that M is a compact Riemannian manifold. For this a smooth

modification outside a large ball is sufficient. For instance we can choose a radius so that the boundary is
smooth, double the ball and finally smoothen the metric locally around the place where the pasting has been
performed.

So in the sequel we will assume that M is compact, with diameter L. For y ∈ M we denote by SyM ⊂ TyM
the set of unit tangent vectors above y. Let

Ṽ = {(y, n), y ∈ M, n = (n1, . . . , nN ), nj ∈ SyM, j = 1, . . .N} × [0, 2L]N . (2.3)

Note Ṽ is a compact smooth (N + 1)d–dimensional manifold with boundary.
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Define

φ̃ : Ṽ → MN

(y, n, r) �→ (
expy(n1r1), . . . , expy(nNrN

)
. (2.4)

The map φ̃ is onto. If x = (x1, . . . , xN ) ∈ MN , consider y ∈ M minimizing Hp,μ(x). Then among all (n, r) such
that

φ̃(y, n, r) = x (2.5)

we can choose one so that for all k = 1, . . . , N the map s �→ expy(snk) is a minimal geodesic for s ∈ [0, rk]. For
this choice we have

Hp,μ(x)(y) =
1
N

N∑
k=1

rp
k. (2.6)

Let us prove that
N∑

k=1

rp−1
k nk = 0. (2.7)

For this it is sufficient to check that for all u ∈ TyM〈
N∑

k=1

rp−1
k nk, u

〉
= 0. (2.8)

For k = 1, . . . , N , consider any smooth variation ck(s, a) of s �→ expy(snk), s ∈ [0, rk], defined on [0, sk]× [−ε, ε]
for some ε > 0, satisfying ck(s, 0) = expy(snk) for s ∈ [0, rk], ck(0, a) = expy(au) for a ∈ [−ε, ε] and ck(rk, a) =
expy(rknk) = xk, a ∈ [−ε, ε]. Denote by �k(a) the length of the path s �→ ck(s, a), s ∈ [0, rk]. By the variation
of arc length formula, we have

−1
p

N∑
k=1

(�p
k)′(0) =

N∑
k=1

�p−1
k (0)〈nk, u〉 =

〈
N∑

k=1

rp−1
k nk, u

〉
. (2.9)

Now since y minimizes Hp,μ(x) and by definition

Hp,μ(x)(expy(au)) ≤ 1
N

N∑
k=1

�p
k(a), Hp,μ(x)(y) =

1
N

N∑
k=1

�p
k(0),

we have that 0 minimizes a �→ 1
p

∑N
k=1 �p

k(a) and by (2.9) this implies (2.8). So equation (2.7) is proved.
Letting

W̃p =

{
(y, n, r) ∈ Ṽ ,

N∑
k=1

rp−1
k nk = 0

}
(2.10)

and φ̃p = φ̃|W̃p
the restriction of φ̃ to W̃p, φ̃p is onto, on MN by (2.5) and (2.7).

By Sard’s theorem, the set C1 ⊂ MN of singular values of φ̃p has measure 0. It is closed since W̃p is compact.
Let us prove that the set

C2 :=
{
(x1, . . . , xN ) ∈ MN , {x1, . . . , xN} ∩ Qp,μ(x1,...,xN ) �= ∅} (2.11)

has Lebesgue-measure 0: we can assume that for i �= j, xi �= xj since we exclude 0-measure sets. So the elements
we consider are images by φ̃p of

Ŵp =
{
(y, n, r) ∈ W̃p, r1 = 0, ∀k ≥ 2 rk > 0

}
. (2.12)
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The set Ŵp is a submanifold of codimension 1 of W̃p. Now dim W̃p = Nd = dimMN so dim Ŵp = dimMN − 1
and its image by φ̃p is of measure 0 in MN . As a conclusion, C2 has measure 0.

Define
C3 :=

{
(x1, . . . , xN ) ∈ MN , ∃i �= j s.t. xi = xj

}
(2.13)

and C = C1 ∪ C2 ∪ C3. The set C is closed in MN and has measure 0. Letting

Wp =
{
(y, n, r) ∈ W̃p, ∀k = 1, . . .N, rk ∈ (0, 2L)

}
, (2.14)

we proved that φ̃p|Wp is onto on MN\C. Denote φp = φ̃p|Wp . Since Wp has same dimension as MN and W̃p is
compact, every point x of MN\C has a neighbourhood Vx such that φ−1

p (Vx) = U1,x ∪ . . . ∪ Umx,x where the
Uj,x are disjoint open subsets of Wp and

φp|Uj,x : Uj,x → φp(Uj,x) (2.15)

is a diffeomorphism. Now since MN\C is second countable we can cover it by a countable number of such
sets Vx. So to prove that the p–mean is almost everywhere unique it is sufficient to prove it on Vx.

For x′ ∈ Vx denote x′ = (x′
1, . . . , x

′
N ), and for i ∈ {1 . . .mx}, write

(φ|Ui,x)−1(x′) = (yi(x′), ni
1(x

′), . . . ni
d(x

′), ri
1(x

′), . . . , ri
d(x

′)).

Let i, j ∈ {1 . . .mx} satisfy i �= j. If yi(x′), yj(x′) ∈ Qp,μ(x′) then we have

Hp,μ(x′) ◦ yi(x′) = Hp,μ(x′) ◦ yj(x′). (2.16)

We can assume with the same argument as for (2.5) and (2.6) that the maps

γi,k,x′ : s �→ expyi(x′)(sn
i
k(x′)) and γj,k,x′ : s �→ expyj(x′)(sn

j
k(x′)) (2.17)

are minimal geodesics respectively on [0, ri
k(x′)] and [0, rj

k(x′)]. So letting hp : Wp → R, (y, n, r) �→∑N
k=1 rp

k, we
have

1
N

hp ◦ (φp|Ui,x)−1(x′) = Hp,μ(x′) ◦ yi(x′),
1
N

hp ◦ (φp|Uj,x)−1(x′) = Hp,μ(x′) ◦ yj(x′).

It is sufficient to prove that for all x′ ∈ Vx,

hp ◦ (φp|Ui,x)−1(x′) = hp ◦ (φp|Uj,x)−1(x′) (2.18)

implies
gradx′

(
hp ◦ (φp|Ui,x)−1

) �= gradx′
(
hp ◦ (φp|Uj,x)−1

)
. (2.19)

Indeed with (2.19) we will be able to deduce that the set{
(x′ ∈ Vx, hp ◦ (φp|Ui,x)−1 = hp ◦ (φp|Uj,x)−1

}
(2.20)

has codimension ≥ 1 in Vx and this will imply that{
(x′ ∈ Vx, Hp,μ(x′) ◦ yi(x′) = Hp,μ(x′) ◦ yj(x′)

}
(2.21)

has codimension ≥ 1 in Vx.
Let us prove (2.19). For k = 1, . . . , N let

mi
k(x′) = −γ̇i,k,x′(ri

k(x′)) and mj
k(x′) = −γ̇j,k,x′(rj

k(x′)).
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These unit vectors satisfy

expx′
k
(ri

k(x′)mi
k(x′)) = yi(x′) and expx′

k
(rj

k(x′)mj
k(x′)) = yj(x′).

Then noting that
(
hp ◦ (φp|Ui,x)−1

)
(x′) =

∑N
k=1(r

i
k)p(x′

k) we get

dx′
(
hp ◦ (φp|Ui,x)−1

)
(·)

=

〈
−p

N∑
k=1

(ri
k)p−1(x′)ni

k(x′), Tx′yi(·)
〉

Tyi(x′)M

− p
〈(

(ri
1(x

′))p−1mi
1(x

′), . . . , (ri
N (x′))p−1mi

N (x′)
)
, ·〉

Tx′MN .

Due to the fact that (yi(x′), ni(x′), ri(x′)) ∈ Wp, the first term in the right vanishes. So

gradx′
(
hp ◦ (φp|Ui,x)−1

)
= −p

(
(ri

1(x
′))p−1mi

1(x
′), . . . , (ri

N (x′))p−1mi
N (x′)

)
(2.22)

and similarly

gradx′
(
hp ◦ (φp|Uj,x)−1

)
= −p

(
(rj

1(x
′))p−1mj

1(x
′), . . . , (rj

N (x′))p−1mj
N (x′)

)
. (2.23)

Since yi(x′) �= yj(x′) we have (ri
1(x′), mi

1(x′)) �= (rj
1(x

′), mj
1(x

′)), so (ri
1(x′))p−1mi

1(x′) �= (rj
1(x

′))p−1mj
1(x

′),
from which we conclude that

gradx′
(
hp ◦ (φp|Ui,x)−1

) �= gradx′
(
hp ◦ (φp|Uj,x)−1

)
.

This achieves the proof for the case p > 1.
Let us now consider the case p = 1. The result is due to Yang in [26], we give the proof here for completeness.
The main difference is that the subset of MN of points x = (x1, . . . , xN ) so that xi ∈ Q1,μ(x) for some i has

positive measure.
First consider the open subset U of MN of points x such that for all i = 1, . . . , N , xi �∈ Q1,μ(x).
Consider the closed subset C0 of MN of points (x1, . . . , xN ) = φ̃(y, n, r), with (y, n, r) ∈ Ṽ such that for

all j, k = 1, . . .N , nj = ±nk. Since d > 1 and N > 2 this subset has Lebesgue measure 0.
Replacing MN by U and C by C0 ∪ C, the argument is similar until (2.18). But now we will be able to

prove that (2.18) implies (2.19) only in some neighbourhoods Vx,x′ to be precised later, of x′ ∈ Vx such that the
geodesics

s �→ expyi(x′)(sn
i
k(x′)) and s �→ expyj(x′)(sn

j
k(x′))

are minimal respectively on [0, ri
k(x′)] and [0, rj

k(x′)]. But this will be sufficient since every compact subset of
Vx can be covered by a finite number of these neighbourhoods Vx,x′ .

Making the above assumption on x′, the proof is similar until (2.22) and (2.23). Then we have

gradx′
(
h1 ◦ (φ1|Ui,x)−1

)
= − (mi

1(x
′), . . . , mi

N(x′)
)

(2.24)

and
gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
= −

(
mj

1(x
′), . . . , mj

N (x′)
)

. (2.25)

Assume
gradx′

(
h1 ◦ (φ1|Ui,x)−1

)
= gradx′

(
h1 ◦ (φ1|Uj,x)−1

)
.

Then for all k = 1, . . . , N , mi
k(x′) = mj

k(x′). In particular for k = 1 this implies (possibly by exchanging i and j)
that yi(x′) lies in the minimizing geodesic from x′

1 to yj(x′). Now since x′ �∈ C0 there exists k ∈ {1, . . .N} such
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that x′
k �∈ {expyi(x′)(sni

1(x′)), s ∈ [−2L, 2L]}. On the other hand since mi
k(x′) = mj

k(x′), yj(x′) (or yi(x′)) lies
on the minimizing geodesic from x′

k to yi(x′) (or yj(x′)). As a consequence there are two minimizing geodesics
from yi(x′) to yj(x′). But this is impossible since the geodesic from x′

1 to yj(x′) is minimizing, contains yi(x′)
and x′

1 �= yi(x′) by the fact that we have supposed that x′
1 �∈ Q1,μ(x′) and yi(x′) ∈ Q1,μ(x′). So

gradx′
(
h1 ◦ (φ1|Ui,x)−1

) �= gradx′
(
h1 ◦ (φ1|Uj,x)−1

)
,

and by continuity this is true in a neighbourhood Vx,x′ of x′.
Now we consider the case where x′

1 ∈ Q1,μ(x′) and x′
2 �∈ Q1,μ(x′). We follow the same lines as in the previous

part with the difference that now yi(x′) = x′
1 and for the definition of Ui,x W1 is replaced by

W i
1 = {(y, n, r) ∈ V, r1 = 0}.

The definition of Uj,x remains unchanged. By [25] Theorem 1

∥∥∥∥∥ 1
N

N∑
k=2

ni
k(x′)

∥∥∥∥∥ ≤ μN (x′)({x′
1})

which gives ∥∥∥∥∥
N∑

k=2

ni
k(x′)

∥∥∥∥∥ ≤ 1. (2.26)

Since d > 1 and N > 2, the submanifolds of Vx images of

{
(y, n, r) ∈ Ui,x,

∥∥∥∥∥
N∑

k=2

nk

∥∥∥∥∥ = 1

}

and {
(y, n, r) ∈ Ui,x,

N∑
k=2

nk = 0

}

by φ1 have measure 0, so we can exclude them. On the subset

{
(y, n, r) ∈ Ui,x, 0 <

∥∥∥∥∥
N∑

k=2

nk

∥∥∥∥∥ < 1

}
,

the function h1 is smooth and on its image by φ1,

gradx′
(
h1 ◦ (φ1|Ui,x)−1

)
= − (0, mi

2(x
′), . . . , mi

N (x′)
)
. (2.27)

Again

gradx′
(
h1 ◦ (φ1|Uj,x)−1

)
= −

(
mj

1(x
′), . . . , mj

N (x′)
)

. (2.28)

They are not equal, and this achieves the proof for this case by the same argument as before.
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Finally we consider the case where x′
1, x

′
2 ∈ Q1,μ(x′) with x′

1 = yi(x′) and x′
2 = yj(x′). We follow the same

line as in the previous case, but now for the definition of Uj,x, W1 is replaced by

W j
1 = {(y, n, r) ∈ V, r2 = 0}.

Again we can exclude the submanifolds of Vx images of⎧⎨
⎩(y, n, r) ∈ Uj,x,

∥∥∥∥∥∥
∑

k∈{1,...,N},k �=2

nk

∥∥∥∥∥∥ = 1

⎫⎬
⎭

and ⎧⎨
⎩(y, n, r) ∈ Uj,x,

∑
k∈{1,...,N},k �=2

nk = 0

⎫⎬
⎭

by φ1 and work on

φ1

⎛
⎝
⎧⎨
⎩(y, n, r) ∈ Uj,x, 0 <

∥∥∥∥∥∥
∑

k∈{1,...,N},k �=2

nk

∥∥∥∥∥∥ < 1

⎫⎬
⎭
⎞
⎠

∩ φ1

({
(y, n, r) ∈ Ui,x, 0 <

∥∥∥∥∥
N∑

k=2

nk

∥∥∥∥∥ < 1

})
.

On this set h1 ◦ (φ1|Ui,x)−1 and h1 ◦ (φ1|Uj,x)−1 are smooth and

gradx′
(
h1 ◦ (φ1|Ui,x)−1

)
= − (0, mi

2(x
′), . . . , mi

N (x′)
)
. (2.29)

gradx′
(
h1 ◦ (φ1|Uj,x)−1

)
= −

(
mj

1(x
′), 0, mj

3(x
′), . . . , mj

N (x′)
)

. (2.30)

They are not equal, and this achieves the proof. �

Corollary 2.3. Let p ∈ [1,∞) and X = (X1, . . . , XN ) a random variable with values in MN , which has an
absolutely continuous law. Then almost-surely μ(X(ω)) has a unique p–mean ep(X(ω)).

Corollary 2.4. Let p ∈ [1,∞) and (Xn)n≥1 a sequence of i.i.d. M -valued random variables with absolutely
continuous laws. Then the process of empirical p–means(

ep,n(ω) := ep

(
X1(ω), . . . , Xn(ω)

))
n≥1

is well-defined.

Remark 2.5. For p = 2 and M a circle, it has been proved in [7] that the assumption can be weakened: the
same result holds if the law has no atom.

We believe that it would be interesting to study the behaviour of the process (ep,n)n≥1 in many situations. For
instance when the law of X1 is uniform on a compact symmetric space (even the case of the circle is highly
non trivial) one would observe a recurrent but irregular and slower and slower process. Again on a compact
symmetric space, when the law ν of X1 has a finite number of p–means due to a finite group of symmetries,
one would observe an almost stationary behaviour, and at increasingly spaced times jumps between smaller and
smaller neighbourhoods of the p–means of ν.
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3. Finding the minimizers of some integrated functionals
with simulated annealing

Let M be a compact Riemannian manifold. For simplicity and without loss of generality we assume that M
has Lebesgue volume 1. On M consider a probability law ν with a density with respect to Lebesgue measure,
also denoted by ν. Assume we are given a continuous function κ : M × M → R+, where κ(θ, y) is interpreted
as some kind of cost for going from θ to y. Assume furthermore that for all y ∈ M the function θ �→ κ(θ, y)
is smooth and that its first and second derivative in θ are uniformly bounded in (θ, y). Consider on M the
functional

U : M → R+

θ �→
∫

M

κ(θ, y)ν(dy) (3.1)

Denote by M the set of minimizers of U . The aim of this section is to find a continuous semimartingale which
converges in law to M. Also we try to avoid using the gradient of U , which in many cases is difficult or impossible
to compute.

For this we will use a sequence (Pk)k≥0 of independent random variables with law ν, a Poisson process Nt

on N with intensity γ−1
t where

γt = (1 + t)−1. (3.2)

Define

c(U) = 2 sup
θ,y∈M

(
inf

φ∈Cθ,y

e(φ)
)

, (3.3)

Cθ,y denoting the set of continuous paths [0, 1] → M and for φ ∈ Cθ,y, the elevation e(φ) being defined as

e(φ) = sup
0≤t≤1

U(φ(t)) − U(θ) − U(y) + inf
z∈M

U(z). (3.4)

Let
βt =

1
k

ln(1 + t), (3.5)

the constant k satisfying k > c(U).
We assume that (Nt)t≥0 is independent of the sequence (Pk)k≥0. We let (Bt)t≥0 be a Brownian motion with

values in R
r for some r ∈ N, independent of (Nt)t≥0 and (Pk)k≥0, and σ a smooth section of TM ⊗ (Rr)∗: for

all θ ∈ M , σ(θ) is a linear map R
r → TθM . We assume that for all θ ∈ M , we have σ(θ)σ(θ)∗ = idTθM . We fix

θ0 ∈ M and let Θt be the solution started at θ0 of the Itô equation

dyt = σ(Θt) dBt − βt gradΘt
κ(·, Yt) dt with Yt = PNt . (3.6)

Recall that if P (Θt) : Tθ0M → TΘtM is the parallel transport map along (Θt), then

dΘt = P (Θt)d
(∫ ·

0

P (Θs)−1 ◦ dΘs

)
t

. (3.7)

Also define Θ0
t the solution started at θ0 of the Itô equation

dΘ0
t = σ(Θ0

t ) dBt − βt

(∫
M

gradΘ0
t
κ(·, y) ν(y)dy

)
dt. (3.8)

Note (3.8) rewrites as
dΘ0

t = σ(Θ0
t ) dBt − βt gradΘ0

t
U dt, (3.9)
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so that the same equation with fixed β instead of βt has an invariant law with density

μβ(θ) =
1

Zβ
e−2βU(θ), with Zβ =

∫
M

e−2βU(θ′) dθ′. (3.10)

The process Θ0
t is an inhomogeneous diffusion with generator

L0
t (θ) =

1
2
Δ(θ) − βt gradθ U (3.11)

(here and in the sequel a vector field A is identified with the map f �→ A(f) = 〈gradf, A〉 which acts on C1

functions on M). Denote by mt(θ) the density of Θt.
The process (Θt, Yt) is Markovian with generator Lt given by

Ltf(θ, y) =
(

1
2
Δ(θ) − βt gradθ κ(·, y)

)
f(·, y) + γ−1

t

∫
M

(f(θ, z) − f(θ, y)) ν(dz)

= L1,tf(·, y)(θ) + L2,tf(θ, ·)(y). (3.12)

We know that for all neighbourhood N of M,
∫
N μβ(θ) dθ converges to 1 as β → ∞. So to prove that

∫
N mt(θ) dθ

converges to 1 it is sufficient to prove the following proposition:

Proposition 3.1. The entropy

Jt :=
∫

M

ln
(

mt(θ)
μβt(θ)

)
mt(θ) dθ (3.13)

converges to 0 as t → ∞.

Proof. There will be 3 steps.
In the sequel we will denote by mt(θ, y) the joint density of (Θt, Yt), and mt(y|θ) the density of Yt conditioned

by Θt = θ.

Step 1. Let us prove that

dJt

dt
≤ 4‖κ‖∞

k(1 + t)
− c2(βt ∨ 1)−p exp (−c(U)βt)Jt + β2

t 32K2It (3.14)

with

It =
∫

M×M

ln
(

mt(y|θ)
ν(y)

)
mt(θ, y) dθdy (3.15)

and c2, p, K > 0 defined below (in (3.20) and (3.22)).
We compute

dJt

dt
=
∫

M

dmt(θ)
dt

dθ −
∫

M

d lnμβt(θ)
dt

mt(θ) dθ +
∫

M

ln
(

mt(θ)
μβt(θ)

)
dmt(θ)

dt
dθ. (3.16)

Since for all t mt(θ) is a probability density, the first term in the right vanishes. So we get

dJt

dt
= 2β′

t

∫
M

U(θ)(mt(θ) − μβt(θ)) dθ +
∫

M×M

Lt

[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ, y) dθdy (3.17)

where the last term comes from Dynkin formula. For the first term in the right we have using (3.5)

2β′
t

∫
M

U(θ)(mt(θ) − μβt(θ)) dθ ≤ 4‖U‖∞|β′
t| ≤

4‖κ‖∞
k(1 + t)

· (3.18)
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Now by writing Lt = L0
t + Rt, we split the second term in the right of (3.17) into

∫
M×M

Lt

[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ, y) dθdy

=
∫

M

L0
t

[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ) dθ +

∫
M×M

Rt(θ, y)
[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ, y) dθdy. (3.19)

We have

∫
M

L0
t

[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ) dθ

=
∫

M

L0
t

[(
mt(θ)
μβt(θ)

)]
μβt(θ) dθ − 1

2

∫
M

∥∥∥∥gradθ ln
(

mt(θ)
μβt(θ)

)∥∥∥∥
2

mt(θ) dθ

= −2
∫

M

∥∥∥∥∥gradθ

√
mt(θ)
μβt(θ)

∥∥∥∥∥
2

μβt(θ) dθ

≤ −2c2(βt ∨ 1)−p exp (−c(U)βt)Jt (3.20)

for some c2 > 0 and integer p > 0 by logarithmic Sobolev inequality ([15] and [16], for more details see [20]).
Note we used again Dynkin formula to prove the vanishing of the first term in the right of the second line.

As for the second term in the right of (3.19) we have

∫
M×M

Rt(θ, y)
[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ, y) dθdy

=
∫

M×M

−βt

〈
gradθ ln

(
mt(θ)
μβt(θ)

)
, gradθ κ(·, y) −

∫
M

gradθ κ(·, z) ν(dz)
〉

mt(θ, y) dθ dy

= −βt

∫
M

〈
gradθ ln

(
mt(θ)
μβt(θ)

)
,

∫
M

gradθ κ(·, y) (mt(y|θ) − ν(y)) dy

〉
mt(θ) dθ

= 2βt

∫
M

√
μβt

mt
(θ)
〈

gradθ

√
mt

μβt

(θ), Rt(θ)
〉

mt(θ) dθ

with

Rt(θ) = −
∫

M

gradθ κ(·, y)(mt(y|θ) − ν(y)) dy.

So by Cauchy–Schwarz inequality

∫
M×M

Rt(θ, y)
[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ, y) dθdy

≤ 2βt

(∫
M

∥∥∥∥gradθ

√
mt

μβt

(θ)
∥∥∥∥

2

μβt(θ) dθ

)1/2 (∫
M

‖Rt(θ)‖2mt(θ) dθ

)1/2

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ +
∫

M

∥∥∥∥gradθ

√
mt

μβt

(θ)
∥∥∥∥

2

μβt(θ) dθ.
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Summing with (3.20) and using (3.19) we get∫
M×M

Lt

[
ln
(

mt(θ)
μβt(θ)

)]
mt(θ, y)) dθdy

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ −
∫

M

∥∥∥∥gradθ

√
mt

μβt

(θ)
∥∥∥∥

2

μβt(θ) dθ

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ − c2(βt ∨ 1)−p exp (−c(U)βt)Jt. (3.21)

Defining
K = sup

θ,y∈M
‖ gradθ κ(·, y)‖, (3.22)

let us now bound ∫
M

‖Rt(θ)‖2mt(θ) dθ =
∫

M

∥∥∥∥
∫

M

gradθ κ(·, y)(mt(y|θ) − ν(y)) dy

∥∥∥∥
2

mt(θ) dθ

≤
∫

M

∥∥∥∥K
∫

M

|mt(y|θ) − ν(y)| dy

∥∥∥∥
2

mt(θ) dθ

≤ 32K2

∫
M

(∫
M

ln
(

mt(y|θ)
ν(y)

)
mt(y|θ) dy

)
mt(θ) dθ

= 32K2It (3.23)

where It is defined in (3.15).
We also used classical bound of total variation by entropy ([16]):∫

M

|mt(y|θ) − ν(y)| dy ≤ 4
√

2
(∫

M

ln
(

mt(y|θ)
ν(y)

)
mt(y|θ) dy

)1/2

.

At this stage, combining (3.17), (3.18), (3.21), (3.23) and (3.15), we proved (3.14).

Step 2. Let us prove that
dIt

dt
≤ 4‖κ‖∞β′

t + K ′(βt ∨ 1)βt − dJt

dt
− γ−1

t It (3.24)

with
K ′ = sup

θ,y∈M
|Δθκ(·, y)| + 2K2. (3.25)

As before

dIt

dt
=
∫

M×M

Lt

[
ln
(

mt(y|θ)
ν(y)

)]
mt(y, θ) dθdy

=
∫

M×M

(L2,t + L1,t)
[
ln
(

mt(y|θ)
ν(y)

)]
mt(y, θ) dθdy. (3.26)

We begin with the first term:∫
M×M

L2,t

[
ln
(

mt(y|θ)
ν(y)

)]
mt(θ, y) dθdy

= γ−1
t

∫
M×M

∫
M

[
ln
(

mt(z|θ)
ν(z)

)
− ln

(
mt(y|θ)

ν(y)

)]
ν(dz)mt(θ, y) dθdy

= γ−1
t

∫
M×M

ln
(

mt(y|θ)
ν(y)

)
(ν(y) − mt(y|θ))mt(θ) dθdy.
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By Jensen inequality we have ∫
M×M

ln
(

mt(y|θ)
ν(y)

)
ν(y)mt(θ) dydθ

=
∫

M

(∫
M

ln
(

mt(y|θ)
ν(y)

)
ν(y) dy

)
mt(θ) dθ

≤
∫

M

ln
(∫

M

mt(y|θ)
ν(y)

ν(y) dy

)
mt(θ) dθ

=
∫

M

ln(1)mt(θ) dθ = 0

Consequently∫
M×M

L2,t

[
ln
(

mt(y|θ)
ν(y)

)]
mt(θ, y) dθdy ≤ −γ−1

t

∫
M×M

ln
(

mt(y|θ)
ν(y)

)
mt(y|θ)mt(θ) dθdy

which rewrites as ∫
M×M

L2,t

[
ln
(

mt(y|θ)
ν(y)

)]
mt(θ, y) dθdy ≤ −γ−1

t It. (3.27)

Let us now consider the second term in the right of (3.26). Since

ln
(

mt(y|θ)
ν(y)

)
= ln

(
mt(θ|y)
mt(θ)

)

(recall that Yt has law ν) it rewrites as∫
M×M

L1,t

[
ln
(

mt(θ|y)
mt(θ)

)]
mt(θ, y) dθdy =

∫
M×M

L1,t [ln(mt(θ|y)) − ln(mt(θ))] mt(θ, y) dθdy. (3.28)

But ∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy

=
1
2

∫
M×M

Δ ln(mt(θ|y))mt(θ, y)dθdy − βt

∫
M×M

〈gradθ ln mt(·|y), gradθ κ(·, y)〉mt(θ, y) dθdy. (3.29)

We compute ∫
M×M

Δ ln(mt(θ|y))mt(θ, y)dθdy∫
M

(∫
M

Δmt(θ|y) dθ

)
ν(y) dy −

∫
M×M

‖gradθ ln m(θ|y)‖2
m(θ, y) dθdy

= −4
∫

M×M

∥∥∥gradθ

√
m(θ|y)

∥∥∥2

ν(y) dθdy

where we used the fact that the first term in the right of the first equality vanishes. Consequently,∫
M×M

L1,t ln(mt(θ|y))mt(y, θ) dθdy

= −2
∫

M×M

∥∥∥gradθ

√
mt(θ|y)

∥∥∥2

dθν(dy)

− βt

∫
M×M

〈gradθ mt(·|y), gradθ κ(·, y)〉 ν(y) dθdy. (3.30)
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Let us bound the absolute value of the last term:∣∣∣∣−βt

∫
M×M

〈gradθ mt(·|y), gradθ κ(·, y)〉 ν(y) dθdy

∣∣∣∣
=
∣∣∣∣2βt

∫
M×M

〈
gradθ

√
mt(θ|y), gradθ κ(θ, y)

〉√
mt(θ|y)ν(dy) dθdy

∣∣∣∣
≤ 2βtK

∫
M×M

∥∥∥gradθ

√
mt(θ|y)

∥∥∥√mt(θ|y)ν(y) dθdy

≤
∫

M×M

(
1
2
β2

t K2mt(θ|y) + 2
∥∥∥gradθ

√
mt(θ|y)

∥∥∥2
)

ν(y) dθdy

=
1
2
β2

t K2 + 2
∫

M×M

∥∥∥gradθ

√
mt(θ|y)

∥∥∥2

ν(y) dθdy. (3.31)

This yields ∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy ≤ 1
2
β2

t K2 (3.32)

We also have to bound the last term in (3.28):

−L1,t ln(mt(θ)) = −L1,t ln
(

mt(θ)
μβt(θ)

)
− L1,t ln(μβt(θ)). (3.33)

From (3.17) we get
dJt

dt
≤ 4‖κ‖∞β′

t +
∫

M×M

L1,t ln
(

mt(θ)
μβt(θ)

)
mt(θ, y) dθdy

or equivalently

−
∫

M×M

L1,t ln
(

mt(θ)
μβt(θ)

)
mt(θ, y) dθdy ≤ −dJt

dt
+ 4‖κ‖∞β′

t. (3.34)

For the second term we have

−L1,t ln(μβt(θ)) = 2βtL1,tU(θ)
= βtΔU(θ) + 2β2

t 〈dU, gradθ κ(·, y)〉
= βt

∫
M

Δθκ(θ, y)ν(dy) + 2β2
t

∫
M

‖gradθ κ(θ, y)‖2
ν(dy)

≤ K ′(βt ∨ 1)βt (3.35)

with K ′ defined in (3.25).
Finally we obtain (3.24).

Step 3. We finally prove that
lim

t→∞ Jt = 0. (3.36)

With inequalities (3.24) and (3.14) we can use the end of the proof of theorem 1 in [21] to obtain that under
assumptions (3.5) and (3.3) then (3.36) holds (notice that in Sect. 4 we will prove this in a more general
context). �

Theorem 3.2. Assume
βt =

1
k

ln(1 + t), and γt = (1 + t)−1, (3.37)

where k > c(U), (c(U) defined in (3.3)). Then for any neighbourhood N of M,

lim
t→∞ P [Θt ∈ N ] = 1. (3.38)
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Proof. We use Proposition 3.1 together with the fact that

‖mt − μβt‖ ≤ 4
√

2Jt

and
lim

t→∞μβt(N ) = 1. �

4. Application to location of p–means in symmetric spaces

In this section we assume that M is a compact symmetric space endowed with the canonical Riemannian
metric of volume 1. Denote by ρ the Riemannian distance in M , D its diameter. We fix p ≥ 1 and consider a
probability measure ν on M . We aim to find at least one element of Qp,ν by using the result of the previous
section. In particular if ν has a unique p–mean ep, then we will be able to construct a process which converges
in probability to ep as t → ∞.

Denote by p(s, x, y) the heat kernel on M , and for s > 0 let νs be the probability measure with density

νs(y) =
∫

M

p(s, y, z)ν(dz), (4.1)

and let

κs : M × M → R+

(θ, y) �→
∫

M

p(s, θ, z)ρp(z, y) dz, (4.2)

and

Us1,s2 : M → R+

θ �→
∫

M

κs1(θ, y)νs2(y) dy. (4.3)

Also let U = Hp,ν . Clearly νs1 and κs2 satisfy the assumption of the previous section. Moreover, denoting by
Ms1,s2 the set of minimizers of Us1,s2 then as s1, s2 → 0 we have Ms1,s2 → Qp,ν is the sense that for any
neighbourhood N of Qp,ν , we have Ms1,s2 ⊂ N for all s1, s2 sufficiently small. This is due to the fact that as
s1, s2 → 0, Us1,s2(θ) → U(θ) uniformly in θ.

Lemma 4.1. For all s1, s2 > 0 we have

Us1,s2(θ) = U0,s1+s2(θ) =
∫

M

ρp(θ, y)νs1+s2(y) dy. (4.4)

Proof. Fix θ, y ∈ M , let m be the middle point of a minimal geodesic from θ to y and im the symmetry centered
at m. We have ∫

M

p(s1, θ, z)ρp(z, y) dz =
∫

M

p(s1, im(θ), im(z))ρp(im(z), im(y)) dz

=
∫

M

p(s1, im(θ), z′)ρp(z′, im(y)) dz′

=
∫

M

p(s1, y, z′)ρp(z′, θ) dz′

=
∫

M

ρp(θ, z′)p(s1, z
′, y) dz′

where we first used the invariance by isometry of the heat kernel and then did the change of variable z′ = im(z)
in the integral and finally used the symmetry of the heat kernel. To finish the proof we are left to use the
convolution property of the heat semigroup. �
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Corollary 4.2. We have for all s1, s2 > 0, θ, y ∈ M ,

‖ gradθ κs1(·, y)‖ ≤ pDp−1 =: K and ‖ gradθ Us1,s2‖ ≤ K. (4.5)

With all these properties we would like to find s1(t) ↘ 0 and s2(t) ↘ 0 such that the process Θt started at θ0

and solution to
dΘt = σ(Θt) dBt − βt gradΘt

κs1(t)(·, Y s2
t ) dt (4.6)

converges in law to ep, where by definition Y s2
t = YTNt

and Yn is the second coordinate of a Poisson point
process (Tn, Yn)n≥1 taking its values in [0,∞) × M with intensity γ(t)−1νs2(t)(y) dt dy, independent of (Bt).
The process Nt is the counting function of T1 < T2 < . . . So Nt is a Poisson process on N with intensity γ−1

t ,
and conditioned by (Ns)s≥0, Yn has law νs2(Tn), consequently Y s2

t has law νs2(TNt)
.

We also need to define T0 = 0 and to let Y0 be a random variable with law ν1, independent of all the other
random variables and processes.

This convergence in law is the object of the next theorem in which we will take

s1(t) = s2(t) = st = (ln(1 + t))−1.

So define Θ0
t the solution started at θ0 of the Itô equation

dΘ0
t = σ(Θ0

t ) dBt − βt

(∫
M

gradΘ0
t
κst(·, y) νst(y)dy

)
dt. (4.7)

Notice that using Lemma 4.1, (4.7) rewrites as

dΘ0
t = σ(Θ0

t ) dBt − βt gradΘ0
t
U2st dt, (4.8)

where U2st := U0,2st , so that the same equation with fixed (β, s) instead of (βt, st) has an invariant law with
density

μβ,s(θ) =
1

Zβ,s
e−2βU2s(θ), with Zβ,s =

∫
M

e−2βU2s(θ′) dθ′. (4.9)

The process Θ0
t is an inhomogeneous diffusion with generator

L0
t (θ) =

1
2
Δ(θ) − βt gradθ U2st . (4.10)

Denote by mt(θ) the density of Θt.
Let Yt := Y s

t . The process (Θt, Yt) is Markovian with generator Lt given by

Ltf(θ, y) =
(

1
2
Δ(θ) − βt gradθ κst(·, y)

)
f(·, y) + γ−1

t

∫
M

(f(θ, z) − f(θ, y)) νst(dz)

= L1,tf(·, y)(θ) + L2,tf(θ, ·)(y). (4.11)

We know that for all neighbourhood N of Qp,ν ,
∫
N μβ,s(θ) dθ converges to 1 as β → ∞, uniformly in s sufficiently

small (depending on N ). Again define

Jt :=
∫

M

ln
(

mt(θ)
μβt,st(θ)

)
mt(θ) dθ. (4.12)

Theorem 4.3. Assume

βt =
1
k

ln(1 + t), γt = (1 + t)−1, s1(t) = s2(t) = s(t) = (ln(1 + t))−1. (4.13)

where k > c(U), (c(U) defined in (3.3)). Then for any neighbourhood N of Qp,ν , the process Θt defined in
equation (4.6) satisfies

lim
t→∞ P [Θt ∈ N ] = 1. (4.14)
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Proof. We use Proposition 4.4 below together with the fact that

‖mt − μβt,st‖ ≤ 4
√

2Jt

and
lim

t→∞μβt,st(N ) = 1. �

Proposition 4.4. The entropy

Jt =
∫

M

ln
(

mt(θ)
μβt,st(θ)

)
mt(θ) dθ (4.15)

converges to 0 as t → ∞.

Proof. As for proposition 3.1, we split the proof into 3 steps.

Step 1. Let us establish

dJt

dt
≤ C

(1 + t)k
(1 + ln(1 + t))

− c2(βt ∨ 1)−p exp (−c(U2st)βt)Jt + β2
t 32K2It (4.16)

with c2, K defined in (4.26) and (4.5), and where

It =
∫

M×M

ln
(

mt(y|θ)
νst(y)

)
mt(θ, y) dy, (4.17)

mt(y|θ) being the density of Y s conditioned by Θt = θ.
Let us compute as before

dJt

dt
= −

∫
M

∂t ln(μβt,st(θ))mt(θ)) dθ +
∫

M

Lt

[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ, y) dθdy. (4.18)

For the first term in the right we have using (4.9)

∂t ln(μβt,st(θ))

= −2β′
tU2st − 2βt

∫
M×M

2s′t∂s ln p(2st, θ, z)p(2st, θ, z)ρp(z, y) ν(dy)dz

+ 2β′
t

∫
M

U2st(θ
′)μβt,st(θ

′) dθ′

+ 2βt

∫
M

(∫
M×M

2s′t∂s ln p(2st, θ
′, z)p(2st, θ

′, z)ρp(z, y) dzν(dy)
)

μβt,st(θ
′) dθ′. (4.19)

It is known that there exists C0 > 0 such that ∀s ∈ (0, 1]

|∂s ln p(s, θ, z)| ≤ C0

s2
, (4.20)

see e.g. [14,22] where bounds of the type | gradθ ln p(s, θ, z)| ≤ C1

s
and | grad2

θ ln p(s, θ, z)| ≤ C2

s2
are given. Here

we use

|∂s ln p(s, θ, z)| =
1
2

∣∣∣∣Δθp(s, θ, z)
p(s, θ, z)

∣∣∣∣ ≤ dimM

2
(| grad2

θ ln p(s, θ, z)| + | gradθ ln p(s, θ, z)|2) .
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So (4.19) and (4.20) yield

|∂t ln(μβt,st(θ))| ≤ Dp

(
4β′

t +
C0βt|s′t|

s2
t

)
· (4.21)

which implies

|∂t ln(μβt,st(θ))| ≤ C

(
β′

t +
βt|s′t|

s2
t

)
· (4.22)

with

C = Dp(4 + C0). (4.23)

Evaluating with (4.13) and integrating on M we get∣∣∣∣−
∫

M

∂t ln(μβt,st(θ))mt(θ) dθ

∣∣∣∣ ≤ C

(1 + t)k
(1 + ln(1 + t)) · (4.24)

Now we split the second term in the right of (4.18) into∫
M

Lt

[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ, y) dθdy

=
∫

M

L0
t

[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ) dθ +

∫
M

Rt(θ, y)
[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ, y) dθdy. (4.25)

We have as for (3.20)

∫
M

L0
t

[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ) dθ = −2

∫
M

∥∥∥∥∥gradθ

√
mt(θ)

μβt,st(θ)

∥∥∥∥∥
2

μβt,st(θ) dθ

≤ −2c2(βt ∨ 1)−p exp (−c(U2st)βt)Jt (4.26)

for some c2 > 0 and integer p > 0 by logarithmic Sobolev inequality [20].
The computation for the second term is similar to the one after (3.20) and we get∫

M

Rt(θ, y)
[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ, y) dθdy = 2βt

∫
M

√
μβt,st

mt
(θ)
〈

d

√
mt

μβt,st

(θ), Rt(θ)
〉

mt(θ) dθ

with
Rt(θ) = −

∫
M

gradθ κst(·, y)(mt(y|θ) − νst(y)) dy,

and again ∫
M

Rt(θ, y)
[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ) dθ

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ +
∫

M

∥∥∥∥gradθ

√
mt

μβt,st

(θ)
∥∥∥∥

2

μβt,st(θ) dθ.

Summing with (4.26) we get∫
M×M

Lt

[
ln
(

mt(θ)
μβt,st(θ)

)]
mt(θ, y)) dθdy

≤ β2
t

∫
M

‖Rt(θ)‖2mt(θ) dθ − c2(βt ∨ 1)−p exp (−c(U2st)βt) Jt. (4.27)
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Here again ∫
M

‖Rt(θ)‖2mt(θ) dθ ≤ 32K2It

where It is defined in (4.17). At this stage we proved (4.16).

Step 2. Let us establish

dIt

dt
≤ C0

(1 + t)
+

K ′

k2
(ln(1 + t) ∨ k)(ln(1 + t))3 − dJt

dt
− (1 + t)It (4.28)

for some K ′ defined below.
As before

dIt

dt
= −

∫
M×M

∂t ln(νst(y))mt(θ, y) dθdy +
∫

M×M

Lt

[
ln
(

mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy (4.29)

and ∣∣∣∣
∫

M×M

∂t ln(νst(y))mt(θ, y) dθdy

∣∣∣∣ =
∣∣∣∣
∫

M×M

∂t

(∫
M

p(st, y, z)ν(dz)
)

mt(θ, y)
νst(y)

dθdy

∣∣∣∣
≤
∫

M×M

(∫
M

|∂t ln p(st, y, z)| p(st, y, z)ν(dz)
)

mt(θ, y)
νst(y)

dθdy

≤ |s′t|C0

s2
t

∫
M×M

(∫
M

p(st, y, z)ν(dz)
)

mt(θ, y)
νst(y)

dθdy

=
|s′t|C0

s2
t

∫
M×M

νst(y)
mt(θ, y)
νst(y)

dθdy

=
|s′t|C0

s2
t

=
C0

1 + t
(4.30)

where we used (4.20) for the last inequality. Now∫
M×M

Lt

[
ln
(

mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy =

∫
M×M

(L2,t + L1,t)
[
ln
(

mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy. (4.31)

We begin with the first term:∫
M×M

L2,t

[
ln
(

mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy = γ−1

t

∫
M×M

ln
(

mt(y|θ)
νst(y)

)
(νst(y) − mt(y|θ))mt(θ) dθ

and estimate it as for (3.27): ∫
M×M

L2,t

[
ln
(

mt(y|θ)
νst(y)

)]
mt(θ, y) dθdy ≤ −γ−1

t It. (4.32)

For the second term in the right of (4.29) we need to introduce the density ft(y) of Y s
t . Since

ln
(

mt(y|θ)
νst(y)

)
= ln

(
mt(θ|y)
mt(θ)

)
+ ln

(
ft(y)
νst(y)

)

and the last term does not depend on θ, it rewrites as∫
M×M

L1,t

[
ln
(

mt(θ|y)
mt(θ)

)]
mt(θ, y) dθdy =

∫
M×M

L1,t [ln(mt(θ|y)) − ln(mt(θ))] mt(θ, y) dθdy. (4.33)
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Similarly to (3.29)∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy

=
1
2

∫
M×M

Δ ln(mt(θ|y))mt(θ, y) dθdy − βt

∫
M×M

〈gradθ ln mt(·|y), gradθ κst(·, y)〉mt(θ, y) dθdy

= −2
∫

M×M

∥∥∥gradθ

√
mt(θ|y)

∥∥∥2

dθft(y)dy

− βt

∫
M×M

〈gradθ mt(·|y), gradθ κst(·, y)〉 ft(y) dθdy. (4.34)

For the absolute value of the last term:∣∣∣∣−βt

∫
M×M

〈gradθ mt(·|y), gradθ κ(·, y)〉 ft(y) dθdy

∣∣∣∣
≤ 1

2
β2

t K2 + 2
∫

M×M

∥∥∥gradθ

√
mt(θ|y)

∥∥∥2

ft(y) dθdy. (4.35)

We get as in (3.32) ∫
M×M

L1,t ln(mt(θ|y))mt(θ, y) dθdy ≤ 1
2
β2

t K2 (4.36)

Then we bound the last term in (4.33):

−L1,t ln(mt(θ)) = −L1,t ln
(

mt(θ)
μβt,st(θ)

)
− L1,t ln(μβt,st(θ)). (4.37)

We already know by (4.18) and (4.24) that

−
∫

M×M

L1,t ln
(

mt(θ)
μβt,st(θ)

)
mt(θ, y) dθdy ≤ −dJt

dt
+

C

(1 + t)k
(1 + ln(1 + t)) . (4.38)

For the second term we have

L1,t ln(μβt,st(θ)) = −2βtL1,tU2st(θ)
= −βtΔU2st(θ) + 2β2

t 〈dU2st , gradθ κst(·, y)〉
≤ K ′(βt ∨ 1)βts

−2
t (4.39)

for some K ′ > 0, where we used

ΔU2s =
∫

M

(
Δθ ln p(2s, θ, y) + ‖ gradθ ln p(2s, θ, y)‖2

)
p(2s, θ, y)ρp(y, z) ν(dz)

and standard bounds for the first and second derivatives of the heat kernel ([14] and [22] and the explanation
after (4.20)).

Finally we obtain (4.28). This together with (4.16) yields:

dJt

dt
≤ C

(1 + t)k
(1 + ln(1 + t)) − c2(βt ∨ 1)−p exp (−c(U2st)βt) Jt + 2β2

t 32K2It (4.40)

which rewrites as

dIt

dt
≤ k1(ln(1 + t))4 − dJt

dt
− (1 + t)It (4.41)
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and
dJt

dt
≤ c1

(
ln(1 + t)

1 + t
+ (ln(1 + t))2It

)
− c2(ln(1 + t))−p(1 + t)−

c(U2st
)

k Jt (4.42)

for some constants c1, k1 > 0, as soon as t ≥ 2.

Step 3. Let us finally prove that
lim

t→∞ Jt = 0. (4.43)

We can use a similar computation to the end of the proof of theorem 1 in [21] to obtain it under assump-
tions (4.13) and (3.3). However we will do the calculation for completeness, and because there are some small
differences. Recall Us → U uniformly as s → 0. Moreover 2st → 0 as t → ∞, so we get

lim sup
t→∞

c(U2st) ≤ c(U).

As a consequence, for t sufficiently large we have

c(U2st)
k

≤ 1 − ε (4.44)

for some ε > 0. Let

�t =
c1(ln(1 + t))2

1 + t + c1(ln(1 + t))2 − c2(ln(1 + t))−p(1 + t)−(1−ε)
(4.45)

where ε > 0 is defined in (4.44). It is easily checked that for t sufficiently large �t is positive and decreasing,
and that it converges to 0 as t → ∞. Define

Kt = Jt + �tIt. (4.46)

We will prove that Kt → 0 as t → ∞ and from this we will get (4.43).
for t sufficiently large,

dKt

dt
≤ dJt

dt
+ �t

dIt

dt
(4.47)

and this yields with (4.41) and (4.42)

dKt

dt
≤ (1 − �t)c1

ln(1 + t)
1 + t

+ c1(ln(1 + t))2It

− �tc1(ln(1 + t))2It − (1 − �t)c2(ln(1 + t))−p(1 + t)−
c(U2st

)
k Jt

+ �tk1(ln(1 + t))4 − (1 + t)�tIt.

Replacing c1(ln(1 + t))2 at the end of the first line by

�t

(
1 + t + c1(ln(1 + t))2 − c2(ln(1 + t))−p(1 + t)−(1−ε)

)
by the help of (4.45) we obtain

dKt

dt
≤ c1

ln(1 + t)
1 + t

− c2�t(ln(1 + t))−p(1 + t)−
c(U2st

)
k It

− (1 − �t)c2(ln(1 + t))−p(1 + t)−
c(U2st

)
k Jt + �tk1(ln(1 + t))4

and this yields using −(1 + t)−
c(U2st

)
k ≤ −(1 + t)−(1−ε):

dKt

dt
≤ At − BtKt (4.48)
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with

At = c1
ln(1 + t)

1 + t
+ �tk1 ln(1 + t))4 (4.49)

and
Bt = (1 − �t)c2(ln(1 + t))−p(1 + t)−(1−ε). (4.50)

A sufficient condition for Kt to converge to 0 as t → ∞ is∫ ∞

·
Bt dt = +∞ (4.51)

and
lim

t→∞
At

Bt
= 0. (4.52)

Condition (4.51) clearly is realized. As for condition (4.52) we easily see that

c1
ln(1+t)

1+t

(1 − �t)c2(ln(1 + t))−p(1 + t)−(1−ε)
→ 0

and also
�tk1(ln(1 + t))4

(1 − �t)c2(ln(1 + t))−p(1 + t)−(1−ε)
→ 0

from the fact that

�t ≤ c(ln(1 + t))2

1 + t

for some c > 0. �

References

[1] B. Afsari, Riemannian Lp center of mass: existence, uniqueness, and convexity. Proc. Amer. Math. Soc. S 0002–9939 (2010)
10541-5. (electronic)

[2] B. Afsari, R. Tron and R. Vidal, On the convergence of gradient descent for finding the Riemannian center of mass.
arXiv:1201.0925.

[3] M. Arnaudon and F. Nielsen, Medians and means in Finsler geometry. LMS J. Comput. Math. 15 (2012) 23–37.

[4] M. Arnaudon, C. Dombry, A. Phan and L. Yang, Stochastic algorithms for computing means of probability measures Stoch.
Proc. Appl. 122 (2012) 1437–1455.

[5] M. Arnaudon and F. Nielsen, On computing the Riemannian 1-Center. Comput. Geom. 46 (2013) 93–104.
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