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A RECURSIVE NONPARAMETRIC ESTIMATOR FOR THE TRANSITION
KERNEL OF A PIECEWISE-DETERMINISTIC MARKOV PROCESS *
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Abstract. In this paper, we investigate a nonparametric approach to provide a recursive estimator
of the transition density of a piecewise-deterministic Markov process, from only one observation of the
path within a long time. In this framework, we do not observe a Markov chain with transition kernel
of interest. Fortunately, one may write the transition density of interest as the ratio of the invariant
distributions of two embedded chains of the process. Our method consists in estimating these invariant
measures. We state a result of consistency and a central limit theorem under some general assumptions
about the main features of the process. A simulation study illustrates the well asymptotic behavior of
our estimator.
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1. INTRODUCTION

The purpose of this paper is to investigate a nonparametric recursive method for estimating the transition
kernel of a piecewise-deterministic Markov process, from only one observation of the process within a long time
interval.

Piecewise-deterministic Markov processes (PDMP’s) have been introduced in the literature by Davis in [7].
They are a general class of non-diffusion stochastic models involving deterministic motion broken up by random
jumps, which occur either when the flow reaches the boundary of the state space or in a Poisson-like fashion. The
path depends on three local features namely the flow @, which controls the deterministic trajectories, the jump
rate A, which governs the inter-jumping times, and the transition kernel @, which determines the post-jump
locations. An appropriate choice of the state space and the main characteristics of the process covers a large
variety of stochastic models covering problems in reliability (see [7] and [5]) or in biology (see [14] and [11])
for instance. In this context, it appears natural to propose some nonparametric methods for estimating both
the characteristics A and @, which control the randomness of the motion. Indeed, the deterministic flow is
given by physical equations or deterministic biological models. In [2], Azals et al. proposed a kernel method for
estimating the conditional probability density function associated with the jump rate A, for a non-stationary
PDMP defined on a general metric space. This work was based on a generalization of Aalen’s multiplicative
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intensity model and a discretization of the state space. In the present paper, we assume that () admits a density
q with respect to the Lebesgue measure, and we focus on the nonparametric estimation of this function, from the
observation of a PDMP within a long time, without assumption of stationarity. In addition, since measured data
are often processed sequentially, it is convenient to propose a recursive estimator. To the best of our knowledge,
no nonparametric estimation procedures are available in the literature for general PDMP’s.

Nonparametric estimation methods for stationary Markov chains have been extensively investigated, begin-
ning with Roussas in [21]. He studied kernel methods for estimating the stationary density and the transition
kernel of a Markov chain satisfying the strong Doeblin’s condition. Later, Rosenblatt proposed in [20] some
results on the bias and the variance of this estimator in a weaker framework. Next, Yakowitz improved in [23]
the previous asymptotic normality result assuming a Harris-condition. Masry and Gyorfi in [18], and Basu and
Sahoo in [3], have completed this survey. There exists also an extensive literature on nonparametric estimates
for non-stationary Markov processes. We do not attempt to present an exhaustive survey on this topic, but
refer the interested reader to [6,8,10,12,15-17] and the references therein. In this new framework, Doukhan and
Ghindes have investigated in [8] a bound of the integrated risks for their estimate. Herndndez-Lerma et al. in [12]
and Duflo in [10] made inquiries about recursive methods for estimating the transition kernel or the invariant
distribution of a Markov chain. Liebscher gave in [17] some results under a weaker condition than Doeblin’s as-
sumption. More recently, Clémengon in [6] proposed a quotient estimator using wavelets and provided the lower
bound of the minimax LP-risk. Lacour suggested in [16] an estimator by projection with model selection, next
she introduced in [15] an original estimate by inquiring into a new contrast derived from regression framework.

Our investigation and the studies of the literature mentioned before are different and complementary. In this
paper, we propose to estimate the transition density ¢ of a PDMP by kernel methods. Nevertheless, we do not
observe a Markov chain whose transition distribution is given by ¢. Fortunately, one may write the function of
interest as the ratio of two invariant measures: the one of the two components pre-jump location and post-jump
location, over the one of the pre-jump location. Indeed, Q(x, A) is defined as the conditional probability that
the post-jump location is in A, given the path is in x just before the jump. Therefore, we suggest to estimate
both these invariant measures in order to provide an estimator of the transition kernel (). A major stumbling
block for estimating the invariant law of the pre-jump location is related with the transition kernel of this
Markov chain, which may charge the boundary of the state space. As a consequence, the transition kernel, as
well as the corresponding invariant distribution, admits a density only on the interior of the state space. The
investigated approach for estimating the invariant measure is based on this property of the transition kernel. But
the main difficulty appears for analyzing the two-components process pre-jump location, post-jump location.
This Markov chain has a special structure, because its invariant distribution admits a density function on the
interior of the state space, unlike its transition kernel. Indeed, the pre-jump location is distributed on the curve
governed by the deterministic flow initialized by the previous post-jump location. As a consequence, the author
have to explore a new method for estimating the two-dimensional invariant measure of interest. The proposed
one is more universal, but implies a more restrictive assumption on the shape of the bandwidth.

An intrinsic complication throughout the paper comes from the presence of deterministic jumps, when the
path tries to cross the boundary of the state space. Indeed, this induces that the invariant distributions mentioned
above may charge a subset with null Lebesgue measure. This important feature has been introduced by Davis
in [7] and is very attractive for the modeling of a large number of applications. For instance, one may find in [1]
an example of shock models with failures of threshold type. One may also refer the reader to [14], where the
authors develop a PDMP to capture the mechanism behind antibiotic released by a bacteria. Forced jumps are
used to model a deterministic switching when the concentration of nutrients rises over a certain threshold.

The paper is organized as follows. Section 2 is devoted to the precise formulation of a piecewise-deterministic
Markov process. The main results of convergence are presented in Section 3. The consistency of our nonparamet-
ric recursive estimator is stated in Theorem 3.1, while a central limit theorem lies in Theorem 3.2. Section 4 deals
with numerical considerations for illustrating the asymptotic behavior of our estimate. Finally, some concluding
remarks are given in Section 5. The strategy and the proofs of the main results are deferred into Appendices A, B
and C.



728 ROMAIN AZAIS

2. DEFINITION OF A PDMP

We present the definition of a piecewise-deterministic Markov process on R?, where d is an integer greater or
equal to 1. The process evolves in an open subset £ of R? equipped with the Euclidean norm | - |. The motion
is defined by the three local characteristics (A, Q, ).

e &:R?x R — R?is the deterministic flow. It satisfies,
VEERY, Vs, t €R, Pe(t+s) =Dg,(1)(s).
For each £ € E, tT (&) denotes the deterministic exit time from FE:
tT(&) =inf{t >0 : P¢(t) € OE},

with the usual convention inf ) = +oo.
e \:R? — R, is the jump rate. It is a measurable function which satisfies,

V¢ eRY, >0, / A(Pe(s))ds < +oo.
0
e (Q is a Markov kernel on (R%, B(R?)) which satisfies, for any ¢ € R?,

QEE\{e})=1 and, VB e BRY), Q¢ B) = /B a(€, 2)dz,

where the transition density ¢ is piecewise-continuous.

There exists a filtered probability space (£2, A, (F;),P), on which a process (X;) is defined (see [7]). Its motion,
starting from x € E, can be described as follows. T is a positive random variable whose survival function is,

t
Vvt >0, P(Th > t|Xo =) = exp (—/ A(@I(s))ds> Lio<i<t(a)}
0

One chooses an E-valued random variable Z; according to the distribution Q(®@;(T1), ). Let us remark that the
post-jump location depends only on the pre-jump location @, (T}). The trajectory between the times 0 and Ty
is given by
Y, {@m(t) for 0 <t <1y,
t Z1 for t = Tl.

Now, starting from Xr,, one selects the time Sy = T» — T and the post-jump location Zs in a similar way as

before, and so on. This gives a strong Markov process with the T}’s as the jump times (with Tj = 0). One often

considers the embedded Markov chain (Z,, S,,) associated to the process (X;) with Z,, = X¢,, S,, = T, — Thi1

and Sy = 0. The Z,,’s denote the post-jump locations of the process, and the S,,’s denote the interarrival times.
In the sequel, we shall consider the discrete-time process (Z,,) defined by,

Yn > 1, Zy =z, (S.).

This sequence is naturally of interest. Indeed, the transition kernel @) describes the transition from Z, to Z,.
7. stands for the location of (X;) just before the nth jump. We shall prove that (Z,) is a Markov chain in
Lemma A.1.

Throughout the paper, f and G denote the conditional probability density function and the conditional

survival function associated with A(®.(+)). Precisely, for all z € R? and ¢ > 0,

G(zrt) = exp (— / A@z(s»ds) ,
F(oat) = A@.(1)G(=11).
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Moreover, S denotes the conditional distribution of S, 41 given Z,, for all integer n. For all z € E and
I € B(R4), we have

Sz, I =P(Spy1€Z,=2,0(Z;,5; : 0<i<n))

:/ f(z,8)ds + 1p(t1(2)G(2,t7(2)). (2.1)
O[0,6+(2)]

The first term corresponds to random jumps which occur in a Poisson-like fashion, while the second one is
associated with deterministic jumps. The relation between S and the conditional survival function G is given,
for all z € R? and t > 0, by G(z,t) = S(z, ]t, +o0]).

3. MAIN RESULTS

Our main objective in this paper is to provide a recursive estimator of the transition density g(x,y) for any
(x,y) € E2. The recursive estimator of ¢(z,y) that we consider may be written as follows,

n+1 —
1 Z: —x Zj—vy
— K- K[~
wa ( w; ) ( w; )

where w; = wij P, v; = 017~ %, with vi,w, 0,8 > 0. In addition, K is a kernel function from R? to R,
satisfying the following conditions,

(i) supp K C B(ORa,0), where § > 0 and B(¢,r) stands for the open ball centered at ¢ with radius r,
(ii) K is a bounded function.

In particular, fRd K?(z)dz is finite. 72 denotes this integral in the sequel.

Under the technical conditions given in Assumptions A.2 and A.8, we shall state that the Markov chain (Z,;)
admits a unique invariant measure m, which has a density p on the interior of the state space (see Cor. A.7).
Under these hypotheses, we have a result of consistency.

Theorem 3.1. Let us choose vi and wy such that max(vy,wy)d < dist(z,0F). If p(z) > 0, ad < 1 and
803d < 1, then,
n(2,y) = ql,y),

when n goes to infinity.

Proof. The proof is stated at the end of Appendix B. O
Under an additional condition presented in Assumption C.2, we have the following central limit theorem.
Theorem 3.2. Let us choose vy and wy such that max(vi,w1)d < dist(x,0F). If p(x) > 0,

1 1 1 1
- - 21 — 4 in(—,a— —
2—|—d<a<d and (I1-ad) < ﬁ<m1n<2d,a 2d)’

then, when n goes to infinity,

T 27_2
n(=eD/2(G (z.9) — qx,y)) > N (O’ %) '

Proof. The proof is stated at the end of Appendix C. O
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F1GURE 1. Evolution of the size of the cell when 10 jumps occur.

Remark 3.3. For any dimension d, the set of bandwidth parameters o and [ satisfying the asymptotic nor-
mality presented in Theorem 3.2 is non-empty. Indeed,

2(1 — ad) < min (i !

e w e 1 1 1+4d
2d’a 5d « Qmin = Max ),

d  4d?’ d(2+4d

where amind < 1.

4. SIMULATION STUDY

The goal of this section is to illustrate the asymptotic behavior of our recursive estimator via numerical
experiments in the one-dimensional case. More precisely, we investigate numerical simulations for an application
of PDMP’s in a biological context. Our example deals with the behavior of the size of a cell over time, and is a
particular growth-fragmentation model (see [9]).

We consider a continuous-time process (X;) which models the size of a cell. This one grows exponentially in
time, next the cell splits into two offsprings at a division rate A that depends on its size. We impose that the
size can not exceed a certain threshold. In our application, the state space of (X;) is assumed to be E =]0, 3[.
For any = € E, the deterministic flow @(z,t) is given, for any ¢ > 0, by

&(x,t) = zexp(rt),

where 7 = 0.9 in the simulations. We assume that the inter-jumping times are distributed according to the
Weibull distribution where the shape parameter is the inverse of the size of the cell. More precisely, for x € E
and ¢t > 0, the conditional density f(z,t) associated with the jump rate A is given by

t(l—x)/x exp _tl/x
f(xat) = ( ) ’

T

The transition kernel Q(z,-) is chosen to be Gaussian with mean z/2, a small variance o2 and truncated to
|z/2 4+ o[NE, with o = 10! in our simulations. A trajectory of such a PDMP is given in Figure 1.

In these numerical experiments, we begin with some investigations of the accuracy of the estimator g, (x,y),
for (z,y) = (1,0.5) and (z,y) = (2,1), from different numbers n of observed jumps. The chosen bandwidth
parameters are v; = wy = 0.1, « = 0.125 and 3 = 0.1, associated with the Epanechnikov kernel. We present in
Figure 2 the boxplots of the estimates over 100 replicates. The empirical distributions of the associated relative
errors are given in Figure 3. On small-sampled sizes, our procedure is quite unfulfilling. However, for n large
enough, our method succeeds in the pointwise estimation of the quantity of interest, especially when n is greater
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FIGURE 2. Boxplots over 100 replicates of the estimator ¢, (z,y) of ¢(x,y) for z = 1 and y = 0.5
(left) and x = 2 and y = 1 (right) from different numbers of observed jumps.
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FIGURE 3. Boxplots over 100 replicates of the relative error between ¢, (z,y) and ¢(z,y) for
x=1and y = 0.5 (left) and x = 2 and y = 1 (right) from different numbers of observed jumps.

than 10 000. In addition, the complete curves g(z,-), with = 1 and « = 2, and their estimates from different
numbers of observed jumps are presented in Figure 4. One may observe the convergence of ¢, to the transition
kernel of interest ¢q. From n = 50 000 observed jumps, the estimation procedure performs very well.

The quality of the estimation is better for (z,y) = (1,0.5) than for (x,y) = (2,1) (see Figs. 3 and 4). Thanks
to the estimation of the invariant distribution 7 (see Fig. 5), one may notice that the Markov chain (Z,;) is
more often around x = 1 than x = 2. As a consequence, the number of data for the estimation of g(x,y) is
larger for = 1 than for = 2. The behavior of the limit distribution 7 of (Z,;) is a good indicator of the
accuracy of the estimator g, (z,y).

We investigate the choice of the bandwidth parameters in Figure 6. We present the boxplots over 100 replicates
of the estimates of ¢(1,0.5) from 10000 observed jumps, with different values of the parameters o and (. In a
theoretical point of view, the almost sure convergence holds when a < 1. However, we observe that a = 1/8
and o = 1/4 are better choices than o = 1/2. According to Figure 6, a good compromise for small numerical
bias and variance is & = 1/8 and § = 0.1.

It is tedious to determine numerically the bandwidth parameters o and 3 for which we observe a central
limit theorem for ¢, (z,y). An illustration of Theorem 3.2 is given in Figure 7 from 50 000 observed jumps, with
a=0.5and §=0.1.
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5. CONCLUDING REMARKS

In this paper, we have presented a recursive nonparametric estimator for the transition kernel of a
d-dimensional piecewise-deterministic Markov process observed within a long time interval. A recursive pro-
cedure is suitable for lots of applications because it allows to extract information of a dynamical system in
real time. The consistency and the asymptotic normality of our estimate have been stated under some general
conditions on the main features of the process. In addition, the good asymptotic behavior of the estimator has
been illustrated via numerical experiments in a biological context.

As seen in Section 3, the estimation needs the observation of the Markov chains (Z,,) and (Z,,). If the pre-
jump location Z,, is not available, one may replace it by @z, _, (S,) when the deterministic flow is assumed to
be known. If both the pre-jump locations and the deterministic motion are not available, then the estimator can
not be computed. In this case, one may focus on the estimation of the conditional distribution of the post-jump
location Z,, given the previous one Z,,_; and the inter-jumping time .S,.

The optimal choice of the bandwidth parameters could be investigated. Indeed, we have shown via numerical
simulations for the growth-fragmentation model that the bandwidth parameters have a strong effect on the
variance of the estimator for finite sample size (see Fig. 6). In addition, for real data applications, it is attractive
to determine the best choice for these parameters. In a theoretical point of view, one may concentrate on
minimizing the mean integrated squared error. The influence of the kernel function could also be explored.
These points are currently under investigation.

APPENDIX A. ESTIMATION OF THE INVARIANT DISTRIBUTION OF (Z,)

The main objective of this section is the estimation of the invariant distribution of the Markov chain (Z,).
This section is divided into two parts. In the first one, we are interested in the existence and the uniqueness
of the invariant distribution of (Z,, ), and in the properties of its transition kernel R. In the second part, we
propose a recursive estimator of the invariant distribution of (Z,,) and we investigate its asymptotic behavior.

A.1. Some properties of (Z;)

In this part, we focus on the process (Z,; ), which is a Markov chain on E. We especially investigate its
transition kernel R and the existence of an invariant measure.

Lemma A.1. (Z;

n

) is a Markov chain whose transition kernel R is given, for all y € E and B € B(E), by
R(y, B) = / Q(y,d2)S(z, ¢ (B)NR4), (A1)
E

where the conditional distribution S has already been defined by (2.1).
Proof. For all integer n, by (2.1), we have
P(Z, ,€B|lZy=22,,...,2)
= P(Sp1 €Y B)NRL|Z, = 2,2, ..., Z7)
E[E[li, o mnm|n = 20020 S s 0 i <)) [Zo = 2,2, 27
=E[S(z,9;'(B)NRy)|Zn = 2,2, ,.... 21 |
= S(z, 9. (B)NR,).

As a consequence,

P(Z,  €B|Zy,.... 2 )= | P(Z;  €B|Zn=227,....27)Q(Z; ,dz)
E

n

/
| sGa B nROQZ, 00
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which provides the result. O
We focus on the ergodicity of (Z,,) by using Doeblin’s assumption.

Assumption A.2. We assume that the transition kernel R satisfies Doeblin’s condition (see [19], p. 396 for
instance), that is, there exist a probability measure p on (E, B(E)), a real number € and an integer k such that,

Vy € E, VB € B(E), R*(y,B) > e u(B). (A.2)
Under this assumption, one may state that the Markov chain (Z,) is ergodic.

Proposition A.3. We have the following results.

e The Markov chain (Z,)) is p-irreducible, aperiodic and admits a unique invariant measure, which we denote
by 7.
o There exist p > 1 and Kk > 0 such that,

Vn > 1, sup [R"(,-) — nllrv < wp™ ", (A.3)
¢€E

where || - ||y stands for the total variation norm.
e In addition, (Z,) is positive Harris-recurrent.

Proof. By definition and the inequality (A.2), (Z,,) is p-irreducible and aperiodic (see [19], p. 114). Moreover, on
the strength of Theorem 16.0.2 of [19], (Z,, ) admits a unique invariant measure 7 since it is aperiodic and (A.3)
holds. In addition, from Theorem 4.3.3 of [13], (Z,,) is positive Harris-recurrent. O

Remark A.4. The ergodicity of the Markov chain (Z,,) is often equivalent to the one of the post-jump locations
(Z,,). Doeblin’s assumption may be related to the existence of a Foster—Lyapunov’s function for instance (see [19]
for this kind of connection). Furthermore, Assumption A.2 is satisfied for a PDMP defined on a bounded state
space, with Gaussian transitions and a strictly positive jump rate.

Now, we shall impose some assumptions on the characteristics relative to the flow of the process. Under these
new constraints, one may provide a more useful expression of R. In the sequel, for & € E, t~(§) denotes the
deterministic exit time from E for the reverse flow,

t7 (&) =sup{t <0 : ¢,(t) € OF},

with the usual convention sup ) = —oo. Remark that ¢~ (£) is a negative number.

Assumptions A.5.

(i) The flow @ is assumed to be Cl-smooth. For any (z,t) € R? x R, D@, (t) is defined by

(7)
et (m) |
81‘]' 1<i,5<d

(ii) For any t € R, ¢; : R? — R?, defined by ¢;(z) = ®,(t), is an injective application.

D (t) = (A.4)

A useful expression of the transition kernel R is stated in the following proposition.
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Proposition A.6. Lety € E and B € B(E). We have
R(.B) = [  r(y2)ds+ Ry, BN0E) (A5)
BNE

where the conditional density function r is given by,

-t (2)
Vi€ B e = [ alyu(-9)f(@(-5), Db ()i (A6)
0
Proof. Let B C E. First, we fix t > 0. We define the set A; by
Ay ={P¢(—t) : € B},

and we examine the function ¢, : Ay — B defined by ¢i(z) = @.(t), € As. o, is a Cl-smooth injective
application (see Assumption A.5). Furthermore, for any z € B,

Pe(@2(=1)) = Do (1) (t) = 2,

with @, (—t) € A; by definition of A;. Consequently, ¢; is a C'-one-to-one correspondence. The inverse function
o s given by ¢, H(z) = &,(—t), so it is C'-smooth too. Thus, ¢; is a C'-diffeomorphism from A; into B,
which allows us to consider it as a change of variable. In particular, this shows the relation

(€ E,teR;,P,(t)eB) & (tcRi,z€E, z€ Ay). (A7)

. . . . 1 .
Moreover, the Jacobian matrix J o1 of the inverse function ¢, * satisfies,
t

oL (—t)

d _ x

VreR s J%—l(x) = (T .
1<i,j<d

By (2.1) and (A.1), we have

R@.B) = [ [ e
EJe Y (B)nRy
Together with (A.7), we obtain

RO.5) = [ + ( / 1E<z>f<z,t>q<y,z>dz) dt.

By the change of variable ¢, we have

Ry, B) = /

Ry

( /B Le (7€) £ (07 (1) (3,97 (©)) [det I+ (9) dg) dt
= [ ([ 1e @01 @000 0e(-0) De(-1)0¢ ) .
R, \JB

where D¢ is defined by (A.4). We remark that
(Pe(—t) € E) = (0 <t < —t7()),

50 1g(Pe(—t)) = 1{o<t<—¢+(e)}- By Fubini’s theorem, this yields to the expected result. O
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In the light of this result, one may obtain the following one about the invariant distribution 7 of the Markov
chain (Z,): = admits a density with respect to the Lebesgue measure in the interior of the state space. In
addition, one may exhibit a link between this density and r.

Corollary A.7. There exists a non-negative function p such that
VB € B(E), n(B) — / p(@)de + 7(BNOE). (A.8)
BNE
In addition, p is given by the expression,
Ve e E, p(z) = Lﬂ(dy)r(y,x). (A.9)
E
Proof. 1 is an irreducibility measure for R. As a consequence and according to Proposition 4.2.2 of [19], the
maximal irreducibility measure f is equivalent to the measure zi’ given for any B € B(FE), by
-~ 1
7(B) = [ nla) SR 0. B) gy

n>0

R admits a density on the interior E of the state space E of the Markov chain (Z, ) (see Prop. A.6). As a

consequence, this is the case for R"™, too. Indeed, for any set B such that Aq(B N E) = 0, we have

R™(y, BNE) :/ R (y,d2z)R(z, BN E) = 0.
E

Therefore, /(B N E) = 0. Finally,
M(BNE)=0 = p(BNE)=0.

Since 7 and the maximal irreducibility measure g are equivalent, m admits a density on E. Now, we investigate
the expression of this density. By Fubini’s theorem, we have for any B C E,

~(B) = /E r(dy)R(y, B)

:/Eﬂ'(dy)/Br(y,x)dx
_ /B ( /E w(dy)r(y,x)) dz.

As a consequence, one may identify p with the function /_W(dy)r(y, ). O
E

One shall see that the regularity of the conditional probability density function r is significant in all the sequel.
We state that under additional assumptions, r is Lipschitz.

Assumptions A.8. We assume the following statements.
(i) t~ is a bounded and Lipschitz function, that is,

At Lip >0, Vo,y € E, |t_(:r) — t_(y)’ < [t7|Liplz — yl.
(ii) The flow @ is Lipschitz, that is,

3[@Lip >0, Vz,y € RY, Vt € R, [Py (1) — Dy (t)] < [P]Liplz — Y.
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(iii) f is a bounded and Lipschitz function, that is,
3 fleip > 0, Yo,y € RY, VE € R, [f(x,t) — f(y, )] < [flinlz —yl.
(iv) ¢ is a bounded and Lipschitz function, that is, there exists [g]ri, > 0 such that, for any z,y,z € R,
lq(z,y) = q(z, 2)| < ldlriply — 2| and lg(z,2) = q(y, 2)| < [qlripl - yl.
(v) D@ is a bounded and Lipschitz function, that is,
3[DP|Lip > 0, Yo,y € RY, Yt € R, |DP,(t) — DD, (t)| < [DD]Lip|z — yl.

Proposition A.9. r is a bounded function. Furthermore, there exists a constant [r|rip > 0 such that, for any
r€E,ycE anduc R such that y +u € E, we have

r(z,y +u) = r(z,y)| < [r]Liplul.

Proof. First, we have from (A.6),
[Pllso < 1t [loc llglloo|[ f ll oo | DDl oo -

For the second point, we consider the function v defined by,
V(y,t) € RY X R, (y,t) = (@, Dy (=) f(®y (1), 1) DD, (1)

This function is Lipschitz as a compound and product of Lipschitz functions (see Assumption A.8). [y]ri, stands
for its Lipschitz constant, and we have

vy, t) = y(y +u, t)| < [V]Liplul.

In addition, by (A.6), the function r(z,y) is given by

—t"(y)
r(z,y) = / (y, 5)ds.
0
We suppose that —t7(y) < —t~ (y + u) (recall that ¢~ is a negative function). We have
—t7(y) —t~ (y+u)
s e = [ G n s [ s
0 —t—(y

As a consequence,

[t ]| oo
IN%y+w—T@wﬂﬁA Iy + 1w, 8) — Ay, 5)| ds

+ llgllocll flloc I DLlloc [t (y) =t~ (y + w)|
< 17 oo Y] zaplul + [t Tipllall ool fll oo [ DDl ool

The obtained inequality for —t~(y) > —t~ (y + u) is exactly the same one. This achieves the proof. O
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A.2. Estimation of p

739

We propose a recursive nonparametric estimator of the function p given in the Corollary A.7. For all integer n,

the recursive estimator p,, of p that we propose is given for all x € F by

where the bandwith v; satisfies
v; =wv1j ¢, with a > 0.

Remark A.10. Let z € E and j > 1. Since the sequence (v,,) is decreasing, we have

w) C supp K (;_x) C B(x,v10).
1

_33) C E.
v;

In the following proposition, we establish the pointwise asymptotic consistency of p,.

supp K (
J

Thus, if v16 < dist(z, OF), we have

supp K (

(A.10)

Proposition A.11. Let z € E. One chooses vy such that v16 < dist(z,0E) and o such that ad < 1. Then,

~

Pnlz) == p(x),

when n goes to infinity.

Proof. By the expression of p(x) given by (A.9), the difference p,(x) — p(x) may be written in the following

way,

ntl — X
@(w)—pm:%zi ( — )— [ rtwzym(aw)
-1 J

E

d

J

(Z >+1Mn+R£3)+R£3>,
n

where M,,, Rg) and R7(12) are given by

~| 1 Zjp1 — @ -
K ; — | r(Z; z+yvi)K(y)dy|,
=1 LY+ Uj+1 Rd

1 ¢ _ -
1= 030 [ I ) (7] K,
z

5
I

R %ZT(Z{,Z‘) - /_r(u,x)ﬂ(du).

E

(A.11)

(A.12)

(A.13)

(A.14)

The dependency on z is implicit. In (A.11), the first term clearly tends to 0 as n goes to infinity. The sequel of
the proof is divided into three parts: in the first one, we show that Rg) tends to 0 by the ergodic theorem. In
the second one, we focus on Rg) and we prove that this term goes to 0. Finally, we state that M,,/n tends to 0



740 ROMAIN AZAIS

by using the second law of large numbers for martingales. Recall that the Markov chain (Z;) is positive Harris-
recurrent with invariant measure 7, according to Proposition A.3. Thus, one may apply the ergodic theorem
(see for instance Thm. 17.1.7 of [19]) and we obtain that R{? almost surely tends to 0. For R, we have

1< _ _
RO <2 [z ey = (2 )| K )y
Jj=1

IN

1 n
Y / ] Laplylvgea K (y)dy
anl R

%ivm (/Rd yIK(y)dy> [r]Lip- (A.15)

This upper bound tends to 0 by Cesaro’s lemma because the limit of the sequence (v,,) is 0. Therefore, Rg)
goes to 0 as n tends to infinity. Finally, we investigate the term M, /n. First, we show that the process (M,,) is
a discrete-time martingale with respect to the filtration (F,,) defined by,

n>1, Fo=0(Zy,.... 2, 1)

1 il — T
K +1
Ud ( Un+
n+1 n+1

IN

We have

E [Mn|~7:n—1} = Mn—l +E - / ’I“(ZT:,.’L‘ + yvn+1)K(y)dy'
Rd

Thus, we only have to prove that

1 Zo 4 —
E|— K( ntl 1;) Z, :/ r(Z, ,x + yon41) K (y)dy. (A.16)
UnJrl Un+1 R4
We have
1 Ly — 1 —
B k(22 2| = /K(“ x)R(Z;,du).
Up+1 Un+1 Up+1 JE Un+1

By the assumption on v; and Remark A.10,
/ K (“ - x) R(Z;, du) = / K (“ - x) R(Z; ,du)
E Un+1 E Un+41

= / K (u—x) r(Z, ,u)du,
E Un+41

by (A.5). Finally, the change of variable u = yv,41 + 2 states (A.16). Thus, (M,,) is a martingale. We shall
study the asymptotic behavior of its predictable quadratic variation (M). A straightforward calculus leads to

2

Un+1 Un+1

2 L1 — T -
T d K ( — > / T(Zn &+ yanrl)K(y)dy'
1 E

1 o4 —
(Mn - Mn*1)2 Y K* ( e ) + |:/ T(Z;ax +yvn+1)K(y)dy
E

’UnJr Un+1
Using the method used to show (A.16), we deduce that
1

E [(Mn - Mnfl)Q‘fnfl] = 4
vn+1

/ K2(y)r(Z o + yonss)dy
E

2
- [ [ 27+ ) K| (A17)
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As a consequence, there exists a constant C' > 0 such that

n<z(

when n tends to infinity. By the second law of large numbers for martingales (see Thm. 1.3.15 of [10]), we have

|THOOT + oo | ~ Cn®t1 as
]+1

M? = O ((M),In((M),)'*7) as.

n

with v > 0. As a consequence,

My _ o (\/nad—lln(nad‘*‘l)“r‘*) a.s.

n

Thus, M, /n almost surely tends to 0 as n goes to infinity if ad < 1. This achieves the proof. O

APPENDIX B. ESTIMATION OF THE INVARIANT DISTRIBUTION OF (Z,,Z,)

In this section, we state that the Markov chain (Z,, Z,) admits a unique invariant measure. In addition,
we are interested in the recursive estimation of this measure. We prove the almost sure convergence of g, (x,y)
given in Theorem 3.1 at the end of this section.

B.1. Some properties of (Z, Z,)

In this part, we focus on the asymptotic behavior of the chain (Z, , Z,). In all the sequel, 1, (respectively
) denotes the distribution of (Z,,, Z,) (resp. Z, ) for all integer n. We have these straightforward relations
between 7, @ or ¢ and 7,

(A x B) = /A Q(z, B)mn(d2)
- / 42, y)Ta(d2)dy. (B.1)
AxB

Lemma B.1. We have

lim |9, —n|lrv =0,
n— 400

where the limit distribution 1 is defined for all A x B € B(E x E) by

n(A x B) = /A ., q(z,y)m(dz)dy. (B.2)

Proof. Let g be a measurable function bounded by 1. By virtue of Fubini’s theorem, we have

/_ g(x,y) (mn(dz x dy) — n(dz x dy))‘ <
EXE

/F (mn(d) — (de)) / o, v)alz v)dy

E

from (B.1) and (B.2). Thus,

L XEg(w)(nn(dxxdy)—n(dxxdy] \ L ate)man) - x(aw)).

where the function g : z +— fE g(x,y)q(x,y)dy is bounded by 1 since g is bounded by 1 and ¢ is the conditional
density associated with the Markov kernel ). As a consequence,

110 = 1l < Ml7en =7y - (B.3)

One obtains the expected limit from (A.3). O
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In addition, one may prove that n admits a density on E x E.

Lemma B.2. There exists a positive function h such that

n(A x B) = / h(z,y)dz dy,

AxB
for any A x B € B(E x E) with A C E. In addition, h is given for all z,y € E by
h(z,y) = p(x)a(z,y). (B.4)

Proof. From (B.2), we have

n(Ax B) = / gz y)n(dz)dy

AxB

= / q(z,y)p(z)dz dy,
AxB
by (A.8) and because A C E. This achieves the proof. O

B.2. Estimation of h

We propose to estimate the function h by the recursive nonparametric estimator Bn given, for any (z,y) € E?,
by

~ 1 — Zi—y
hn(xay) = E Z WK ( ij ) K (jw—J)v (B5)
j=1 J

where the bandwith w; is given by
w; = wj P, with 8> 0.

In the sequel, we are interested in the pointwise convergence of the estimator at a point (z,y) € E?. We assume
that wy is such that w;d < dist(x,0F), where 0 is the radius of the open ball which contains the support of
the kernel function K. In this case, Remark A.10 is still valid, and we have the following inclusions, for any
integer 7,

suppK( gc) C B(xz,w16) C E. (B.6)

wj
Our main objective is to state in Proposition B.7 that ﬁn(x,y) almost surely converges to h(z,y). First, we
show that this estimator is asymptotically unbiased (see Prop. B.4).

We state some new properties of the distribution measures m,, and 7. Let us recall that m, is the law of Z,
while 7 is the invariant measure of the Markov chain (Z,,).

Lemma B.3. We have the following statements.

For any integer n, m, admits a density function p, on E.
Dr, is bounded by ||r||eo and is an [r]Lip-Lipschitz function.
p is Lipschitz.

For any integer n, we have

up [pa () = p(2)] < 7 ocrp™ 1. (B.7)
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Proof. For the first point, let B € B(E) with B C E. We have

:/F/BR(f,dy)Wn—l(df)
_ /B /E r(&,y)mn1(d€)dy,

where 7 is the conditional density associated with the kernel R (see (A.5)). Thus, one may identify

palo) = [ rl&n)mia@9) (B.8)

For the second assertion, we have stated in Proposition A.9 that r is a bounded function. As a consequence,

Pa(W)] < lrllocmn—1(E) = [[7]loo-

In addition, since r is Lipschitz,

Pa(y) — pa(2)] < /E (€, ) — 16, 2)| mnr (dE)

< [Mziply = 2lmn—1(E) = [rlLiply — 2|.

For the third point, p is Lipschitz for the same reason than p,, since p satisfies (A.9). Finally, for the last point,
we have, by (A.9) and (B.8),

[pa(2) — p(a)] < /F r(y,2) [T (dy) — 7(dy)|

< Irllocllmn—1 = 7y
< rlloorp™ 7Y,

by (A.3). This achieves the proof. O

Now, one may state that En(ac, y) is an asymptotically unbiased estimator of h(z,y).

Proposition B.4. When n goes to infinity,

E [ﬁn(l‘,y)} — h(z,y).
Proof. We only state that
~ n+1
E hn ) ———h ’
()| = ——h(a.y)
tends to 0. We have

E [ﬁn(x,y)] - nTHh(x,y) - %nf l/f %K (u;jm) K (vu;y> 7 (duw)q(u, v)dv

j=1 xB Wj

- / h(z, y)K(u)K(v)dudv] .
EXE

Thanks to (B.6), one may replace E by E in the first integral. As a consequence, one may replace 7;(du) by
pj(u)du (see Lem. B.3). Together with (B.4) and a change of variables, we obtain

n+1

E [hn(x,y)] - —h Z K(v)

E><E

X (pj(ac + uw;)q(r + vwj, y + vw;) — p(z)q(z, y))du dv.
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Furthermore, since p; is [r]ri;p-Lipschitz and bounded by |||« in the light of Lemma B.3, an elementary calculus
leads to

|pj (@ + uw;)g(a + wwj, y + vw;) — p(z)q(z, y)|
< I7lloclglipw; (ful + [v]) + [lglloo[r] Liplulw; + liglloo [pj () = p(2)|
< wj (\ul(llr\loo[q]up +llalloo[r]Lin) + \vHITlloo[q}Lip) + llallsollrllocp™0 =Y,

together with (B.7). Finally, we obtain

~ +1 2\17llsold) i + llalloo[r] i K (u)]u|du 2 ollgllak T4
’E [hn(:c,y)} —nTh(w,y)’ S( 17|l oc [q] Lip + [l n[ JLip) [ K () ul S 7| ||q|| HZ/’ G-1)
j=1
2lrlloolalzip + llalloolr)zin) S K (w)|uldu T 17| oo Il oo
< wj + —————, B.9)
n ; T (1l —ph (
which tends to 0 by Cesaro’s lemma. g

In the following, we are interested in some properties of the discrete-time process

- (o (52 (52))

which naturally appears in the study of the estimator ﬁn(w,y) In particular, we propose to investigate its

autocovariance function. On the strength of this result, we will establish the asymptotic behavior of the variance
of hy,(z,y).

Proposition B.5. There exist two constants B and b > 1 such that, for any integers n >k,

4
|Cov(Ay, An)| < ”ﬂ#bk*” (L+b7%). (B.11)

In particular, one obtains by taking k =n and using that b=™ < 1,

2| KI5, B

Var(4,) < i (B.12)

Proof. We have

IE LG\ (B L pe(Ze g (Zay
Cov(Ag, Ay) = 2dw2dc K2, W Wi TIE% Wn, Wn ’

where both the components in the covariance are bounded by 1. We apply Theorem 16.1.5 of [19] with V =1,

@:(Z‘,Z),
e () e (%) < () e (50
= K|— | K and h = K|l—|K[—=|.
97K <wn> (% K%\ wy w

The conditions of the theorem are satisfied by (A.3) and (B.3). We obtain

K%
|Cov(Ag, A,)| < e Qdek T(1+bh).

Together with 1/w?? < 1/w?2¢, this shows (B.11). O
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In the following result, we give a bound for the variance of ﬁn(w, y). It is a corollary of Proposition B.5.
Corollary B.6. Let n be an integer. We have

s IKILE
anr 1—b1

Var (/ﬁn(l', y)) < (B.13)

As a consequence, this variance goes to 0 when 43d < 1 (recall that w, = win=").

Proof. This inequality is a consequence of (B.11) stated in Proposition B.5. Indeed, in light of the expressions
of 4,, (B.10) and hy(x,y) (B.5), we have

R o nHlntl
Var (hn(x, y)) =3 Z Z v(A;, Ar)
k=1 I=k

n+1n+1

< 2||K\|4BZZbk LA+ bR w,
k=1 l=k
Using that b=% < 1 and w; ** < w11,
n n+1 n+1
Var (fn(e.9) < Zra K BY Vv
k=1 =k
n+1 k
4 . L b
< S KL BZb —
n+1
<- 8 K58
— 1 9
wid 1 b
with (n +1)/n < 2. O

Now, one may state the consistency of our estimator of h(z,y).

Proposition B.7. Let (x,y) € E?. One chooses w16 < dist(x, OF) and 83d < 1. Then,

o~

ha(@,y) == h(z,y),
when n goes to infinity.

Proof. According to Proposition B.4, we only have to prove that

~ . 2
Vo = (Fn(a,) = B [hu(z.y)]) (B.14)
almost surely converges to 0. In the sequel of the proof, we establish that there exists a random variable Y such
that Y,, % Y. Since the sequence (Y;,) tends to 0 in L' (remark that E[Y,] = Var (h (z, y)), together with

Corollary B.6), Y = 0 a.s. and it induces the expected result. In order to show the almost sure convergence of
the sequence (Y,), we use Van Ryzin’s lemma (see [22]). In light of this result, if the sequence (Y;,) satisfies the
following conditions,

(i) Y,>0as,

(i) E[Vi] < +oo,

(iii) E[Yn+1|Sn] <Y, +Y, as., where S, = o(Y1,...,Y,,) and Y, is S,-measurable,

(1) 3o BIV2]] < o0,
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then Y;, % Y. In our context, points (i) and (ii) are unquestionably satisfied. Let us define

1 n+1
V== (A~ BlA]). (B.15)

k=1
By (B.5), (B.10) and (B.14), V;2 = Y,, and we have the recurrence relation,

An+1 - E[An+1] + (n - 1)Vn—1'
n

Vi =

By squaring, we obtain

v, — <n ; 1>2 v (Aps1 — E[Ani1])” + 2(nn—2 DVi—1(Ans1 — E[An41])
(An+1 — E[An+1])2 + 2(n — 1)Vn,1 (An+1 — E[An+1])

S Yn—l + 77,2 .

Finally, E[Y,|Sp,—1] < Y,_1+ Y, _,, where

1
Vi1 = B[ (Aut1 = Bldni])’ +2(n = Voot (Anss — E[Ans1))

Snfl] . (B.16)
Thus, (iii) is checked. Ultimately, we have to verify (iv). By (B.16) and Cauchy—Schwarz inequality,

1 2(n—1
B[V, 1]) < Var(w) + 20 VB [V A — Bl

1 2
< FVar(AnH) + E\/E[Yn,l]Var(AnH)

1 2 ~
< FVar(AnH) + E\/Var (hn,1(w, y)) Var(An41)-

Thus, by (B.12) and (B.13), there exist two numbers ¢; and ¢z such that

’ C1 C2
E[lY, ] < n2wad + 3/ 2yid
C1 [65)
= wyn2—46d "y p3/2—4Bd’
As a consequence, > E[|Y,!]] is a convergent series for 83d < 1. O

Now, we give the proof of the almost sure convergence of the estimator g, (z,y).

Proof of Theorem 3.1. In light of (B.4), if p(x) > 0, one may write ¢(x,y) = h(z,y)/p(x). In addition,
Gn(z,y) is defined by the ratio h,(x,y)/pn(z) (see (B.5) for the expression of h,(z,y) and (A.10) for the one of

Dn(x)), where Tn (x,y) (respectively p,(x)) estimates h(z,y) (resp. p(x)). In such a case, the result is a corollary
of Propositions A.11 and B.7.

APPENDIX C. CENTRAL LIMIT THEOREM

In this section, we establish a central limit theorem for @, (z,y) for any (z,y) € E? (see Thm. 3.2). First,

~

we derive the rate of convergence of the recursive estimator h,(z,y) of h(x,y) under some conditions on the
parameter (.
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Proposition C.1. Let us choose vy and wy such that max(vi,wq)d < dist(x, OF). If

. 1 1
2(1—ad)<4ﬁ<m1n<ﬁ,oz—ﬁ>,

then, when n goes to infinity,

n(1=0D/2 (h (@) = hla,y)) 0.

Proof. We take back the definitions (B.14) of Y}, and (B.15) of V,, used in the proof of Proposition B.7. Recall
that we have V,2 = Y,,. Together with (B.5) and (B.10), we have

~

n(=0D/2 (R (,y) = hz,y)) = n0= D2V, 4+ n0=2D/2 (E [hy(2,9)] = h(z,)).
By (B.9) and w; = w57,
p—ad)/2 (E {ﬁn(x,y)] — h(x,y)) =0 (nl/%ﬁ*adm) .
As a consequence, the bias term
010072 (B [h(a,y)| ~ hz.y))
tends to 0 when 23 > 1 — ad. Now, we only have to prove that W, = n'~*?Y], almost surely tends to 0. By
virtue of Van Ryzin’s lemma and a calculus similar to the one implemented in the proof of Proposition B.7, the

sequence (W,,) almost surely tends to a random variable W for § such that 40d < ad —1/2. As aforementioned
in the proof of Proposition B.7,

E[W,] = n'"“E[Y,] = n!"*Var (ﬁn(w,y)) .

Thus, in light of Corollary B.6, (W,,) converges to 0 in L! when 43 < a. Consequently, W = 0 a.s. This shows
the expected result. O

Under an additional assumption presented in the sequel, we give a central limit theorem for p,, ().

Assumption C.2. For any « such that 1/(2+ d) < a < 1/d, we assume that, when n goes to infinity,

n

1 -_— .S.
n(+ad)/2 Z (r(2; ) — p(x)) =% 0.
j=1

This kind of condition is satisfied for iterative models with some Lipschitz mixing properties (see [10], p. 234
for instance). We have the following central limit theorem for p,, ().

Proposition C.3. Let us choose vy such that v16 < dist(z,0F). If 1/(2+d) < a < 1/d and p(x) > 0, then,

n(1=eD/2 (5, (z) — p(x)) 2> N (0’ If(oajt)i) ’

when n goes to infinity, where 7 = [, K*(y)dy.
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Proof. By (A.11), we have

el ad)/Q(pn(f) —p(x)) = n(1+ad)/2vdK < 1111 >
1
Mn l1—ad)/2 1 1-ad)/2 ’
¥ e+ nUmo/2R( 4 pli-ed/2R),

where M,, R\ and R? are defined by (A.12), (A.13) and (A.14). It is obvious that the first term almost

e}

surely tends to 0 since K is a bounded function. In addition, by (A.15) together with v; = v;57°,

p(i=ad)/2 ’RS)’ =0 (nl_ag_2a> a.s.

As a consequence, n(=ed)/2RM almost surely tends to 0 when 1 < «(d + 2). The term n(=ed)/2R® almost

surely converges to 0 under Assumption C.2 with (A.9). By (A.17) and the almost sure ergodic theorem, we

have
Eore = [ e amae) = o)

As a consequence, by virtue of the central limit theorem for martingales (see for instance Cor. 2.1.10 of [10]),

we have ) (@)
M, D Tp(T
n(+ad)/? —’N<O’ 1+ad)’

when n goes to infinity, if Lindeberg’s condition is satisfied. Now, we only have to verify this technical condition
in order to end the proof. By (A.12) together with v; = v1j~, we have

Ko o
|IM; — M;_1| < —” dH + |7l = (’)(] d) a.s.
Uj+1

Thus, there exists a constant C' such that we have the following inclusions, for 1 < j < mn,
{‘Mj _ Mj—1| > €n(1+ad)/2} c {C«Jozd > €n(1+ad)/2} c {Cnozd > €n(1+ad)/2},
for any € > 0. Consequently, as n(**~1)/2 tends to 0 when ad < 1, we have

1{‘M]'7Mj71‘25n(1+(xd)/2} =0 a.s.

for n large enough. Finally, when n goes to infinity,

R ) as.
nltad ZE (Mj — Mj—1) 1{|M_7—M_7._1\Zenum«wz} fj] — 0.
j=1
This shows Lindeberg’s condition and thus the expected result. O

Now, one may give the proof of the central limit theorem for g, (x,y), presented in Theorem 3.2, under some
assumptions on the bandwidth parameters o and (.

Proof of Theorem 3.2. We have

—hay)) | aleynt D2 (pu(e) — (@)
Pn()

S
-

|

Q
S
~
o
—~
>
®
— |
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In light of Propositions C.3 and A.11 and Slutsky’s theorem, we have

g(@, )V (pu(z) —p(x)) D q(w, y)*7?
) N (O’ (@) ad)) ’

when n goes to infinity. By virtue of Proposition C.1, we obtain the expected result.
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