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Abstract. Many mathematical models involve input parameters, which are not precisely known.
Global sensitivity analysis aims to identify the parameters whose uncertainty has the largest impact
on the variability of a quantity of interest (output of the model). One of the statistical tools used to
quantify the influence of each input variable on the output is the Sobol sensitivity index. We consider
the statistical estimation of this index from a finite sample of model outputs: we present two estimators
and state a central limit theorem for each. We show that one of these estimators has an optimal
asymptotic variance. We also generalize our results to the case where the true output is not observable,
and is replaced by a noisy version.
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1. Introduction

Many mathematical models encountered in applied sciences involve a large number of poorly-known pa-
rameters as inputs. It is important for the practitioner to assess the impact of this uncertainty on the model
output. An aspect of this assessment is sensitivity analysis, which aims to identify the most sensitive parameters,
that is, parameters having the largest influence of the output. In global stochastic sensitivity analysis (see for
example [22] and references therein) the input variables are assumed to be independent random variables. Their
probability distributions account for the practitioner’s belief about the input uncertainty. This turns the model
output into a random variable, whose total variance can be split down into different partial variances (this is
the so-called Hoeffding decomposition, see [32]). Each of these partial variances measures the uncertainty on the
output induced by each input variable uncertainty. By considering the ratio of each partial variance to the total
variance, we obtain a measure of importance for each input variable that is called the Sobol index or sensitivity
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index of the variable [27]; the most sensitive parameters can then be identified and ranked as the parameters
with the largest Sobol indices.

Once the Sobol indices have been defined, the question of their effective computation or estimation remains
open. In practice, one has to estimate (in a statistical sense) those indices using a finite sample (of size typically
in the order of hundreds of thousands) of evaluations of model outputs [8]. Indeed, many Monte Carlo or quasi
Monte Carlo approaches have been developed by the experimental sciences and engineering communities. This
includes the FAST methods (see for example [4, 31] and references therein) and the Sobol pick-freeze (SPF)
scheme (see [27, 28]). In SPF a Sobol index is viewed as the regression coefficient between the output of the
model and its pick-freezed replication. This replication is obtained by holding the value of the variable of
interest (frozen variable) and by sampling the other variables (picked variables). The sampled replications are
then combined to produce an estimator of the Sobol index. In this paper we study very deeply this Monte Carlo
method in the general framework where one or more variables can be frozen. This allows to define sensitivity
indices with respect to a general random input living in a probability space (groups of variables, random vectors,
random processes. . .). In this work, we study and compare two Sobol index estimators based on the SPF scheme;
the first estimator, denoted by SX

N , is well-known, the second, denoted by T X
N has been introduced in [17]. For

both estimators, we show convergence and give the rate of convergence; we also show that T X
N is optimal (in

terms of asymptotic variance) amongst regular estimators which are functions of the pick-freezed replications –
this feature is called asymptotic efficiency and is a generalization of the notion of minimum variance unbiased
estimator (see [32] Chaps. 8 and 25 or [10] for more details).

The SPF method requires many (typically, around one thousand times the number of input variables) evalu-
ations of the model output. In many interesting cases, an evaluation of the model output is made by a complex
computer code (for instance, a numerical partial differential equation solving algorithm) whose running time is
not negligible (typically in the order of a second or a minute) for one single evaluation. When thousands of such
evaluations have to be made, one generally replaces the original exact model by a faster-to-run metamodel (also
known in the literature as surrogate model or response surface [1]) which is an approximation of the true model.
Well-known metamodels include Kriging [24], polynomial chaos expansion [30] and reduced bases [12, 19], to
name a few. When a metamodel is used, the estimated Sobol indices are tainted by a twofold error: sampling
error, due to the replacement of the original, infinite population of all the possible inputs by a finite sample,
and metamodel error, due to the replacement of the original model by an approximative metamodel.

The goal of this paper is to study the asymptotic behavior of these two errors on Sobol index estimation
in the double limit where the sample size goes to infinity and the metamodel converges to the true model.
Some work has been done on the non-asymptotic error quantification in Sobol index estimation in earlier
papers [13, 16, 29] by means of confidence intervals which account for both sampling and metamodel errors. In
this paper, we give necessary and sufficient conditions on the rate of convergence of the metamodel to the exact
model for asymptotic normality of a natural Sobol index estimator to hold. The asymptotic normality allows
us to produce asymptotic confidence intervals in order to assess the quality of our estimation. We also give
sufficient conditions for a metamodel-based estimator to be asymptotically efficient. Asymptotic efficiency of
an other Sobol index estimator has already been considered in [5]. In this work, the authors were interested in
the asymptotic efficiency for local polynomial estimates of Sobol indices. Our approach proposes an estimator
which has a simpler form, is less computationally intensive and is more precise in practice. Moreover, we derive
results also in the case where the full model is replaced by a metamodel.

This paper is organized as follows: in the first section, we set up the notation, review the definition of Sobol
indices and give two estimators of interest. In the second section, we prove asymptotic normality and asymptotic
efficiency when the sample of outputs comes from the true model. These two properties are generalized in the
third section where metamodel error is taken into account. The fourth section gives numerical illustrations on
benchmark models and metamodels.
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2. Definition and estimation of Sobol indices

2.1. Exact model

The output Y ∈ R is a function of independent random input variables X ∈ R
p1 and Z ∈ R

p2 . In other
words, Y and (X, Z) are linked by the relation

Y = f(X, Z) (2.1)

where f is a deterministic function defined on P ⊂ R
p1+p2 . We denote by p = p1 +p2 the total number of inputs

of f .
In the paper X ′ will denote an independent copy of X . We also write Y X = f(X, Z ′).
We assume that Y is square integrable and non deterministic (Var(Y ) �= 0). We are interested in the following

Sobol index:

SX =
Var (E(Y |X))

Var(Y )
∈ [0, 1]. (2.2)

This index quantifies the influence of the X input on the output Y : a value of SX that is close to 1 indicates
that X is highly influential on Y .

Remark 2.1. All the results in this paper readily apply when X is multidimensional. In this case, SX is usually
called the closed sensitivity index of X (see [23]).

Note that this separation between the input variables can be made without loss of generality, when one
estimates Sobol indices independently. An ongoing work treats the case of joint Sobol index estimation.

2.2. Estimation of SX

The next lemma shows how to express SX using covariances. This will lead to a natural estimator which has
already been considered in [9].

Lemma 2.2. Assume that the random variables Y and Y X are square integrable. Then

Var(E(Y |X)) = Cov(Y, Y X).

In particular

SX =
Cov

(
Y, Y X

)
Var(Y )

· (2.3)

Remark 2.3. Using a classical regression result, we see that

SX = argmin
a∈R

{
E
(
(Y X − E(Y X)) − a(Y − E(Y ))

)2}
. (2.4)

A first estimator. In view of Lemma 2.2, we are now able to define a first natural estimator of SX (all sums
are taken for i from 1 to N):

SX
N =

1
N

∑
YiY

X
i − ( 1

N

∑
Yi

) (
1
N

∑
Y X

i

)
1
N

∑
Y 2

i − ( 1
N

∑
Yi

)2 , (2.5)

where, for i = 1, . . . , N :
Yi = f(Xi, Zi), Y X

i = f(Xi, Z
′
i),

and {(Xi, Zi)}i=1,...,N and {(Xi, Z
′
i)}i=1,...,N are two independent and identically distributed (i.i.d.) samples of

the distribution of (X, Z), with {Zi}i independent of {Z ′
i}i.

This estimator has been considered in [9], where it has been shown to be a practically efficient estimator.
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A second estimator. We can take into account the observation of {Y X
i }1≤i≤N to make an estimation of

E(Y ) and Var(Y ) which is expected to perform better than any other based on {Yi}1≤i≤N only. We propose
the following estimator:

T X
N =

1
N

∑
YiY

X
i −

(
1
N

∑[Yi + Y X
i

2

])2

1
N

∑[Y 2
i + (Y X

i )2

2

]
−
(

1
N

∑[Yi + Y X
i

2

])2 · (2.6)

This estimator has been introduced in [17]. We will clarify what we mean when saying that T X
N performs

better than SX
N in Proposition 3.3, Sections 3.2 and 5.1.

Remark 2.4. Note that the empirical variances in SX
N and T X

N can be rewritten as:

SX
N =

∑
(Yi − Y )(Y X

i − Y X)∑
(Yi − Y )2

(2.7)

T X
N =

∑
(Yi − Y2)(Y X

i − Y2)∑(Y 2
i +(Y X

i )2

2 − Y2
2
) (2.8)

where:

Y =
1
N

∑
Yi, Y X =

1
N

∑
Y X

i , Y2 =
Y + Y X

2
·

The use of these formulae enables greater numerical stability (i.e., less error due to round-offs). The Kahan
compensated summation algorithm [14] may also be used on these sums. However, we will use definitions (2.5)
and (2.6) for the mathematical analysis of SX

N and T X
N . This analysis is of course independent of the way the

estimators are numerically computed in practice.

3. Asymptotic properties: Exact model

3.1. Consistency and asymptotic normality

Throughout all the paper, we denote by Nk(μ, Σ) the k-dimensional Gaussian distribution with mean μ and
covariance matrix Σ, and, given any sequence of random variables {Rn}n∈N, we note

RN =
1
N

N∑
n=1

Rn.

Proposition 3.1 (Consistency). We have:
SX

N
a.s.−→

N→∞
SX (3.1)

T X
N

a.s.−→
N→∞

SX . (3.2)

Proof. The result is a straightforward application of the strong law of large numbers and that E(Y ) = E(Y X)
and Var(Y ) = Var(Y X). �

Proposition 3.2 (Asymptotic normality). Assume that E(Y 4) < ∞. Then

√
N
(
SX

N − SX
) L→

N→∞
N1

(
0, σ2

S

)
(3.3)
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and √
N
(
T X

N − SX
) L→

N→∞
N1

(
0, σ2

T

)
(3.4)

where

σ2
S =

Var
(
(Y − E(Y ))

[(
Y X − E(Y )

)− SX (Y − E(Y ))
])

(Var(Y ))2
,

σ2
T =

Var
(
(Y − E(Y ))(Y X − E(Y )) − SX/2

(
(Y − E(Y ))2 + (Y X − E(Y ))2

))
(Var(Y ))2

·

Proposition 3.3. The asymptotic variance of T X
N is always less than or equal to the asymptotic variance of

SX
N , with equality if and only if SX = 0 or SX = 1.

To prove this Proposition, we need the following immediate Lemma:

Lemma 3.4. Y and Y X are exchangeable random variables, i.e. (Y, Y X) L= (Y X , Y ).

3.2. Asymptotic efficiency

In this section we study the asymptotic efficiency of SX
N and T X

N . This notion (see [32], Sect. 25 for its
definition) extends the notion of Cramér–Rao bound to the semiparametric setting and enables to define a
criteria of optimality for estimators, called asymptotic efficiency.

Let P be the set of all cumulative distribution functions (cdf) of exchangeable random vectors in L2(R2). It
is clear that the cdf Q of a random vector of L2(R2) is in P if and only if Q is symmetric:

Q(a, b) = Q(b, a) ∀(a, b) ∈ R
2.

Let P be the cdf of (Y, Y X). We have P ∈ P thanks to Lemma 3.4.

Proposition 3.5 (Asymptotic efficiency). {T X
N }N is asymptotically efficient for estimating SX for P ∈ P.

We will use the following Lemma, which is also of interest in its own right:

Lemma 3.6 (Asymptotic efficiency in P).

(1) Let Φ1: R → R be a function in L2(P ). The sequence of estimators
{
Φ1

N

}
N

given by:

Φ1
N =

1
N

∑ Φ1(Yi) + Φ1(Y X
i )

2

is asymptotically efficient for estimating E(Φ1(Y )) for P ∈ P.
(2) Let Φ2: R

2 → R be a symmetric function in L2(P ). The sequence
{
Φ2

N

}
N

given by:

Φ2
N =

1
N

∑
Φ2

(
Yi, Y

X
i

)
is asymptotically efficient for estimating E(Φ2(Y, Y X)) for P ∈ P.
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4. Asymptotic properties: Metamodel

4.1. Metamodel-based estimation

As said in the introduction, we often are in a situation where the exact output f is too costly to be evaluated
numerically (thus, Y and Y X are not observable variables in our estimation problem) and has to be replaced by
a metamodel f̃ , which is a faster to evaluate approximation of f . We view this approximation as a perturbation
of the exact model by some function δ:

Ỹ = f̃(X, Z) = f(X, Z) + δ,

where the perturbation δ = δ(X, Z, ξ) is also a function of a random variable ξ independent from X and Z.
We also define, as before

Ỹ X = f̃(X, Z ′).

Assuming again that Ỹ is non deterministic and in L2, we can consider the following Sobol index, with respect
to the metamodel:

S̃X =
Var(E(Ỹ |X))

Var(Ỹ )
(4.1)

and its estimators:

S̃X
N =

1
N

∑
ỸiỸ

X
i −

(
1
N

∑
Ỹi

)(
1
N

∑
Ỹ X

i

)
1
N

∑
Ỹ 2

i −
(

1
N

∑
Ỹi

)2 (4.2)

T̃ X
N =

1
N

∑
ỸiỸ

X
i −

(
1
N

∑[ Ỹi+Ỹ X
i

2

])2

1
N

∑[ Ỹ 2
i +(Ỹ X

i )2

2

]
−
(

1
N

∑[ Ỹi+Ỹ X
i

2

])2 · (4.3)

The goal of this section is to give sufficient conditions on the perturbation δ for S̃X
N and T̃ X

N to satisfy asymptotic
normality (Sect. 4.2), and T̃ X

N to be asymptotically efficient (Sect. 4.3), with respect to the Sobol index of the
true model SX .

4.2. Consistency and asymptotic normality

In the first Section (4.2.1) we suppose that the error term δ does not depend on N . In this case, if the
Sobol index of the exact model is different from the Sobol index of the metamodel, then neither consistency nor
asymptotic normality are possible. In the second Section (4.2.2), we let δ depend on N and we give conditions
for consistency and asymptotic normality to hold.

4.2.1. First case: δ does not depend on N

Remark 4.1. If S̃X − SX �= 0 then neither S̃X
N nor T̃ X

N are consistent for estimating SX .
Indeed, we have

S̃X
N − SX =

(
S̃X

N − S̃X
)

+
(
S̃X − SX

)
.

The first term converges to 0 almost surely by Proposition 3.1 applied to S̃X
N . However, the second is nonzero

by assumption. The same holds for T̃ X
N .

This remark shows that a naive consideration of the metamodel error (i.e., with fixed metamodel) is not
satisfactory for an asymptotic justification of the use of a metamodel. More specifically, it is impossible to have
asymptotic normality for S̃X

N and T̃ X
N in any nontrivial case if δ does not vanish (in some sense) asymptotically.

This justifies the consideration of cases where δ depends on N , and this is the object of the next subsection.
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4.2.2. Second case: Var δN converges to 0 as N → ∞
We now assume that the perturbation δ is a function of the sample size N . This entails that f̃ , as well as Ỹ ,

Ỹ X and S̃X depend on N . We emphasize this dependence by using the notations δN , f̃N , ỸN , Ỹ X
N . We keep,

however, using the notations S̃X
N and T̃ X

N for the estimators of S̃X defined at (4.2) and (4.3).

Assumption. We suppose that f̃N − f = δN
L2

−→
N→+∞

c for some constant c.

Proposition 4.2. We have S̃X −→
N→+∞

SX .

Proposition 4.3. Assume there exist s > 0 and C > 0 such that

∀N, E

(∣∣∣ỸN

∣∣∣4+s
)

< C. (4.4)

Then √
N
(
S̃X

N − S̃X
) L−→

N→∞
N1

(
0, σ2

S

)
(4.5)

√
N
(
T̃ X

N − S̃X
) L−→

N→∞
N1

(
0, σ2

T

)
(4.6)

where σ2
S and σ2

T are the asymptotic variances of SX
N and T X

N given, respectively, in (3.3) and (3.4).

We are actually interested in the asymptotic distribution of
√

N
(
S̃X

N − SX
)
. In the remaining of the subsection,

we will show that this convergence depends on the rate of convergence to 0 of Var(δN ).

Theorem 4.4. Let:

Cδ,N = 2Var(Y )1/2
[
Corr(Y, δX

N ) − Corr(Y, Y X)Corr(Y, δN )
]
+ Var(δN )1/2

[
Corr(δN , δX

N ) − Corr(Y, Y X)
]
,

for δX
N = δN (X, Z ′), and, given any L2 random variables A and B of nonzero variance:

Corr(A, B) =
Cov(A, B)√
VarAVarB

·

Assume that Cδ,N does not converge to 0.

(1) If Var(δN ) = o
(

1
N

)
, then asymptotic normalities of S̃X

N and T̃ X
N for SX hold, i.e.

√
N(S̃X

N − SX) −→
N→+∞

N (0, σ2
S) (4.7)

and: √
N(T̃ X

N − SX) −→
N→+∞

N (0, σ2
T ). (4.8)

(2) If NVar(δN ) → ∞, then (4.7) and (4.8).
(3) If Cδ,N converges to a nonzero constant C and γ ∈ R so that Var(δN ) = γ

CN + o
(

1
N

)
, then:

√
N(S̃X

N − SX) −→
N→+∞

N (γ, σ2
S),

and: √
N(T̃ X

N − SX) −→
N→+∞

N (γ, σ2
T ).

Remark 4.5. Obviously, if Cδ,N converges to 0, then asymptotic normalities of S̃X
N and T̃ X

N hold under weaker
assumptions on Var(δN ).
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4.3. Asymptotic efficiency

Proposition 4.6 (Asymptotic efficiency for the metamodel). Assume

(1) ∃s > 0, C > 0 s.t. ∀N, E

(∣∣Y ∣∣4+s
)

< C and E

(∣∣Ỹ ∣∣4+s
)

< C;
(2) NVar(δN ) → 0;
(3)

√
NE(δN ) → 0.

Then
{
T̃ X

N

}
is asymptotically efficient for estimating SX.

Remark 4.7. By Minkowski inequality, the first hypothesis implies E(δ4+s
N ) < 2C

1
4+s and the asymptotic

normality by Lemma 4.3 and Theorem 4.4.

5. Numerical illustrations

In this section, we illustrate the asymptotic results of Sections 3.1 and 4.2 when the exact model is the
Ishigami function [11]:

f(X1, X2, X3) = sin X1 + 7 sin2 X2 + 0.1X4
3 sinX1 (5.1)

for (Xj)j=1,2,3 are i.i.d. uniform random variables in [−π; π]. In this case, all the integrability conditions are
satisfied (we even have Y ∈ L∞).

The Sobol index of f with respect to input variable X1 is SX defined in (2.2) for X = X1 and Z = (X2, X3);
we denote it by S1. Similarly, S2 (resp. S3) is SX obtained taking X = X2 and Z = (X1, X3) (resp. X = X3

and Z = (X1, X2)).
Exact values of these indices are analytically known:

S1 = 0.3139, S2 = 0.4424, S3 = 0.

For a sample size N , a risk level α ∈]0; 1[ and for each input variable, a confidence interval for SX (SX being
one of S1, S2 or S3) of confidence level 1 − α can be estimated – using evaluations of the true model f –
by approximating the distribution of SX

N (or T X
N ) by its Gaussian distribution given in Proposition 3.3, using

empirical estimators of the asymptotic variances stated in this Proposition.
In the case where only a perturbated model (metamodel) f̃N = f + δN is available, a confidence interval can

still be estimated by using the S̃X
N (or T̃ X

N ) estimator.
Thanks to Proposition 4.3, the level of the resulting confidence interval should be close to 1−α for sufficiently

large values of N if (and only if) VarδN decreases sufficiently quickly with N .
The levels of the obtained confidence interval can be estimated by computing a large number R of confidence

interval replicates, and by considering the empirical coverage, that is, the proportion of intervals containing the
true index value; it is well-known that this empirical coverage strongly converges to the level of the interval as
R goes to infinity.

In the next subsections, we present the estimations of the levels of the confidence interval for the Ishigami
model (5.1) using the true model (Sect. 5.1), and, with various synthetic model perturbations (Sects. 5.2 and 5.3),
as well as RKHS (Kriging) metamodels (Sect. 5.4) and nonparametric regression metamodels (Sect. 5.5). We
begin by comparing SN and TN on the exact model (Sect. 5.1), then we illustrate the generalization to the
metamodel case on the widespread estimator SN ; the condition to ensure asymptotic normality in the metamodel
is the same for SN and TN . All simulations have been made with R = 1000 and α = 0.05.

5.1. Exact model

Figure 1 shows the empirical coverage of the asymptotic confidence interval built using the SX
N estimator,

plotted as a function of the sample size N . The theoretical level 0.95 is represented with a dotted line. Figure 2
does the same using the T X

N estimator.
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Figure 1. Empirical coverages of asymptotic confidence intervals for S1 (left), S2 (center) and
S3 (right), as a function of the sample size. The SN estimator is used.
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Figure 2. Empirical coverages of asymptotic confidence intervals for S1 (left), S2 (center) and
S3 (right), as a function of the sample size (for the exact model). The TN estimator is used.
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Figure 3. Lengths (rescaled by
√

N) of the estimated 95% confidence intervals for S1 (left),
S2 (center) and S3 (right), as functions of the sample size (for the exact model). In solid line:
length of the interval built from TN estimator; in dotted line: length of the interval built from
SN estimator.

We see that the coverages get closer to the target level 0.95 as N increases, thereby assessing the reliability
of the asymptotic confidence interval.

Figure 3 compares the efficiency of SX
N and T X

N by plotting the confidence interval lengths for the two
estimators, as functions of the sample size. As the lengths for both estimators are O(1/

√
N), we plot the

lengths multiplied by
√

N . We see that T X
N always produce smaller confidence intervals, except for X3 where

the lengths are sensibly the same; this conclusion fully agrees with Proposition 3.3.
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Figure 4. Empirical coverages of the asymptotic confidence intervals for S1, S2 and S3, as a
function of β (for the Gaussian-perturbated model).

5.2. Gaussian-perturbated model

We consider a perturbation f̃N of the original output f :

f̃N = f +
5ξ

Nβ/2

where β > 0 and ξ is a standard Gaussian.
The perturbation δN = 5 ξ

Nβ/2 leads to VarδN ∝ N−β . Since:

Cδ = O
(
Var(δN )1/2

)
= O

(
N−β/2

)
,

the proof of Theorem 4.4 shows that S̃N is asymptotically normal for S if β > 1/2. For indices relative to X1

and X2, this sufficient condition is also necessary, as Cδ is actually equivalent to N−β/2. For X3, we have Cδ = 0
so that S̃N is asymptotically normal for S for any positive β.

This is illustrated for N = 50 000 in Figure 4. We see that the empirical coverages of the confidence interval
for S1 and S2 jump to 0.95 near β = 1/2, while, for S3, this coverage is always close to 0.95.

5.3. Weibull-perturbated model

We now take a different perturbation of the output:

f̃N = f +
5WX2

3

Nβ/2

where W is Weibull-distributed with scale parameter λ = 1 and shape parameter k = 1/2. Here, the perturbation
depends on the inputs and, as for every input variable, Cδ,N does not converge to zero, Theorem 4.4 states in
particular that S̃N is asymptotically normal for S for β > 1. Again, this property is suggested for N = 50 000
by the plot in Figure 5.

5.4. RKHS metamodel

In this part, we discuss the use of a reproducing kernel Hilbert space (RKHS) interpolator [24–26] as meta-
model f̃ . Such metamodels (also known as Kriging, or Gaussian process metamodels) are widely used when
performing sensitivity analysis of time-expensive computer codes [16]. Note that, according to [3], analytical
formulae are in some cases (e.g., uniform or gaussian distributions for the inputs) available for Sobol indices
computation, avoiding the necessity to use a Monte-Carlo scheme. In this paper, we chose to perform Monte-
Carlo estimation on an RKHS metamodel so as to illustrate our theoretical results. Moreover, the Monte-Carlo
approach is more flexible and can be applied for complex inputs’ distributions. The interpolator depends on
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Figure 5. Empirical coverages of the asymptotic confidence intervals for S1, S2 and S3, as a
function of β (for the Weibull-perturbated model).

a learning sample {(d1, f(d1)), . . . , (dn, f(dn))}, where the design points D = {di}i=1,...,n ⊂ P are generally
chosen according to a space-filling design, for instance the so-called maximin LHS (latin hypercube sampling)
designs. Increasing the learning sample size n will increase the necessary number of evaluations of the true
model f (each evaluation being potentially very computationally demanding) to build the learning sample, but
will also enhance the quality of the interpolation (i.e. reduce metamodel error).

The error analysis of the RKHS method [15,25] shows that there exist positive constants C and K, depending
on f , so that:

∀u ∈ P ,
∣∣∣f(u) − f̃(u)

∣∣∣ ≤ Ce−K/hD,P

where:
hD,P = sup

u∈P
min
d∈D

‖d − u‖

for a given norm ‖·‖ on P .
The quantity hD,P can be linked to the number of points n∗(ε) in an optimal covering of D:

n∗(ε) = min{p ∈ N
∗ | ∃(d1, . . . , dp) ∈ P s.t. ∀u ∈ P , ∃i ∈ {1, . . . , p} satisfying ‖u − di‖ ≤ ε}.

In other words, n∗(ε), known as the covering number of P , is the smallest size of a design D satisfying hD,P ≤ ε.
It is known that, when P is a compact subset of R

p (in our context, p = p1 + p2 is the number of input
parameters), there exist constants A and B so that:

Aε−p ≤ n∗(ε) ≤ Bε−p.

Hence, assuming that an optimal design of size n is chosen, we have, for a constant B′:

hD,P ≤ B′n−1/p

and we have the following pointwise metamodel error bound, for constants C and K ′:

∀u ∈ P ,
∣∣∣f(u) − f̃(u)

∣∣∣ ≤ Ce−K′n1/p

which obviously leads to an integrated error bound on the variance of the metamodel error:

Varδ ≤ Ce−kn1/p

for suitable constants C and k.
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Figure 6. Estimation of the Kriging metamodel error variance (log. scale) as function of the
learning sample size n.

Numerical illustration

We illustrate the properties of the RKHS-based sensitivity analysis using the Ishigami function (5.1) as true
model, maximin LHSes for design points selection. RKHS interpolation also depends on the choice of a kernel,
which we choose Gaussian all the way through. All simulations have been made with the R software [20], together
with the lhs package [2] for design sampling and the mlegp package [6] for Kriging.

Figure 6, which shows an estimation (based on a sample of 1000 metamodel errors) of the (logarithm of)
variance of metamodel error, plotted against the cubed root of the learning sample size n1/3. Using an exponential
regression, we find that:

Var(δ) ≈ Ĉe−k̂n1/3
(5.2)

where:
k̂ = 1.91

Now, if we let the learning sample size n depend on the Monte-Carlo sample size N by the relation:

n = (a ln N)3

for a > 0, Theorem 4.4 suggests that the metamodel-based estimators of the sensitivity indices are asymptotically
normal if and only if N−ak̂+1 → 0 when N → +∞, that is a > 1

k̂
, or

a > 0.52, (5.3)

according to our numerical value for k̂.
Even if it has not been rigorously proved that this condition is necessary and sufficient (due to the estimation

of k and the fact that (5.2) provably holds, possibly with different constants, as an upper bound), one should
observe in practice that the behavior of the empirical confidence intervals for large values of N changes as this
critical value of a is crossed. Table 1 below shows the results obtained for different subcritical and supercritical
values of a (i.e., (5.3) does not hold, or hold, respectively), and provides a clear illustration of this fact.
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Table 1. Estimation of the asymptotic coverages for the RKHS Ishigami metamodel. Empirical
coverages are obtained using 100 confidence interval replicates. Theoretical coverage is 0.95.

a N n Coverage for S1 Cov. for S2 Cov. for S3

.4 3000 33 0.1 0 0.7

.4 4000 37 0.08 0 0.78

.4 6000 43 0.26 0.3 0.88

.4 10 000 51 0.28 0.18 0.78

.4 20000 77 0.28 0.1 0.59

.6 3000 111 0.79 0.37 0.9

.6 4000 124 0.8 0.7 0.94

.6 10 000 169 0.92 0.82 0.94

.6 20 000 210 0.93 0.85 0.95

.7 3000 177 0.93 0.88 0.93

.7 4000 196 0.9 0.91 0.94

.7 6000 226 0.94 0.93 0.97

.8 4000 293 0.95 0.95 0.95

5.5. Nonparametric regression

In this section, we consider the case where the true model f is not directly observable, but is only available
through a finite set of noisy realisations of:

fnoisy(Di) = f(Di) + εi, i = 1, . . . , n

where D = (Di = (Xi, Zi))i=1,...,n are independent copies of (X, Z), and {εi}i=1,...,n are independent, identically
distributed centered random variables.

As discussed in Section 4.2.1, one should expect that the Sobol index estimator computed on fnoisy are
not asymptotically normal for the estimation of the Sobol indices of f (as Var(εi) is fixed). This motivates
the use of a smoothed estimate of f , which we will take as our perturbated model f̃ = f̃D. We consider the
Nadaraya−Watson estimator:

f̃D(u) =

⎧⎪⎨⎪⎩
∑n

i=1 Kh (u − Di) fnoisy(Di)∑n
i=1 Kh(u − Di)

if
n∑

i=1

Kh(u − Di) �= 0

0 else.

where Kh is a smoothing kernel of window h ∈ R
p; for instance Kh is a Gaussian kernel:

Kh(v) = exp

(
−

p∑
i=1

‖vi‖2

h2
i

)
(5.4)

where the norm ‖·‖ is the Euclidean norm on R
p.

It is known that, under regularity conditions on f , and a n-dependent appropriate choice of h, the mean
integrated square error (MISE) of f̃ satisfies:∫

ED

((
f(u) − f̃D(u)

)2
)

du ≤ C′n−γ , (5.5)

for a positive constant C′ and a positive γ (which depends only on the dimension p and the regularity of f),
and where ED denotes expectation with respect to the random “design” D.
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Now, by Fubini−Tonelli’s theorem, we have:∫
ED

((
f(u) − f̃D(u)

)2
)

du = ED

(∫ (
f(u) − f̃D(u)

)2

du

)
. (5.6)

By using (5.6), (5.5) and applying Markov’s inequality to the positive random variable
∫ (

f(u) − f̃D(u)
)2

du,

we have that, for any ε > 0,

P

({
D /

∫ (
f(u) − f̃D(u)

)2

du ≤ C′

ε
n−γ

})
≥ 1 − ε.

Hence, for a fixed risk ε > 0, there exist C > 0 and γ > 0 so that:∫ (
f̃D(u) − f(u)

)2

du ≤ Cn−γ (5.7)

holds with probability greater than 1 − ε (with respect to the choice of D).
We recall that the quantity we have to consider in order to study asymptotic normality of Sobol index

estimator on the metamodel is:

Var(δ) =
∫ (

f(u) − f̃D(u)
)2

du −
(∫ (

f(u) − f̃D(u)
)

du

)2

and that, obviously,

Var(δ) ≤
∫ (

f(u) − f̃D(u)
)2

du.

This gives, by making use of (5.7):
Var (δ) ≤ Cn−γ (5.8)

with probability greater than 1 − ε.
In most cases of application, the design D is fixed. In view of (5.8), it is reasonable to suppose that there

exist C > 0 and β > 0 so that:
Var (δ) ≤ Cn−β

and we make n depend on N by the following relation:

n = Na,

for a > 0. By Theorem 4.4, the estimator sequence {S̃N} is asymptotically normal provided that NVar(δN ) → 0,
that is: a > 1

β .

Numerical illustration

We now illustrate this property using the Ishigami function (5.1) as true model, and a Gaussian white noise εi

of standard deviation 0.3 (yielding to a signal-to-noise ratio of 90%).
The nonparametric regressions are carried using a Gaussian kernel (5.4), the R package np [7], together

with the extrapolation method of [21] for window selection and the FIGtree [18] C++ library for efficient
Nadaraya−Watson evaluation based on fast gaussian transform.

Figure 7, which shows an estimation (based on a test sample of size 3000) of Var(δ) in function of n, and a
power regression shows that:

Var (δ) ≈ Cn−β̂

with β̂ = 0.86. This gives an estimate of 1.16 as the critical a for asymptotic normality.
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Figure 7. Estimation of the nonparametric regression error variance (log. scale) as function
of the learning sample size n (Sect. 5.5).

Table 2. Estimation of the asymptotic coverages for the Ishigami nonparametric regression.
Empirical coverages are obtained using 100 confidence interval replicates. Theoretical coverage
is 0.95.

a N n Coverage for S1 Cov. for S2 Cov. for S3

0.8 1000 252 0.25 0.01 0.94
0.8 2000 438 0.05 0.02 0.86
1.1 1000 1996 0.95 0.97 0.96
1.1 2000 4277 0.95 0.93 0.96
1.2 1000 3982 0.93 0.95 0.96
1.2 2000 9147 0.96 0.97 0.95
1.3 1000 7944 0.95 0.99 0.94
1.3 2000 19 559 0.95 0.95 0.96

As in the RKHS case, we performed estimations of the coverages of the asymptotic confidence interval for
several values of a and N ; the results are gathered in Table 2. We see that, first, the condition a > 1.16 implies
correct coverages, and, second, the condition also seems to be near-necessary to have asymptotic normality. We
also remark that, for the asymptotic normality to hold, the necessary number of noisy model evaluations is
asymptotically comparable to the Monte-Carlo sample size (while, in the RKHS case, the necessary number of
true model evaluations was asymptotically negligible with respect to the Monte-Carlo sample size): this shows
that the nonparametric regression is suitable in the case of noisy but abundant model evaluations, while RKHS
interpolation is clearly preferable when the true model output is costly to evaluate (i.e. few model outputs are
available).

6. Appendix: Proofs

Proof of Lemma 2.2. On one hand, since Y
L= Y X (that is, Y and Y X have the same distribution), we have

Cov(Y, Y X) = E(Y Y X) − E(Y )E(Y X) = E(Y Y X) − E(Y )2.

On the other hand, Y and Y X are independent conditionally on X , so that

E(Y Y X) = E(E(Y Y X |X)) = E(E(Y |X)E(Y X |X)) = E(E(Y |X)2). �
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Proof of Proposition 3.2. Proof of (3.3). We begin by noticing that SX
N is invariant by any centering (transla-

tion) of the Yi and Y X
i . To simplify the next calculations, we suppose that they have been recentred by −E(Y ).

By setting:

Ui =
(
(Yi − E(Y ))(Y X

i − E(Y )), Yi − E(Y ), Y X
i − E(Y ), (Yi − E(Y ))2

)T
, (6.1)

this implies that:
SX

N = ΨS(UN )

with:
ΨS(x, y, z, t) =

x − yz

t − y2

The central limit theorem gives that:
√

N
(
UN − μ

) L−→
N→∞

N4 (0, Γ )

where Γ is the covariance matrix of U1 and:

μ =

⎛⎜⎝Cov(Y, Y X)
0
0

Var(Y )

⎞⎟⎠ .

The so-called Delta method ([32], Thm. 3.1) gives:
√

N
(
SX

N − SX
) L−→

N→∞
N1(0, gT Γg)

where:
g = ∇ΨS(μ).

Note that since by assumption Var(Y ) �= 0, ΨS is differentiable at μ and we will see that gT Γg �= 0, so that the
application of the Delta method is justified. By differentiation, we get that, for any x, y, z, t so that t �= y2:

∇ΨS(x, y, z, t) =
(

1
t − y2

,
−z(t − y2) + (x − yz) · 2y

(t − y2)2
, − y

t − y2
, − x − yz

(t − y2)2

)T

so that, by using (2.3):

g =
(

1
Var(Y )

, 0, 0, − SX

Var(Y )

)T

·
Hence

gT Γg =
Var
(
(Y − E(Y ))(Y X − E(Y ))

)
(Var(Y ))2

+
(SX)2

(Var(Y ))2
Var
(
(Y − E(Y ))2

)
−2

SX

(Var(Y ))2
Cov

(
(Y − E(Y ))(Y X − E(Y )), (Y − E(Y ))2

)
=

1
(Var(Y ))2

(
Var
(
(Y − E(Y ))(Y X − E(Y ))

)
+ Var

(
SX
(
(Y − E(Y ))2

))
−2Cov

(
(Y − E(Y ))(Y X − E(Y )), SX(Y − E(Y ))2

))

=
Var
(
(Y − E(Y ))

[
(Y X − E(Y )) − SX(Y − E(Y ))

])
(Var(Y ))2

,

which is the announced result.
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Proof of (3.4). As in the previous point, it is easy to check that T X
N is invariant with respect to translations

of Yi and Y X
i by −E(Y ). Thus, T X

N = Ψ
(
WN

)
with:

ΨT (x, y, z) =
x − (y/2)2

z/2 − (y/2)2

and:

Wi =
(
(Yi − E(Y ))(Y X

i − E(Y )), (Yi − E(Y )) + (Y X
i − E(Y )), (Yi − E(Y ))2 + (Y X

i − E(Y ))2
)T

. (6.2)

The result follows from the delta method. �

Proof of Proposition 3.3. We have that the expressions in (3.3) and (3.4) of σ2
S and σ2

T are translation-invariant,
so that we assume without loss of generality that E(Y ) = 0. By expanding the variances and using the exchange-
ability of Y and Y X , we have that (Var(Y ))2

(
σ2

S − σ2
T

)
is equal to:

(Var(Y ))2
(
σ2

S − σ2
T

)
=

(SX)2

2
(
Var(Y 2) − Cov

(
Y 2, (Y X)2

))
.

We now use Cauchy−Schwarz inequality to see that:

Cov
(
Y 2, (Y X)2

) ≤√Var (Y 2)Var (Y X)2) = Var
(
Y 2
)

so the second term is always non-negative. This proves that the asymptotic variance of SX
N is greater than the

asymptotic variance of T X
N .

For the equality case, we notice that SX = 0 implies the equality of the asymptotic variances. If SX �= 0,
equality holds if and only if there is equality in Cauchy−Schwarz, i.e. there exists k ∈ R so that:

Y 2 = k(Y X)2 almost surely

by taking expectations and using Var(Y ) = Var(Y X) we see that k = 1 necessarily, hence Y = Y X almost
surely, and SX = 1 thanks to (2.3). �

Proof of Lemma 3.6. Let, for g ∈ L2(P ) and t ∈ R, P g
t be the cdf satisfying:

dP g
t = (1 + tg)dP.

It is clear that the tangent set of P at P is the closure of:

ṖP = {g bounded, E(g(Y, Y X)) = 0 and g(a, b) = g(b, a) ∀(a, b) ∈ R
2}.

Let, for Q ∈ P :
Ψ1(Q) = EQ (Φ1(Y )) and Ψ2(Q) = EQ

(
Φ2(Y, Y X)

)
.

We recall that EQ denotes the expectation obtained by assuming that the random vector (Y, Y X) follows the
Q distribution.

Following ([32] Sect. 25.3), we compute the efficient influence functions of Ψ1 and Ψ2 with respect to P and
the tangent set ṖP . These empirical influence functions are related to the minimal asymptotic variance of a
regular estimator sequence whose observations lie in P (op.cit., Thms. 25.20 and 25.21). Let g ∈ ṖP .
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(1) We have

Ψ1(P
g
t ) − Ψ1(P )

t
= EP

(
Φ1(Y )g(Y, Y X)

)
= EP

[(
Φ1(Y ) + Φ1(Y X)

2
− E(Φ1(Y ))

)
g(Y, Y X).

]
As:

Ψ̃1,P =
Φ1(Y ) + Φ1(Y X)

2
− E(Φ1(Y )) ∈ ṖP ,

it is the efficient influence function of Ψ1 at P . Hence the efficient asymptotic variance is:

EP

((
Ψ̃1,P

)2
)

=
Var
(
Φ1(Y ) + Φ1(Y X)

)
4

·

As, by the central limit theorem,
{
Φ1

N

}
clearly achieves this efficient asymptotic variance, it is an asymp-

totically efficient estimator of Ψ1(P ).
(2) We have:

Ψ2(P
g
t ) − Ψ2(P )

t
= EP

(
Φ2(Y, Y X)g(Y, Y X)

)
= EP

[(
Φ2(Y, Y X) − E(Φ2(Y, Y X))

)
g(Y, Y X)

]
.

Thanks to the symmetry of Φ2, we have that

Ψ̃2,P = Φ2(Y, Y X) − E(Φ2(Y, Y X))

belongs to ṖP , hence it is the efficient influence function of Ψ2. So the efficient asymptotic variance is:

EP

((
Ψ̃2,P

)2
)

= Var
(
Φ2(Y, Y X)

)
,

and this variance is achieved by
{
Φ2

N

}
. �

Proof of Proposition 3.5. By Lemma 3.6, we get that:

UN =

(
1
N

N∑
i=1

YiY
X
i ,

1
N

N∑
i=1

Yi + Y X
i

2
,

1
N

N∑
i=1

Y 2
i + (Y X

i )2

2

)
(6.3)

is asymptotically efficient, componentwise, for estimating

U =
(
E(Y Y X), E(Y ), E(Y 2)

)
(6.4)

in P .
Using Theorem 25.50 (efficiency in product space) of [32], we can deduce joint efficiency from this compo-

nentwise efficiency.
Now, let Ψ be the function defined by:

Ψ(x, y, z) =
x − y2

z − y2

and Ψ is differentiable on:
R

3 \ {(x, y, z)
∣∣ z �= y2

}
,

Theorem 25.47 (efficiency and Delta method) of [32] implies that {Ψ (UN )} is asymptotically efficient for esti-
mating Ψ(U) for P ∈ P . The conclusion follows, as Ψ(UN ) = T X

N and Ψ(U) = SX . �
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Proof of Proposition 4.2. We clearly have that ỸN
L2−→

N→+∞
Y + c.

We deduce that:
Var
(
ỸN

)
−→

N→+∞
Var(Y + c) = Var(Y )

and
E(ỸN |Z) −→

N→+∞
E(Y |Z) + c in L2.

From this last convergence we get

Var
(

E(ỸN |Z)
)

−→
N→+∞

Var (E(Y |Z)) .

This proves that S̃X = Var
(

E(ỸN |Z)
)

/Var
(
ỸN

)
converges to SX = Var (E(Y |Z)) /Var(Y ) when N goes

to +∞. �

Proof of Proposition 4.3. Proof of (4.5). Let

ŨN,i =
(

(ỸN,i − E(Y ))(Ỹ X
N,i − E(Y )), ỸN,i − E(Y ), Ỹ X

N,i − E(Y ),
(
ỸN,i − E(Y )

)2
)

and

ŨN :=
1
N

N∑
i=1

ŨN,i.

Using the Lindeberg–Feller central limit theorem (see e.g. [32] 2.27, with YN,i = ŨN,i/
√

N), we get:

√
N
(
ŨN − E

(
ŨN,1

)) L−→
N→∞

N4(0, Γ )

where Γ is the covariance matrix of the U1 vector defined in (6.1).
The use of this central limit theorem is justified by the fact that, under assumption (4.4) of uniform bound-

edness of moments of ỸN , there are s′ > 0 and C′ such that:

∀N, E(||UN,i||2+s′
) < C′

where ‖·‖ is the standard Euclidean norm.
This ensures

∀ε > 0, E(||ŨN,i||21||ŨN,i||>ε
√

N ) → 0.

Then

E(||ŨN,i||21||ŨN,i||>ε
√

N ) = E

(
||ŨN,i||2+s′

||ŨN,i||s′ 1||ŨN,i||>ε
√

N

)
≤ C′

εs′Ns′/2
.

This shows that for each i,
{∥∥∥ŨN,i

∥∥∥2}
N

is uniformly integrable, hence, the variance-covariance matrix of

ŨN,i converges to Γ when N → +∞. As ŨN,i
P−→

N→+∞
Ui, the same convergence holds in L2 and the covariance

matrices of ŨN,i converge (as N → +∞) to Γ , the covariance matrix of Ui.
We conclude the proof by applying the Delta method as for the exact model (cf. the Proof of Prop. 3.2).

Proof of (4.6). We set:

W̃N,i =
(
(Ỹi − E(Y ))(Ỹ X

i − E(Y )), (Ỹi − E(Y )) + (Ỹ X
i − E(Y )), (Ỹi − E(Y ))2 + (Ỹ X

i − E(Y ))2
)T

.
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As in the previous point, the Lindeberg–Feller theorem can be applied to
{
W̃N,i

}
to yield the convergence:

√
N
(
W̃N − E

(
W̃1,1

)) L−→
N→∞

N3(0, Σ)

where Σ is the covariance matrix of W1 defined in (6.2). The conclusion follows again by an application of the
Delta method as in the Proof of Proposition 3.2. �

Proof of Theorem 4.4. The following decompositions:
√

N(S̃X
N − SX) =

√
N(S̃X

N − S̃X) +
√

N(S̃X − SX) (6.5)

√
N(T̃ X

N − SX) =
√

N(T̃ X
N − S̃X) +

√
N(S̃X − SX) (6.6)

make obvious that if
√

N(S̃X − SX) goes to some constant κ then

√
N(S̃N − S) L−→

N→+∞
N (κ, σ2

S)

and: √
N(T̃N − S) L−→

N→+∞
N (κ, σ2

T ).

The second point of the theorem is now clear from the proof of Proposition 4.1.
The remaining of the theorem is an immediate consequence of Lemma 6.1 below. �

Lemma 6.1. We have:
√

N
(
S̃X − SX

)
=

O
(
(NVar(δN ))1/2

)
Var(Y ) + o(1)

·

Proof of 6.1. We have:

S̃X − SX =
Cov(ỸN , Ỹ X

N )

VarỸN

− Cov(Y, Y X)
Var(Y )

=
Cov(Y, Y X) + 2Cov(Y, δX

N ) + Cov(δN , δX
N )

Var(Y ) + 2Cov(Y, δN ) + Var(δN )
− Cov(Y, Y X)

Var(Y )

=
Var(Y )

(
2Cov(Y, δX

N ) + Cov(δN , δX
N )
)− Cov(Y, Y X) (2Cov(Y, δN ) + Var(δN ))

Var(Y ) (Var(Y ) + 2Cov(Y, δN ) + Var(δN ))

=
Var(δN )1/2CδN

Var(Y ) + 2Cov(Y, δN ) + Var(δN )

and:
Var(Y ) + 2Cov(Y, δN ) + Var(δN ) = Var(Y ) + o(1).

Finally, Cδ,N is uniformly bounded because Var(δN ) goes to 0 and Var(Y ) is a constant. �

Proof of Proposition 4.6. We will use the following lemma.

Lemma 6.2. For all N ∈ N
∗, let (ZN,i)i=1,...,N be a sequence of i.i.d variables such that

(1)
√

NE(ZN,i) −→
N→+∞

0;

(2) Var(ZN,i) −→
N→+∞

0.
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Then
1√
N

N∑
i=1

ZN,i
P−→

N→+∞
0.

The lemma follows after the following decomposition:

1√
N

N∑
i=1

ZN,i =
√

N

(
1
N

N∑
i=1

ZN,i − E(ZN,1)

)
+
√

NE(ZN,1).

Let UN and U be the vectors defined in the Proof of Proposition 3.5, in (6.3) and (6.4), respectively, and:

ŨN =

(
1
N

N∑
i=1

ỸiỸ
X
i ,

1
N

N∑
i=1

Ỹi + Ỹ X
i

2
,

1
N

N∑
i=1

Ỹ 2
i + (Ỹ X

i )2

2

)
·

We will show that: √
N
(
UN − ŨN

)
P→

N→∞
0. (6.7)

By Theorem 25.23 of [32] and the fact that (UN ) is asymptotically efficient for U (shown in the Proof of Propo-
sition 3.5), this implies that

(
ŨN

)
is asymptotically efficient for U , and the end of the proof of Proposition 3.5

shows the announced result.
To prove (6.7), it is sufficient to prove componentwise convergence. We will treat the second and the third

components, as the result holds in the same way for the other.
For the second component, we have

1√
N

N∑
i=1

(ỸN,i − Yi) =
1√
N

N∑
i=1

δN,i

goes to 0 (in probability) by the previous lemma. The same holds for 1√
N

∑N
i=1(Ỹ

X
N,i − Y X

i ).
For the third component, we have

1√
N

N∑
i=1

(Ỹ 2
N,i − Y 2

i ) = 2
1√
N

N∑
i=1

δN,iYi +
1√
N

N∑
i=1

δ2
N,i.

Now by assumption,

√
NE(δN,iYi) ≤

√
NE(δ2

N,i)E(Y 2
i ) =

√
N(Var(δN,i) + E(δN,i)2)E(Y 2

i ) → 0,

and by Cauchy−Schwarz inequality,

Var(δN,iYi) = E(δ2
N,iY

2
i ) − (E(δN,iYi))2 ≤

√
E(δ4

N,i)E(Y 4
i ) + E(δ2

N,i)E(Y 2
i ) ≤ CE(δ4

N )1/2.

By assumption, for all i, δN,i
P−→

N→+∞
0. Hence, the same convergence holds about δ4

N,i. Since δN is in L4+s,

then
{
δ4
N

}
N

is uniformly integrable and we get the convergence of E(δ4
N ) to 0 when N → +∞.

We conclude by the lemma above. Again, the same convergence occurs for 1√
N

∑N
i=1((Ỹ

X
N,i)

2 − (Y X
i )2). �
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7. Conclusion

We have shown that the Sobol index estimator considered in this paper is asymptotically normal and asymp-
totically efficient. We also proved that these two properties are robust with respect to the use of a perturbated
model, provided that the perturbation has a variance which decays fast enough. The asymptotic normality
property can be used to produce approximate confidence intervals for the Sobol indices; we have presented
numerical experiments asserting the reliability of these confidence intervals.
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