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CONSISTENT NON-PARAMETRIC BAYESIAN ESTIMATION
FOR A TIME-INHOMOGENEOUS BROWNIAN MOTION ∗
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Abstract. We establish posterior consistency for non-parametric Bayesian estimation of the dispersion
coefficient of a time-inhomogeneous Brownian motion.
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1. Introduction

Consider a simple linear stochastic differential equation

dXt = σ(t)dWt, X0 = x, t ∈ [0, 1], (1.1)

where W is a Brownian motion on some given probability space and the initial condition x and the square
integrable dispersion coefficient σ are deterministic. We interpret equation (1.1) as a short-hand notation for
the integral equation

Xt = x+
∫ t

0

σ(s)dWs, t ∈ [0, 1],

where the integral is the Wiener integral of σ with respect to the Brownian motion W. The process X is thus a
time-inhomogeneous Brownian motion. The function σ can be viewed as a signal transmitted through a noisy
channel, where the noise (modelled by the Brownian motion) is multiplicative. Note that X is a Gaussian process
with mean m(t) = x and covariance ρ(s, t) =

∫ s∧t

0 σ2(u)du. By Pσ we will denote the law of the solution X
to (1.1).

Assume for simplicity that x = 0 and denote ti,n = i/n, i = 0, . . . , n. Suppose that corresponding to the true
dispersion coefficient σ = σ0, one has a sample Xti,n , i = 1, . . . , n, from the process X at his disposal. Assuming
that σ0 belongs to some non-parametric class X of dispersion coefficients, our goal is to estimate σ0. This
problem for a similar model was treated in [5, 9, 19] using a frequentist approach. However, a non-parametric
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Bayesian approach to estimation of σ0 is also possible. The likelihood corresponding to the observations Xti,n

is given by

Ln(σ) =
n∏

i=1

⎧⎨
⎩ 1√

2π
∫ ti,n

ti−1,n
σ2(u)du

ψ

⎛
⎝ Xti,n −Xti−1,n√∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠
⎫⎬
⎭ , (1.2)

where ψ(u) = exp(−u2/2). For a prior Π on X , Bayes’ formula yields the posterior measure

Π(Σ|Xt0,n . . . , Xn,n) =

∫
Σ
Ln(σ)Π(dσ)∫

X Ln(σ)Π(dσ)

of any measurable set Σ ⊂ X . In the Bayesian paradigm, the posterior encodes all the information required
for inferential purposes. Once the posterior is available, one can proceed to computation of other quantities of
interest in Bayesian statistics, such as Bayes point estimates, Bayes factors and so on.

It has been recognised since long that Bayesian procedures should be theoretically grounded through es-
tablishing posterior consistency, see e.g. [3]. In our context posterior consistency will mean that for every
neighbourhood Uσ0 of σ0 (in a suitable topology)

Π(U c
σ0
|Xt0,n , . . . , Xtn,n)

Pσ0−−→ 0 (1.3)

as n→ ∞ (the notation ξn
Pσ0−−→ ξ in (1.3) and below stands for convergence of a sequence of random variables

ξn to a random variable ξ in Pσ0-probability). In other words, a consistent Bayesian procedure asymptotically
puts posterior mass equal to one on every fixed neighbourhood of the true parameter. This is similar to the
study of consistency of frequentist estimators. A method that does not appear to work in the idealised setting
when an infinite amount of data is available (formalised by assuming that the sample size n → ∞) should
also be unattractive in the finite sample setting. Hence the importance of a study of posterior consistency. The
situation is typically quite subtle in the infinite-dimensional Bayesian setting: it is known that a careless choice
of the prior might render a Bayes procedure inconsistent. For an introduction to consistency issues in Bayesian
non-parametric statistics see e.g. [6, 25].

Our task in this work is to establish (1.3) under suitable assumptions on the class of dispersion coefficients σ
and the prior Π. Asymptotic properties of Bayesian procedures in estimation problems for stochastic differential
equations have been already considered under various setups in [8, 12–14, 17], primarily in the context of non-
parametric Bayesian estimation of the drift coefficient of a stochastic differential equation. Computational
approaches to non-parametric Bayesian inference for stochastic differential equations were studied in [11, 15].
Convenient overviews of the available results are given in [16, 26]. However, in the above works dealing with
Bayesian asymptotics it is assumed that either a continuous record of observations is available on the solution
to a stochastic differential equation, or that the solution is observed at equispaced time points Δ, 2Δ, . . . , nΔ,
with asymptotics treated in the latter case under the assumption that Δ is independent of n and n → ∞.
Our problem, on the other hand, requires a different approach due to a different sampling scheme and the
fact that ergodicity of the solution to a stochastic differential equation, that played a prominent role in most
of the previous works on non-parametric Bayesian approach to statistical inference for stochastic differential
equations, is irrelevant in our case. Although the setup we consider looks simple, to the best of our knowledge
our work is the first one to treat an inference problem for a stochastic differential equation in the so called
high-frequency data case when Δ = Δn → 0 as n → ∞ using a non-parametric Bayesian approach. The high-
frequency data setting is particularly relevant in financial mathematics, where asset prices are often modelled
through stochastic differential equations and where huge amounts of observations on them separated by very
short time instances are available. Perhaps the most interesting feature of the present work is the method of
proof of posterior consistency, which differs in certain respects from the currently used techniques. See Section 4
for a discussion. Also the simplicity of our model should not necessarily be considered a disadvantage: indeed,
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the model is somewhat similar to the Gaussian white noise model (see e.g. Chap. 7, Sect. 4 in [10]), which, as
is known, has triggered some important developments in mathematical statistics.

The paper is organised as follows: in the next section we formulate our main result dealing with posterior
consistency for non-parametric estimation of the dispersion coefficient. Since posterior consistency is closely
linked with properties of a prior Π, in Section 3 we provide an example of a reasonable prior satisfying the
assumptions made in Section 2. Section 4 contains a brief discussion on the obtained result. The proof of our
main theorem is deferred until Section 5, while the Appendix contains two technical lemmas used in Section 5.

2. Results

The non-parametric class of dispersion coefficients we will be looking at is given in the following definition.

Definition 2.1. Let X be the collection of dispersion coefficients σ : [0, 1] → [κ,K], such that σ ∈ X is
Lipschitz with Lipschitz constant M. Here 0 < κ < K < ∞ and 0 < M < ∞ are three constants independent
of the particular σ ∈ X .

Remark 2.2. Note that for a constant σ we have Pσ = P−σ. A positivity assumption on σ ∈ X in Definition 2.1
can hence be viewed as a simple and natural identifiability requirement. Strict positivity assumption σ ≥ κ > 0
allows one to escape technical complications when manipulating the likelihood (1.2) (this condition has already
appeared e.g. in [9]), while the upper bound σ(t) ≤ K, t ∈ [0, 1], restricts the size of the non-parametric class
X and is reasonable in light of Definition 2.3 given below. Finally, Lipschitz continuity of σ comes in handy at
various stages of the proof of posterior consistency.

The notion of posterior consistency depends on a topology on X .

Definition 2.3. The topology T on X is the topology induced by the L2-norm ‖ · ‖2.

We now formalise the concept of posterior consistency.

Definition 2.4. Let the prior Π be defined on X . We say that posterior consistency holds, if for any fixed
σ0 ∈ X and every neighbourhood Uσ0 of σ0 in the topology T from Definition 2.3 we have

Π(U c
σ0
|Xt0,n . . . , Xn,n)

Pσ0−−→ 0

as n→ ∞.

We summarise our assumptions.

Assumption 2.5. Assume that

(a) the model (1.1) is given with x = 0 and σ ∈ X , where X is defined in Definition 2.1,
(b) σ0 ∈ X denotes the true dispersion coefficient,
(c) a discrete-time sample {Xti,n} from the solution to (1.1) corresponding to σ0 is available, where ti,n =

i/n, i = 0, . . . , n.

Let
Vσ0,ε = {σ ∈ X : ‖σ − σ0‖∞ < ε} ,

where ‖ · ‖∞ denotes the L∞-norm. The following is the main result of the paper.

Theorem 2.6. Under Assumption 2.5 posterior consistency as in Definition 2.4 holds, provided the prior Π on
X satisfies

Π(Vσ,ε) > 0 (2.1)

for any ε > 0 and at any σ ∈ X .
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3. Example of a prior

In this section we provide an example of a prior satisfying condition (2.1). Fix 0 < κ < K <∞ and take a fixed
Lipschitz continuous function f : R → [0,K−κ] with Lipschitz constant N > 0 and set σ(t) = κ+

∫ t

0
f(h(s))ds,

where h : [0, 1] → R ranges over the set of Hölder continuous functions of order β ∈ (0, 1/2) on [0, 1] for some
fixed β. Then each σ maps the interval [0, 1] into the interval [κ,K] and σ is also Lipschitz with Lipschitz
constant K, because

|σ(t) − σ(s)| =
∣∣∣∣
∫ t

s

f(h(u))du
∣∣∣∣ ≤ K|t− s|.

We take the collection of these functions σ as the collection X from Assumption 2.5(a). We will now construct
a prior Π on X . Let W̃ = (W̃t)0≤t≤1 be a standard Brownian motion over the time interval [0, 1] and let Z be
a standard normal random variable independent of W̃ . Define the Brownian motion W = (W t)0≤t≤1 initialised
at Z by W t = Z + W̃t and introduce the process Y = (Yt)0≤t≤1, where

Yt = κ+
∫ t

0

f(W s)ds.

Our prior Π on X will be the law of the process Y.
We have to check that the prior Π satisfies (2.1). To that end take a fixed σ0(t) = κ+

∫ t

0 f(h0(s))ds and let
w be a generic realisation of the process W, so that yt = κ+

∫ t

0 f(ws)ds is the corresponding generic realisation
of the process Y. We have

Π(Vσ0,ε) = Π(y : ‖y − σ0‖∞ < ε) ≥ Π
(
w : ‖w − h0‖∞ <

ε

N

)
,

because

sup
t∈[0,1]

∣∣∣∣
∫ t

0

[f(ws) − f(h0(s))]ds
∣∣∣∣ ≤ ‖f(w) − f(h0)‖∞ ≤ N‖w − h0‖∞.

By Lemma 5.3 in [22],

Π
(
w : ‖w − h0‖∞ <

ε

N

)
≥ exp

(
− inf

g:‖g−h0‖∞<ε/(2N)

1
2
‖g‖2

H

)
Π

(
‖W‖∞ <

ε

2N

)
·

HereH denotes the Reproducing Kernel Hilbert Space (RKHS) of the processW, g ∈ H, while ‖·‖H is the RKHS
norm (see [22] for a detailed treatment of these concepts with a view towards non-parametric Bayesian statistics).
In our case H consists of absolutely continuous functions g : [0, 1] → R, such that ‖g′‖2 <∞, while the RKHS
norm is given by ‖g‖H =

√
g2(0) + ‖g′‖2

2, see page 1446 in [21]. Note that the set {g ∈ H : ‖g−h0‖∞ < ε/(2N)}
is not empty, as h0 can be approximated arbitrarily closely in the L∞-norm by the convolution h0 ∗kb of h0 with
a smooth kernel kb(·) = (1/b)k(·/b) (cf. p. 1446 in [21]; we assume that ‖k′‖2 < ∞ and b → 0). Furthermore,
Π(‖W‖∞ < ε/(2N)) > 0, because ‖W‖∞ has a strictly positive density. Condition (2.1) easily follows. In case
one is interested in a smoother class of dispersion coefficients σ than what we have just constructed, one can
simply take in the above construction of the prior Π a smoother, say β times differentiable function f , and
replace the Brownian motion W with a Riemann–Liouville process R = (Rt)0≤t≤1 with Hurst parameter β,

Rt =
β∑

k=0

Zkt
k +

∫ t

0

(t− s)β−1/2dW̃t,

where Zk’s are standard normal random variables, W̃ is a standard Brownian motion and Z0, Z1, . . . , Zβ, W̃
are independent. See Section 4.2 in [21] for more information on the Riemann–Liouville processes. Arguments
similar to the ones given above yield that in this case as well (2.1) is satisfied.
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4. Discussion

In the present work we established posterior consistency for a statistical model obtained from a simple
linear stochastic differential equation. General techniques for proving posterior consistency for a wide range
of statistical models are by now well-developed. In the i.i.d. setting, broadly speaking, two main approaches
exist in the literature: a ‘classical’ approach as epitomised e.g. by [1,18] (we combine these two papers into one
category, because they in some sense make use of assumptions of similar type, although their actual assertions
are different), and a martingale approach developed more recently in [23,24]. The first approach was extended to
the setting of independent non-identically distributed observations in [2], see in particular Theorem A.1 there.
The second approach was extended to the case of discretely observed Markov processes in [7]. A general theorem
for posterior consistency in [2] makes two requirements: firstly, the prior must put sufficient mass in arbitrarily
small neighbourhoods of the true parameter (in an appropriate topology), and secondly, a sequence of sieves
(increasing sequence of subsets of the parameter set) guaranteeing existence of certain exponentially consistent
tests has to be exhibited; see page 1056 in [2] for additional details. Although in our setting the observations
Xti,n , i = 1, . . . , n, are not independent, the increments Xti,n − Xti−1,n are, and it appears conceivable that
Theorem A.1 in [2] could be used to establish posterior consistency in our model as well. However, we opted
for a different approach, see the proof of our posterior consistency result, Theorem 2.6. A similarity shared
by Theorem A.1 in [2] and Theorem 2.6 is that both theorems require that the prior puts sufficient mass in
arbitrarily small neighbourhoods of the true parameter (in appropriate topologies). A difference is that due to
the special structure of our model we do not need to make any reference to tests and sieves, but can establish
posterior consistency by directly manipulating the posterior; see the Proof of Theorem 2.6 for details. In this
sense our approach to proving posterior consistency appears to be more direct and more elementary than the
one that would employ Theorem A.1 in [2]. Neither do we make reference to entropy arguments as done e.g.
in [1]. As far as the martingale approach to posterior consistency for ergodic Markov processes is concerned, we
can be brief here: ergodicity is irrelevant in our setting and in fact our special sampling scheme seems to make
generalisation or modification of the arguments from [7], [23, 24] impossible.

Next a brief remark on condition (2.1) on the prior Π is in order. Although it is formulated in terms of
neighbourhoods in the L∞-norm, the assertion returned by Theorem 2.6 employs the topology induced by the
L2-norm. A ‘discrepancy’ between norms used is however not uncommon in posterior consistency results. See
for instance [1].

5. Proofs

Proof of Theorem 2.6. Let Uσ0 be an arbitrary, but fixed neighbourhood of σ0 in the topology T and let Ũσ0,ε =
{σ ∈ X : ‖σ − σ0‖2 < ε}. There exists ε > 0, such that Ũσ0,ε ⊂ Uσ0 , and hence U c

σ0
⊂ Ũ c

σ0,ε. Fix such an ε. In
order to prove the theorem, it thus suffices to show that

Π(Ũ c
σ0,ε|Xt0,n . . . , Xtn,n)

Pσ0−−→ 0 (5.1)

as n→ ∞. Write

Π(Ũ c
σ0,ε|Xt0,n . . . , Xtn,n) =

∫
Ũc

σ0,ε
Ln(σ)Π(dσ)∫

X Ln(σ)Π(dσ)
=

∫
Ũc

σ0,ε
Rn(σ)Π(dσ)∫

X Rn(σ)Π(dσ)
, (5.2)

where Rn(σ) = Ln(σ)/Ln(σ0) denotes the likelihood ratio. We will separately bound the numerator and de-
nominator on the right-hand side of the last equality in (5.2) (we will use the notation Dn for the denominator
and Nn for the numerator) and then combine the bounds to establish (5.1). As we will see, the left-hand side
of (5.1) in fact decays exponentially fast to zero. Note that when establishing posterior consistency, [1] and [24]
also treat the numerator and denominator in the expression for the posterior separately, but similarity of our
approach to the one in those papers largely ends here.
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Let Sn(σ) = n−1 logRn(σ). Then Dn =
∫
X exp(nSn(σ))Π(dσ). Now

Sn(σ) =
1
2

1
n

n∑
i=1

log

⎛
⎝∫ ti,n

ti−1,n
σ2

0(u)du∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠− 1

2
1
n

n∑
i=1

⎡
⎣(Xti,n −Xti−1,n)2∫ ti,n

ti−1,n
σ2(u)du

−
(Xti,n −Xti−1,n)2∫ ti,n

ti−1,n
σ2

0(u)du

⎤
⎦

= T1,n(σ) + T2,n(σ),

with obvious definitions of T1,n(σ) and T2,n(σ). Let ε̃ > 0 be a constant with its value to be chosen appropriately
later on. Since Dn ≥

∫
Vσ0,ε̃

Rn(σ)Π(dσ), Lemmas A.1 and A.2 from the Appendix and formula (A.1) give that
with probability tending to one,

Dn ≥
∫

Vσ0,ε̃

exp
(
−4K
κ2

ε̃n

)
Π(dσ) = exp

(
−4K
κ2

ε̃n

)
Π(Vσ0,ε̃).

By assumption (2.1), Π(Vσ0,ε̃) > 0. Fix a constant β = 5Kε̃/κ2. Then for all n large enough,

exp
(
−4K
κ2

ε̃n

)
Π(Vσ0,ε̃) ≥ e−βn.

As a consequence, with probability tending to one,

Dn ≥ e−βn (5.3)

as n→ ∞. This is our required lower bound for the denominator Dn.
Using similar techniques, we will next treat the numerator Nn. Firstly, note that by elementary arguments

one can show that for an arbitrary fixed constant C > 0 there exists another constant c > 0, such that the
inequality

log(1 + y) ≤ y − cy2, −1 < y ≤ C

holds (one can take c = [2(C + 1)]−1). Hence

log

⎛
⎝∫ ti,n

ti−1,n
σ2

0(u)du∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠ ≤

∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2(u)du

− c

⎛
⎝∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠

2

for some constant c independent of σ ∈ X , i and n. Therefore, after a simple, but lengthy computation employing
Assumption 2.5(a), cf. the proof of Lemma A.1,

T1,n(σ) ≤ 1
2

1
n

n∑
i=1

∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2(u)du

− c

2
1
n

n∑
i=1

⎛
⎝∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠

2

=
1
2

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du− c

2

∫ 1

0

(σ2
0(u) − σ2(u))2

σ4(u)
du+O

(
1
n

)
,

where the remainder term is of order n−1 uniformly in σ ∈ X . Hence

Sn(σ) ≤ − c

2

∫ 1

0

(σ2
0(u) − σ2(u))2

σ4(u)
du (5.4)

+ T2,n(σ) +
1
2

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du (5.5)

+O

(
1
n

)
. (5.6)
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To bound from above the term on the right-hand side of inequality (5.4), use the fact that

c

2

∫ 1

0

(σ2
0(u) − σ2(u))2

σ4(u)
du ≥ 2κ2c

K4
ε2

for σ ∈ Ũ c
σ0,ε. Furthermore, by Lemma A.2, uniformly in σ ∈ Ũ c

σ0,ε and with probability tending to one as
n → ∞, the term (5.5) is smaller than any positive number fixed beforehand. So is the term (5.6). Therefore,
uniformly in σ ∈ Ũ c

σ0,ε and with probability tending to one as n→ ∞,

Sn(σ) ≤ −κ
2c

K4
ε2,

say. Thus with probability tending to one as n→ ∞,

Nn =
∫

Ũc
σ0,ε

exp(nSn(σ))Π(dσ) ≤ exp
(
−κ

2c

K4
ε2n

)
. (5.7)

This finishes bounding from above the numerator Nn.
We now combine bounds (5.3) and (5.7) to conclude that with probability tending to one as n→ ∞,

Π(Ũ c
σ0,ε|Xt0,n . . . , Xtn,n) ≤ exp

(
−

(
κ2c

K4
ε2 − 5K

κ2
ε̃

)
n

)
.

Picking ε̃ small enough, so that
κ2c

K4
ε2 − 5K

κ2
ε̃ > 0,

implies (5.1) and completes the proof of the theorem. �

Appendix A

Lemma A.1. Under the same assumptions as in Theorem 2.6, for T1,n(σ) as in the Proof of Theorem 2.6, all
σ ∈ Vσ0,ε̃ simulatenously and for n large enough, T1,n(σ) ≥ −2Kε̃/κ2.

Proof. The elementary inequality
y

y + 1
≤ log(1 + y), y > −1

gives that

log

⎛
⎝∫ ti,n

ti−1,n
σ2

0(u)du∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠ ≥

∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2

0(u)du
·

Next, employing Assumption 2.5(a) and (c), by a simple computation one can show that

∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2

0(u)du
=
σ2

0(ti−1,n) − σ2(ti−1,n)
σ2

0(ti−1,n)
+O

(
1
n

)
,

where the remainder term is of order n−1 uniformly in σ ∈ X . Therefore,

T1,n(σ) ≥ 1
2

1
n

n∑
i=1

σ2
0(ti−1,n) − σ2(ti−1,n)

σ2
0(ti−1,n)

+O

(
1
n

)
·
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By another simple computation,

1
n

n∑
i=1

σ2
0(ti−1,n) − σ2(ti−1,n)

σ2
0(ti−1,n)

=
∫ 1

0

σ2
0(u) − σ2(u)
σ2

0(u)
du +O

(
1
n

)
,

where the remainder term is of order n−1 uniformly in σ ∈ X . For σ ∈ Vσ0,ε̃ we have under Assumption 2.5(a)
that ∣∣∣∣

∫ 1

0

σ2
0(u) − σ2(u)
σ2

0(u)
du

∣∣∣∣ ≤ 2K
κ2

ε̃. (A.1)

This implies the statement of the lemma. �

Lemma A.2. Denote

Qn(σ) =
∣∣∣∣T2,n(σ) +

1
2

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du
∣∣∣∣ ,

where T2,n(σ) is defined in the Proof of Theorem 2.6. Then under the same assumptions as in Theorem 2.6,

supσ∈X Qn(σ)
Pσ0−−→ 0 as n → ∞. Furthermore, for any fixed ε̃ > 0, for all σ ∈ Vσ0,ε̃ simultaneously, with

probability tending to one as n→ ∞, T2,n(σ) ≥ −2Kε̃/κ2.

Proof. The first statement of the lemma will be derived from an application of Theorem 18.14 from [20]. In
particular, viewing Qn as a process on X with bounded sample paths, we will show that it converges in dis-
tribution to a zero process on X . The first statement of the lemma will then be a consequence of equivalence
of convergence in distribution and in probability for constant limits. Note that in order to circumvent possi-
ble (non)-measurability issues, outer probability is employed in the formulation of Theorem 18.14 from [20]
(see Sect. 18.2 in [20] for more information on outer probability). Since no such problems will arise in our
setting, we can instead directly work under probability Pσ0 . Indeed, the summands in T2,n(σ) are of the form
Fi,n(σ)(Xti,n − Xti−1,n)2, with Fi,n the obvious functional of σ. Hence taking the supremum over σ does not
affect the measurability property of T2,n(σ).

In order to apply Theorem 18.14 from [20], we need to verify its conditions. In our setting they reduce to the
following ones: firstly, marginal vectors of Qn must converge in distribution to zero vectors, i.e.

(Qn(σ1), . . . , Qn(σ�))
Dσ0−−→ (0, . . . , 0︸ ︷︷ ︸

�

),  ∈ N. (A.2)

Secondly, the tightness condition must be satisfied: for arbitrary constants η > 0 and ξ > 0, one must be able
to find a partition of X into finitely many X1, . . . ,X�, such that

lim sup
n→∞

Pσ0

(
sup

1≤k≤�
sup

σ1,σ2∈Xk

|Qn(σ1) −Qn(σ2)| ≥ ξ

)
≤ η. (A.3)

Denote
Fi,n = σ(Xtj ,n, j = 1, . . . , i)

and

χi,n(σ) = −1
2

1
n

(Xti,n −Xti−1,n)2
∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2

0(u)du
∫ ti,n

ti−1,n
σ2(u)du

·

Also let Eσ0 be the expectation operator with respect to measure Pσ0 . Note that

n∑
i=1

Eσ0 (χi,n(σ)|Fi−1,n) = −1
2

1
n

n∑
i=1

∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2(u)du

= −1
2

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du +O

(
1
n

)
,
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where the remainder term is of order n−1 uniformly in σ ∈ X . Furthermore, Assumption 2.5(a) yields that

Eσ0 (χ2
i,n(σ)|Fi−1,n) =

3
4n2

⎛
⎝∫ ti,n

ti−1,n
[σ2

0(u) − σ2(u)]du∫ ti,n

ti−1,n
σ2(u)du

⎞
⎠

2

= O

(
1
n2

)
,

where the order bound is uniform in σ ∈ X . It follows that

n∑
i=1

Eσ0 (χ2
i,n(σ)|Fi−1,n) → 0.

Lemma 9 in [4] then implies that Qn(σ)
Pσ0−−→ 0. This verifies (A.2).

We will now check (A.3). Fix ξ and η in (A.3). By a lengthy, but simple computation employing Assump-
tion 2.5(a) and the triangle inequality,

|Qn(σ1) −Qn(σ2)| ≤
K

κ4
‖σ1 − σ2‖∞

n∑
i=1

(Xti,n −Xti−1,n)2 +
K3

κ4
‖σ1 − σ2‖∞. (A.4)

By the Arzelà–Ascoli theorem, under Assumption 2.5(a) the family X is totally bounded for the supremum
metric. By definition this means that for every ζ > 0 there exists a finite set X̃ ⊂ X , such that for any σ ∈ X
there is some σ̃ ∈ X̃ with ‖σ− σ̃‖∞ < ζ/2. This and the triangle inequality imply existence of a finite partition
X1, . . . ,X� of X , such that

sup
1≤k≤�

sup
σ1,σ2∈Xk

‖σ1 − σ2‖∞ < ζ. (A.5)

Furthermore, by the definition of the quadratic variation of the process X,

n∑
i=1

(Xti,n −Xti−1,n)2
Pσ0−−→

∫ 1

0

σ2
0(u)du. (A.6)

Combination of (A.4)–(A.6) yields (A.3) for ζ small enough, and consequently the first statement of the lemma
too. The second statement of the lemma is a consequence of the first one, the fact that σ ∈ Vσ0,ε̃, an analogue
of inequality (A.1), ∣∣∣∣12

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du
∣∣∣∣ ≤ K

κ2
ε̃,

and of a simple rearrangement

T2,n(σ) =
{
T2,n(σ) +

1
2

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du
}
− 1

2

∫ 1

0

σ2
0(u) − σ2(u)
σ2(u)

du.

This completes the proof of the lemma. �
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