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AN APPLICATION OF MULTIVARIATE TOTAL POSITIVITY TO PEACOCKS

Antoine Marie Bogso
1

Abstract. We use multivariate total positivity theory to exhibit new families of peacocks. As the
authors of [F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and associated martingales vol. 3.
Bocconi-Springer (2011)], our guiding example is the result of Carr−Ewald−Xiao [P. Carr, C.-O. Ewald
and Y. Xiao, Finance Res. Lett. 5 (2008) 162–171]. We shall introduce the notion of strong conditional
monotonicity. This concept is strictly more restrictive than the conditional monotonicity as defined
in [F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and associated martingales, vol. 3. Bocconi-
Springer (2011)] (see also [R.H. Berk, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978) 303–
307], [A.M. Bogso, C. Profeta and B. Roynette, Lect. Notes Math. Springer, Berlin (2012) 281–315.]
and [M. Shaked and J.G. Shanthikumar, Probab. Math. Statistics. Academic Press, Boston (1994)].).
There are many random vectors which are strongly conditionally monotone (SCM). Indeed, we shall
prove that multivariate totally positive of order 2 (MTP2) random vectors are SCM. As a consequence,
stochastic processes with MTP2 finite-dimensional marginals are SCM. This family includes processes
with independent and log-concave increments, and one-dimensional diffusions which have absolutely
continuous transition kernels.
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1. Introduction

We call peacock a real valued process (Zt, t ≥ 0) which is integrable, i.e. E[|Zt|] < ∞ for every t ≥ 0, and
which is increasing in the convex order, i.e., for every convex fonction ψ : R → R,

the map: t ∈ R+ �−→ E[ψ(Zt)] ∈] −∞,+∞] is non-decreasing. (1.1)

Observe that if (Zt, t ≥ 0) is a peacock, then E[Zt] does not depend on t. Indeed, it suffices to apply (1.1)
first with ψ(x) = x, then with ψ(x) = −x. The pun peacock comes from the french: “Processus Croissant
pour l’Ordre Convexe” which acronym: “P.C.O.C” may be pronounced “peacock”. To prove that an integrable
process satisfies (1.1), it suffices to consider convex functions which belong to the set:

C := {ψ : R → R convex C2-function such that ψ′′ has a compact support},
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where ψ′′ denotes the second order derivative of ψ. Note that if ψ ∈ C, then its derivative ψ′ is bounded and
there exist k1, k2 ≥ 0 such that:

∀x ∈ R, |ψ(x)| ≤ k1 + k2|x|.
There are two remarkable results which motivate the investigation on peacocks. In 2008, Carr−Ewald−Xiao [9]
proved that Asian options are increasing in the convex order with respect to the maturity. In other words, if
(Bs, s ≥ 0) denotes a standard Brownian motion issued from 0, then(

Nt :=
1
t

∫ t

0

eBs− s
2 ds, t ≥ 0

)
is a peacock. (CEX08)

The second result due to Kellerer [28] states that a real valued process (Zt, t ≥ 0) is a peacock if and only if
there exists a martingale (Mt, t ≥ 0) with the same one-dimensional marginals as (Zt, t ≥ 0), i.e., for every

t ≥ 0, Mt
(law)
= Zt. This martingale is not unique in general and it may be chosen Markovian. Recently, Hisch–

Roynette [19] offered a new proof of Kellerer’s theorem. However, the Kellerer’s proof is not constructive,
and then it helps neither establishing whether or not a process is a peacock, nor constructing an associated
martingale to a given peacock (Zt, t ≥ 0), i.e. a martingale having the same one-dimensional marginals as
(Zt, t ≥ 0). In [7], Baker−Yor provide an associated martingale to (Nt, t ≥ 0) using the Brownian sheet. Inspired
by Carr−Ewald−Xiao and Baker−Yor results, the authors of [18] exhibited several examples of peacocks and
they provided several methods to associate explicitely martingales to certain of them. We refer the reader
to [3, 6, 8, 17, 32] for further interesting results about peacock processes.

In this paper, we exibit new families of peacocks using multivariate total positivity theory. But for many of
them, finding an associated martingale remains open. Let us mention that total positivity is a nice property
that plays an important role in various domains of Mechanics and Mathematics. There is a large amount of
literature concerning total positivity. We shall follow Karlin [24] and Karlin−Rinot [29] for basic definitions and
results.

In Section 2, we give some basic results concerning total positivity and multivariate total positivity of order 2.
Section 3 is reserved to strong conditional monotonicity results. Finally, in Section 4, we use strong conditional
monotonicity theorems to exhibit new classes of peacocks, inspired from the Carr−Ewald−Xiao example.

2. Total positivity and multivariate total positivity

of order 2

We first define totally positive functions of order 2 and give several examples of Markov processes with
totally positive transition kernels. Then, we deal with an extension of total positivity of order 2 to multivariate
distributions.

2.1. Totally positive functions of order 2

We follow the terminology and notation of Karlin [23].

Definition 2.1. A function p : R × R → R+ is said to be totally positive of order 2 (TP2) if for every real
numbers x1 < x2, y1 < y2,

p

(
x1, x2

y1, y2

)
:= det

⎛⎝p(x1, y1) p(x1, y2)

p(x2, y1) p(x2, y2)

⎞⎠ ≥ 0. (TP2)

Similarly, a function p : Z×Z → R+ is said to be TP2 if, for every integers k1 < k2 and l1 < l2, p satisfies (TP2).

Note that one may define totally positive functions of order higher than 2 (see [23]).
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Remark 2.2. Let D denote a subset of R × R which satisfies the following property:
For every x1 < x2 and y1 < y2,

[(x1, y2) ∈ D and (x2, y1) ∈ D] =⇒ [(x1, y1) ∈ D and (x2, y2) ∈ D] .

⎫⎬⎭ (P)

Let p : D → R+ be TP2, i.e. for every x1 < x2, y1 < y2 such that (x1, y1), (x1, y2), (x2, y1) and (x2, y2) belong
to D,

p

(
x1, x2

y1, y2

)
≥ 0.

We define:

∀x, y ∈ R, p̂(x, y) =
{
p(x, y) if (x, y) ∈ D,

0 otherwise.

Then, p̂ is TP2 if and only if p is TP2.
Here are some examples of D ⊂ R × R satisfying (P).

i) If I and J are two intervals of R, then I × J satisfies (P).
ii) For every reals k0 < k1 and every (α, β) ∈ R × R \ {(0, 0)},

D = {(x, y) ∈ R × R; k0 ≤ αx− βy ≤ k1} satifies (P).

We give properties of TP2 functions assuming that they are defined on R × R. By the preceding remark, one
may extend these results to functions defined on subsets of R × R which satisfy (P).

The following characterization result of smooth TP2 functions is proved in [24].

Proposition 2.3 (Karlin [24]). Let p : R × R → R+ be such that the partial derivatives
∂p

∂x
,
∂p

∂y
, and

∂2p

∂x∂y
exist at each point (x, y) of R × R.

1) If p is TP2, then, for every reals x1 < x2 and y,

det

⎛⎜⎜⎜⎝
p(x1, y)

∂p

∂y
(x1, y)

p(x2, y)
∂p

∂y
(x2, y)

⎞⎟⎟⎟⎠ ≥ 0, (2.1)

and, for every (x, y) ∈ R × R,

det

⎛⎜⎜⎜⎝
p(x, y)

∂p

∂y
(x, y)

∂p

∂x
(x, y)

∂2p

∂x∂y
(x, y)

⎞⎟⎟⎟⎠ ≥ 0. (2.2)

2) Conversely, if p(x, y) > 0 for every (x, y) ∈ R × R, then (2.2) implies (2.1), which in turn implies that p
is TP2.

A second criterion of smooth TP2 functions follows from Proposition 2.3.

Corollary 2.4 (Karlin [24]). Let p : R×R → R+ be strictly positive and such that at each point (x, y) of R×R,

the second order partial derivative
∂2(log p)
∂x∂y

(x, y) exists. Then p is TP2 if and only if

∂2(log p)
∂x∂y

(x, y) ≥ 0.
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Proof. This follows from (2.2) and from the straightforward relation:

p2(x, y)
∂2(log p)
∂x∂y

(x, y) = det

⎛⎜⎜⎜⎝
p(x, y)

∂p

∂y
(x, y)

∂p

∂x
(x, y)

∂2p

∂x∂y
(x, y)

⎞⎟⎟⎟⎠ . �

Example 2.5 (Brownian transition densities). Consider the family (pt : R × R → R+, t > 0) given by:

∀ (x, y) ∈ R × R, pt(x, y) =
1√
2πt

exp
(−(x− y)2

2t

)
·

For every t > 0,
∂2(log pt)
∂x∂y

(x, y) =
1
t
> 0,

and, by Corollary 2.4, pt is TP2.
More generally, if f : R → R+ is a strictly positive C2-function, then (x, y) �−→ f(x− y) is TP2 if and only if

f is log-concave. Indeed,
∂2

∂x∂y
[log f(x− y)] = −(log f)′′(x− y).

Example 2.6 (Ornstein−Uhlenbeck transiton densities). Let (pt, t > 0) be the densities defined on R × R by:

pt(x, y) =

√
cect

2π sinh(ct)
exp

(
−cect (y − xe−ct − ν(1 − e−ct))2

2 sinh(ct)

)
(c, ν ∈ R).

For every t > 0,
∂2(log pt)
∂x∂y

(x, y) =
c

sinh(ct)
> 0,

and, from Corollary 2.4, pt is TP2.

Counterexample 2.7. The function p defined by:

∀x, y ∈ R, p(x, y) =
1

1 + (x− y)2

is not TP2.

New TP2 functions are generated using the following classical composition formula:

Lemma 2.8. Let p, q : R × R → R be two Borel functions, and let σ be a positive measure on R such that:

∀x, z ∈ R,

∫
R

|p(x, y)||q(y, z)|σ(dy) <∞.

Let r denote the function defined on R × R by:

∀x, z ∈ R, r(x, z) =
∫

R

p(x, y)q(y, z)σ(dy).

Then, for every reals x1 < x2, z1 < z2,

r

(
x1, x2

z1, z2

)
=

∫∫
y1<y2

p

(
x1, x2

y1, y2

)
q

(
y1, y2
z1, z2

)
σ(dy1)σ(dy2). (2.3)



518 A.M. BOGSO

Remark 2.9. If p and q are two integrable functions with respect to the Lebesgue measure and if r := p ∗ q
denotes the convolution product of p and q, i.e.

∀x ∈ R, r(x) =
∫

R

p(x− y)q(y)dy,

then, using (2.3), for every x1 < x2 and z1 < z2,

det

⎛⎝ r(x1 − z1) r(x1 − z2)

r(x2 − z1) r(x2 − z2)

⎞⎠
=

∫∫
y1<y2

det

⎛⎝p(x1 − y1) p(x1 − y2)

p(x2 − y1) p(x2 − y2)

⎞⎠det

⎛⎝ q(y1 − z1) q(y1 − z2)

q(y2 − z1) q(y2 − z2)

⎞⎠dy1dy2.

From Lemma 2.8 and Remark 2.9, we easily deduce the following result:

Proposition 2.10. Let p, q : R×R → R+ be two TP2 functions such that the product r : R×R → R+ given by:

∀x, z ∈ R, r(x, z) =
∫

R

p(x, y)q(y, z)dy

is finite. Then r is TP2.
In particular, if p and q are two integrable log-concave functions, then the convolution product r = p ∗ q is

also log-concave.

Remark 2.11. Proposition 2.10 allows to regularise TP2 functions in such a way that total positivity is pre-
served. Indeed, if q is a TP2 function such that, for every z ∈ R, q(·, z) is integrable, then, for every ε > 0, the
function qε defined by:

∀x, z ∈ R, qε(x, z) =
1

ε
√

2π

∫
R

exp
[
− (x− y)2

2ε2

]
q(y, z)dy

is TP2. Moreover,
∀ z ∈ R, lim

ε→0
qε(·, z) = q(·, z) in L1(R).

2.2. Markov processes with totally positive transition kernels

In this paragraph, we present some examples of Markov processes with totally positive transition kernels.

Definition 2.12. Let P := (Ps,t(x, dy), 0 ≤ s < t, x ∈ I) be the transition function of a Markov process
((Xt, t ≥ 0), (Px, x ∈ I)) with values in a sub-interval I of R. P is said to be totally positive of order 2 (TP2) if,
for every 0 ≤ s < t, every x1 < x2 elements of I, and every Borel subsets E1, E2 of I such that E1 < E2 (i.e.
a1 < a2 for every a1 ∈ E1 and a2 ∈ E2), we have:

Ps,t

(
x1, x2

E1, E2

)
:= det

⎛⎝Ps,t(x1, E1) Ps,t(x1, E2)

Ps,t(x2, E1) Ps,t(x2, E2)

⎞⎠ ≥ 0. (2.4)

Suppose moreover that (Xt, t ≥ 0) is time-homogeneous. Then P is TP2 if and only if

Pt

(
x1, x2

E1, E2

)
:= det

⎛⎝Pt(x1, E1) Pt(x1, E2)

Pt(x2, E1) Pt(x2, E2)

⎞⎠ ≥ 0. (2.5)
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Remark 2.13. Let P := (Ps,t(x, dy), 0 ≤ s < t, x ∈ I) denote the transition function of a Markov process
((Xt, t ≥ 0), (Px, x ∈ I)) taking values in a sub-interval I of R. We suppose that, for every 0 ≤ s < t and x ∈ I,
Ps,t(x, dy) has a continuous density ps,t(x, ·) with respect to a σ-finite regular measure. Then P is TP2 if and
only if ps,t is TP2, i.e. for every x1 < x2, y1 < y2 elements of I,

ps,t

(
x1, x2

y1, y2

)
:= det

⎛⎝ps,t(x1, y1) ps,t(x1, y2)

ps,t(x2, y1) ps,t(x2, y2)

⎞⎠ ≥ 0.

Definition 2.14. Let P := (Ps,t(k, l), 0 ≤ s < t, (k, l) ∈ I × I) be the transition function of a continuous time
Markov chain (Xt, t ≥ 0) which takes values in a sub-interval I of Z. We say that P is TP2 if, for every 0 ≤ s < t
and every integers k1 < k2, l1 < l2 in I,

Ps,t

(
k1, k2

l1, l2

)
:= det

⎛⎝Ps,t(k1, l1) Ps,t(k1, l2)

Ps,t(k2, l1) Ps,t(k2, l2)

⎞⎠ ≥ 0. (2.6)

If (Xt, t ≥ 0) is time-homogeneous, then (2.6) is equivalent to:

Pt

(
k1, k2

l1, l2

)
:= det

⎛⎝Pt(k1, l1) Pt(k1, l2)

Pt(k2, l1) Pt(k2, l2)

⎞⎠ ≥ 0. (2.7)

There are many Markov processes with totally positive transition kernels. Let us give some of them.

2.2.1. Processes with independent and log-concave increments

Let (Xt, t ≥ 0) be a real valued process with independent increments, i.e.

∀ 0 ≤ s ≤ t, Xt −Xs is independent of Fs := σ(Xu; 0 ≤ u ≤ s). (PII)

We suppose that, for every 0 ≤ s < t, the increment Xt − Xs is log-concave. In other words, Xt − Xs has a
density ps,t (with respect to Lebesgue measure) which is log-concave, i.e.

∀x, y ∈ R, θ ∈]0, 1[, ps,t(θx + (1 − θ)y) ≥ (ps,t(x))θ(ps,t(y))1−θ. (2.8)

If Xt −Xs takes values in Z, then (2.8) may be replaced by

p2
s,t(k) ≥ ps,t(k − 1)ps,t(k + 1), (2.9)

where, for every k ∈ Z, ps,t(k) := P(Xt −Xs = k).
Many common r.v.’s are log-concave. Indeed, Gaussian, uniform, exponential, binomial, negative binomial,

geometric and Poisson r.v.’s are log-concave. On the contrary, Gamma r.v.’s with parameter a ∈ (0, 1) are not
log-concave.

Theorem 2.15 (An [1], Daduna−Szekli [10]). A Lebesgue-measurable function f : R → R+ is log-concave if
and only if

∀x1 < x2 ∈ R, y1 < y2 ∈ R, det

⎛⎝ f(x1 − y1) f(x1 − y2)

f(x2 − y1) f(x2 − y2)

⎞⎠ ≥ 0. (2.10)

Then, (Xt, t ≥ 0) is a Markov process with transition function Ps,t(x, dy) given by:

∀ 0 ≤ s < t, x ∈ R, Ps,t(x, dy) = ps,t(y − x)dy, (2.11)

and, since Xt −Xs is log-concave, we deduce from (2.11) and from Theorem 2.15 that Ps,t(x, dy) is TP2.
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2.2.2. Absolute value of a process with independent, symmetric and PF∞ increments

Let (Xt, t ≥ 0) be a real valued process with independent increments (PII) such that, for every 0 ≤ s < t,
Xt − Xs is symmetric and has a density denoted ps,t. Note that ps,t is symmetric, i.e., for every x ∈ R+,
ps,t(x) = ps,t(−x). Then, (|Xt|, t ≥ 0) is a Markov process whose transition function is given by:

Ps,t(x, dy) := p∗s,t(x, y)dy (0 ≤ s < t, x ∈ R),

where
p∗s,t(x, y) = ps,t(y − x) + ps,t(−x− y).

We suppose in addition that, for every 0 ≤ s < t, ps,t is a Pólya frequency (PF∞) function, i.e. for every integers
r ≥ 1, 1 ≤ m ≤ r, and every x1 < x2 < . . . < xm, y1 < y2 < . . . < ym,

det[ps,t(xi − yj); 1 ≤ i, j ≤ m] ≥ 0. (PF∞)

Then the transition function Ps,t(x, dy) is TP2, i.e., for every 0 ≤ s < t, p∗s,t is TP2. This is a direct consequence
of the following result due to Karlin [23].

Theorem 2.16 (Karlin [23]). Let f : R → R+ be a symmetric PF∞ density function. Then the function f∗

defined on R+ × R+ by
f∗(x, y) = f(x− y) + f(−x− y)

is a TP2 function.

We mention that Theorem 2.16 remains valid if we consider discrete and symmetric PF∞ densities. To prove
Theorem 2.16, the author applies Schoenberg’s characterisation of symmetric PF∞ densities in terms of their
Laplace transforms.

Theorem 2.17 (Schoenberg [35]). A symmetric density function f : R → R+ is PF∞ if and only if its Laplace

transform Φ : s �−→
∫ ∞

−∞
e−syf(y)dy exists in a strip (of the complex plane) including the imaginary axis in its

interior and has the form
Φ(s) =

eαs2

∞∏
i=1

(1 − a2
i s

2)
, (2.12)

where α ≥ 0, ai ∈ R for every i, and 0 < α+
∞∑

i=1

a2
i <∞.

A discrete analog of Theorem 2.17 has been proved by Edrei [11].

Theorem 2.18 (Edrei [11]). A symmetric density function f : Z → R+ is PF∞ if and only if its Laurent series

S(z) =
∞∑

k=−∞
f(k)zk converges in some ring (of the complex plane) including the unit circle in its interior, and

the analytic continuation S̃ of S is of the form

S̃(z) = C exp
(
a
(
z + z−1

)) ∞∏
i=1

(
(1 + α2

i ) + αi

(
z +

1
z

))
∞∏

i=1

(1 − γiz)(1 − γiz−1)
, (2.13)

where C ≥ 0, a ≥ 0, αi ≥ 0, 0 ≤ γi < 1 for every i, and
∞∑

i=1

(αi + γi) <∞.

Here are some examples of symmetric PF∞ density functions.
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Example 2.19. By Theorem 2.17,

i) a symmetric gaussian density is PF∞,
ii) for every λ > 0, the density function f(x) = λ

2 exp(−λ|x|) is PF∞.

Example 2.20. Theorem 2.18 applies in the following cases:

i) For every α ∈ R+, the density function f : Z → R+ defined by

f(0) =
1 + α2

(1 + α)2
, f(1) = f(−1) =

α

(1 + α)2
,

and f(k) = 0 if k /∈ {−1, 0, 1} is PF∞. Indeed, if we define

S(z) :=
∞∑

k=−∞
f(k)zk,

then

S(z) =
1

(1 + α)2

[
(1 + α2) + α

(
z +

1
z

)]
which is of the form (2.13).

ii) Let a > 0 and c =
(1 − ea)2

1 − e−2a
. The density function f : Z → R+ given by

f(0) = c and f(k) = c e−a|k|, k ∈ Z \ {0}

is PF∞, since its Laurent series
∞∑

k=−∞
f(k)zk admits the representation

S̃(z) =
(1 − e−a)2

(1 − e−az)
(

1 − e−a

z

)
which is of the form (2.13).

2.2.3. One-dimensional diffusions

An important class of real valued Markov processes with TP2 transition kernels consists of one-dimensional
diffusions.

Theorem 2.21 (Karlin−Taylor [27], Chap. 15, Problem 21).
Let ((Xt, t ≥ 0), (Px, x ∈ I)) be a one-dimensional diffusion on a sub-interval I of R, and let (Pt(x, dy), t ≥
0, x ∈ I) be its transition function. We suppose that (t, x) �−→ Pt(x, dy) is continuous in x for every t. Then,
for every t ≥ 0, Pt(x, dy) is TP2, i.e. for every x1, x2 ∈ I and every Borel subsets E1 < E2 of I,

det

⎛⎝Pt(x1, E1) Pt(x1, E2)

Pt(x2, E1) Pt(x2, E2)

⎞⎠ ≥ 0. (2.14)

In particular, if Pt(x, dy) = pt(x, y)dy, and if pt is continuous in y for every x, then pt is a TP2 function.
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This result is due at origin to Karlin−McGregor [25] who showed that (2.14) has a probabilistic interpretation:
Suppose that two particles q1 and q2, started at time zero in states x1 and x2, respectively, execute the process
(Xt, t ≥ 0) simultaneously and independently. Then the determinant

det

⎛⎝Pt(x1, E1) Pt(x1, E2)

Pt(x2, E1) Pt(x2, E2)

⎞⎠ (2.15)

is equal to the probability that at time t, q1 is located in E1 and q2 is located in E2 without these particles having
occupied simultaneously a common state at some earlier time τ < t.

Karkin−McGregor [25] reach the same result for several time-homogeneous and strong Markov processes
whose state space is a subset of the real line. In particular, the transition probability matrix of a birth and
death process is TP2.

Moreover, as a consequence of Theorem 2.21, bridges of one-dimensional diffusions have TP2 transition
functions. We refer to [15] for a rigorous definition of the bridge of a one-dimensional diffusion.

2.3. Multivariate total positivity of order 2

Definition 2.22.

1) A function p : R
n → R+ (n ∈ N, n ≥ 2) is said to be multivariate totally positive of order 2 (MTP2) if for

every x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n,

p(x ∧ y)p(x ∨ y) ≥ p(x)p(y), (MTP2)

where
x ∧ y = (min(x1, y1), . . . ,min(xn, yn))

and
x ∨ y = (max(x1, y1), . . . ,max(xn, yn)).

(2.16)

2) A random vector (X1, . . . , Xn) with real components is said to be multivariate totally positive of order 2
(MTP2) if it is absolutely continuous with respect to a σ-finite product measure (which we shall always
denote dx1, . . . ,dxn) and if its density p : R

n → R+ is MTP2.

Remark 2.23. By definition, the MTP2 property is invariant under permutations, i.e. if a random vector
(X1, . . . , Xn) is MTP2, then, for every permutation π of {1, . . . , n}, (Xπ(1), . . . , Xπ(n)) is MTP2.

The following result is proved in Karlin−Rinot [29].

Theorem 2.24 (Karlin−Rinot [29]).
1) If (X1, . . . , Xn) is a MTP2 random vector, then, for every k ∈ N, 2 ≤ k ≤ n, (X1, . . . , Xk) is MTP2.
2) Let p : R

n → R+ be a MTP2 density. Then, for every k ∈ N, 2 ≤ k ≤ n, and for every continuous and
bounded functions fi : R → R+, i = 1, . . . , n, the function p(k) : R

k → R+ given by:

p(k)(x1, . . . , xk) =
k∏

i=1

fi(xi)
∫

Rn−k

p(x1, . . . , xk, uk+1, . . . , un)
n∏

j=k+1

fj(uj)duk+1 . . .dun

is MTP2.
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As a consequence of Theorem 2.24, we have:

Corollary 2.25 (Karlin−Rinot [29]).
Let l,m, n ∈ N

∗. Let p : R
l × R

m → R+ and q : R
m × R

n → R+ be two MTP2 densities. Then the function
r : R

l × R
n defined by:

∀ (x, z) ∈ R
l × R

n, r(x, z) =
∫

Rm

p(x, y)q(y, z)dy

is MTP2.

Remark 2.26. Corollary 2.25 allows to regularize MTP2 densities while preserving MTP2 property.

Note that MTP2 random vectors satisfy a co-monotony principle. Indeed, Sarkar [34] proved the following result.

Theorem 2.27 (Sarkar [34]). Let X := (X1, . . . , Xn) (n ∈ N
∗) be MTP2, and let φ, ϕ : R

n → R be two
measurable and simultaneously (componentwise) non-decreasing (resp. non-increasing) on R

n. Then

E[φ(X)ϕ(X)] ≥ E[φ(X)]E[ϕ(X)]. (2.17)

Recently, Pagès [31] introduced a functional co-monotony principle for stochastic processes X := (Xt, t ≥ 0).
He offered an extension of Inequality (2.17) by replacing φ and ϕ with functionals of the hole path of X. The
author also provided many examples of co-monotone stochastic processes.

Here are some basic examples of MTP2 distributions (see Karlin−Rinot [29]).

Example 2.28 (Karlin−Rinot [29], Sect. 3).
1) If X1, . . . , Xn is a sample of i.i.d. random variables, each Xi having a density, then the joint density of the

order statistics X(1), . . . , X(n) is MTP2.
2) A Gaussian random vector (X1, . . . , Xn) with an invertible covariance matrix Σ is MTP2 if and only if the

inverse matrix Σ−1 of Σ has negative off-diagonal elements.
3) Let (X1, . . . , Xn) be a gaussian random vector with zero mean, and with an invertible covariance matrix Σ.

Let Σ−1 denote the inverse matrix of Σ. Then (|X1|, . . . , |Xn|) is MTP2 if and only if there exists a diagonal
matrix D with elements ±1 such that DΣ−1D has negative off-diagonal elements.

4) Let (Xt, t ≥ 0) be a Markov process with absolutely continuous and TP2 transition kernel. Then, for every
distinct elements t1, . . . , tn in R+, (Xt1 , . . . , Xtn) is MTP2.

Further examples of MTP2 distributions may be found in Karlin−Rinot [29] and Gupta−Richards [16].

3. Strong conditional monotonicity

We introduce the notion of strong conditional monotonicity which strictly implies conditional monotonicity
as defined in [5, 18].

Definition 3.1. For every n ∈ N
∗, let In denotes the set of continuous and bounded functions φ : R

n → R

which are componentwise non-decreasing.

Definition 3.2 (Strong conditional monotonicity).
1) A random vector (X1, . . . , Xn) with real components is said to be strongly conditionally monotone (SCM)

if, for every i ∈ {1, . . . , n}, every continuous and strictly positive functions fk : R → R+, k = 1, . . . , n such
that:

E

[
n∏

k=1

fk(Xk)

]
<∞, (3.1)
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and every φ ∈ In, we have:

z ∈ R �−→ Ki(n, z) :=
E

[
φ(X1, . . . , Xn)

n∏
k=1

fk(Xk)
∣∣∣∣Xi = z

]
E

[
n∏

k=1

fk(Xk)
∣∣∣∣Xi = z

]
is a non-decreasing function.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(SCM)

2) A real valued process (Xλ, λ ≥ 0) is said to be strongly conditionally monotone (SCM) if its finite-dimensional
marginals are SCM.

Remark 3.3.
1) If there are subsets I1, . . . , In of R such that, for every k, Xk takes values in Ik, we may suppose in Defini-

tion 3.2 that φ is defined on I1 × . . .× Ik, fk is defined on Ik, and z �−→ Ki(n, z) is defined on Ii.
2) Let (Xλ, λ ≥ 0) be a real valued process, and let θ : R+ × R → R be such that, for every λ ≥ 0, x �−→

θ(λ, x) is continuous and strictly increasing (resp. strictly decreasing). If (Xλ, λ ≥ 0) is SCM, then so is
(θ(λ,Xλ), λ ≥ 0).

3) Let X be a real valued r.v. and let α : R+ → R
∗
+ be non-decreasing. Then (α(λ)X,λ ≥ 0) is SCM.

4) Note that (SCM) implies the conditional monotonicity as defined in [5, 18]. Indeed, if we take fk = 1 for
every k ∈ N

∗, we recover the conditional monotonicity hypothesis. The converse is not true. For example,
the Gamma subordinator is conditionally monotone (see [5], Sect. 2 or [18], Sect. 1.4), but not strongly
conditionally monotone.

We exhibit an important class of SCM random vectors. Indeed, we prove that MTP2 random vectors are SCM.
This result extends Theorem 3.43 of [4] to the non-Markovian case.

Theorem 3.4. Every MTP2 random vector is SCM.

Proof. Let (X1, . . . , Xn) (n ≥ 2) be a MTP2 random vector, and let p : R
n → R+ denote its density. By

regularisation, we may assume (without loss of generality) that p is continuous and strictly positive. Since
MTP2 property is invariant under permutations, it suffices to prove (SCM) for i = n.

Let fk : R → R
∗
+, k = 1, . . . , n be continuous and strictly positive functions satisfying (3.1). By truncature,

we may suppose (without loss of generality) that all fk are bounded.
We shall prove by induction that, for every l ∈ {2, . . . , n}, and every φ ∈ Il,

(zl, . . . , zn) �−→
E

[
φ(X1, . . . , Xl)

l∏
k=1

fk(Xk)
∣∣∣∣Xl = zl, . . . , Xn = zn

]
E

[
l∏

k=1

fk(Xk)
∣∣∣∣Xl = zl, . . . , Xn = zn

]
is componentwise non-decreasing.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(El)

Observe that if l = n, we recover (SCM) with i = n.

• Case l = 2. For every φ ∈ I2 and every z = (z2, . . . , zn) ∈ R
n−1, we define:

K(2, z) =
E [φ(X1, X2)f1(X1)f2(X2)|X2 = z2, . . . , Xn = zn]

E [f1(X1)f2(X2)|X2 = z2, . . . , Xn = zn]

=

∫ ∞

−∞
φ(x, z2)f(x)p(x, z)dx∫ ∞

−∞
f(x)p(x, z)dx

· (3.2)
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We set

Fz(x) :=

∫ x

−∞
f(y)p(y, z)dy∫ ∞

−∞
f(y)p(y, z)dy

,

so that (3.2) may be written:

K(2, z) =
∫ ∞

−∞
φ(x, z2)dFz(x) =

∫ 1

0

φ
(
F−1

z (u), z2
)
du,

since Fz is continuous and strictly increasing.
Therefore, for every u ∈ [0, 1], it suffices to show that

z �−→ F−1
z (u) is componentwise non-decreasing. (3.3)

But (3.3) holds as soon as, for every x ∈ R, z �−→ Fz(x) is non-increasing with respect to each argument. Indeed,
for every z = (z2, . . . , zn), z′ = (z′2, . . . , z

′
n) in R

n−1 such that z ≤ z′ (i.e. zi ≤ z′i for every i = 2, . . . , n), and
for every u ∈ [0, 1],

Fz′
(
F−1

z (u)
) ≤ Fz

(
F−1

z (u)
)

(since z �→ Fz(x) is componentwise non-increasing)

= u = Fz′
(
F−1

z′ (u)
)
.

Since p is MTP2, then, for every z ≤ z′,

p(y, z′)p(x, z) ≥ p(y, z)p(x, z′) if y ≥ x,

and
p(y, z)p(x, z′) ≥ p(y, z′)p(x, z) if y ≤ x.

Then, for every z ≤ z′ in R
n−1,

1
Fz(x)

= 1 +

∫ ∞

x

f(y)p(y, z)dy∫ x

−∞
f(y)p(y, z)dy

= 1 +

∫ ∞

x

f(y)p(y, z)p(x, z′)dy∫ x

−∞
f(y)p(y, z)p(x, z′)dy

≤ 1 +

∫ ∞

x

f(y)p(y, z′)p(x, z)dy∫ x

−∞
f(y)p(y, z′)p(x, z)dy

= 1 +

∫ ∞

x

f(y)p(y, z′)dy∫ x

−∞
f(y)p(y, z′)dy

:=
1

Fz′ (x)
;

which proves that, for every x ∈ R, z �−→ Fz(x) is componentwise non-increasing, and then (3.3) holds.

• Case l > 2. Suppose that (El−1) holds for every function in Il−1. Let us prove (El) for every fixed φ ∈ Il.
For every z = (zl, . . . , zn) ∈ R

n−l+1, we define:

K(l, z) =
E

[
φ(X1, . . . , Xl)

l∏
k=1

fk(Xk)
∣∣∣∣Xl = zl, . . . , Xn = zn

]
E

[
l∏

k=1

fk(Xk)
∣∣∣∣Xl = zl, . . . , Xn = zn

]

=

∫ ∞

−∞

(∫
Rl−2

φ(x, xl−1, zl)
l−1∏
k=1

fk(xk)p(x, xl−1, z)dx

)
dxl−1

∫ ∞

−∞

(∫
Rl−2

l−1∏
k=1

fk(xk)p(x, xl−1, z)dx

)
dxl−1

,

where x = (x1, . . . , xl−2) and dx = dx1 . . . dxl−2.
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Now, set X = (Xl, . . . , Xn), and consider the functions φ̂ : R
n−l+2 → R and p̂ : R

n−l+2 → R
∗
+ defined,

respectively by:

φ̂(u, z) =

∫
Rl−2

φ(x, u, zl)
l−2∏
k=1

fk(xk)p(x, u, z)dx

∫
Rl−2

l−2∏
k=1

fk(xk)p(x, u, z)dx

=
E

[
φ(X1, . . . , Xl−1, zl)

l−1∏
k=1

fk(Xk)
∣∣∣∣Xl−1 = u,X = z

]
E

[
l−1∏
k=1

fk(Xk)
∣∣∣∣Xl−1 = u,X = z

] ,

and

p̂(u, z) =
∫

Rl−2

l−2∏
k=1

fk(xk)p(x, u, z)dx.

By the induction hypothesis (El−1), φ̂ belongs to In−l+2, and, using Point 2) of Theorem 2.24, p̂ satisfies (MTP2).
Moreover,

K(l, z) =

∫ ∞

−∞
φ̂(xl−1, z)fl−1(xl−1)p̂(xl−1, z)dxl−1∫ ∞

−∞
fl−1(xl−1)p̂(xl−1, z)dxl−1

.

Since p̂ is MTP2, then, using the same computations as in the Case l = 2, we show that, for every y ∈ R,

z �−→

∫ ∞

y

fl−1(xl−1)p̂(xl−1, z)dxl−1∫ y

−∞
fl−1(xl−1)p̂(xl−1, z)dxl−1

is non-decreasing with respect to each argument; which yields that z �−→ K(l, z) is also non-decreasing with
respect to each argument. �

Remark 3.5. We failed to find a SCM process which is not MTP2 due to that SCM and MTP2 properties
coincide for several processes. For example, let (X1, X2) be a SCM random vector which has the law P(X1 =
i,X2 = j) = p(i, j) (i, j ∈ Z). Then, (X1, X2) is MTP2. To prove this, we may assume without loss of generality
that p is strictly positive. Since (X1, X2) is SCM, then, for every bounded and strictly positive function f , and
for every a ∈ Z,

n �−→

+∞∑
k=a

f(k)p(k, n)

a−1∑
k=−∞

f(k)p(k, n)

is non-decreasing,

i.e. for every n ≤ n′, every a ∈ Z and every bounded and strictly positive function f : Z → R+,

+∞∑
k′=a

f(k′)

(
a−1∑

k=−∞
f(k) [p(k, n)p(k′, n′) − p(k, n′)p(k′, n)]

)
≥ 0
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which is equivalent to

+∞∑
k′=a

g(k′)

(
a−1∑

k=−∞
h(k) [p(k, n)p(k′, n′) − p(k, n′)p(k′, n)]

)
≥ 0 (3.4)

for every bounded and strictly positive functions g : �a,+∞�→ R+ and h :�−∞, a−1� → R+. But (3.4) implies

∀ k′ ∈ �a,+∞�, ∀h :� −∞, a− 1� → R+,

a−1∑
k=−∞

h(k) [p(k, n)p(k′, n′) − p(k, n′)p(k′, n)] ≥ 0

⎫⎪⎪⎬⎪⎪⎭
which in turn implies

∀ k′ ∈ �a,+∞�, ∀ k ∈� −∞, a− 1�, p(k, n)p(k′, n′) − p(k, n′)p(k′, n) ≥ 0.

Since a, n and n′ are arbitrary integers, we deduce that p is TP2. As a consequence, every SCM process taking
values in a discrete subset of R has TP2 bidimensional marginals. In particular, a Markov process with discrete
state space is SCM if and only if it is MTP2.

Here is a direct consequence of Theorem 3.4.

Corollary 3.6. Every stochastic process with MTP2 finite-dimensional marginals is SCM. In particular, if
X := (Xt, t ≥ 0) is a real valued Markov process such that X has an absolutely continuous and TP2 transition
kernel, then X is SCM.

Remark 3.7. By Corollary 3.6, the processes below are SCM:

i) processes with independent and log-concave increments;
ii) absolute values of processes with independent, symmetric and PF∞ increments;
iii) one-dimensional diffusions with absolutely continuous transition kernel;
iv) Gaussian random vectors with an invertible covariance matrix such that the inverse matrix has negative

off-diagonal elements.

4. Applications of Strong conditional monotonicity to peacocks

We use strong conditional monotonicity results to study some generalisations of the Carr−Ewald−Xiao
theorem (see (CEX08)).

4.1. Peacocks obtained by integrating with respect to a finite positive measure

The following result was proved in [5].

Theorem 4.1. Let (Xλ, λ ≥ 0) be a real valued right-continuous process which is conditionally monotone in
the sense that, for every n ∈ N

∗, every i ∈ {1, . . . , n}, every 0 ≤ λ1 < . . . < λn, and every φ ∈ In,

z �−→ E[φ(Xλ1 , . . . , Xλn)|Xλi = z] is non-decreasing. (CM)

Suppose that, for every t ≥ 0 and every compact K ⊂ R+,

E

[
exp

(
t sup

λ∈K
Xλ

)]
<∞ and inf

λ∈K
E[exp(tXλ)] > 0. (4.1)

Then, for every finite positive measure μ on R+,(
A

(μ)
t :=

∫ ∞

0

etXλ

E [etXλ ]
μ(dλ), t ≥ 0

)
is a peacock.



528 A.M. BOGSO

This result is a generalisation of Carr−Ewald−Xiao theorem. Indeed, by making the change of variable s = tλ
in (CEX08), the Brownian scaling property yields:

∀ t ≥ 0, Nt =
∫ 1

0

eBtλ− tλ
2 dλ

(law)
=

∫ 1

0

e
√

tBλ− tλ
2 dλ. (4.2)

Observe that (Bλ, λ ≥ 0) is a right-continuous conditionally monotone process since it is a Lévy process with
log-concave increments. Then, by Theorem 4.1,⎛⎝At :=

∫ 1

0

e
√

tBλ

E

[
e
√

tBλ

] dλ, t ≥ 0

⎞⎠ is a peacock,

and we recover (CEX08) thanks to (4.2).
In [5], further examples of conditionally monotone processes are presented. For example, the Gamma sub-

ordinator and “well-reversible” diffusions at a fixed time are conditionally monotone. We refer to [5] for the
definition and some properties of “well-reversible” diffusions. Moreover, Theorem 4.1 applies to stochastic pro-
cesses with MTP2 finite-dimensional marginals (such as one-dimensional diffusions) since they satisfy (SCM)
(which implies (CM)). Note that one-dimensional diffusions are not necessarily “well-reversible” at a fixed time.
Indeed, “well-reversible” diffusions at fixed time are unique strong solutions of stochastic differential equations.

4.2. Peacocks obtained by normalisation.

Let (Vt, t ≥ 0) be an integrable real valued process with a strictly positive mean, i.e. E[|Vt|] < ∞ and
E[Vt] > 0. Consider the process (

Nt :=
Vt

E[Vt]
, t ≥ 0

)
.

Observe that E[Nt] = 1 for every t ≥ 0. Since E[Nt] does not depend on t (which is a necessary condition to be
a peacock), it is natural to look for processes (Vt, t ≥ 0) for which (Nt, t ≥ 0) is a peacock. Many examples of

such processes are presented in [6]. Note that if Vt :=
∫ t

0

eBs− s
2 ds, then (CEX08) is equivalent to:

(
Nt :=

Vt

E[Vt]
, t ≥ 0

)
is a peacock.

One may also investigate on processes (Vt, t ≥ 0) such that the centered process (Ct := Vt − E[Vt], t ≥ 0) is a
peacock. We do not treat this case here and refer to [6, 18] for main results.

We deal with processes of the forms

V 1
t = exp

(∫ t

0

q(λ,Xλ)μ(dλ)
)

(F1)

and

V 2
t = exp

(∫ ∞

0

q(λ, tXλ)μ(dλ)
)
, (F2)

where μ is a positive Radon measure, q : R+ × R → R a continuous function such that, for every s ≥ 0,
qs : x �−→ q(s, x) is non-decreasing (resp. non-increasing), and where (Xλ, λ ≥ 0) is a real valued process. Our
purpose is to answer the following question:

Under which conditions is
(
N i

t :=
V i

t

E[V i
t ]
, t ≥ 0

)
(i = 1, 2) a peacock? (Q)
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Remark that, in (F1), the parameter t is a time parameter, while in (F2), it is a dilatation parameter. For this
reason, we call peacocks with respect to maturity peacocks of type N1 and peacocks with respect to volatility
peacocks of type N2.

For processes of type N1, a partial answer to (Q) is given in [6] when X has independent and log-concave
increments. We extend this result to real valued processes which satisfy (SCM). In particular, we prove under
some integrability hypotheses that processes with MTP2 finite-dimensional marginals solve (Q).

4.2.1. Peacocks with respect to maturity

Theorem 4.2. Let (Xλ, λ ≥ 0) be a right-continuous process which satisfies (SCM). Let μ be a positive Radon
measure and let q : R+ × R → R be a continuous function such that, for every t ≥ 0:

i) y �−→ q(t, y) is non-decreasing (resp. non-increasing),
ii) the following integrability properties hold:

Θt := exp
(
μ([0, t]) sup

0≤s≤t
q(s,Xs)

)
is integrable (4.3)

and

Δt := E

[
exp

(
μ([0, t]) inf

0≤s≤t
q(s,Xs)

)]
> 0. (4.4)

Then, ⎛⎜⎜⎝Nt :=
exp

(∫ t

0

q(s,Xs)μ(ds)
)

E

[
exp

(∫ t

0

q(s,Xs)μ(ds)
)] , t ≥ 0

⎞⎟⎟⎠ is a peacock. (4.5)

Proof. We only consider the case where y �−→ q(λ, y) is non-decreasing.
Let T > 0 be fixed.

1) We first suppose that μ has the form:

1[0,T ]dμ =
r∑

i=1

aiδλi , (4.6)

where r ∈ N, r ≥ 2, a1 ≥ 0, a2 ≥ 0, . . . , ar ≥ 0,
∑r

i=1 ai = μ([0, T ]), 0 ≤ λ1 < λ2 < · · · < λr ≤ T , and where δλi

is the Dirac measure at point λi.
We show that, (

Nn := exp

(
n∑

i=1

aiq(λi, Xλi) − h(n)

)
, n ∈ {1, 2, . . . , r}

)
is a peacock,

where

h(n) := log E

[
exp

(
n∑

i=1

aiq(λi, Xλi)

)]
.

Note that:
E[Nn −Nn−1] = 0, for every n ∈ {1, 2, . . . , r}

with

Nn −Nn−1 = Nn−1

(
eanq(λn,Xλn )−h(n)+h(n−1) − 1

)
= Nn−1

(
eq̃n(Xλn ) − 1

)
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and
q̃n(y) = anq(λn, y) − h(n) + h(n− 1).

Then, for every convex function ψ ∈ C,

E[ψ(Nn)] − E[ψ(Nn−1)] ≥ E

[
ψ′(Nn−1)Nn−1

(
eq̃n(Xλn ) − 1

)]
= E

[
K(n,Xλn)E[Nn−1|Xλn ]

(
eq̃n(Xλn ) − 1

)]
,

where

K(n, z) =
E[ψ′(Nn−1)Nn−1|Xλn = z]

E[Nn−1|Xλn = z]
·

Observe that the function φ : R
n−1 → R+ given by:

φ(x1, . . . , xn−1) = ψ′
[
exp

(
n−1∑
i=1

aiq(λi, xi) − h(n− 1)

)]
belongs to In−1. If, for every i ∈ N

∗, we define:

fi(x) = eaiq(λi,x), for every x ∈ R;

then, for every n ∈ {2, . . . , r},
Nn−1 = e−h(n−1)

n−1∏
k=1

fk(Xλk
)

and

K(n, z) =

E

[
φ(Xλ1 , . . . , Xλn−1)

n−1∏
k=1

fk(Xλk
)

∣∣∣∣∣Xλn = z

]

E

[
n−1∏
k=1

fk(Xλk
)

∣∣∣∣∣Xλn = z

] ·

Note that K(n, z) is well-defined since, for every n ∈ {1, 2, . . . , r},

E

[
n∏

k=1

fk(Xλk
)

]
= E

[
exp

(
n∑

k=1

aiq(λi, Xλi)

)]

≤ E

[
exp

(
sup

0≤λ≤T
q(λ,Xλ)

n∑
k=1

ai

)]

≤ E

[
exp

(
sup

0≤λ≤T
q(λ,Xλ)

r∑
k=1

ai

)
∨ 1

]

= E

[
exp

(
α(T ) sup

0≤λ≤T
q(λ,Xλ)

)
∨ 1

]
= E[ΘT ∨ 1] <∞.

By (SCM), K(n, z) is non-decreasing with respect to z.
Now, for every n ∈ N

∗, we denote by (q̃n)−1 the right-continuous inverse of q̃n and we set:

V (n,Xλn) := K(n,Xλn)E[Nn−1|Xλn ]
(
eq̃n(Xλn ) − 1

)
.
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Then,

i) if Xλn ≤ (q̃n)−1(0), then eq̃n(Xλn ) − 1 ≤ 0 and

V (n,Xλn) ≥ K
(
n, (q̃n)−1(0)

)
E[Nn−1|Xλn ]

(
eq̃n(Xλn ) − 1

)
,

ii) if Xλn ≥ (q̃n)−1(0), then eq̃n(Xλn ) − 1 ≥ 0 and

V (n,Xλn) ≥ K
(
n, (q̃n)−1(0)

)
E[Nn−1|Xλn ]

(
eq̃n(Xλn ) − 1

)
.

As a consequence,

E[ψ(Nn)] − Ex[ψ(Nn−1)]

≥ E[V (n,Xλn)] ≥ K
(
n, (q̃n)−1(0)

)
E

[
E[Nn−1|Xλn ]

(
eq̃n(Xλn ) − 1

)]
= K

(
n, (q̃n)−1(0)

)
E

[
Nn−1

(
eq̃n(Xλn ) − 1

)]
= K

(
n, (q̃n)−1(0)

)
E [Nn −Nn−1] = 0;

which shows that, for every integer r ≥ 2,(
Nn := exp

(
n∑

i=1

aiq(λi, Xλi) − h(n)

)
, n ∈ {1, 2, . . . , r}

)
is a peacock.

2) We consider ν = 1[0,T ]dμ, and, for every 0 ≤ t ≤ T , we set:

N
(ν)
t =

exp
(∫ t

0

q(u,Xu)ν(du)
)

E

[
exp

(∫ t

0

q(u,Xu)ν(du)
)] ·

Since the function λ ∈ [0, T ] �−→ q(λ,Xλ) is right-continuous and bounded from above by sup
0≤λ≤T

|q(λ,Xλ)|
which is finite a.s., there exists a sequence (νn, n ∈ N) of measures of the form (4.6), such that, for every n ∈ N,
supp νn ⊂ [0, T ],

∫
νn(du) =

∫
ν(du) and, for every 0 ≤ t ≤ T ,

lim
n→∞ exp

(∫ t

0

q(u,Xu)νn(du)
)

= exp
(∫ t

0

q(u,Xu)ν(du)
)

a.s. (4.7)

Moreover, for every 0 ≤ t ≤ T and every n ∈ N,

sup
n≥0

exp
(∫ t

0

q(u,Xu)νn(du)
)

≤ sup
n≥0

exp
(

sup
0≤λ≤T

q(λ,Xλ)
∫ t

0

νn(du)
)

≤ sup
n≥0

exp

(
sup

0≤λ≤T
q(λ,Xλ)

∫ T

0

νn(du)

)
∨ 1

= exp

(
sup

0≤λ≤T
q(λ,Xλ)

∫ T

0

ν(du)

)
∨ 1 = ΘT ∨ 1
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which is integrable from (4.3). By the dominated convergence theorem,

lim
n→∞ E

[
exp

(∫ t

0

q(u,Xu)νn(du)
)]

= E

[
exp

(∫ t

0

q(u,Xu)ν(du)
)]

. (4.8)

Using (4.7) and (4.8), we obtain:

lim
n→∞N

(νn)
t = N

(ν)
t a.s., for every 0 ≤ t ≤ T. (4.9)

But, we proved in 1) that: (
N

(νn)
t , 0 ≤ t ≤ T

)
is a peacock for every n ∈ N, (4.10)

i.e., for every 0 ≤ s < t ≤ T and every ψ ∈ C:

E

[
ψ(N (νn)

s )
]
≤ Ex

[
ψ(N (νn)

t )
]
. (4.11)

Besides,

sup
0≤t≤T

sup
n≥0

∣∣∣N (νn)
t

∣∣∣ ≤ ΘT ∨ 1
ΔT ∧ 1

, (4.12)

which is integrable from (4.3) and (4.4). Using the dominated convergence theorem, we pass to the limit in (4.11)
as n→ ∞ and deduce that (N (μ)

t , 0 ≤ t ≤ T ) is a peacock for every T > 0. �

Now, we prove a version of Theorem 4.2 for a squared Bessel of dimension 0 (denoted BESQ0). Note that the
transition function of a BESQ0 is not absolutely continuous with respect to Lebesgue measure. Then Theorem 3.4
does not apply. In particular, the finite-dimensional marginals of a BESQ0 do not satisfy (SCM). Nevertheless,
a limit theorem due to Feller [14] for critical Galton−Watson branching processes allows to exhibit peacocks of
type (4.5).

Example 4.3 (A version of Thm. 4.2 for a BESQ0).
For every k ∈ N

∗, let Zk :=
(
Zk

n, n ∈ N
)

denote a Galton−Watson branching process starting with k individuals,

and which has a geometric reproduction law ν of parameter
1
2
, i.e.

ν(i) = 2−i−1, for every i ∈ N.

For every k ∈ N
∗, Zk is an homogeneous Markov chain with values in N, and its transition probability matrix Q

is given by:

∀ j ∈ N, Q(0, j) =
{

1 if j = 0
0 otherwise

and

∀ (i, j) ∈ N
∗ × N, Q(i, j) =

(
i+ j − 1

j

)
2−(i+j).

We consider the family
(
Q(n), n ∈ N

)
of transition functions defined on N × N by:

Q(0)(i, j) =
{

1 if i = j
0 otherwise

and
∀n ≥ 1, Q(n+1)(i, j) =

∑
n∈N

Q(i,m)Q(n)(m, j).

Since the function (i, j) �−→
(
i+ j − 1

j

)
is TP2, we deduce from (2.3) that Q(n) is TP2 for every n ∈ N.
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For every λ ≥ 0 and every k ∈ N
∗, we set:

Y k
λ =

1
k
Zk

[kλ],

where [·] denotes the floor function. Then,
(
Y k

λ , λ ≥ 0
)

is a Markov process with values in
1
k

N, and its transition

function (Pζ,η, 0 ≤ ζ < η) is given by:

∀x, y ∈ 1
k

N, Pζ,η(x, y) = Q([kη]−[kζ])(kx, ky).

Observe that Pζ,η is TP2 for every ζ and η. By Theorem 3.4, for every k ∈ N
∗,

(
Y k

λ , λ ≥ 0
)

is SCM.
Let q : R+ × R → R be bounded, continuous and such that, for every λ ≥ 0, x �−→ q(λ, x) is non-decreasing

(resp. non-increasing). It follows from Theorem 4.2 that, for every ai ≥ 0, i ∈ N
∗, and for every strictly increasing

sequence (λi, i ≥ 1) in R
∗
+,⎛⎜⎜⎜⎜⎝Nk

n :=

exp

(
n∑

i=1

aiq(λi, Y
k
λi

)

)

E

[
exp

(
n∑

i=1

aiq(λi, Y
k
λi

)

)] , n ∈ N

⎞⎟⎟⎟⎟⎠ is a peacock. (4.13)

A result due to Feller [14] states that, as k tends to ∞,
(
Y k

λ , λ ≥ 0
)

converges in distribution to (Y∞
λ , λ ≥ 0),

which is the unique strong solution of:

dZλ =
√

2ZλdBλ, Z0 = 1,

where (Bλ, λ ≥ 0) is a standard Brownian motion. In particular,
(
Y k

λ , λ ≥ 0
)

converges in sense of finite distri-
butions to (Y∞

λ , λ ≥ 0). Then, (4.13) yields:⎛⎜⎜⎜⎜⎝N∞
n :=

exp

(
n∑

i=1

aiq(λi, Y
∞
λi

)

)

E

[
exp

(
n∑

i=1

aiq(λi, Y
∞
λi

)

)] , n ∈ N

⎞⎟⎟⎟⎟⎠ is a peacock. (4.14)

As a consequense, we obtain the following result:

Corollary 4.4. Let (Yt, t ≥ 0) be a BESQ0 issued from 1, and let q : R+ × R+ → R be a continuous and
bounded function such that, for every λ ≥ 0, y �−→ q(λ, y) is non-decreasing (resp. non-increasing). Then, for
every positive Radon measure μ on R+,⎛⎜⎜⎝Nt :=

exp
(∫ t

0

q(s, Ys)μ(ds)
)

E

[
exp

(∫ t

0

q(s, Ys)μ(ds)
)] , t ≥ 0

⎞⎟⎟⎠ is a peacock.

4.2.2. Peacocks with respect to volatility

Theorem 4.5. Let (Xλ, λ ≥ 0) a right-continuous process which is SCM. Let q : R+ × R → R be a continuous
function such that, for every λ ≥ 0, x �−→ q(λ, x) is of C1 class, and let μ denote a positive Radon measure on
R+ satisfying:

∀ t ≥ 0, E

[
exp

(∫ ∞

0

q(λ, tXλ)μ(dλ)
)]

<∞.
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We suppose that:

i) for every λ ≥ 0, the functions x �−→ q(λ, x) and x �−→ x
∂q

∂x
(λ, x) are non-decreasing (resp. non-increasing),

ii) for every t, λ ≥ 0, there exists α = α(t, λ) > 1 such that:

E

[
|Xλ|α

(
∂q

∂x

)α

(λ, tXλ)
]
<∞, (4.15)

iii) for every t, β > 0, and for every compact K ⊂ R+,

Θ
(K)
t,β := exp

(
β sup

λ∈K
q(λ, tXλ)

)
is integrable, (4.16)

and

Δ
(K)
t,β := E

[
exp

(
β inf

λ∈K
q(λ, tXλ)

)]
> 0. (4.17)

Then, ⎛⎜⎜⎝N (μ)
t :=

exp
(∫ ∞

0

q(λ, tXλ)μ(dλ)
)

E

[
exp

(∫ ∞

0

q(λ, tXλ)μ(dλ)
)] , t ≥ 0

⎞⎟⎟⎠ is a peacock. (4.18)

Proof. We shall suppose without loss of generality that, for every λ ≥ 0, the functions x �−→ q(λ, x) and

x �−→ x
∂q

∂x
(λ, x) are non-decreasing.

1) We first treat the case where μ is of the form

μ =
n∑

i=1

aiδλi ,

where m ∈ N
∗, a1 ≥ 0, . . . , an ≥ 0, 0 < λ1 < . . . < λm, and where δλ denote the Dirac measure at point λ.

Precisely, we show that (
Nt := exp

(
m∑

i=1

aiq(λi, tXλi) − h(t)

)
, t ≥ 0

)
is a peacock,

with

h(t) = log E

[
exp

(
m∑

i=1

aiq(λi, tXλi)

)]
.

We set μ :=
m∑

i=1

ai. Since the functions x �−→ q(λ, x) and x �−→ x
∂q

∂x
(λ, x) are non-decreasing, then, for every

0 < b < c, and every t ∈ [b, c],

exp

(
m∑

i=1

aiq(λi, tXλi)

)
≤ exp

(
μ sup

i∈{1,...,m}
q(λi, 0)

)
+ exp

(
μ sup

i∈{1,...,m}
q(λi, cXλi)

)
, (4.19)

and for every i ∈ {1, . . . ,m},
|Xλi |

∂q

∂x
(λi, tXλi) ≤

c

b
|Xλi |

∂q

∂x
(λi, cXλi). (4.20)
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We deduce from (4.15), (4.16), (4.19) and (4.20) that, for every 0 < b < c,

E

[
sup

t∈[b,c]

{
m∑

i=1

ai|Xλi |
∂q

∂x
(λi, tXλi) exp

(
m∑

k=1

akq(λk, tXλk
)

)}]
<∞. (4.21)

Consequently, h is continuous on [0,+∞[, differentiable on ]0,+∞[, and for every t > 0,

h′(t)eh(t) =
m∑

i=1

ai E

[
Xλi

∂q

∂x
(λi, tXλi) exp

(
m∑

k=1

akq(λk, tXλk
)

)]
,

i.e.

h′(t) =
m∑

i=1

ai E

[
NtXλi

∂q

∂x
(λi, tXλi)

]
. (4.22)

Now, define

h̃λi(t) = E

[
NtXλi

∂q

∂x
(λi, tXλi)

]
(4.23)

so that

h′(t) =
m∑

i=1

aih̃λi(t). (4.24)

Since E[Nt] = 1, then, for every t > 0 and i ∈ {1, . . . , n}, (4.23) yields:

E

[
Nt

(
Xλi

∂q

∂x
(λi, tXλi) − h̃λi(t)

)]
= 0. (4.25)

On the other hand, if ψ is a convex function in C, then (4.16), (4.22) and (4.24) imply

∂

∂t
E[ψ(Nt)] =

m∑
i=1

ai E

[
ψ′(Nt)Nt

(
Xλi

∂q

∂x
(λi, tXλi) − h̃λi(t)

)]
.

Thus, it remains to prove that, for every i ∈ {1, . . . ,m},

Δi := E

[
ψ′(Nt)Nt

(
Xλi

∂q

∂x
(λi, tXλi) − h̃λi(t)

)]
≥ 0. (4.26)

Observe that the function

φ : (x1, . . . , xm) �−→ ψ′
(

exp

(
m∑

k=1

akq(λk, txk) − h(t)

))

belongs to Im. Moreover, if, for every k ∈ {1, . . . ,m}, we set fk(x) = exp(akq(λk, tx)), then

Nt = e−h(t)
m∏

k=1

fk(Xλk
).

Therefore, by setting

Ki(m, z) :=
E

[
φ(Xλ1 , . . . , Xλm)

m∏
k=1

fk(Xλk
)
∣∣∣∣Xλi = z

]
E

[
m∏

k=1

fk(Xλk
)
∣∣∣∣Xλi = z

] ,
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for every z ∈ R, and every i ∈ {1, . . . ,m}, we obtain

Δi = E

[
Ki(m,Xλi)E[Nt|Xλi ]

(
Xλi

∂q

∂x
(λi, tXλi) − h̃λi(t)

)]
.

By hypothesis i), q̃ζi : x �−→ x
∂q

∂x
(ζi, tx) − h̃ζi(t) is continuous and non-decreasing; let q̃−1

ζi
denote its right-

continuous inverse. Since (Xλ, λ ≥ 0) is SCM, the function z �−→ Ki(m, z) is non-decreasing, and we deduce
from (4.25) that:

Δi ≥ Ki

(
m, q̃−1

λi
(0)

)
E

[
E[Nt|Xλi ]

(
Xλi

∂q

∂x
(λi, tXλi) − h̃λi(t)

)]
= Ki

(
m, q̃−1

λi
(0)

)
E

[
Nt

(
Xλi

∂q

∂x
(λi, tXλi) − h̃λi(t)

)]
= 0.

Thus, (Nt, t ≥ 0) is a peacock.
2) If μ has a compact support contained in a compact interval of R+, then, following the same lines as Point 2)
in the proof of Theorem 4.2, we prove that

(
N

(μ)
t , t ≥ 0

)
is a peacock.

3) In the general case, we consider the sequence (μn(dλ) := 1[0,n]μ(dλ), n ∈ N). Let ψ ∈ C. By Point 2) above,(
N

(μn)
t , t ≥ 0

)
is a peacock for every n. Then

∀ 0 ≤ s ≤ t, E

[
ψ(N (μn)

s )
]
≤ E

[
ψ
(
N

(μn)
t

)]
. (4.27)

Moreover, it follows from Theorem 4.2 that, for every t ≥ 0,⎛⎜⎜⎝N (μn)
t =

exp
(∫ n

0

q(ζ, tXζ)μ(dζ)
)

E

[
exp

(∫ n

0

q(ζ, tXζ)μ(dζ)
)] , n ≥ 0

⎞⎟⎟⎠ is a peacock,

in other terms, the sequence
(
E

[
ψ(N (μn)

t )
]
, n ≥ 0

)
is non-decreasing and bounded from above by E

[
ψ(N (μ)

t )
]
.

Therefore, letting n tends to ∞ in (4.27), we obtain:

∀ 0 ≤ s ≤ t, E

[
ψ
(
N (μ)

s

)]
≤ E

[
ψ
(
N

(μ)
t

)]
which proves that

(
N

(μ)
t , t ≥ 0

)
is a peacock. �

We end with some examples.

Example 4.6. Let μ be a positive Radon measure. Let (Xλ, λ ≥ 0) be a right-continuous process having MTP2

finite-dimensional marginals, and such that, for every β > 0,

E

[
exp

(
β sup

0≤ζ≤1
Xλ

)]
<∞ (4.28)

and

E

[
exp

(
β inf

0≤λ≤1
Xζ

)]
> 0. (4.29)
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We consider the function q : [0, 1] × R → R defined by:

∀ (λ, x) ∈ [0, 1]× R, q(λ, x) = 2x+
√

1 + λ+ x2.

The following inequalities are immediate.

∀ (λ, x) ∈ [0, 1]× R, e2x ≤ eq(λ,x) < e2+3x + e2+x. (4.30)

Then, using (4.28) and (4.30), we have:

∀ t ≥ 0, E

[
exp

(
μ([0, 1]) sup

0≤λ≤1
q(λ, tXλ)

)]
<∞.

Moreover, (4.28)−(4.30) ensure that conditions (4.15)−(4.17) of Theorem 4.2 are fulfilled.

On the other hand, x �−→ q(λ, x) and x �−→ x
∂q

∂x
(λ, x) are non-decreasing functions. Therefore, by

Theorem 4.5, ⎛⎜⎜⎜⎝Nt :=
exp

(∫ 1

0

q(λ, tXλ)μ(dλ)
)

E

[
exp

(∫ 1

0

q(λ, tXλ)μ(dλ)
)] , t ≥ 0

⎞⎟⎟⎟⎠ is a peacock.

Example 4.7. Let X := (Xu, u ≥ 0) denote a right-continuous process which has MTP2 finite-dimensional
marginals. We assume that X enjoys the scale property of order γ > 0, i.e.

∀ t > 0, (Xtu, u ≥ 0)
(law)
= (tγXu, u ≥ 0).

Let q : R → R be a non-decreasing C1-function such that:

i) The function x �−→ xq′(x) is non-decreasing.
ii) For every β, t > 0 and x ∈ R:

E

[
exp

(
β sup

0≤u≤1
q(tγXu)

)]
<∞ et E

[
exp

(
β inf

0≤u≤1
q(tγXu)

)]
> 0.

iii) For every t, u > 0, there exists α = α(t, u) > 1 such that

E [|Xu|α(q′)α(tγXu)] <∞.

Then, after the change of variable s = tu, we deduce from Theorem 4.5 that⎛⎜⎜⎝Nt :=
exp

(
1
t

∫ t

0

q(Xs)ds
)

E

[
exp

(
1
t

∫ t

0

q(Xs)ds
)] , t ≥ 0

⎞⎟⎟⎠ is a peacock.

The purpose of the next example is to exihibit peacocks of type N2 using processes which are not MTP2.

Example 4.8. Let (X1, X2) be a random vector with values in {1, 2, 3}2 and which has the law P(X1 = i,X2 =
j) = Pij , where

P =
1
20

⎛⎝3 3 1
3 2 2
1 2 3

⎞⎠.
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Observe that P is a symmetric matrix which is not TP2 since

det
(

3 3
3 2

)
< 0.

But, (X1, X2) satisfy a SCM type condition (weaker than SCM). Precisely, for every componentwise non-
decreasing function φ : {1, 2, 3}2 → R and every non-decreasing and strictly positive functions f1, f2 : {1, 2, 3} →
R+, the maps K1, K2 : {1, 2, 3} → R defined by

K1 : i ∈ {1, 2, 3} �−→ E[φ(X1, X2)f1(X1)f2(X2)]|X1 = i]
E[f1(X1)f2(X2)|X1 = i]

and

K2 : i ∈ {1, 2, 3} �−→ E[φ(X1, X2)f1(X1)f2(X2)]|X2 = i]
E[f1(X1)f2(X2)|X2 = i]

are non-decreasing.
Since P is symmetric, it suffices to prove that K1 is non-decreasing. Observe that, for every i = 1, 2, 3,

K1(i) =

3∑
k=1

φ(i, k)f2(k)Pik

3∑
k=1

f2(k)Pik

·

Moreover, to show that K1 is non-decreasing, we may restrict ourselves to the functions φ(i, ·) = 1�a,+∞�

(a = 2, 3). Precisely, it is sufficient to see that P satisfies

1
P11

3∑
k=2

f2(k)P1k ≤ 1
P21

3∑
k=2

f2(k)P2k ≤ 1
P31

3∑
k=2

f2(k)P3k (4.31)

and
P13

2∑
k=1

f2(k)P1k

≤ P23

2∑
k=1

f2(k)P2k

≤ P33

2∑
k=1

f2(k)P3k

· (4.32)

To obtain (4.31) and (4.32), one may remark that, for every i ∈ {1, 2, 3} and a ∈ {2, 3},
3∑

k=a

f2(k)Pik

3∑
k=1

f2(k)Pik

=
1

1 +

a−1∑
k=1

f2(k)Pik

3∑
k=a

f2(k)Pik

·

Now, since
1
3
[3f2(2) + f2(3)] ≤ 2

3
[f2(2) + f2(3)] ≤ 2f2(2) + 3f2(3) (4.33)

and
1

3f2(1) + 3f2(2)
≤ 2

3f2(1) + 2f2(2)
≤ 3
f2(1) + 2f2(2)

,

we deduce that K1 is non-decreasing. Note that the first inequality in (4.33) holds since f2 is non-decreasing.



AN APPLICATION OF MULTIVARIATE TOTAL POSITIVITY TO PEACOCKS 539

Similarly, one may prove that if (Y1, Y2) is a random vector taking values in {1, 2, 3}2 and whose law is given
by P(Y1 = i, Y2 = j) = P ∗

ij , with

P ∗ =
1
20

⎛⎝3 2 1
2 2 3
1 3 3

⎞⎠
then, for every componentwise non-decreasing function φ : {1, 2, 3}2 → R and for every non-increasing and
strictly positive functions g1, g2 : {1, 2, 3} → R,

K∗
1 : i �−→ E[φ(Y1, Y2)g1(Y1)g2(Y2)|Y1 = i]

E[g1(Y1)g2(Y2)|Y1 = i]

and

K∗
2 : i �−→ E[φ(Y1, Y2)g1(Y1)g2(Y2)|Y2 = i]

E[g1(Y1)g2(Y2)|Y2 = i]

are non-decreasing.

Corollary 4.9. If q1, q2 : R+ → R are two non-decreasing C1 class functions such that x �−→ xq′1(x) and
x �−→ xq′2(x) are also non-decreasing, then(

Nt =
exp(q1(tX1) + q2(tX2))

E[exp(q1(tX1) + q2(tX2))]
, t ≥ 0

)
and (

N∗
t =

exp(−q1(tY1) − q2(tY2))
E[exp(−q1(tY1) − q2(tY2))]

, t ≥ 0
)

are peacocks.
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Notes Math. Springer, Berlin (2010) 437–439.

[9] P. Carr, C.-O. Ewald and Y. Xiao, On the qualitative effect of volatility and duration on prices of Asian options. Finance Res.
Lett. 5 (2008) 162–171.

[10] H. Daduna and R. Szekli, A queueing theoretical proof of increasing property of Pólya frequency functions. Statist. Probab.
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