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UNIFORM STRONG CONSISTENCY OF A FRONTIER ESTIMATOR
USING KERNEL REGRESSION ON HIGH ORDER MOMENTS

Stéphane Girard1, Armelle Guillou2 and Gilles Stupfler3

Abstract. We consider the high order moments estimator of the frontier of a random pair, introduced
by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172–189]. In the present
paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of
convergence is given when the conditional cumulative distribution function belongs to the Hall class of
distribution functions.
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1. Introduction

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X, Y ) such that their common distri-
bution has a support defined by S = {(x, y) ∈ E × R; 0 ≤ y ≤ g(x)}, where E is a closed subset of R

d having
nonempty interior. The unknown function g is called the frontier. In Girard et al. [12], a new estimator of g is
introduced, based upon kernel regression on high order moments of the data:

1
ĝn(x)

=
1

apn

[
((a + 1)pn + 1)

μ̂(a+1)pn
(x)

μ̂(a+1)pn+1(x)
− (pn + 1)

μ̂pn(x)
μ̂pn+1(x)

]
(1.1)

where (pn) is a nonrandom positive sequence such that pn → ∞, a > 0 and

μ̂pn(x) =
1
n

n∑
i=1

Y pn

i Khn(x − Xi)

is a kernel estimator of the conditional moment mpn(x) = E(Y pn |X = x). Classically, K is a probability density
function on R

d, Kh(u) = h−d K(u/h) and (hn) is a nonrandom positive sequence such that hn → 0. From a
practical point of view, the use of a small window-width hn allows to select the pairs (Xi, Yi) such that Xi

is close to x while the use of the high power pn gives more weight to the Yi close to g(x). Using high order
moments was first suggested by Girard and Jacob [14] in the case when Y given X is uniformly distributed. This
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approach was also used in Girard and Jacob [15] to develop a local polynomial estimator. In Girard et al. [12],
the estimator (1.1) was shown to be pointwise consistent and asymptotically normal. Our focus in the present
paper is to examine its almost sure uniform properties.

Uniform consistency results in frontier estimation are seldom available in the literature: we refer the reader
to Geffroy [10] for the uniform consistency of the blockwise maxima estimator when the conditional distribution
function of Y given X is uniform and to Jacob and Suquet [21] for the uniform consistency of a projection
estimator when the observations are realizations of a Poisson process whose intensity is known. Neither of these
papers provides the rate of uniform convergence of the estimator it studies. In the field of econometrics, where
the frontier function is assumed to be monotonic, the uniform consistency of the Free Disposal Hull (FDH)
estimator introduced by Deprins et al. [6] was shown by Korostelev et al. [22], along with the minimax rate of
uniform convergence; the uniform consistency of isotonized versions of order-m frontiers introduced in Cazals
et al. [4] is proven in Daouia and Simar [5], but rates of convergence are not available in this study. Consistency
results in the L1 sense were studied by Girard et al. [13] for an estimator solving an optimization problem and
by Geffroy et al. [11] for the blockwise maxima estimator. The minimax rate of L1-convergence was established
by Härdle et al. [19].

Outside the field of frontier estimation, uniform convergence of the Parzen−Rosenblatt density estimator
(Parzen [26] and Rosenblatt [27]) was first considered by Nadaraya [25]. His results were then improved by
Silverman [28] and Stute [29], the latter proving a law of the iterated logarithm in this context. Analogous results
on kernel regression estimators were obtained by, among others, Mack and Silverman [24], Härdle et al. [17] and
Einmahl and Mason [7]. The uniform consistency of isotonized versions of order-α quantile estimators introduced
in Aragon et al. [2] was shown in Daouia and Simar [5]. The case of estimators of left-truncated quantiles is
considered in Lemdani et al. [23]. Finally, the uniform consistency of a conditional tail-index estimator is shown
in Gardes and Stupfler [9].

The paper is organized as follows. Our main results are stated in Section 2. The estimator is strongly uniformly
consistent in a nonparametric framework. The rate of convergence is provided when the conditional survival
function of Y given X = x belongs to the Hall class (Hall [16]). The rate of uniform convergence is closely
linked to the rate of pointwise convergence in distribution established in Girard et al. [12]. The proofs of the
main results are given in Section 3. Auxiliary results are postponed to the Appendix.

2. Main results

Our results are established under the following classical condition on the kernel:
(K) K is a probability density function which is Hölder continuous with exponent ηK :

∃ cK > 0, ∀x, y ∈ R
d, |K(x) − K(y)| ≤ cK ‖x − y‖ηK

and its support is included in B, the unit ball of R
d.

Note that (K) implies that K is bounded with compact support. We first wish to state the uniform consistency
of our estimator on a compact subset Ω of R

d contained in the interior of E. To this end, three nonparametric
hypotheses are introduced. The first one states the existence of the frontier g.

(NP1) Given X = x, Y is positive and has a finite right endpoint g(x).
Let F(y |x) = F (g(x) y |x) be the conditional survival function of the normalised random variable Y/g(x)

given X = x. The second assumption is a regularity condition on the conditional survival function of Y given
X along the upper boundary of S.

(NP2) There exists y0 ∈ (0, 1) such that for all y ∈ [y0, 1], x 	→ F(y |x) is continuous on E.
The third assumption, which controls the oscillation of the function F(y | ·) for y close to 1, can

be seen as a regularity condition on the (normalised) conditional high order moment mpn(x)/gpn(x) =
E((Y/g(x))pn |X = x).
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(NP3) For all c ≥ 1,

sup
x∈Ω

sup
u∈B

∣∣∣∣∣∣∣∣
∫ 1

0

ycpn−1F(y |x − hnu) dy∫ 1

0

ycpn−1F(y |x) dy

− 1

∣∣∣∣∣∣∣∣→ 0 as n → ∞.

Let f be the probability density function of X . The following regularity assumption is introduced:
(A1) f is a positive continuous function on E and g is a positive Hölder continuous function on E with Hölder

exponent ηg.
Before stating our first result, let us introduce some further notations. For any real-valued function γ on R

d,
the oscillation of γ between two points x and x − hnu, u ∈ B, is denoted by

Δγ
n(x, u) = γ(x − hnu) − γ(x).

Finally, let μpn(x) be the smoothed version of the conditional moment mpn(x), namely

μpn(x) = E(Y pn Khn(x − X)) =
∫

Ω

Khn(x − t)mpn(t) f(t) dt.

Our uniform consistency result may now be stated:

Theorem 2.1. Assume that (NP1−NP3), (K) and (A1) hold. If pn → ∞,
n hd

n

log n
inf
x∈Ω

μ(a+1)pn
(x)

g(a+1)pn(x)
→ ∞ and

pn h
ηg
n → 0 as n → ∞, then

sup
x∈Ω

|ĝn(x) − g(x)| → 0 almost surely as n → ∞.

As far as the conditions on (pn) and (hn) are concerned, let us highlight that, under (A1) and since Ω is compact,
f is uniformly continuous on Ω and inf

Ω
f > 0. Besides, Lemma A.1 implies that for n large enough the ball

B(x, hn) with center x and radius hn in R
d is contained in E for every x ∈ Ω. The uniform relative oscillation

of f can then be controlled as

sup
x∈Ω

sup
u∈B

∣∣∣∣f(x − hnu)
f(x)

− 1
∣∣∣∣ = sup

x∈Ω
sup
u∈B

∣∣∣∣Δf
n(x, u)
f(x)

∣∣∣∣→ 0. (2.1)

Similarly, inf
Ω

g > 0 and we thus have

sup
x∈Ω

sup
u∈B

∣∣∣∣Δg
n(x, u)
g(x)

∣∣∣∣ = O (hηg
n ) → 0. (2.2)

Remarking that

log
[
gpn(x − hnu)

gpn(x)

]
= pn log

[
1 +

Δg
n(x, u)
g(x)

]
entails, if pn h

ηg
n → 0,

sup
x∈Ω

sup
u∈B

∣∣∣∣gpn(x − hnu)
gpn(x)

− 1
∣∣∣∣ = O (pn hηg

n ) . (2.3)

As a conclusion, the condition pn h
ηg
n → 0 thus makes it possible to control the oscillation of gpn around x,

uniformly in x ∈ Ω. This condition was already introduced in Girard and Jacob [14,15] and in Girard et al. [12].
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To give a better understanding of the conditions of Theorem 2.1, we introduce the semiparametric framework

(SP ) For all y ∈ [0, 1], F(y |x) = (1−y)α(x) L
(
x, (1 − y)−1

)
, where L is bounded on Ω× [1, ∞) and satisfies

∀x ∈ E, ∀ z ≥ 1, L(x, z) = C(x) + D(x, z) z−β(x)

where α, β and C are positive Borel functions and D is a bounded Borel function on Ω × [1, ∞).
In model (SP ), the function L(x, ·) is slowly varying at infinity for all x ∈ E (see for example Bingham

et al. [3]) and belongs to the Hall class (Hall [16]). Let us emphasize that α(x) drives the behavior of the
distribution function of Y given X = x in the neighborhood of its endpoint g(x). In the general context of
extreme-value theory (see for instance Embrechts et al. [8]), the conditional distribution of Y given X = x is
said to belong to the Weibull max-domain of attraction with conditional extreme-value index −1/α(x). Model
(SP ) is clearly more general than the one in Girard et al. [12], which is restricted to the constant case L ≡ 1.
We introduce the additional regularity condition

(A2) α is a Hölder continuous function on E with Hölder exponent ηα; β and C are continuous functions
on E and there exists z0 ∈ [1, ∞) such that for all z ≥ z0, the map x 	→ D(x, z) is continuous on E.

Note that if (A2) holds,
α := max

Ω
α < ∞

because Ω is compact. Our next result shows that Theorem 2.1 holds in the semiparametric setting (SP ).

Corollary 2.2. Assume that (SP ), (K) and (A1−A2) hold. If pn → ∞, n p−α
n hd

n/ logn → ∞ and pn h
ηg
n → 0

as n → ∞, then
sup
x∈Ω

|ĝn(x) − g(x)| → 0 almost surely as n → ∞.

Note – see the proof of Corollary 2.2 – that if (SP ), (K) and (A1−A2) hold and pn h
ηg
n → 0 as n → ∞, then

hypothesis (NP3) holds as well. This hypothesis can therefore be considered not only as a regularity condition
on the conditional high order moment mpn(x) but also as a condition comparing the rates of convergence of
(1/pn) and (hn) to 0.

Our second aim is to compute the rate of convergence of the estimator (1.1). Under hypothesis (A2), we can
introduce the quantity

β := min
Ω

β > 0.

Letting wn =
√

n p−α+2
n hd

n/ log n, we can now state our result on the rate of uniform convergence in the
semiparametric framework (SP ):

Theorem 2.3. Assume that (SP ), (K) and (A1−A2) hold. If pn → ∞ and

• n p−α
n hd

n/log n → ∞ as n → ∞,
• lim sup

n→∞
wn

{
hηg

n ∨ p−1
n hηα

n ∨ p
−β−1
n

}
< ∞,

then
wn sup

x∈Ω
|ĝn(x) − g(x)| = O (1) almost surely as n → ∞.

Let us highlight that the condition n p−α
n hd

n/ log n → ∞ was already introduced in Corollary 2.2. The second
condition controls the bias of the estimator ĝn. The term h

ηg
n corresponds to the bias introduced by using a

kernel smoothing, while the presence of both other terms is due to the particular structure of the semiparametric
model (SP ). Moreover, as pointed out in Theorem 3 in Girard et al. [12], the rate of pointwise convergence of

ĝn(x) to g(x) is
√

n p
−α(x)+2
n hd

n. Up to the factor
√

log n, the rate of uniform convergence of ĝn is therefore the
infimum (over Ω) of the rate of pointwise convergence of ĝn(x) to g(x).
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Theorem 2.3 allows us to compute the optimal rate of convergence of ĝn. For the sake of simplicity, we shall
consider the case when α is more regular than g (i.e. ηα ≥ ηg) and F(y |x) = (1 − y)α(x) for all y ∈ [0, 1]
(namely, D is identically zero). In that case, the conditions on (pn) and (hn) reduce to

n p−α
n hd

n

log n
→ ∞ as n → ∞ and lim sup

n→∞
n p−α+2

n h
d+2ηg
n

log n
< ∞.

Up to the factor
√

log n, the optimal rate of convergence is obtained if pn has order nc1 and hn has order n−c2 ,
where (c1, c2) is a solution of the constrained optimization problem

(c1, c2) = argmax
(c, c′)∈Δ

1 + (2 − α)c − dc′

with Δ = {(c, c′) ∈ R
2 | 1 − α c − dc′ ≥ 0, 1 + (2 − α)c − (d + 2ηg)c′ ≤ 0, c, c′ > 0}.

This yields c1 = ηg/(d + α ηg) and c2 = 1/(d + α ηg), in which case the (optimal) rate of convergence has order
nηg/(d+α ηg). Let us note that this rate of convergence has been shown to be minimax by Härdle et al. [19] for
a particular class of densities in the case d = 1 with a L1 risk.

3. Proofs of the main results

Before proceeding to the proofs of our main results, we point out that, due to our hypotheses, all our results
and lemmas on the behavior of mpn(x), μpn(x) and μ̂pn(x) hold as well when pn is replaced by cpn, c > 1.

The key idea to show Theorem 2.1 is to prove a uniform law of large numbers for μ̂pn(x) in the nonparametric
setting.

Proposition 3.1. Assume that (NP1−NP3), (K) and (A1) hold. Let vn =

√
n hd

n

log n
inf
x∈Ω

μpn(x)
gpn(x)

. If pn → ∞,

vn → ∞ and pn h
ηg
n → 0 as n → ∞, then there exists a positive constant c > 0 such that for every ε > 0 and

every sequence of positive numbers (δn) converging to 0 such that δn vn → ∞, there exists a positive constant cε

with

P

(
δn vn sup

x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− 1
∣∣∣∣ > ε

)
= O
(

nc exp
[
−cε

log n

δ2
n

])
·

Consequently,

δn vn sup
x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− 1
∣∣∣∣→ 0 almost surely as n → ∞.

Proof of Proposition 3.1. The proof is based on that of Lemma 1 in Härdle and Marron [18]. Since Ω is a
compact subset of R

d, we may, for all n ∈ N \ {0}, find a finite subset Ωn of Ω such that:

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x − χ(x)‖ ≤ n−η and ∃ c > 0, |Ωn| = O(nc) ,

where |Ωn| stands for the cardinality of Ωn, and η = d−1 + η−1
K . Notice that, since n hd

n → ∞, one can assume
that eventually χ(x) ∈ B(x, hn) for all x ∈ Ω. Besides, since hn → 0, we can use Lemma A.1 and pick n so
large that B(x, 2hn) ⊂ E for all x ∈ Ω. Picking ε > 0, and letting

T1, n := P

(
δn vn sup

x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

∣∣∣∣ > ε

2

)
and T2, n :=

∑
ω∈Ωn

P

(
δn vn

∣∣∣∣ μ̂pn(ω)
μpn(ω)

− 1
∣∣∣∣ > ε

2

)
,
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the triangle inequality then yields

P

(
δn vn sup

x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− 1
∣∣∣∣ > ε

)
≤ T1, n + T2, n.

The goal of the proof is to show that

T1, n + T2, n = O
(

nc exp
[
−cε

log n

δ2
n

])
·

We start by controlling T1, n. For all x ∈ Ω,∣∣∣∣ μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

∣∣∣∣ ≤ 1
n

n∑
i=1

Y pn

i

∣∣∣∣Khn(x − Xi)
μpn(x)

− Khn(χ(x) − Xi)
μpn(χ(x))

∣∣∣∣ ,
and the triangle inequality entails∣∣∣∣Khn(x − Xi)

μpn(x)
− Khn(χ(x) − Xi)

μpn(χ(x))

∣∣∣∣ ≤ |Khn(x − Xi) − Khn(χ(x) − Xi)|
μpn(x)

+
|μpn(x) − μpn(χ(x))|

μpn(x)μpn(χ(x))
Khn(χ(x) − Xi).

Using hypothesis (K) and Lemma A.4, there exists a positive constant κ such that, for n large enough,

sup
x∈Ω

{
μpn(x)

∣∣∣∣Khn(x − Xi)
μpn(x)

− Khn(χ(x) − Xi)
μpn(χ(x))

∣∣∣∣} ≤ κ

hd
n

[
n−η

hn

]ηK

1l{X∈B(x, hn)∪B(χ(x), hn)}.

Since the support of the random variable Khn(χ(x) − Xi) is included in B(x, 2hn), one has

sup
x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

∣∣∣∣ ≤ κ

[
n−η

hn

]ηK

sup
x∈Ω

1
μpn(x)

∣∣∣∣∣ 1
n hd

n

n∑
i=1

Y pn

i 1l{Xi∈B(x, 2hn)}

∣∣∣∣∣ .
For all x ∈ Ω,

1
n

n∑
i=1

Y pn

i 1l{Xi∈B(x, 2hn)} ≤ sup
B(x, 2hn)

gpn

almost surely, and in view of (2.3), it follows that

sup
x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

∣∣∣∣ ≤ 2κ

[
n−η

hn

]ηK 1
hd

n

sup
x∈Ω

gpn(x)
μpn(x)

for n large enough. Finally, n hd
n → ∞ implies[

n−η

hn

]ηK

=
[

1
n hd

n

]ηK/d 1
n

= o
(

1
n

)
and therefore, we have the following bound:

δn vn sup
x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

∣∣∣∣ ≤ 2κ
δn

vn log n
→ 0

as n → ∞. Hence T1, n = 0 eventually.
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Let us now control T2, n. To this end, pick ω ∈ Ωn and introduce

Zn, i(ω) =
Y pn

i

sup
B(ω, hn)

gpn
K

(
ω − Xi

hn

)
·

Remark that |Zn, i(ω) − E(Zn, i(ω))| ≤ sup
B

K almost surely and thus

hd
n

μ̂pn(ω) − μpn(ω)
sup

B(ω, hn)

gpn
=

1
n

n∑
i=1

{
Zn, i(ω) − E(Zn, i(ω))

}
is a mean of bounded, centered, independent and identically distributed random variables. Defining

τn(ω) :=
ε

2 sup
B

K

1
δn vn

n μpn(ω)hd
n

sup
B(ω, hn)

gpn

and λn(ω) :=
ε

2
sup
B

K
1

δn vn

μpn(ω)hd
n

sup
B(ω, hn)

gpn

1
Var(Zn, 1(ω))

,

Bernstein’s inequality (see Hoeffding [20]) yields, for all ε > 0,

P

(
δn vn

∣∣∣∣ μ̂pn(ω)
μpn(ω)

− 1
∣∣∣∣ > ε

2

)
= P

⎛⎜⎝hd
n

∣∣∣∣∣∣∣
μ̂pn(ω) − μpn(ω)

sup
B(ω, hn)

gpn

∣∣∣∣∣∣∣ >
ε

2
1

δn vn

μpn(ω)hd
n

sup
B(ω, hn)

gpn

⎞⎟⎠
≤ 2 exp

(
− τn(ω)λn(ω)

2(1 + λn(ω)/3)

)
·

Using once again (2.3), we get, for n large enough,

inf
ω∈Ωn

τn(ω) ≥ ε

4 sup
B

K

vn log n

δn
·

Moreover, for all ω ∈ Ωn,

1
λn(ω)

=
2

ε sup
B

K
δn vn sup

B(ω, hn)

gpn h−d
n

[
E(Z2

n, 1(ω))
μpn(ω)

− [E(Zn, 1(ω))]2

μpn(ω)

]
,

and since sup
B(ω, hn)

gpn h−d
n Zn, 1(ω) = Y pn

1 Khn(ω − X1), it follows that

sup
B(ω, hn)

gpn h−d
n

[
E(Z2

n, 1(ω))
μpn(ω)

− [E(Zn, 1(ω))]2

μpn(ω)

]
≤ sup

B
K,

so that
sup

ω∈Ωn

1
λn(ω)

≤ 2
ε

δn vn.

Remarking that the function x 	→ 1/[2(x + 1/3)] is decreasing on R+, there exists a constant cε > 0 such that,
for all ω ∈ Ωn,

P

(
δn vn

∣∣∣∣ μ̂pn(ω)
μpn(ω)

− 1
∣∣∣∣ > ε

2

)
≤ 2 exp

(
−cε

log n

δ2
n

)
,
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for all n large enough. Taking into account that |Ωn| = O(nc), this implies that

T2, n = O
(

nc exp
[
−cε

log n

δ2
n

])
.

Notice now that the above bound yields

∀ ε > 0,
∑

n

P

(
δn vn sup

x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− 1
∣∣∣∣ > ε

)
< ∞

and use Borel−Cantelli’s lemma to get the final part of the result. �

With Proposition 3.1 at hand, we can now prove Theorem 2.1.

Proof of Theorem 2.1. Since g is positive and continuous on the compact set Ω, it is bounded from below by a
positive constant. It is then enough to prove that

sup
x∈Ω

∣∣∣∣ 1
ĝn(x)

− 1
g(x)

∣∣∣∣→ 0 almost surely as n → ∞.

To this end, notice that

μ̂(a+1)pn
(x)

μ̂(a+1)pn+1(x)
=

μ(a+1)pn
(x)

μ(a+1)pn+1(x)
μ̂(a+1)pn

(x)
μ(a+1)pn

(x)

[
μ̂(a+1)pn+1(x)
μ(a+1)pn+1(x)

]−1

and
μ̂pn(x)

μ̂pn+1(x)
=

μpn(x)
μpn+1(x)

μ̂pn(x)
μpn(x)

[
μ̂pn+1(x)
μpn+1(x)

]−1

.

Using again the positivity and the continuity of g on the compact set Ω, Lemma A.3(iii) yields

sup
x∈Ω

∣∣∣∣μpn+1(x)
μpn(x)

− g(x)
∣∣∣∣→ 0 and sup

x∈Ω

∣∣∣∣μ(a+1)pn+1(x)
μ(a+1)pn

(x)
− g(x)

∣∣∣∣→ 0.

Since μ(a+1)pn
(x)/g(a+1)pn(x) ≤ μpn(x)/gpn(x) (1 + o(1)) uniformly in x ∈ Ω, Proposition 3.1 entails

sup
x∈Ω

∣∣∣∣ μ̂(a+1)pn
(x)

μ̂(a+1)pn+1(x)
− 1

g(x)

∣∣∣∣→ 0 and sup
x∈Ω

∣∣∣∣ μ̂pn(x)
μ̂pn+1(x)

− 1
g(x)

∣∣∣∣→ 0 (3.1)

almost surely as n → ∞. The result follows by reporting (3.1) into (1.1). �

Before proving Corollary 2.2, a further examination of the behavior of the high order moment μpn(x) is
needed. The next result gives a uniform equivalent of the moment μpn(x) in the semiparametric framework.

Proposition 3.2. Assume that (SP ), (K), (A1−A2) hold, pn → ∞ and pn h
ηg
n → 0 as n → ∞. Then

sup
x∈Ω

∣∣∣∣∣ μpn(x)

f(x)C(x)Γ (α(x) + 1) gpn(x) p
−α(x)
n

− 1

∣∣∣∣∣→ 0 as n → ∞.

Proof of Proposition 3.2. Let us introduce Fγ(y |x) = (1−y)γ(x) for all y ∈ [0, 1]. In the semiparametric setting
(SP ), F(· |x) can be written as

∀ y ∈ [0, 1], F(y |x) = C(x)Fα(y |x) + D
(
x, (1 − y)−1

)
Fα+β(y |x)·
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Using Lemma A.1, we can pick n large enough such that B(x, hn) ⊂ E for all x ∈ Ω. Pick then x ∈ Ω, and set

Mn(pn, x) :=
∫

E

f(v)C(v) gpn(v)Khn(x − v)
[
pn

∫ ∞

0

ypn−1Fα(y | v) dy

]
dv (3.2)

=
∫

B

(fCgpn)(x − hnu) pn b(pn, α(x − hnu) + 1)K(u) du

where b(x, y) =
∫ 1

0

tx−1 (1− t)y−1 dt is the Beta function. With these notations, the high order moment μpn(x)

can be rewritten as

μpn(x) = Mn(pn, x)[1 + εn(pn, x)] where εn(pn, x) =
En(pn, x)
Mn(pn, x)

(3.3)

and with

En(pn, x) :=
∫

B

(fgpn)(x − hnu) pn Iα+β, D(pn, x − hnu)K(u) du (3.4)

where Iα+β, D(pn, v) :=
∫ 1

0

ypn−1 Fα+β(y | v)D
(
v, (1 − y)−1

)
dy. (3.5)

Lemma A.9 and (3.3) entail

sup
x∈Ω

∣∣∣∣ μpn(x)
Mn(pn, x)

− 1
∣∣∣∣→ 0 as n → ∞.

It is therefore enough to show that

sup
x∈Ω

∣∣∣∣∣ Mn(pn, x)

f(x)C(x)Γ (α(x) + 1) gpn(x) p
−α(x)
n

− 1

∣∣∣∣∣→ 0 as n → ∞.

Lemma A.6 establishes that

sup
x∈Ω

∣∣∣∣ Mn(pn, x)
f(x)C(x)α(x) gpn (x) b(pn + 1, α(x))

− 1
∣∣∣∣→ 0 as n → ∞.

Finally, Lemma A.5 gives

sup
x∈Ω

∣∣∣∣∣α(x) b(pn + 1, α(x))

Γ (α(x) + 1) p
−α(x)
n

− 1

∣∣∣∣∣→ 0 as n → ∞

and the result is proven. �

Corollary 2.2 can now be shown.

Proof of Corollary 2.2. It is enough to check that the hypotheses of Theorem 2.1 are satisfied. This is clearly
the case for (NP1) and (NP2); besides, for all c ≥ 1, Proposition 3.2 yields

sup
x∈Ω

∣∣∣∣ μcpn(x)
f(x)C(x)Γ (α(x) + 1) gcpn(x) (cpn)−α(x)

− 1
∣∣∣∣→ 0 as n → ∞.

Using Lemma A.3 then gives

sup
x∈Ω

∣∣∣∣∣∣∣∣
∫ 1

0

ycpn−1F(y |x) dy

C(x)Γ (α(x) + 1) (cpn)−α(x)
− 1

∣∣∣∣∣∣∣∣→ 0 as n → ∞.



10 S. GIRARD ET AL.

The hypothesis pn h
ηg
n → 0 thus makes it clear that (NP3) holds as well in this setting. Finally, Proposition 3.2

entails

sup
x∈Ω

∣∣∣∣∣ μ(a+1)pn
(x)/g(a+1)pn(x)

f(x)C(x)Γ (α(x) + 1) [(a + 1)pn]−α(x)
− 1

∣∣∣∣∣→ 0 as n → ∞.

Consequently, for n large enough there exists some positive constant ε > 0 such that

n hd
n

log n
inf
x∈Ω

μ(a+1)pn
(x)

g(a+1)pn(x)
≥ ε

n p−α
n hd

n

log n
→ ∞ as n → ∞

which concludes the proof. �

In order to prove Theorem 2.3, since the expression of our frontier estimator involve ratios such as
μ̂pn(x)/μ̂pn+1(x), we shall first compute an asymptotic expansion of μpn(x)/μpn+1(x):

Proposition 3.3. Assume that (SP ), (K) and (A1−A2) hold. If pn → ∞ and pn h
ηg
n → 0, then

sup
x∈Ω

{
1

h
ηg
n ∨ p−1

n hηα
n ∨ p

−β(x)−1
n

∣∣∣∣ μpn(x)
μpn+1(x)

− 1
g(x)

[
1 +

α(x)
pn + 1

]∣∣∣∣
}

= O(1).

Proof of Proposition 3.3. Remark that, with the notations of Proposition 3.2 above, we have

μpn(x)
μpn+1(x)

=
Mn(pn, x)

Mn(pn + 1, x)
[1 + τn(pn, x)] (3.6)

where τn(pn, x) :=
εn(pn, x) − εn(pn + 1, x)

1 + εn(pn + 1, x)
·

Using Lemma A.1, we can pick n large enough such that B(x, hn) ⊂ E for all x ∈ Ω. Recall then the notations
of Lemma A.6 and write

sup
x∈Ω

∣∣∣∣∣∣∣∣
{

1
g(x)

[
1 +

α(x)
pn + 1

]}−1
Mn(pn, x)

Mn(pn + 1, x)
−

∫
B

Ln(pn, x, u)K(u) du∫
B

Ln(pn + 1, x, u)K(u) du

∣∣∣∣∣∣∣∣ = O
(

hηg
n ∨ hηα

n

pn

)
·

Since Ln(pn + 1, x, u) > 0, it follows that

sup
x∈Ω

∣∣∣∣∣∣∣∣
∫

B

Ln(pn, x, u)K(u) du∫
B

Ln(pn + 1, x, u)K(u) du

− 1

∣∣∣∣∣∣∣∣ ≤ sup
x∈Ω

sup
u∈B

∣∣∣∣ Ln(pn, x, u)
Ln(pn + 1, x, u)

− 1
∣∣∣∣ = O

(
hηg

n ∨ hηα
n

pn

)
·

Lemma A.6 entails

sup
x∈Ω

∣∣∣∣∣
{

1
g(x)

[
1 +

α(x)
pn + 1

]}−1
Mn(pn, x)

Mn(pn + 1, x)
− 1

∣∣∣∣∣ = O
(

hηg
n ∨ hηα

n

pn

)
·

Besides, applying Lemma A.9 yields sup
x∈Ω

∣∣∣pβ(x)+1
n τn(pn, x)

∣∣∣ = O(1). Replacing in (3.6) concludes the Proof of

Proposition 3.3. �

We can now give a Proof of Theorem 2.3.
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Proof of Theorem 2.3. Since, by Theorem 2.1, sup
x∈Ω

|ĝn(x) − g(x)| → 0 almost surely, it is enough to prove that

wn sup
x∈Ω

∣∣∣∣ 1
ĝn(x)

− 1
g(x)

∣∣∣∣ = O (1) almost surely as n → ∞.

Introducing

1
Gn(x)

=
1

apn

[
((a + 1)pn + 1)

μ(a+1)pn
(x)

μ(a+1)pn+1(x)
− (pn + 1)

μpn(x)
μpn+1(x)

]
and ξn(x) =

1
ĝn(x)

− 1
Gn(x)

the quantity of interest can be expanded as

1
ĝn(x)

− 1
g(x)

= ξn(x) +
[

1
Gn(x)

− 1
g(x)

]
·

Both terms are considered separately. The bias term is readily controlled by Proposition 3.3:

wn sup
x∈Ω

∣∣∣∣ 1
Gn(x)

− 1
g(x)

∣∣∣∣ = O
(

wn

{
hηg

n ∨ hηα
n

pn
∨ p

−β−1
n

})
= O(1)

in view of the hypotheses on (pn) and (hn). Let us now consider the random term ξn(x). Lemma A.7 shows that

ξn(x) =
1

apn

[
ζ(1)
n (x) − ζ(2)

n (x) +
(

μpn+1(x)
μ̂pn+1(x)

− 1
)

ζ(1)
n (x) −

(
μ(a+1)pn+1(x)
μ̂(a+1)pn+1(x)

− 1
)

ζ(2)
n (x)

]
.

In view of Proposition 3.1, it is therefore sufficient to show that

wn

pn
sup
x∈Ω

∣∣∣ζ(1)
n (x)

∣∣∣ = O(1) and
wn

pn
sup
x∈Ω

∣∣∣ζ(2)
n (x)

∣∣∣ = O (1) (3.7)

almost surely as n → ∞. We shall only prove the result for ζ
(1)
n (x), since the result will then be obtained for

ζ
(2)
n (x) by replacing pn with (a+1)pn. To this end, we mimick the Proof of Proposition 3.1. For all n ∈ N \ {0},

let Ωn be a finite subset of Ω such that:

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x − χ(x)‖ ≤ n−η and ∃ c > 0, |Ωn| = O(nc) ,

where η = d−1 + η−1
K

[
1 + α−1

]
and assume that n is large enough so that χ(x) ∈ B(x, hn) and, by Lemma A.1,

such that B(x, 2hn) ⊂ E for all x ∈ Ω. Pick ε > 0 and an arbitrary positive sequence (δn) converging to 0, and
let

T1, n := P

(
δn

wn

pn
sup
x∈Ω

∣∣∣ζ(1)
n (x) − ζ(1)

n (χ(x))
∣∣∣ > ε

2

)
and T2, n :=

∑
ω∈Ωn

P

(
δn

wn

pn

∣∣∣ζ(1)
n (ω)

∣∣∣ > ε

2

)
·

The goal is then to show that both series
∑

n T1, n and
∑

n T2, n converge. Noting that

δn ≤ δn ∨
√

pn

wn
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we shall assume without loss of generality that δn

√
n p−α

n hd
n/ logn → ∞. Let first

T3, n := P

(
δn wn sup

x∈Ω

∣∣∣∣ μpn(χ(x))
μpn+1(χ(x))

[
μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

]∣∣∣∣ > ε

16

)
,

T4, n := P

(
δn wn sup

x∈Ω

∣∣∣∣ μpn(χ(x))
μpn+1(χ(x))

[
μ̂pn+1(x)
μpn+1(x)

− μ̂pn+1(χ(x))
μpn+1(χ(x))

]∣∣∣∣ > ε

16

)
,

T5, n := P

(
δn wn sup

x∈Ω

∣∣∣∣[ μpn(x)
μpn+1(x)

− μpn(χ(x))
μpn+1(χ(x))

] [
μ̂pn(x)
μpn(x)

− 1
]∣∣∣∣ > ε

16

)
,

and T6, n := P

(
δn wn sup

x∈Ω

∣∣∣∣[ μpn(x)
μpn+1(x)

− μpn(χ(x))
μpn+1(χ(x))

] [
μ̂pn+1(x)
μpn+1(x)

− 1
]∣∣∣∣ > ε

16

)
,

so that for all sufficiently large n, T1, n ≤ T3, n +T4, n +T5, n +T6, n. A proof similar to the one of Proposition 3.1
gives the bound

sup
x∈Ω

∣∣∣∣ μ̂pn(x)
μpn(x)

− μ̂pn(χ(x))
μpn(χ(x))

∣∣∣∣ ≤ κ

[
n−η

hn

]ηK 1
hd

n

sup
x∈Ω

pα(x)
n

for n large enough, where κ is a positive constant. Remark that n p−α
n → ∞ and n hd

n → ∞ yield

pn

[
n−η

hn

]ηK

=
[

1
n p−α

n

]1/α [ 1
n hd

n

]ηK/d 1
n

= o
(

1
n

)
·

Recalling that, from Proposition 3.1,

vn =

√
n hd

n

log n
inf
x∈Ω

μpn(x)
gpn(x)

Proposition 3.2 yields wn = pn vn and therefore, applying Proposition 3.3, T3, n = 0 and T4, n = 0 eventually as
n → ∞, so that

∑
n T3, n and

∑
n T4, n converge. Furthermore, since χ(x) ∈ B(x, hn), Proposition 3.3 entails

sup
x∈Ω

∣∣∣∣ μpn(x)
μpn+1(x)

− μpn(χ(x))
μpn+1(χ(x))

∣∣∣∣ = O
(

hηg
n ∨ hηα

n

pn
∨ p

−β−1
n

)
. (3.8)

Using once again the equality wn = pn vn and (3.8) together with Proposition 3.1 shows that
∑

n T5, n and∑
n T6, n converge. As a consequence,

∑
n T1, n converges.

To control T2, n, we shall, as in the Proof of Proposition 3.1, show that there exists a positive constant cε

such that for all sufficiently large n,

∀ω ∈ Ωn, P

(
δn

wn

pn

∣∣∣ζ(1)
n (ω)

∣∣∣ > ε

2

)
≤ exp

(
−cε

log n

δ2
n

)
·

Pick ω ∈ Ωn and let us consider the random variables

Sn, i(ω) = Y pn

i

[
−1 +

μpn(ω)
μpn+1(ω)

Yi

]
Khn(ω − Xi), i = 1, . . . , n

such that

ζ(1)
n (ω) =

pn + 1
μpn+1(ω)

1
n

n∑
i=1

Sn, i(ω). (3.9)

Let now Un, i(ω) = Yi

/
sup

B(ω, hn)

g , so that Un, i(ω) ≤ 1 given {Xi ∈ B(ω, hn)}. It follows that

hd
n

sup
B(ω, hn)

gpn
Sn, i(ω) = Upn

n, i(ω)

[
−1 + sup

B(ω, hn)

g
μpn(ω)

μpn+1(ω)
Un, i(ω)

]
K

(
ω − Xi

hn

)
·
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Using Proposition 3.3, the Hölder continuity of g and the fact that pn h
ηg
n → 0 therefore yields, for n sufficiently

large,

(pn + 1) sup
ω∈Ωn

∣∣∣∣∣∣∣
hd

n

sup
B(ω, hn)

gpn
Sn, i(ω) − Upn

n, i(ω) [Un, i(ω) − 1]K
(

ω − Xi

hn

)∣∣∣∣∣∣∣ ≤ κ′

where κ′ is a positive constant. Some straightforward real analysis shows that

(pn + 1) sup
u∈[0, 1]

upn(1 − u) =
[
1 − 1

pn + 1

]pn

→ e−1 < ∞.

Consequently, there exists a positive constant κ′′ such that, for n large enough,

(pn + 1) sup
ω∈Ωn

∣∣∣∣∣∣∣
hd

n

sup
B(ω, hn)

gpn
Sn, i(ω)

∣∣∣∣∣∣∣ ≤ κ′′.

The random variables

Zn, i(ω) = (pn + 1)
hd

n

sup
B(ω, hn)

gpn
Sn, i(ω), i = 1, . . . , n

are therefore uniformly bounded, centered, independent and identically distributed. Let

τn(ω) :=
ε

2κ′′
pn

δn wn

n μpn+1(ω)hd
n

sup
B(ω, hn)

gpn

and λn(ω) :=
εκ′′

2
pn

δn wn

μpn+1(ω)hd
n

sup
B(ω, hn)

gpn

1
Var(Zn, 1(ω))

=
εκ′′

2
pn

δn wn
μpn+1(ω) sup

B(ω, hn)

gpn
(pn + 1)−2 h−d

n

E|Sn, 1(ω)|2 ·

Recalling (3.9), Bernstein’s inequality yields, for all ε > 0 and n large enough,

∀ω ∈ Ωn, P

(
δn

wn

pn

∣∣∣ζ(1)
n (ω)

∣∣∣ > ε

2

)
≤ 2 exp

(
− τn(ω)λn(ω)

2(1 + λn(ω)/3)

)
·

Proposition 3.2, equation (2.3) and the equality wn = pn vn entail

inf
ω∈Ωn

τn(ω) ≥ ε

4κ′′ inf
Ω

g

√
log n

δn

√
n p−α

n hd
n

for large enough n. Moreover, straightforward computations yield

∀ y ∈ [0, 1], sup
x∈Ω

sup
u∈B

∣∣∣∣−1 +
μpn(x)

μpn+1(x)
g(x − hnu) y

∣∣∣∣ ≤ (1 − y) +
α(x)y + νn(y)

pn
,

with νn being a sequence of Borel functions converging uniformly to 0. Lemma A.10 thus shows that

sup
x∈Ω

∣∣∣∣∣ E|Sn, 1(x)|2

g2pn(x) p
−α(x)−2
n h−d

n

∣∣∣∣∣ = O(1) as n → ∞.
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Consequently, applying Proposition 3.2 to μpn+1(ω) entails

sup
ω∈Ωn

1
λn(ω)

= O

⎛⎝δn

√
n p−α

n hd
n

log n

⎞⎠
as n → ∞. Thus, using once again the fact that the function x 	→ 1/[2(x + 1/3)] is decreasing on R+, we get
that there exists a constant cε > 0 such that for all n large enough,

∀ω ∈ Ωn, P

(
δn

wn

pn

∣∣∣ζ(1)
n (ω)

∣∣∣ > ε

2

)
≤ 2 exp

(
−cε

log n

δ2
n

)
·

As a consequence,
∑

n T2, n converges and (3.7) is proven: applying Lemma A.11 completes the Proof of
Theorem 2.3. �

Appendix: Auxiliary results and proofs

The first lemma of this section is a topological result which shall be needed in several proofs.

Lemma A.1. There exists β > 0 such that for every x ∈ Ω, B(x, β) ⊂ E.

Proof of Lemma A.1. Let U denote the interior of E and ∂E = E \U be the (topological) boundary of E. Note
that ∂E is a closed set since it is the intersection of two closed sets in R

d; since Ω is a compact set and ∂E is a
closed set with Ω ∩ ∂E = ∅, it holds that

∃β > 0, d(Ω, ∂E) := inf
x∈Ω

inf
e∈∂E

‖x − e‖ = 2β > 0. (A.1)

We shall now prove the result. Pick x ∈ Ω. If one could find y ∈ B(x, β) ∩Ec – where Ec is the complement of
the set E – then the real number

t0 = inf{t ∈ [0, 1] | zt := (1 − t)x + ty /∈ E}

would belong to (0, 1) since x ∈ U and y ∈ Ec which are both open sets. Therefore, because for every t ∈ (0, t0),
zt ∈ E and there exists a nonincreasing sequence (tk) converging to t0 such that (ztk

) ⊂ Ec ⊂ U c which is a
closed set, one has

zt0 = lim
t↑t0

zt ∈ E and zt0 = lim
k→∞

ztk
∈ U c.

Hence zt0 ∈ ∂E, but ‖x − zt0‖ = t0‖x − y‖ < β, which contradicts (A.1): Lemma A.1 is proven. �

We proceed with a technical result we shall need to examine the properties of mpn(x) and μpn(x) in Lemma A.3
below. It essentially shows that the computation of a conditional high order moment is controlled by the behavior
of the conditional survival function F(· |x) in a neighborhood of 1.

Lemma A.2. Let h be a positive bounded Borel function on (0, 1), and let pn → ∞. If (NP1−NP2) hold, then
for all ε ∈ (0, 1 − y0),

sup
x∈Ω

∣∣∣∣∣∣∣∣∣
∫ 1

1−ε

ypn−1 h(y)F(y |x) dy∫ 1

0

ypn−1 h(y)F(y |x) dy

− 1

∣∣∣∣∣∣∣∣∣
→ 0 as n → ∞.
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Proof of Lemma A.2. Let ε ∈ (0, 1 − y0), x ∈ Ω and consider the expansion

∫ 1

0

ypn−1 h(y)F(y |x) dy =
∫ 1

1−ε

ypn−1 h(y)F(y |x) dy

⎡⎢⎢⎢⎣1 +

∫ 1−ε

0

ypn−1 h(y)F(y |x) dy∫ 1

1−ε

ypn−1 h(y)F(y |x) dy

⎤⎥⎥⎥⎦ ·
Since, for all y ∈ [1 − ε, 1], the function x 	→ F(y |x) is positive and continuous on Ω, it is clear that
inf
x∈Ω

F(y |x) > 0. Consequently

0 ≤ sup
x∈Ω

∣∣∣∣∣∣∣∣∣
∫ 1−ε

0

ypn−1 h(y)F(y |x) dy∫ 1

1−ε

ypn−1 h(y)F(y |x) dy

∣∣∣∣∣∣∣∣∣ ≤ sup
x∈Ω

∣∣∣∣∣∣∣∣∣
(1 − ε) sup

(0, 1)

h∫ 1

1−ε

[
y

1 − ε

]pn−1

h(y)F(y |x) dy

∣∣∣∣∣∣∣∣∣
≤

(1 − ε) sup
(0, 1)

h[
1 − ε/2
1 − ε

]pn−1 ∫ 1

1−ε/2

h(y) inf
x∈Ω

F(y |x) dy

·

Remarking that
[
1 − ε/2
1 − ε

]pn−1

→ ∞ as n → ∞, we get the desired result. �

The following lemma examines the behavior of the conditional high order moment mpn(x) and its smoothed
version μpn(x) in the nonparametric context.

Lemma A.3. Assume that (NP1−NP3) and (A1) hold. Let K be a probability density function on R
d with

support included in B. If pn → ∞ and pn h
ηg
n → 0 as n → ∞, then

(i) supx∈Ω

∣∣∣ μpn (x)
f(x) mpn(x) − 1

∣∣∣→ 0 as n → ∞;

(ii) supx∈Ω

∣∣∣mpn+1(x)
mpn(x) − g(x)

∣∣∣→ 0 as n → ∞;

(iii) supx∈Ω

∣∣∣μpn+1(x)
μpn (x) − g(x)

∣∣∣→ 0 as n → ∞.

Proof of Lemma A.3. Before starting the proof of this result, use Lemma A.1 to pick n large enough such that
B(x, hn) ⊂ E for all x ∈ Ω.

(i) Let us remark that

μpn(x) =
∫

B

K(u) f(x − hnu)mpn(x − hnu) du,

so that
μpn(x)

f(x)mpn(x)
=
∫

B

K(u)
f(x − hnu)

f(x)
mpn(x − hnu)

mpn(x)
du.

Besides,

mpn(x − hnu)
mpn(x)

=
gpn(x − hnu)

gpn(x)

∫ 1

0

ypn−1F(y |x − hnu) dy∫ 1

0

ypn−1F(y |x) dy

·
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From (2.1), (2.3) and hypothesis (NP3), it follows that

μpn(x)
f(x)mpn(x)

→
∫

B

K(u) du = 1

uniformly in x ∈ Ω as n → ∞, which proves (i).
(ii) Similarly, we have

mpn+1(x)
mpn(x)

= g(x)
[
1 +

1
pn

] ∫ 1

0

ypnF(y |x) dy∫ 1

0

ypn−1F(y |x) dy

·

Note that

1 −

∫ 1

0

ypnF(y |x) dy∫ 1

0

ypn−1F(y |x) dy

=

∫ 1

0

ypn−1(1 − y)F(y |x) dy∫ 1

0

ypn−1F(y |x) dy

and let ε ∈ (0, 1 − y0). Lemma A.2 shows that, for all n large enough,

sup
x∈Ω

∣∣∣∣∣∣∣∣1 −

∫ 1

0

ypnF(y |x) dy∫ 1

0

ypn−1F(y |x) dy

∣∣∣∣∣∣∣∣ ≤ (1 + ε) sup
x∈Ω

∣∣∣∣∣∣∣∣∣
∫ 1

1−ε

ypn−1(1 − y)F(y |x) dy∫ 1

1−ε

ypn−1F(y |x) dy

∣∣∣∣∣∣∣∣∣
≤ ε(1 + ε)

and the result follows.
(iii) is a consequence of (i) and (ii). �

The fourth lemma of this section establishes a uniform control of the relative oscillation of μpn .

Lemma A.4. Assume that (NP1−NP3), (K) and (A1) hold. Let (εn) be a sequence of positive real numbers
such that εn ≤ hn. If pn → ∞ and pn h

ηg
n → 0 as n → ∞, then

sup
x∈Ω

sup
z∈B(x, εn)

∣∣∣∣μpn(z)
μpn(x)

− 1
∣∣∣∣ = O

([
εn

hn

]ηK
)
·

Proof of Lemma A.4. For all x ∈ Ω and z ∈ B(x, εn), we have

|μpn(x) − μpn(z)| ≤ E (Y pn |Khn(x − X) − Khn(z − X)|) .

Hypothesis (K) and the inclusion B(z, hn) ⊂ B(x, 2hn) now entail

|Khn(x − X) − Khn(z − X)| ≤ cK

hd
n

[
‖x − z‖

hn

]ηK

1l{X∈B(x, hn)∪B(y, hn)}

≤ cK

hd
n

[
εn

hn

]ηK

1l{X∈B(x, 2hn)}.

Let V be the volume of the unit ball in R
d, K = 1lB/V be the uniform kernel on R

d and let Kh(u) = h−d K(u/h).
The oscillation of μpn(x) is controlled as

sup
z∈B(x, εn)

|μpn(x) − μpn(z)| ≤ 2d cKV E (Y pn K2hn(x − X))
[

εn

hn

]ηK

· (A.2)
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Note that K is a probability density function on R
d with support included in B. Therefore, Lemma A.3(i) yields

sup
x∈Ω

∣∣∣∣E (Y pn K2hn(x − X))
f(x)mpn(x)

− 1
∣∣∣∣→ 0 as n → ∞.

Applying Lemma A.3(i) once again gives

sup
x∈Ω

∣∣∣∣E (Y pn K2hn(x − X))
μpn(x)

− 1
∣∣∣∣→ 0 as n → ∞

which, together with (A.2), yields the result. �

Lemma A.5 below is a useful tool in establishing uniform expansions for ratios of Gamma functions:

Lemma A.5. For all z, z′ > 0, one has

log
Γ (z)
Γ (z′)

=
(

z − 1
2

)
log z −

(
z′ − 1

2

)
log z′ − (z − z′) + O

(∣∣∣∣1z − 1
z′

∣∣∣∣) ·

Proof of Lemma A.5. From (6.1.50) in Abramovitz and Stegun ([1], p. 258), one has

log Γ (z) =
(

z − 1
2

)
log z − z +

1
2

log 2π + 2
∫ ∞

0

arctan(t/z)
e2πt − 1

dt.

Now, since x 	→ arctanx is a Lipschitz function on R, it follows that∣∣∣∣∫ ∞

0

arctan(t/z)
e2πt − 1

dt −
∫ ∞

0

arctan(t/z′)
e2πt − 1

dt

∣∣∣∣ ≤ ∣∣∣∣1z − 1
z′

∣∣∣∣ ∫ ∞

0

t

e2πt − 1
dt

Remarking that the integral on the right-hand side is convergent yields∣∣∣∣∫ ∞

0

arctan(t/z)
e2πt − 1

dt −
∫ ∞

0

arctan(t/z′)
e2πt − 1

dt

∣∣∣∣ = O
(∣∣∣∣1z − 1

z′

∣∣∣∣)
and the result follows. �

The next result of this section is a generalisation of Lemma 2 in Girard et al. [12]. It provides a uniform
expansion of Mn(pn, x), see (3.2) in the Proof of Proposition 3.2, which is the key to the Proof of Proposition 3.3.

Lemma A.6. Assume that (K) and (A1−A2) hold. For all x ∈ Ω, u ∈ B and n ∈ N \ {0}, let

Ln(pn, x, u)=
(fC)(x − hnu)Γ (α(x − hnu) + 1)

(fC)(x)Γ (α(x) + 1)
exp
[
pn

Δg
n(x, u)
g(x)

− log(pn)Δα
n(x, u)

]
,

Λn(pn, x)=
Mn(pn, x)

f(x)C(x) gpn(x)
.

If pn → ∞ and pn h
ηg
n → 0, then

sup
x∈Ω

∣∣∣∣ Λn(pn, x)
α(x)b(pn + 1, α(x))

− 1
∣∣∣∣→ 0

and

sup
x∈Ω

∣∣∣∣ Λn(pn, x)
α(x)b(pn + 1, α(x))

−
∫

B

Ln(pn, x, u)K(u) du

∣∣∣∣ = O
(

hηg
n ∨ hηα

n

pn

)
·
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Proof of Lemma A.6. Using Lemma A.1, we can pick n large enough such that B(x, hn) ⊂ E for all x ∈ Ω.
Introducing

Qn(x, u) =
(fC)(x − hnu)Γ (α(x − hnu) + 1)

(fC)(x)Γ (α(x) + 1)
, (A.3)

we have
Λn(pn, x)

α(x) b(pn + 1, α(x))
=
∫

B

Qn(x, u)
Γ (pn + 1 + α(x))

Γ (pn + 1 + α(x − hnu))
gpn(x − hnu)

gpn(x)
K(u) du. (A.4)

The set Ω being a compact set, the set Ω′ = {x′ ∈ R
d | ∃x ∈ Ω, ‖x−x′‖ ≤ hn} is compact as well, and Ω′ ⊂ E:

since f, C and α are continuous on the compact set Ω′ ⊂ E, they are uniformly continuous on Ω′. Furthermore,
since α is bounded on Ω′ and Γ is continuous on (0, ∞), the function x 	→ Γ (α(x) + 1) is uniformly continuous
on Ω′, so that

sup
x∈Ω

sup
u∈B

|Qn(x, u) − 1| → 0 (A.5)

as n → ∞. Moreover, since pn h
ηg
n → 0, we get

sup
x∈Ω

sup
u∈B

| log(pn)Δα
n(x, u)| = O(hηα

n | log pn|) = O

([
hηg

n pn

]ηα/ηg | log pn|
p

ηα/ηg
n

)
→ 0

as n → ∞ and Lemma A.5 yields

sup
x∈Ω

sup
u∈B

∣∣∣∣exp(log(pn)Δα
n(x, u))

Γ (pn + 1 + α(x))
Γ (pn + 1 + α(x − hnu))

− 1
∣∣∣∣ = O

(
hηα

n

pn

)
· (A.6)

Besides,
gpn(x − hnu)

gpn(x)
= exp

[
pn log

(
1 +

Δg
n(x, u)
g(x)

)]
(A.7)

where

sup
x∈Ω

sup
u∈B

pn

∣∣∣∣Δg
n(x, u)
g(x)

∣∣∣∣→ 0

as n → ∞, see (2.2). Replacing (A.5)−(A.7) in (A.4) gives both results. �

The aim of Lemma A.7 below is to linearise the random variable ξn(x) appearing in the Proof of Theorem 2.3:

Lemma A.7. The random variable ξn(x) can be expanded as

ξn(x) =
1

apn

[
ζ(1)
n (x) − ζ(2)

n (x) +
(

μpn+1(x)
μ̂pn+1(x)

− 1
)

ζ(1)
n (x) −

(
μ(a+1)pn+1(x)
μ̂(a+1)pn+1(x)

− 1
)

ζ(2)
n (x)

]
where

ζ(1)
n (x)=(pn + 1)

μpn(x)
μpn+1(x)

[
μ̂pn+1(x)
μpn+1(x)

− μ̂pn(x)
μpn(x)

]
and ζ(2)

n (x)=[(a + 1)pn + 1]
μ(a+1)pn

(x)
μ(a+1)pn+1(x)

[
μ̂(a+1)pn+1(x)
μ(a+1)pn+1(x)

−
μ̂(a+1)pn

(x)
μ(a+1)pn

(x)

]
·

Proof of Lemma A.7. Straightforward computations yield

apn ξn(x) = D(1)
n (x) − D(2)

n (x) (A.8)
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with

D(1)
n (x) := (pn + 1)

μpn(x)
μpn+1(x)

μpn+1(x)
μ̂pn+1(x)

[
μ̂pn+1(x)
μpn+1(x)

− μ̂pn(x)
μpn(x)

]
,

D(2)
n (x) := [(a + 1)pn + 1]

μ(a+1)pn
(x)

μ(a+1)pn+1(x)
μ(a+1)pn+1(x)
μ̂(a+1)pn+1(x)

[
μ̂(a+1)pn+1(x)
μ(a+1)pn+1(x)

−
μ̂(a+1)pn

(x)
μ(a+1)pn

(x)

]
·

This leads to

D(1)
n (x) =

μpn+1(x)
μ̂pn+1(x)

ζ(1)
n (x) and D(2)

n (x) =
μ(a+1)pn+1(x)
μ̂(a+1)pn+1(x)

ζ(2)
n (x);

replacing in (A.8) concludes the Proof of Lemma A.7. �

We shall next take a closer look at the behavior of the functions εn(pn, x), see (3.3) in the Proof of Propo-
sition 3.2. We first introduce some tools necessary for this study. For an arbitrary set S, F(S) is the set of all
sequences of functions un : N×S → R, denoted by un(t, x). Let C(S) ⊂ F(S) be the subset of all the elements
u ∈ F(S) such that u meets the following requirements:

(Q1) There exists N1 ∈ N such that for all t ∈ N, sup
n≥N1

sup
x∈S

|un(t, x)| < ∞.

(Q2) There exists N2 ∈ N such that for all t, t′ ∈ N, pn sup
n≥N2

sup
x∈S

|un(t′, x) − un(t, x)| < ∞.

Finally, D(S) is a subset of C(S) whose elements are bounded from below:

D(S) = {u ∈ C(S) | ∃N0 ∈ N, ∀ t ∈ N, ∃M(t) > 0, inf
n≥N0

inf
x∈S

un(t, x) ≥ M(t)}.

Lemma A.8 lists some properties of the sets C(S) and D(S).

Lemma A.8. Let S be an arbitrary set. Then:

(i) C(S) is a linear subspace of F(S) which is closed under multiplication;
(ii) D(S) is closed under multiplication and division;
(iii) Let u ∈ F(S) such that there exists a sequence of uniformly bounded real functions (δn) on S with

∀ t ∈ N, sup
x∈S

∣∣∣∣un(t, x) −
[
1 +

δn(x)
pn + t

]∣∣∣∣ = o
(

1
pn

)
·

Then u ∈ D(S).
(iv) If (S′, T , μ) is a finite measure space and if u ∈ C(S×S′) (resp. D(S×S′)) is such that x′ 	→ un(t, (x, x′))

is measurable for every t ∈ N and x ∈ S, then

(n, t, x) 	→
∫
S′

un(t, (x, x′))μ(dx′) ∈ C(S) (resp. D(S)).

Proof of Lemma A.8. (i) Since it is straightforward that C(S) is a linear subspace of F(S), it is enough to
prove that C(S) is closed under multiplication. Let u, v ∈ C(S) and let wn(t, x) = un(t, x) vn(t, x). One
has, for all x ∈ S and t, t′ ∈ N:

wn(t′, x) − wn(t, x) = un(t′, x)[vn(t′, x) − vn(t, x)] + vn(t, x)[un(t′, x) − un(t, x)].

Since u and v satisfy requirements (Q1) and (Q2), this equality therefore shows that w satisfies (Q2), and
(i) is proven;
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(ii) Stability under multiplication is a direct consequence of (i). It is then enough to prove that if u ∈ D(S),
then 1/u ∈ D(S). Let w = 1/u: w clearly satisfies (Q1) and for all t ∈ N and n large enough, inf

x∈S
wn(t, x)

is bounded from below by a positive constant. Finally, for all t, t′ ∈ N, there exists N2 ∈ N such that:

pn sup
n≥N2

sup
x∈S

∣∣∣∣ 1
un(t, x)

− 1
un(t′, x)

∣∣∣∣ ≤ 1
M(t)M(t′)

pn sup
n≥N2

sup
x∈S

|un(t′, x) − un(t, x)| < ∞.

This is enough to conclude that w ∈ C(S), and thus w ∈ D(S), which concludes the proof of (ii).
(iii) Just note that 1/(pn + t) = 1/pn + o(1/pn), from which (iii) readily follows;
(iv) Let u ∈ C(S × S′) and

v : (n, t, x) 	→
∫
S′

un(t, (x, x′))μ(dx′) ∈ F(S).

Then, for all t ∈ N, since μ is a finite measure on S′, it follows that there exists N1 ∈ N such that

sup
n≥N1

sup
x∈S

|vn(t, x)| ≤ sup
n≥N1

sup
(x, x′)∈S×S′

|un(t, (x, x′))|
∫
S′

μ(dx′) < ∞.

Besides, for all t′ ∈ N, there exists N2 ∈ N such that

pn sup
n≥N2

sup
x∈S

|vn(t′, x) − vn(t, x)| ≤ pn sup
n≥N2

sup
(x, x′)∈S×S′

|un(t′, (x, x′)) − un(t, (x, x′))|
∫
S′

μ(dx′) < ∞

so that v ∈ C(S). If u ∈ D(S × S′), then there exists M(t) > 0 and N0 ∈ N such that

inf
n≥N0

inf
x∈S

vn(t, x) ≥ M(t)
∫
S′

μ(dx′) > 0

so that v ∈ D(S), and (iv) is proven. �

Lemma A.9 below essentially gives the order of magnitude of Mn(pn + t, x) and the error term En(pn + t, x)
in the expansion of μpn(x):

Lemma A.9. Assume that (A1−A2) hold. If pn → ∞ and pn h
ηg
n → 0 as n → ∞, then

(i) (n, t, x) 	→ (pn + t)α(x) Mn(pn + t, x)
gpn+t(x)

∈ D(Ω);

(ii) (n, t, x) 	→ (pn + t)[α+β](x) En(pn + t, x) ∈ C(Ω).

Proof of Lemma A.9. Before proving this result, note that applying Lemma A.1, we can pick n large enough
such that B(x, hn) ⊂ E for all x ∈ Ω.

(i) Recalling the notations of Lemma A.6, we have

Mn(pn, x)
α(x) b(pn + 1, α(x)) (fCgpn )(x)

=
∫

B

Qn(x, u)
Γ (pn + 1 + α(x))

Γ (pn + 1 + α(x − hnu))
gpn(x − hnu)

gpn(x)
K(u) du.

Since

(pn + t)α(x) b(pn + t + 1, α(x)) =
(pn + t)α(x)+1

α(x)
b(pn + t, α(x) + 1),

Lemmas A.5 and A.8(iii) yield

(n, t, x) 	→ (pn + t)α(x) b(pn + t + 1, α(x)) ∈ D(Ω). (A.9)
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Consequently, it is enough to show that

(n, t, x) 	→
∫

B

Qn(x, u)
Γ (pn + t + 1 + α(x))

Γ (pn + t + 1 + α(x − hnu))
gpn+t(x − hnu)

gpn+t(x)
K(u) du ∈ D(Ω).

From (A.6) and in view of

Γ (pn + 2 + α(x))
Γ (pn + 2 + α(x − hnu))

− Γ (pn + 1 + α(x))
Γ (pn + 1 + α(x − hnu))

=
Γ (pn + 1 + α(x))

Γ (pn + 1 + α(x − hnu))
−Δα

n(x, u)
pn + 1 + α(x − hnu)

,

it follows by induction that

(n, t, (x, u)) 	→ Γ (pn + t + 1 + α(x))
Γ (pn + t + 1 + α(x − hnu))

∈ D(Ω × B). (A.10)

Then, using the relation

gpn+1(x − hnu)
gpn+1(x)

− gpn(x − hnu)
gpn(x)

=
gpn(x − hnu)

gpn(x)
Δg

n(x, u)
g(x)

along with (A.7) gives, by induction,

(n, t, (x, u)) 	→ gpn+t(x − hnu)
gpn+t(x)

∈ D(Ω × B). (A.11)

As a consequence of Lemma A.8(iv), (i) is proven.
(ii) First and foremost, recall that from (3.4),

En(pn + t, x) =
∫

B

(
fgpn+t

)
(x − hnu) (pn + t) Iα+β, D(pn + t, x − hnu)K(u) du.

In view of Lemma A.8(iv), it is then enough to show that

(n, t, (x, u)) 	→ (pn + t)[α+β](x)+1 gpn+t(x − hnu)
gpn+t(x)

Iα+β, D(pn + t, x − hnu) ∈ C(Ω × B).

Using (A.11), we shall only prove that

(n, t, (x, u)) 	→ (pn + t)[α+β](x)+1 Iα+β, D(pn + t, x − hnu) ∈ C(Ω × B).

Since
(pn + t)[α+β](x)+1 = p[α+β](x)+1

n (1 + t/pn)[α+β](x)+1

and since (n, t, x) 	→ (1+ t/pn)[α+β](x)+1 ∈ D(Ω), in view of Lemmas A.8(i) and (ii), it is sufficient to show the
latter property for the function defined by

wn(t, (x, u)) = p[α+β](x)+1
n Iα+β, D(pn + t, x − hnu). (A.12)

For all t ∈ N \ {0}, let Rt : [1, ∞) → [0, ∞) be the function defined by

∀ y ≥ 1, Rt(y) = y

{
1 −
[
1 − 1

y

]t}
·

For all t ∈ N \ {0}, Rt is a bounded Borel function on [1, ∞), and one has, for all t < t′ ∈ N,

pn[wn(t′, (x, u)) − wn(t, (x, u))] = −p[α+β](x)+2
n Iα+β+1, DRt′−t

(pn + t, x − hnu). (A.13)
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Remark that for all j, t ∈ N, (x, u) ∈ Ω × B and every bounded Borel function H on Ω × [1, ∞),

|Iα+β+j, H(pn + t, x − hnu)| ≤ b(pn + t, [α + β](x − hnu) + j + 1) sup
Ω×[1,∞)

|H |.

Finally, Lemma A.5 shows that

sup
x∈Ω

∣∣∣∣∣ b(pn + t, [α + β](x) + j + 1)

Γ ([α + β](x) + j + 1) p
−[α+β](x)−j−1
n

− 1

∣∣∣∣∣→ 0.

The result follows from (A.12) and (A.13). �

The next result is particularly useful for providing a uniform asymptotic bound of the second-order moments
that appear when computing the rate of convergence in the Proof of Theorem 2.3. This result is an analogue of
Lemma 4 in Girard et al. [12].

Lemma A.10. Assume that (SP ), (K), (A1−A2) hold, pn → ∞ and pn h
ηg
n → 0 as n → ∞. Let (bn, 0) and

(bn, 1) be sequences of Borel functions on Ω such that there exist sequences of Borel functions (Hn, 0) and (Hn, 1),
uniformly bounded on [0, 1] with

∀ y ∈ [0, 1], sup
x∈Ω

sup
u∈B

|bn, 0(x) + bn, 1(x) g(x − hnu) y| ≤ Hn, 0(y) (1 − y) +
Hn, 1(y)

pn
·

Then, the sequence of random variables

Sn(x) = Y pn [bn, 0(x) + bn, 1(x)Y ] Khn(x − X)

is such that

sup
x∈Ω

∣∣∣∣∣ E|Sn(x)|2

g2pn(x) p
−α(x)−2
n h−d

n

∣∣∣∣∣ = O(1) as n → ∞.

Proof of Lemma A.10. Using Lemma A.1, we can pick n large enough such that B(x, hn) ⊂ E for all x ∈ Ω.
Conditioning on X yields

E|Sn(x)|2 =
∫

E

E

[
Y 2pn |bn, 0(x) + bn, 1(x)Y |2

∣∣∣ X = v
]
K2

hn
(x − v) f(v) dv

= h−d
n

∫
B

E

[
Y 2pn |bn, 0(x) + bn, 1(x)Y |2

∣∣∣ X = x − hnu
]
K2(u) f(x − hnu) du.

Now, given X = x − hnu, we have Wn(x, u) := Y/g(x − hnu) ≤ 1. Introducing the bounded sequence

cn := 2 sup
[0, 1]
n∈N

{
|Hn, 0|2, |Hn, 1|2

}
sup
x∈Ω

sup
u∈B

∣∣∣∣g2pn(x − hnu)
g2pn(x)

∣∣∣∣ ,
Hölder’s inequality entails, given {X = x − hnu},

Y 2pn |bn, 0(x) + bn, 1(x)Y |2 ≤ cn g2pn(x)W 2pn
n (x, u)

[
(1 − Wn(x, u))2 +

1
p2

n

]
·

It is therefore sufficient to prove that, for all j ∈ N:

sup
x∈Ω

sup
u∈B

∣∣∣∣∣E
(
W 2pn

n (x, u)(1 − Wn(x, u))j
∣∣ X = x − hnu

)
p
−α(x)−j
n

∣∣∣∣∣ = O (1) . (A.14)
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Integrating by parts yields

E
(
W 2pn

n (x, u)(1 − Wn(x, u))j
∣∣ X = x − hnu

)
=
∫ 1

0

d
dy

[
y2pn (1 − y)j

]
F(y |x − hnu) dy

≤ 2pn

∫ 1

0

y2pn−1 (1 − y)j F(y |x − hnu) dy

since, given {X = x − hnu}, Wn(x, u) has survival function F(· |x − hnu). To conclude, observe that if γ is a
positive Hölder continuous function on R

d, then∫ 1

0

y2pn−1 Fγ(y |x − hnu) dy = b(2pn, γ(x − hnu) + 1).

From (A.6) and Stirling’s formula, it follows that

sup
x∈Ω

sup
u∈B

∣∣∣∣pγ(x)+1
n

∫ 1

0

y2pn−1 Fγ(y |x − hnu) dy

∣∣∣∣ = O (1)

because pn h
ηg
n → 0 as n → ∞. Finally, for all y ∈ [0, 1],

F(y | v) = C(v)Fα(y | v) + D
(
v, (1 − y)−1

)
Fα+β(y | v),

and Lemma A.9(ii) yields (A.14), which ends the proof of Lemma A.10. �

The final lemma is the last step in the Proof of Theorem 2.3.

Lemma A.11. Let (Xn) be a sequence of positive real-valued random variables such that for every positive
nonrandom sequence (δn) converging to 0, the random sequence (δnXn) converges to 0 almost surely. Then

P

(
lim sup

n→∞
Xn = +∞

)
= 0 i.e. Xn = O(1) almost surely.

Proof of Lemma A.11. Assume that there exists ε > 0 such that P

(
lim sup

n→∞
Xn = +∞

)
≥ ε. Since by definition

lim sup
n→∞

Xn = lim
n→∞ sup

p≥n
Xp is the limit of a nonincreasing sequence, one has

∀ k ∈ N, ∀n ∈ N, P

⎛⎝⋃
p≥n

{Xp ≥ k}

⎞⎠ ≥ ε.

From this we deduce

∀ k ∈ N, ∀n ∈ N, ∃n′ ≥ n, P

⎛⎝ n′⋃
p=n

{Xp ≥ k}

⎞⎠ ≥ ε/2. (A.15)

We now build a sequence (Nk) by induction: start by using (A.15) with k = n = 1 =: N1 to obtain N2 > N1

such that

P

⎛⎝N2−1⋃
p=N1

{Xp ≥ 1}

⎞⎠ ≥ ε/2.

Then for an arbitrary k ≥ 1, if Nk is given, apply (A.15) to get Nk+1 > Nk such that

P

⎛⎝Nk+1−1⋃
p=Nk

{Xp ≥ k}

⎞⎠ ≥ ε/2.
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The sequence (Nk) is thus an increasing sequence of integers. Let δn = 1/k if Nk ≤ n < Nk+1. It is clear that
(δn) is a positive sequence which converges to 0. Besides, for all k ∈ N \ {0} it holds that

P

(
sup

p≥Nk

δpXp ≥ 1
)

= P

⎛⎝ ⋃
p≥Nk

{δpXp ≥ 1}

⎞⎠ ≥ P

⎛⎝Nk+1−1⋃
p=Nk

{δpXp ≥ 1}

⎞⎠ ≥ ε/2.

This entails

lim inf
n→∞ P

(
sup
p≥n

δpXp ≥ 1
)

≥ ε/2 > 0.

Hence (δnXn) does not converge almost surely to 0, from which the result follows. �
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