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A SIMPLE APPROACH TO FUNCTIONAL INEQUALITIES FOR NON-LOCAL
DIRICHLET FORMS

Jian Wang
1

Abstract. With direct and simple proofs, we establish Poincaré type inequalities (including Poincaré
inequalities, weak Poincaré inequalities and super Poincaré inequalities), entropy inequalities and
Beckner-type inequalities for non-local Dirichlet forms. The proofs are efficient for non-local Dirichlet
forms with general jump kernel, and also work for Lp(p > 1) settings. Our results yield a new sufficient
condition for fractional Poincaré inequalities, which were recently studied in [P.T. Gressman, J. Funct.
Anal. 265 (2013) 867–889. C. Mouhot, E. Russ and Y. Sire, J. Math. Pures Appl. 95 (2011) 72–84.]
To our knowledge this is the first result providing entropy inequalities and Beckner-type inequalities
for measures more general than Lévy measures.
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1. Introduction and main results

The question of obtaining Poincaré-type inequalities (or more generally entropy inequalities) for pure jump
Lévy processes was studied in the last decades, e.g. see [1, 2, 10]. In particular, it was proved by Corollary 4.2
of [10] and Theorem 23 of [2] that

EntΦμ(f) �
∫∫

DΦ(f(x), f(x + z)) νμ(dz)μ(dx), f ∈ C∞
b (�d), f > 0 (1)

with

EntΦ
μ(f) =

∫
Φ(f) dμ − Φ

(∫
fdμ

)
and DΦ is the so-called Bergman distance associated with Φ:

DΦ(a, b) = Φ(a) − Φ(b) − Φ′(b)(a − b),

where μ is a rather general probability measure and νμ is the (singular) Lévy measure associated to μ. By
setting Φ(x) = x2 and Φ(x) = x log x, EntΦμ(f) becomes the classical variance Varμ(f) and entropy Entμ(f)
respectively, and so (1) yields the Poincaré inequality and the entropy inequality for the choice of measure
(μ, νμ). Note that either one of the measures μ and νμ in (1) uniquely specifies the other, and so this is a strong
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constraint to study functional inequalities for general non-local Dirichlet forms. The first breakthrough in this
direction was established in [7] by using the methods from harmonic analysis, and then was extended in [6]
to Lp weighted Poincaré inequalities and generalized logarithmic Sobolev inequalities in an abstract situation.

Let V be a locally bounded measurable function on�d such that
∫

e−V (x) dx = 1; that is, μV (dx) := e−V (x) dx
is a probability measure on �d. The main result in [7] (see [7], Thm. 1.2) states that, if V ∈ C2(�d) such that
for some constant ε > 0,

(1 − ε)|∇V (x)|2
2

− ΔV (x) → ∞, |x| → ∞,

then there exist two positive constants δ and C0 such that for all f ∈ C∞
b (�d),∫

(f − μV (f))2
(
1 + |∇V |α)

μV (dx) � C0Dα,V,δ(f, f),

where

Dα,V,δ(f, f) =
∫∫

(f(y) − f(x))2

|y − x|d+α
e−δ|y−x| dy μV (dx). (2)

According to the paragraph below ([7], Rem. 1.3) (2) is natural in the sense that: we should regard the measure
|y − x|−(d+α)e−δ|y−x| dy as the Lévy measure, and μV (dx) as the ambient measure. Namely, Dα,V,δ does get
rid of the constraint of (μ, νμ) in (1), and it should be a typical example in study functional inequalities for
non-local Dirichlet forms. This leds us to consider the Dirichlet form (Dρ,V , D(Dρ,V )) as follows. Let ρ be a
strictly positive measurable function on (0,∞) such that

∫
(0,∞) ρ(r)(1 ∧ r2)rd−1 dr < ∞. Let L2(μV ) be the

space of Borel measurable functions f on �d such that μV (f2) :=
∫

f2(x)μV (dx) < ∞. Set

Dρ,V (f, f) :=
∫∫

x �=y

(
f(x) − f(y)

)2
ρ(|x − y|) dy μV (dx)

D(Dρ,V ) :=
{

f ∈ L2(μV ) : Dρ,V (f, f) < ∞
}

.

According to ([3], Example 2.2) we know that (Dρ,V , D(Dρ,V )) is a symmetric Dirichlet form such that
C∞

b (�d) ⊂ D(Dρ,V ), where C∞
b (�d) denotes the set of smooth functions on �d with bounded derivatives

for all orders.
The purpose of this note is to present sufficient conditions for Poincaré type inequalities (i.e. Poincaré

inequalities, weak Poincaré inequalities and super Poincaré inequalities), entropy inequalities and Beckner-type
inequalities for (Dρ,V , D(Dρ,V )). We first state the main result for Poincaré type inequalities of (Dρ,V , D(Dρ,V )).

Theorem 1.1.

(1) If there exists a constant c > 0 such that for any x, y ∈ �d with x �= y,(
eV (x) + eV (y)

)
ρ(|x − y|) � c, (3)

then the following Poincaré inequality

μV (f − μV (f))2 � c−1Dρ,V (f, f), f ∈ D(Dρ,V ) (4)

holds.
(2) For any probability measure μV , the following weak Poincaré inequality

μV (f − μV (f))2 � α(r)Dρ,V (f, f) + r‖f‖2
∞, r > 0, f ∈ D(Dρ,V ) (5)

holds with

α(r) = inf

⎧⎨⎩ 1
inf

0<|x−y|�s

[
(eV (x) + eV (y))ρ(|x − y|)] :

∫∫
|x−y|>s

μV (dy)μV (dx) � r

2

⎫⎬⎭ .
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(3) Suppose that there exists a nonnegative locally bounded measurable function w on �d such that

lim
|x|→∞

w(x) = ∞,

and for any x, y ∈ �d with x �= y,

eV (x) + eV (y) � w(x) + w(y)
ρ(|x − y|) · (6)

Then the following super Poincaré inequality

μV (f2) � rDρ,V (f, f) + β(r)μV (|f |)2, r > 0, f ∈ D(Dρ,V ) (7)

holds with

β(r) = inf

⎧⎨⎩ 2μV (ω)
inf
|x|�t

ω(x)
+ βt(t ∧ s) :

2
inf |x|�t w(x)

+ s � r and t, s > 0

⎫⎬⎭ ,

where for any t > 0,

βt(s) = inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0

(
sup
|z|�2t

eV (z)
)2

ud
(

inf
|z|�t

eV (z)
) :

c0

(
sup

0<ε�u
ρ(ε)−1

)(
sup
|z|�2t

eV (z)
)

ud
(

inf
|z|�t

eV (z)
) � s and u > 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

To illustrate the power of Theorem 1.1, we will consider the following examples.

Example 1.2. Let μV (dx) = e−V (x) dx := Cd,ε(1+|x|)−(d+ε) dx with ε > 0, and ρ(r) = r−(d+α) with α ∈ (0, 2).

(1) If ε � α, then the Poincaré inequality (4) holds with c = 21−(d+α)

Cd,ε
.

(2) If 0 < ε < α, then the weak Poincaré inequality (5) holds with

α(r) = c1

(
1 + r−(α−ε)/ε

)
for some constant c1 > 0.

(3) If ε > α, then the super Poincaré inequality (7) holds with

β(r) = c2

(
1 + r−

d
α− (d+ε)(d+2α)

α(ε−α)

)
for some constant c2 > 0.

According to Corollary 1.2 of [9], we know that all the conclusions above are optimal.

Example 1.3. Let μV (dx) = e−V (x) dx := Cd,α,ε(1+ |x|)−(d+α) logε(e+ |x|) dx with ε ∈ �, and ρ(r) = r−(d+α)

with α ∈ (0, 2).

(1) If ε � 0, then the Poincaré inequality (4) holds with c = 21−(d+α)

Cd,ε
.

(2) If ε > 0, then the weak Poincaré inequality (5) holds with

α(r) = c3

(
1 + logε

(
1 + r−1

))
for some constant c3 > 0.
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(3) If ε < 0, then the super Poincaré inequality (7) holds with

β(r) = exp
(
c4

(
1 + r1/ε

))
for some constant c4 > 0.

By Corollary 1.3 of [9], all the conclusions above are also sharp.

Example 1.4. Let μV (dx) = e−V (x) dx := Cλe−λ|x| dx with λ > 0, and ρ(r) = e−δrr−(d+α) with δ � 0 and

α ∈ (0, 2). Therefore, if λ > 2δ, then the super Poincaré inequality (7) holds with β(r) = c5

(
1 + r−

d
α− 2λ(d+2ε)

α(λ−2δ)

)
for some constant c5 > 0. In particular, the Poincaré inequality (4) holds. Note that, this conclusion can not be
deduced from Theorem 1.1 of [7], see also the statement before (2).

Next, we turn to study entropy inequalities and Beckner-type inequalities for (Dρ,V , D(Dρ,V )). Recall that
for any f ∈ D(Dρ,V ) with f > 0,

EntμV (f) := μV (f log f) − μV (f) log μV (f).

Theorem 1.5. Suppose that (3) is satisfied. Then the following entropy inequality

EntμV (f) � c−1Dρ,V (f, log f) (8)

holds for all f ∈ D(Dρ,V ) with f > 0; and moreover, the following Beckner-type inequality also holds: for any
p ∈ (1, 2] and f ∈ D(Dρ,V ) with f � 0,

μV (fp) − μV (f)p � c−1Dρ,V

(
f, fp−1

)
. (9)

The entropy inequality (8) and Beckner-type inequality (9) are stronger than the Poincaré inequality (4)
(to see this, one can apply these inequalities to the function 1 + εf and then take the limit as ε → 0). Clearly,
the Beckner-type inequality (9) reduces to the Poincaré inequality (4) if p = 2, whereas dividing both sides by
p − 1 and taking the limit as p → 1 we obtain the entropy inequality (8). As mentioned in the remarks below
(2), comparing Theorem 1.5 with (1) the improvement is due to that we do not impose any link between the
measure μV (dx) on x and the singular measure ρ(|z|) dz on z = y − z. This is to our knowledge the first result
that gets rid of the strong constraint for entropy inequalities and Beckner-type inequalities of non-local Dirichlet
forms.

Example 1.6 (Continuation of Example 1.2).
Let

μV (dx) = e−V (x) dx := Cd,ε(1 + |x|)−(d+ε) dx

with ε > 0, and ρ(r) = r−(d+α) with α ∈ (0, 2).

(1) If ε � α, then, according to Theorem 1.5, the entropy inequality (8) and Beckner-type inequality (9) hold
with c = 21−(d+α)

Cd,ε
.

(2) If 0 < ε < α, then, according to Corollary 1.2 of [9], the Poincaré inequality (4) does not hold. Hence, by the
remark below Theorem 1.5, both the entropy inequality (8) and Beckner-type inequality (9) do not hold.

According to Examples 1.2, 1.6 and Corollary 1.2 of [9], we know that for the probability measure μV (dx) =
e−V (x) dx := Cd,α(1 + |x|)−(d+α) dx, it fulfills the entropy inequality (8) and the Beckner-type inequality (9),
but not the super Poincaré inequality (7).
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2. Proofs of Theorems and Example 1.2

Proof of Theorem 1.1.
(1) For any f ∈ D(Dρ,V ),

1
2

∫∫ (
f(x) − f(y)

)2
μV (dy)μV (dx) =

1
2

∫∫ (
f2(x) + f2(y) − 2f(x)f(y)

)
μV (dy)μV (dx)

= μV (f2) − μV (f)2 = μV (f − μV (f))2. (10)

On the other hand, by (3), we find that

1
2

∫∫ (
f(x) − f(y)

)2
μV (dy)μV (dx) =

1
2

∫∫
x �=y

(
f(x) − f(y)

)2
ρ(|x − y|)ρ(|x − y|)−1 μV (dy)μV (dx)

� c−1

∫∫
x �=y

(
f(x) − f(y)

)2
ρ(|x − y|) e−V (x) + e−V (y)

2
dy dx

= c−1Dρ,V (f, f),

which, along with (10), yields the required assertion.
(2) According to (10), for any s > 0 and f ∈ D(Dρ,V ),

μV (f − μV (f))2 =
1
2

∫∫
(f(x) − f(y))2 μV (dy)μV (dx)

=
1
2

∫∫
0<|x−y|�s

(f(x) − f(y))2 μV (dy)μV (dx)

+
1
2

∫∫
|x−y|>s

(f(x) − f(y))2 μV (dy)μV (dx)

�
∫∫

0<|x−y|�s

(f(x) − f(y))2ρ(|x − y|)

×
[

e−V (x)−V (y)

(e−V (x) + e−V (y))ρ(|x − y|)
]
e−V (x) + e−V (y)

2
dy dx

+ 2‖f‖2
∞

∫∫
|x−y|>s

μV (dy)μV (dx)

�
(

sup
0<|x−y|�s

1
(eV (x) + eV (y))ρ(|x − y|)

)
Dρ,V (f, f)

+

(
2

∫∫
|x−y|>s

μV (dy)μV (dx)

)
‖f‖2

∞.

The desired assertion follows from the definition of α.
(3) For any f ∈ D(Dρ,V ), by Jensen’s inequality,

μV ((f − μV (f))2w) =
∫ (

f(x) −
∫

f(y)μV (dy)
)2

w(x)μV (dx)

=
∫ (∫

(f(x) − f(y))μV (dy)
)2

w(x)μV (dx)

�
∫∫

(f(x) − f(y))2w(x)μV (dy)μV (dx).

This implies that

μV ((f − μV (f))2w) �
∫∫

(f(x) − f(y))2
w(x) + w(y)

2
μV (dy)μV (dx).
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Thus, by (6), we arrive at

μV ((f − μV (f))2w) �
∫∫

(f(x) − f(y))2

× ρ(|x − y|)eV (x) + eV (y)

2
μV (dy)μV (dx)

� Dρ,V (f, f).

(11)

Next, we will follow the proof of Proposition 1.6 from [3] to obtain the super Poincaré inequality from (11). We
first claim that μV (ω) < ∞. In fact, let C∞

c (�d) be the set of smooth functions on �d with compact support.
Choose a function g ∈ C∞

c (�d) such that g(x) = 0 for every |x| � 1 and μV (g) = 1. Then, applying this test
function g into (11) and noting the fact that C∞

c (�d) ⊂ C∞
b (�d) ⊂ D(Dρ,V ), we have∫

{|x|�1}
ω(x)μV (dx) �

∫ (
g(x) − μV (g)

)2
ω(x)μV (dx) � Dρ,V (g, g) < ∞.

Since the function ω is bounded on {x ∈ �d : |x| � 1}, ∫
{|x|�1} ω(x)μV (dx) < ∞. Combining both estimates

above, we prove the desired claim.
For any t > 1 large enough and f ∈ D(Dρ,V ), by (11), we have∫

{|x|�t}
f2(x)μV (dx) � 1

inf
|x|�t

ω(x)

∫
f2(x)ω(x)μV (dx)

� 2
inf
|x|�t

ω(x)

∫ (
f(x) − μV (f)

)2
ω(x)μV (dx)

+
2

inf
|x|�t

ω(x)

∫
μV (f)2ω(x)μV (dx)

� 2
inf
|x|�t

ω(x)

(
Dρ,V (f, f) + μV (ω) μV (|f |)2

)
,

where the second inequality follows from the inequality that for any a, b ∈ �, a2 � 2(a − b)2 + 2b2.
On the other hand, Lemma 2.1 below shows that the local super Poincaré inequality∫

{|x|�t}
f2(x)μV (dx) � sDρ,V (f, f) + βt(t ∧ s)μV (|f |)2, s > 0 (12)

holds for any t > 1 and f ∈ D(Dρ,V ).
Combining both estimates above, we get that for t > 1 large enough and any f ∈ D(Dρ,V ),

μV (f2) �

⎛⎝ 2
inf
|x|�t

ω(x)
+ s

⎞⎠Dρ,V (f, f) +

⎛⎝ 2μV (ω)
inf
|x|�t

ω(x)
+ βt(t ∧ s)

⎞⎠μV (|f |)2, s > 0.

This, along with lim
|x|→∞

ω(x) = ∞ and the definition of β, yields the required super Poincaré inequality. �

For the local super Poincaré inequality (12) in part (3) of the proof above, we can see from the following

Lemma 2.1. For any f ∈ D(Dρ,V ) and r > 0, we have∫
B(0,r)

f2(x)μV (dx) � sDρ,V (f, f) + βr(r ∧ s)μV (|f |)2 s > 0,
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where

βr(s) = inf

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

(
sup

|z|�2r

eV (z)

)2

|B(0, t)|
(

inf
|z|�r

eV (z)

) :

2
(

sup
0<ε�t

ρ(ε)−1

) (
sup

|z|�2r

eV (z)

)

|B(0, t)|
(

inf
|z|�r

eV (z)

) � s and t > 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

and |B(0, t)| denotes the volume of the ball with radius t.

Proof. (1) For any 0 < s � r and f ∈ D(Dρ,V ), define

fs(x) :=
1

|B(0, s)|
∫

B(x,s)

f(z) dz, x ∈ B(0, r).

We have

sup
x∈B(0,r)

|fs(x)| � 1
|B(0, s)|

∫
B(0,2r)

|f(z)| dz,

and ∫
B(0,r)

|fs(x)| dx �
∫

B(0,r)

1
|B(0, s)|

∫
B(x,s)

|f(z)| dz dx

�
∫

B(0,2r)

(
1

|B(0, s)|
∫

B(z,s)

dx

)
|f(z)| dz �

∫
B(0,2r)

|f(z)| dz.

Thus, ∫
B(0,r)

f2
s (x) dx �

(
sup

x∈B(0,r)

|fs(x)|
) ∫

B(0,r)

|fs(x)| dx

� 1
|B(0, s)|

(∫
B(0,2r)

|f(z)| dz

)2

.

Therefore, for any f ∈ D(Dρ,V ) and 0 < s � r, by Jensen’s inequality,∫
B(0,r)

f2(x) dx

�2
∫

B(0,r)

(
f(x) − fs(x)

)2 dx + 2
∫

B(0,r)

f2
s (x) dx

�2
∫

B(0,r)

1
|B(0, s)|

∫
B(x,s)

(f(x) − f(y))2 dy dx +
2

|B(0, s)|
( ∫

B(0,2r)

|f(z)| dz

)2

�
(

2 sup0<ε�s ρ(ε)−1

|B(0, s)|
) ∫

B(0,r)

∫
B(x,s)

(f(x) − f(y))2ρ(|x − y|) dy dx

+
2

|B(0, s)|
( ∫

B(0,2r)

|f(z)| dz

)2

�
(

2 sup0<ε�s ρ(ε)−1

|B(0, s)|
) ∫

B(0,2r)

∫
B(0,2r)

(f(x) − f(y))2ρ(|x − y|) dy dx

+
2

|B(0, s)|
( ∫

B(0,2r)

|f(z)| dz

)2

.
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(2) According to the inequality above, for any f ∈ D(Dρ,V ) and 0 < s � r,∫
B(0,r)

f2(x)μV (dx)

� 1
inf |z|�r eV (z)

∫
B(0,r)

f2(x) dx

�
(

2
(
sup0<ε�s ρ(ε)−1

)
|B(0, s)|( inf |z|�r eV (z)

)) ∫
B(0,2r)

∫
B(0,2r)

(f(x) − f(y))2ρ(|x − y|) dy dx

+
2

|B(0, s)|( inf |z|�r eV (z)
)( ∫

B(0,2r)

|f(z)| dz

)2

�

⎛⎝2
(
sup0<ε�s ρ(ε)−1

) (
sup|z|�2r eV (z)

)
|B(0, s)|( inf |z|�r eV (z)

)
⎞⎠

×
∫

B(0,2r)

∫
B(0,2r)

(f(x) − f(y))2ρ(|x − y|) dy μV (dx)

+
2

(
sup|z|�2r eV (z)

)2

|B(0, s)|( inf |z|�r eV (z)
)( ∫

B(0,2r)

|f(x)|μV (dx)
)2

�

⎛⎝2
(
sup0<ε�s ρ(ε)−1

) (
sup|z|�2r eV (z)

)
|B(0, s)|( inf |z|�r eV (z)

)
⎞⎠Dρ,V (f, f)

+
2
(
sup|z|�2r eV (z)

)2

|B(0, s)|( inf |z|�r eV (z)
)μV (|f |)2.

The desired assertion for the case 0 < s � r follows from the conclusion above and the definition of βr.
(3) When s > r, by (2),∫

B(0,r)

f2(x)μV (dx) � rDρ,V (f, f) + βr(r)μV (|f |)2 � sDρ,V (f, f) + βr(r ∧ s)μV (|f |)2.

The proof is completed. �

We present the following two remarks for the proof of Theorem 3.

(1) The proof above is efficient for the following more general non-local Dirichlet form

D̃j,V (f, f) : =
∫∫

x �=y

(
f(x) − f(y)

)2
j(x, y)μV (dy)μV (dx),

D(D̃j,V ) : =
{
f ∈ L2(μV ) : D̃j,V (f, f) < ∞

}
,

where j is a Borel measurable function on �2d \ {(x, y) ∈ �2d : x = y} such that j(x, y) > 0 and j(x, y) =
j(y, x). See ([3], Sect. 2) for details.

(2) The argument above also works for Lp (p > 1) setting. For instance, it can yield the statement as follows.
If (3) holds, then the following Lp-Poincaré inequality

μV (|f − μV (f)|p) � 2c−1

∫∫
x �=y

∣∣f(x) − f(y)
∣∣p

|x − y|d+α
dy μV (dx) =: 2c−1Dρ,V,p(f, f)
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holds, where

f ∈ D(Dρ,V,p) :=
{

f ∈ Lp(μV ) : Dρ,V,p(f, f) < ∞
}

,

and Lp(μV ) denotes the set of Borel measurable functions f on �d such that
∫ |f |p(x)μV (dx) < ∞. The

proof is based on the argument of Theorem 1.1 (1) and the fact that for any f ∈ Lp(μV ),

μV (|f − μV (f)|p) �
∫∫

|f(x) − f(y)|p μV (dy)μV (dx),

due to the Hölder inequality. The readers can refer to [5] for related discussion about Lp-Poincaré inequalities
of local Dirichlet forms.

Now, we are in a position to give the

Proof of Theorem 1.5. (a) For any f ∈ D(Dρ,V ) with f > 0, by the Jensen inequality,

EntμV (f) = μV (f log f) − μV (f) log μV (f)
� μV (f log f) − μV (f)μV (log f)

=
1
2

∫∫ [
f(x) log f(x) + f(y) log f(y)

− f(x) log f(y) − f(y) log f(x)
]

μV (dy)μV (dx)

=
1
2

∫∫
(f(x) − f(y))(log f(x) − log f(y))μV (dy)μV (dx). (13)

Next, following the argument of Theorem 1.1 (1), we can obtain that under (3), for any f ∈ D(Dρ,V ) with
f > 0,

1
2

∫∫
(f(x) − f(y))(log f(x) − log f(y))μV (dy)μV (dx) � c−1Dρ,V (f, log f),

which, along with (13), completes the proof of the inequality (8).
(b) For any p ∈ (1, 2], f ∈ D(Dρ,V ) with f � 0, by the Hölder inequality,

μV (fp) − μV (f)p

�μV (fp) − μV (f)μV (fp−1)

=
1
2

∫∫ [
fp(x) + fp(y) − f(x)fp−1(y) − f(y)fp−1(x)

]
μV (dy)μV (dx)

=
1
2

∫∫
(f(x) − f(y))(fp−1(x) − fp−1(y))μV (dy)μV (dx). (14)

Therefore, the desired Beckner-type inequality (9) follows from (14) and the following fact

1
2

∫∫
(f(x) − f(y))(fp−1(x) − fp−1(y))μV (dy)μV (dx) � c−1Dρ,V (f, fp−1),

where we have used (3) again. �

To close this section, we present

Sketch of the proof of Example 1.2. In this setting, e−V (x) = Cd,ε(1 + |x|)−(d+ε) and ρ(r) = r−d−α. By the
Cr-inequality, for any x, y ∈ �d and ε > 0,

|x − y|d+ε � 2d+ε−1(|x|d+ε + |y|d+ε) � 2d+ε−1
(
(1 + |x|)d+ε + (1 + |y|)d+ε

)
.
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(a) For any ε � α,

(eV (x) + eV (y))ρ(|x − y|) �
C−1

d,ε

(
(1 + |x|)d+ε + (1 + |y|)d+ε

)
2d+α−1

(
(1 + |x|)d+α + (1 + |y|)d+α

) � 21−(d+α)

Cd,ε
·

Combining it with Theorem 1.1 (1), we get the first assertion.
(b) For any ε < α,

inf
0<|x−y|�s

[
(eV (x) + eV (y))ρ(|x − y|)] � C−1

d,ε21−(d+ε)sε−α.

Then, choosing s = cr−1/ε in the definition of α, we arrive at the second assertion.
(c) For any ε > α, (6) holds with ω(x) = c1(1 + |x|)ε−α, and

βt(s) � c2(1 + s−d/αt(d+ε)(2+d/α)).

Then, the third assertion follows from the definition of β by taking s = c3r and t = c4r
−1/(ε−α). �

3. Applications: Porous media equations

Functional inequalities for non-local Dirichlet forms appear throughout the probability literature, and also are
interesting in analysis, e.g. see references in [6, 7]. This section is mainly motivated by [4, 8] for the description
of the convergence rate of porous media equations by using Lp functional inequalities. Let (Lρ,V , D(Lρ,V )) be
the generator corresponding to Dirichlet form (Dρ,V , D(Dρ,V )). Consider the following equation

∂tu(t, ·) = Lρ,V {u(t, ·)m}, u(0, ·) = f, (15)

where m > 1, f is a bounded measurable function on �d and um := sgn(u)|u|m. We call Ttf := u(t, ·) a solution
to the equation (15), if u(t, ·)m ∈ D(Lρ,V ) for all t > 0 and um ∈ L1

loc([0,∞) → D(Dρ,V ); dt) such that, for any
g ∈ D(Dρ,V ),

μV (u(t, ·)g) = μV (fg) −
∫ t

0

Dρ,V (u(s, ·)m, g) ds, t > 0.

Theorem 3.1. Assume that for any bounded measurable function f ∈ D(Lρ,V ) the equation (15) has a unique
solution Ttf . If (3) holds, then

μV ((Ttf)2) �
[
μV (f2)−(m−1)/2 + c−1(m − 1)t

]−2/(m−1)

, t � 0, μV (f) = 0.

Proof. The argument of Theorem 1.5 gives us that, under (3) for any m > 1 and f ∈ D(Lρ,V ) with μV (f) = 0,

μV (fm+1) � c−1Dρ,V (f, fm). (16)

Now, let f be a function such that μV (f) = 0. Then, by the definition of the solution to the equation (15),
μV (Ttf) = 0 for all t � 0. According to (16), we obtain that

dμV (Ttf)2

dt
= 2μV

(
Ttf∂tTtf

)
= 2μV (TtfL{(Ttf)m})

= −2Dρ,V (Ttf, (Ttf)m) � −2c−1μV

(
(Ttf)m+1

)
� −2c−1

[
μV ((Ttf)2)

] m+1
2

,

where in the inequality we have used the Hölder inequality. The required assertion easily follows from the
inequality above. �
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