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EXTREMAL AND ADDITIVE PROCESSES GENERATED BY PARETO
DISTRIBUTED RANDOM VECTORS

Kosto V. Mitov1 and Saralees Nadarajah2

Abstract. Pareto distributions are most popular for modeling heavy tailed data. Here, we obtain
weak limits of a sequence of extremal and a sequence of additive processes constructed by a series of
Bernoulli point processes with bivariate Pareto space components. For the limiting processes we derive
the one dimensional distributions in explicit forms. Some of the main properties of these distributions
are also proved.
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1. Introduction

Many processes in real life (especially related to finance, economics, hydrology and telecommunications) have
heavy tails. The most popular distributions for modeling heavy tails are the Pareto distributions. Here, we
focus on bivariate processes. There are several bivariate Pareto distributions. The earliest one of these due to
Mardia [31] has the joint survival function specified by

F (x1, x2) =
[
x1

c1
+
x2

c2
− 1
]−α

(1.1)

for xi > ci ≥ 0 and α > 0. This distribution is known as the bivariate Pareto distribution of the first kind.
The bivariate Pareto distribution of the first kind has received widespread applications: joint distribution

of drivers’ injuries in road accidents [18]; modeling of clustering of sociopathy and hysteria in families [19];
outlier tests [3]; Bayesian inference [1]; modeling of the life lengths of components of a system sharing a com-
mon environment [28]; theory of queues [32]; modeling the detection of targets in a combat [55]; modeling of
operational risk [37]; modeling of daily exchange rate data for four major currencies [47]; reliability evaluation
for a multi-state system under stress-strength setup [11]; risk estimation [22]; drought modeling [38]; modeling
of bodily injury liability closed claims [54]; statistical analyses on the tail losses of equity portfolios constructed
from the stock indexes of six major global financial markets [27]; to mention just a few.
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In the stated applications and others, one is interested in extremes and sums. For example, suppose (1.1)
is used to model two different claim amounts. Then one would be interested in maximum claim amounts as
well as total claim amounts. As another example suppose (1.1) is used to model life lengths of two different
components. Then one would be interested in maximum life lengths as well as average life lengths.

The aim of this paper is to investigate the weak limits of sequences of extremal and additive processes
generated by a series of Bernoulli point processes with components distributed according to (1.1). During the
last ten years, Pancheva and her students have investigated the relation between sequences of such processes,
see [42–46]. The main result in [46] is the functional extremal criterion. It establishes the equivalence between
the convergence of a sequence of extremal processes and a sequence of additive processes in very general set-
tings. On the other hand, for modeling of any real phenomena people use particular probability distributions.
It was mentioned above that bivariate Pareto distributions are appropriate choices for modeling extremes and
sums simultaneously. In the present paper, we assume that the sequences of extremal and additive processes
are generated by random vectors following a bivariate Pareto distribution. Using the general results and espe-
cially the functional extremal criterion, we obtain limiting processes, which exhibit additional useful properties.
Univariate processes of this kind have been used for modeling of operational risk, see [37].

In the paper, calculations are done in the bivariate case, but results can be readily extended to the multivariate
case.

The contents of this paper are organized as follows. In Section 2, we give basic definitions. In Section 3, we
define and derive properties of the extremal process. In Section 4, we define the corresponding additive processes
and derive their properties. Finally, some discussion and conclusions are noted in Section 5.

2. Definitions

Suppose Xk = (X1k, X2k), k = 1, 2, 3, . . . are independent random vectors having the bivariate Pareto
distributions

P {X1k > x1, X2k > x2} =
[
x1

c1(k)
+

x2

c2(k)
− 1
]−α

,

xi > ci(k) ≥ 0, i = 1, 2, (2.1)

where

ci(k) = Cik
βi, Ci > 0, βi > 0, i = 1, 2, and 0 < α < 1. (2.2)

In other words, the left endpoint of the support of the distribution tends to infinity ci(k) ↑ ∞ as k → ∞ on
each coordinate i = 1, 2.

The condition α ∈ (0, 1) provides very heavy tailed distributions. Additionally, we suppose that the lower
bound of the support of Pareto distributions tends to infinity. This means that, in cases with finite and infinite
mathematical expectations, the possible values of these random variables are very large with positive probability.
It is possible to assume different rates of increase of the lower bound. We choose ci(k) to vary regularly in
accordance with the regularly varying tails of Pareto distributions.
Let us consider a series of Bernoulli point processes with non-random time components defined as follows

Nn = {(tnk,Xnk) , k = 1, 2, . . .} :=
{(

k

n
,

[
X1k

a1(n)
,
X2k

a2(n)

])
, k = 1, 2, . . .

}
,



EXTREMAL AND ADDITIVE PROCESSES GENERATED BY PARETO DISTRIBUTED RANDOM VECTORS 3

where a(n), n = 1, 2, . . ., is defined as follows

a(n) = (a1(n), a2(n)) =

[(
Cα

1 n
αβ1+1

αβ1 + 1

)1/α

,

(
Cα

2 n
αβ2+1

αβ2 + 1

)1/α
]
· (2.3)

Note that the series of point processes is uniformly zero, because

sup
k≤n

P
{

Xk

a(n)
> x
}

= sup
k≤n

[
x1a1(n)
c1(k)

+
x1a1(n)
c2(k)

− 1
]−α

=
[
x1a1(n)
c1(n)

+
x1a1(n)
c2(n)

− 1
]−α

→ 0, n→ ∞,

taking in view that ai(n)/ci(n) → ∞, n→ ∞.

The series of point processes defines:

(i) The sequence of extremal processes

Yn(t) = (Y1n(t), Y2n(t)) =
kn(t)∨
k=1

Xnk =
�nt�∨
k=1

[
X1k

a1(n)
,
X2k

a2(n)

]
, t > 0, (2.4)

where �x� denotes the largest integer less than or equal to x.
(ii) The sequence of additive processes

Sn(t) = (S1n(t), S2n(t)) =
kn(t)∑
k=1

Xnk =
�nt�∑
k=1

[
X1k

a1(n)
,
X2k

a2(n)

]
, t > 0. (2.5)

Here and later we denote kn(t) = max {k : tnk ≤ t} = max {k : k ≤ nt} = �x�.

3. Sequence of extremal processes

It is known that the main characteristics of an extremal process are its distribution function (d.f.) and its
lower curve. For the process Yn, defined above, the d.f. is

Hn(t,x) = Hn (t, x1, x2) = Pr (Yn(t) ≤ x) = Pr (Y1n(t) ≤ x1, Y2n(t) ≤ x2) .

The lower curve of the process Yn is

Cn(t) =
�nt�∨
k=1

c(k)
a(n)

=
c([nt])
a(n)

, t > 0.

Thus, the process Yn is defined in the area [0,Cn]c. The closed set [0,Cn] is called the explosion area of the
process.

Recall that a sequence of extremal processes Yn converges weakly to the extremal process Y if the sequence of
d.f.s Hn(t,x) converges to the the d.f. H(t,x) at each of its points of continuity. We will denote weak convergence
by ⇒. Balkema and Pancheva [2] give a detailed discussion of the properties of extremal processes.

Now we are ready to formulate and to prove the following theorem.

Theorem 3.1. Assume the conditions (2.1), (2.2), and (2.3). Then as n→ ∞,

Yn ⇒ Y,

where Y(t), t ≥ 0 is a max-infinitely divisible extremal process with d.f.

H(t,x) = exp

[
−
(

1
x1

)α

tαβ1+1 −
(

1
x2

)α

tαβ2+1 +
∫ t

0

(
x1

(αβ1 + 1)1/α uβ1
+

x2

(αβ2 + 1)1/α uβ2

)−α

du

]

and lower curve C(t) ≡ 0.
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Proof. Since the d.f. of the process Yn is defined in the area [0,Cn]c but the d.f. of the limiting process Y
is defined on [0,C]c, we have to check first the lower curve condition (see e.g., [46]), i.e., for every t > 0,
Cn(t) ∨C(t) → C(t), as n→ ∞. Indeed, because of the definitions above, we easily see that for t > 0,

Cn(t) ∨ C(t) =
c([nt])
a(n)

∨ 0 → 0 as n→ ∞.

For the d.f.s of the extremal processes Yn, one has

Hn(t,x) = P {Yn(t) < x} =
∏

k/n≤t

P
{

Xk

a(n)
< x
}

=
∏

k/n≤t

{
1 −
(
a1(n)x1

c1(k)

)−α

−
(
a1(n)x1

c1(k)

)−α

+
(
a1(n)x1

c1(k)
+
a2(n)x1

c2(k)
− 1
)−α

}

= exp

⎧⎨
⎩
∑

k/n≤t

log

{
1 −
(
a1(n)x1

c1(k)

)−α

−
(
a1(n)x1

c1(k)

)−α

+
(
a1(n)x1

c1(k)
+
a2(n)x1

c2(k)
− 1
)−α

}⎫⎬
⎭

∼ exp

⎧⎨
⎩−

∑
k/n≤t

(
a1(n)x1

c1(k)

)−α

−
∑

k/n≤t

(
a1(n)x1

c1(k)

)−α

+
∑

k/n≤t

(
a1(n)x1

c1(k)
+
a2(n)x1

c2(k)
− 1
)−α

⎫⎬
⎭ ,

where ωn ∼ δn as n → ∞ means that ωn/δn → 1 as n → ∞. In the last step, we have used the well known
relation log(1 − x) ∼ −x, as x→ 0, and the relations

(
ai(n)xi

ci(k)

)−α

→ 0,
(
a1(n)x1

c1(k)
+
a2(n)x1

c2(k)
− 1
)−α

→ 0

uniformly on k ≤ nt as n→ ∞ (cf. (2.2), (2.3)). Let us consider the sum

∑
k/n≤t

[(
a1(n)x1

c1(k)

)−α

+
(
a1(n)x1

c1(k)

)−α

−
(
a1(n)x1

c1(k)
+
a2(n)x1

c2(k)
− 1
)−α

]
= Σ1(n, t) +Σ2(n, t) −Σ12(n, t).

We have for Σ1(n, t) that

Σ1(n, t) =
∑

k/n≤t

(
c1(k)
a1(n)x1

)α

=
(

1
a1(n)x1

)α ∑
k/n≤t

c1(k)α

∼ 1
xα

1

αβ1 + 1
Cα

1 n
αβ1+1

∑
k/n≤t

Cα
1 k

αβ1

∼ Cα
1

xα
1

αβ1 + 1
Cα

1 n
αβ1+1

�nt�αβ1+1

αβ1 + 1
→ 1

xα
1

tαβ1+1, n→ ∞

(see Thm. 1.5.11 in Bingham et al. [4]). Similarly,

Σ2(n, t) → 1
xα

2

tαβ2+1, n→ ∞.
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Let us consider now Σ12(n, t). We get

Σ12(n, t) =
�nt�∑
k=1

(
a1(n)x1

c1(k)
+
a2(n)x1

c2(k)
− 1
)−α

=
�nt�∑
k=1

(
C1n

β1n1/αx1

(αβ1 + 1)1/α
C1kβ1

+
C2n

β2n1/αx2

(αβ2 + 1)1/α
C2kβ2

− 1

)−α

=
1
n

∑
0≤k/n≤t

(
nβ1x1

(αβ1 + 1)1/α
kβ1

+
nβ2x2

(αβ2 + 1)1/α
kβ2

− 1
n1/α

)−α

=
1
n

∑
0≤k/n≤t

(
x1

(αβ1 + 1)1/α (k/n)β1
+

x2

(αβ2 + 1)1/α (k/n)β2
− 1
n1/α

)−α

→
∫ t

0

(
x1

(αβ1 + 1)1/α
uβ1

+
x2

(αβ2 + 1)1/α
uβ2

)−α

du, n→ ∞.

Therefore, as n→ ∞,

Hn (t,x) = P {Yn(t) ≤ x} → H (t,x) = exp

[
−
(

1
x1

)α

tαβ1+1 −
(

1
x2

)α

tαβ2+1

+
∫ t

0

(
x1

(αβ1 + 1)1/α
uβ1

+
x2

(αβ2 + 1)1/α
uβ2

)−α

du

]

for t > 0, x > 0. Because of the asymptotic negligibility of the series of Bernoulli point processes, we conclude
that Yn converges weakly to a max-infinitely divisible extremal process Y, generated by a Poisson point process
with mean measure (see [46], Thm. 4),

μ ([0, t] × [x,∞)) =
(

1
x1

)α

tαβ1+1 +
(

1
x2

)α

tαβ2+1 −
∫ t

0

(
x1

(αβ1 + 1)1/α
uβ1

+
x2

(αβ2 + 1)1/α
uβ2

)−α

du

for x > 0, t > 0. The theorem is proved. �

Some properties of the limiting process are proved in the following corollaries.

Corollary 3.2. The limiting extremal process Y is operator self-similar with exponent

D =
[
β1 + 1/α 0
0 β2 + 1/α

]
.

Proof. From the d.f. we get

P {Y1(ct) ≤ x1, Y2(ct) ≤ x2} = H(ct, x) = exp

[
−
(

1
x1

)α

(ct)αβ1+1 −
(

1
x2

)α

(ct)αβ2+1

+
∫ tc

0

(
x1

(αβ1 + 1)1/α
uβ1

+
x2

(αβ2 + 1)1/α
uβ2

)−α

du

]
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= exp

[
−
(
cβ1+1/α

x1

)α

tαβ1+1 −
(
cβ2+1/α

x2

)α

tαβ2+1

+
∫ t

0

(
c−β1−1/αx1

(αβ1 + 1)1/α
uβ1

+
c−β2−1/αx2

(αβ2 + 1)1/α
uβ2

)−α

du

]

= P
{
Y1(t) ≤ x1

cβ1+1/α
, Y2(t) ≤ x2

cβ2+1/α

}
= P

{
cβ1+1/αY1(t) ≤ x1, c

β2+1/αY2(t) ≤ x2

}
,

which completes the proof. �

Corollary 3.3. Max-increments of the limiting process are independent but not time-homogeneous.

Proof. The independence of increments follows from the definition. We have to check that they are non-
homogeneous. Let 0 < τ < t. Then

P {Y(t) < x} = P {Y(τ) ∨U(τ, t] < x} = P {Y(τ) < x}P {U(τ, t] < x} ,

where U(τ, t] is the max-increment of Y in the interval (τ, t]. For its distribution, we have

P {U(τ, t] < x} =
P {Y(t) < x}
P {Y(τ) < x} =

H(t,x)
H(τ,x)

= exp

[
−
(

1
x1

)α (
tαβ1+1 − ταβ1+1

)− ( 1
x2

)α (
tαβ2+1 − ταβ2+1

)

+
∫ t

τ

(
x1

(αβ1 + 1)1/α
uβ1

+
x2

(αβ2 + 1)1/α
uβ2

)−α

du

]
,

which shows that the increment is not time homogeneous. �

Corollary 3.4. For every fixed t > 0 the random variable Y(t) has the following distribution

Ft(x) = H(t,x) = exp

{
−
∫ 1

0

[(
x1

C1(t)uβ1

)−α

+
(

x2

C2(t)uβ2

)−α

−
(

x1

C1(t)uβ1
+

x2

C2(t)uβ2

)−α
]
du

}
,

where

C1(t) = (αβ1 + 1)1/α
tβ1+1/α, C2(t) = (αβ2 + 1)1/α

tβ2+1/α.

Proof. The result follows from the representation of the d.f. H(t,x) after some algebraic transforms. �

Corollary 3.5. The standardized unit Fréchet one dimensional d.f. F ∗t (x) has the following form

F ∗t (y1, y2) = exp

⎧⎨
⎩− 1

y1
− 1
y2

+
∫ 1

0

[(
y1

αβ1 + 1

)1/α

u−β1 +
(

y2
αβ2 + 1

)1/α

u−β2

]−α

du

⎫⎬
⎭ ,

which does not depend on t.

Proof. The marginal distributions of Ft(x) are Fréchet. Indeed, if we let x1 → ∞ then

(
x1

C1(t)uβ1

)−α

→ 0,
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and (
x1

C1(t)uβ1
+

x2

C2(t)uβ2

)−α

→ 0

uniformly in u ∈ (0, 1]. Therefore, the marginal distribution

F2t (x2) = Ft (∞, x2) = exp

{
−
∫ 1

0

(
x2

C2(t)uβ2

)−α

du

}

= exp

{
−
(

x2

C2(t)

)−α ∫ 1

0

uβ1αdu

}
= exp

{
−
(

x2

C2(t)

)−α

(αβ2 + 1)

}
.

Similarly,

F1t (x1) = Ft (x1,∞) = exp

{
−
(

x1

C1(t)

)−α

(αβ1 + 1)

}
.

Let us transform Ft(x) to F ∗t (y) with unit Fréchet marginal distributions by the substitution

x1 =
(

1
− logF1t (y1)

)←
= C1(t)

(
y1

αβ1 + 1

)1/α

,

x2 =
(

1
− logF2t (y2)

)←
= C2(t)

(
y2

αβ2 + 1

)1/α

.

In this way, we get

F ∗t (y) = Ft

(
C1(t)

(
y1

αβ1 + 1

)1/α

, C2(t)
(

y2
αβ2 + 1

)1/α
)

= exp

{
−
∫ 1

0

[(
C1(t)y

1/α
1

C1(t) (αβ1 + 1)1/α
uβ1

)−α

+

(
C2(t)y

1/α
2

C2(t) (αβ2 + 1)1/α
uβ2

)−α

−
(

C1(t)y
1/α
1

C1(t) (αβ1 + 1)1/α
uβ1

+
C2(t)y

1/α
2

C2(t) (αβ2 + 1)1/α
uβ2

)−α ]
du

}

= exp

{
−
∫ 1

0

[
1
y1

uαβ1

αβ1 + 1
+

1
y2

uαβ2

αβ2 + 1

−
((

y1
αβ1 + 1

)1/α

u−β1 +
(

y2
αβ2 + 1

)1/α

u−β2

)−α ]
du

}

= exp

⎧⎨
⎩− 1

y1
− 1
y2

+
∫ 1

0

[(
y1

αβ1 + 1

)1/α

u−β1 +
(

y2
αβ2 + 1

)1/α

u−β2

]−α

du

⎫⎬
⎭ .

The proof is complete. �

According to Pickands [48], any bivariate extreme value distribution with unit Fréchet margins can be
expressed by the d.f.

exp
[
−
(

1
x

+
1
y

)
A

(
y

x+ y

)]
(3.1)
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for x > 0 and y > 0, where A(·) : [0, 1] → (1/2, 1] is the dependence function satisfying: i) A(0) = A(1) = 1; ii)
max(w, 1 − w) ≤ A(w) ≤ 1 for all w ∈ [0, 1]; iii) A(·) is convex. Corollary 3.6 derives the dependence function
corresponding to the extreme value d.f. F ∗t (y) in Corollary 3.5.

Corollary 3.6. The dependence function of the d.f. F ∗t (y) is

A(w) = 1 −
∫ 1

0

[
(1 − w)−1/α u−β1

(αβ1 + 1)1/α
+ w−1/α u−β2

(αβ2 + 1)1/α

]−α

du. (3.2)

If β1 = β2 = β then

A(w) = 1 −
[
(1 − w)−1/α + w−1/α

]−α

,

the dependence function due to Galambos [13].

Proof. The proof follows immediately from the representation of F ∗t (y) in Corollary 3.5. �

4. Sequence of additive processes

Let us turn now to the sequence of additive processes defined by (2.5). First of all, we have to note that the
construction of the process Yn adds points of the Bernoulli point process Nn over the explosion area [0,C]
of the corresponding extremal process Yn. This allows us to use the functional extremal criterion (see [46],
Thm. 5) for the proof of the weak convergence of the sequence of additive processes.

Theorem 4.1. The sequence of additive processes

Sn(t) = (S1n(t), S2n(t)) =
�nt�∑
k=0

(
X1k

a1(n)
,
X2k

a2(n)

)

converges weakly to the process S(t), t ≥ 0 with independent increments and Levy measure μ (t,x). The charac-
teristic function of the process S(t) has the following form

ψ (t, z1, z2) = exp
{∫ t

0

∫ ∞
0

∫ ∞
0

(
ei(x1z1+x2z2) − 1

)
μ (du, dx1, dx2)

}

= exp

{
− α(α + 1)

(αβ1 + 1)1/α (αβ2 + 1)1/α

∫ t

0

∫ ∞
0

∫ ∞
0

ei(x1z1+x2z2) − 1
uβ1uβ2

·
[

x1

(αβ1 + 1)1/α
uβ1

+
x2

(αβ2 + 1)1/α
uβ2

]−α−2

dx1dx2du

}
.

Proof. In order to prove the theorem we have to check the conditions of Theorem 5 in [46]. The first condition,
the weak convergence of the corresponding sequence of extremal processes, is proved in Theorem 3.1. Now we
have only to check that for fixed h > 0 and t > 0,

lim
n→∞

�nt�∑
k=0

E
[
X1k

a1(n)
I{ X1k

a1(n)≤h
}
]

=
∫ t

0

∫ h

0

∫ h

0

x1μ (du, dx1, dx2) , (4.1)

and

lim
n→∞

�nt�∑
k=0

E
[
X2k

a2(n)
I{ X2k

a2(n)≤h
}
]

=
∫ t

0

∫ h

0

∫ h

0

x2μ (du, dx1, dx2) . (4.2)
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From (2.1) it follows that the density of the vector
(
X1k

a1(n)
,
X2k

a2(n)

)
is

f1,2 (x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(α + 1)
a1(n)a2(n)
c1(k)c2(k)

[
x1a1(n)
c1(k)

+
x2a2(n)
c2(k)

− 1
]−α−2

,

if x1 > c1(k), x2 > c2(k),

0, otherwise.

Therefore, one gets

E
[
X1k

a1(n)
I{ X1k

a1(n)≤h
}
]

=
∫ h

0

∫ h

0

x1α(α + 1)
a1(n)a2(n)
c1(k)c2(k)

[
x1a1(n)
c1(k)

+
x2a2(n)
c2(k)

− 1
]−α−2

dx1dx2

= − α
a1(n)
c1(k)

∫ h

0

x1

[
x1a1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α−1

dx1

=
∫ h

0

x1d

[
x1a1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α

= x1

[
x1a1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α
∣∣∣∣∣
h

0

−
∫ h

0

[
x1a1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α

dx1

=h

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α

− c1(k)
a1(n)(1 − α)

[
x1a1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]1−α

∣∣∣∣∣
h

0

=h

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α

− c1(k)
a1(n)(1 − α)

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]1−α

.

Consider the sum

�nt�∑
k=0

E
[
X1k

a1(n)
I{ X1k

a1(n)≤h
}
]

=
�nt�∑
k=0

h

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α

−
�nt�∑
k=0

c1(k)
a1(n)(1 − α)

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]1−α

= Σ1(n, t) −Σ2(n, t).
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For the first sum, taking in view the formulas for ai(n) and ci(k), we obtain

Σ1(n, t) =
�nt�∑
k=0

h

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]−α

=
�nt�∑
k=0

h

[
hC1n

β1n1/α

C1 (αβ1 + 1)1/α
kβ1

+
hC2n

β2n1/α

C2 (αβ2 + 1)1/α
kβ2

− 1

]−α

=
h

n

�nt�∑
k=0

[
h

(αβ1 + 1)1/α

(
k

n

)−β1

+
h

(αβ2 + 1)1/α

(
k

n

)−β2

− 1
n1/α

]−α

→ h

∫ t

0

[
hu−β1

(αβ1 + 1)1/α
+

hu−β2

(αβ2 + 1)1/α

]−α

du

= h1−α

∫ t

0

[
1

(αβ1 + 1)1/α
uβ1

+
1

(αβ2 + 1)1/α
uβ2

]−α

du

as n→ ∞.
Following the same way, one has for the second sum that

Σ2(n, t) =
�nt�∑
k=0

c1(k)
a1(n)(1 − α)

[
ha1(n)
c1(k)

+
ha2(n)
c2(k)

− 1
]1−α

=
�nt�∑
k=0

C1 (αβ1 + 1)1/α
kβ1

C1nβ1n1/α(1 − α)

[
hC1n

β1n1/α

C1 (αβ1 + 1)1/α kβ1
+

hC2n
β2n1/α

C2 (αβ2 + 1)1/α kβ2
− 1

]1−α

=
n(1−α)/α (αβ1 + 1)1/α

n1/α(1 − α)

�nt�∑
k=0

kβ1

nβ1

·
[

hnβ1

(αβ1 + 1)1/α
kβ1

+
hnβ2

(αβ2 + 1)1/α
kβ2

− 1
n1/α

]1−α

=
(αβ1 + 1)1/α

1 − α

1
n

�nt�∑
k=0

(
k

n

)β1

·
[

h

(αβ1 + 1)1/α

(
k

n

)−β1

+
h

(αβ2 + 1)1/α

(
k

n

)−β2
]1−α

→ (αβ1 + 1)1/α

1 − α

∫ t

0

uβ1

(
h

(αβ1 + 1)1/α
u−β1 +

h

(αβ2 + 1)1/α
u−β2

)1−α

du, n→ ∞.

Therefore,

lim
n→∞

�nt�∑
k=0

E
[
X1k

a1(n)
I{ X1k

a1(n)≤h
}
]

=h1−α

∫ t

0

[
1

(αβ1 + 1)1/α
uβ1

+
1

(αβ2 + 1)1/α
uβ2

]−α

− (αβ1 + 1)1/α

1 − α

∫ t

0

uβ1

[
h

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]1−α

du.
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Similarly, one obtains

lim
n→∞

�nt�∑
k=0

E
[
X2k

a2(n)
I{ X2k

a2(n)≤h
}
]

=h1−α

∫ t

0

[
1

(αβ1 + 1)1/α
uβ1

+
1

(αβ2 + 1)1/α
uβ2

]−α

− (αβ2 + 1)1/α

1 − α

∫ t

0

uβ2

[
h

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]1−α

du.

From (3) it follows that

μ (dt, dx1, dx2) =
α(α + 1)

(αβ1 + 1)1/α
tβ1 (αβ2 + 1)1/α

tβ2

·
[

x1

(αβ1 + 1)1/α tβ1
+

x2

(αβ2 + 1)1/α tβ2

]−α−2

dtdx1dx2.

Therefore,

∫ t

0

∫ h

0

∫ h

0

x1μ (du, dx1, dx1)

=
∫ t

0

∫ h

0

∫ h

0

α(α + 1)x1u
−β1u−β2

(αβ1 + 1)1/α (αβ2 + 1)1/α

·
[

x1

(αβ1 + 1)1/α uβ1
+

x2

(αβ2 + 1)1/α uβ2

]−α−2

dudx1dx2

=
∫ t

0

∫ h

0

∫ h

0

α(α + 1)x1u
−β1u−β2

(αβ1 + 1)1/α (αβ2 + 1)1/α

·
[

x1

(αβ1 + 1)1/α uβ1
+

x2

(αβ2 + 1)1/α uβ2

]−α−2

dx2dx1du

=
∫ t

0

⎧⎨
⎩
∫ h

0

−αx1

(αβ1 + 1)1/α
uβ1

[
x1

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]−α−1

dx1

⎫⎬
⎭ du

=
∫ t

0

⎧⎨
⎩
∫ h

0

x1d

[
x1

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]−α
⎫⎬
⎭ du

=
∫ t

0

{
x1

[
x1

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]−α
∣∣∣∣∣∣
h

0

−
∫ h

0

[
x1

(αβ1 + 1)1/α uβ1
+

h

(αβ2 + 1)1/α uβ2

]−α

dx1

}
du

=
∫ t

0

h

[
h

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]−α

du
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−
∫ t

0

∫ h

0

[
x1

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]−α

dx1du

=
∫ t

0

h

[
h

(αβ1 + 1)1/α uβ1
+

h

(αβ2 + 1)1/α uβ2

]−α

du

−
∫ t

0

(αβ1 + 1)1/α uβ1

1 − α

[
h

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]1−α

du

=h1−α

∫ t

0

[
1

(αβ1 + 1)1/α uβ1
+

1

(αβ2 + 1)1/α uβ2

]−α

du

− h1−α (αβ1 + 1)1/α

1 − α

∫ t

0

uβ1

[
h

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]1−α

du.

In the same way, we obtain
∫ t

0

∫ h

0

∫ h

0

x2μ (du, dx1, dx1) =h1−α

∫ t

0

[
1

(αβ1 + 1)1/α
uβ1

+
1

(αβ2 + 1)1/α
uβ2

]−α

du

− h1−α (αβ2 + 1)1/α

1 − α

∫ t

0

uβ2

[
h

(αβ1 + 1)1/α
uβ1

+
h

(αβ2 + 1)1/α
uβ2

]1−α

du.

Therefore, the relations (4.1) and (4.2) are fulfilled. Using the functional extremal criterion (see Thm. 5, [46]),
we complete the proof of the theorem. �

Some properties of the limiting process are given without proofs in the following corollaries.

Corollary 4.2. The characteristic functions of the marginal distributions are

ψ (t, z1) = exp
[
−tαβ1+1

∫ ∞
0

(
eix1z1 − 1

)
x−α−1

1 dx1

]
,

ψ (t, z2) = exp
[
−tαβ2+1

∫ ∞
0

(
eix2z2 − 1

)
x−α−1

2 dx2

]
.

Corollary 4.3. The process S(t) is operator self-similar with exponent

D =
[
β1 + 1/α 0
0 β2 + 1/α

]
.

Remark 4.4. In the particular case β1 = β2 = β > 0,

ψ (t, z1, z2) = exp

[
−α(α+ 1)tαβ+1

∫ ∞
0

∫ ∞
0

ei(x1z1+x2z2) − 1
(x1 + x2)

α+2 dx1dx2

]
·

For S(1), we have

ψ (1, z1, z2) = exp

[
−α(α + 1)

∫ ∞
0

∫ ∞
0

ei(x1z1+x2z2) − 1
(x1 + x2)

α+2 dx1dx2

]
·

In this case, the exponent of self-similarity is

D =
[
β + 1/α 0
0 β + 1/α

]
.
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5. Discussion and conclusions

We have derived limiting laws and exact expressions for sequences of extremal and additive processes made
up of the same series of Bernoulli point processes. The space components of the point processes are assumed to
follow the earliest known bivariate Pareto distribution with wide ranging applications.

The distributions of the limiting extremal process are described by Theorem 3.1, Corollary 3.4, Corollaries 3.5,
and 3.6. The limiting distribution given by each of these results is in closed form except for an integral of the
form

∫ t

0

[
Au−β1 +Bu−β1

]−α
du = I (β1, β2) (5.1)

say, where A and B are certain functions of (t, x1, x2). For instance, A = x1 (αβ1 + 1)−1/α and B =
x2 (αβ2 + 1)−1/α in Theorem 3.1, A = x1/C1(t) and B = x2/C2(t) in Corollary 3.4, A = y

1/α
1 (αβ1 + 1)−1/α

and B = y
1/α
2 (αβ2 + 1)−1/α in Corollary 3.5, and A = (1−w)−1/α (αβ1 + 1)−1/α and B = w−1/α (αβ2 + 1)−1/α

in Corollary 3.6.
The integral in (5.1) can be expressed in terms of the well known Gauss hypergeometric function defined by

2F1 (a, b; c;x) =
∞∑

k=0

(a)k (b)k

(c)k

xk

k!
,

where (e)k = e(e+1) · · · (e+k−1) denotes the ascending factorial. In fact, using equation (3.194.1) in Gradshteyn
and Ryzhik [15], we have

I (β1, β2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tαβ1+1

Aα (αβ1 + 1)2F1

(
α,
αβ1 + 1
β1 − β2

;
αβ1 + 1
β1 − β2

+ 1;−B
A
tβ1−β2

)
,

if β1 > β2,

tαβ2+1

Bα (αβ2 + 1)2F1

(
α,
αβ2 + 1
β2 − β1

;
αβ2 + 1
β2 − β1

+ 1;−A
B
tβ2−β1

)
,

if β2 > β1,

tαβ+1

(A+B)α (αβ + 1)
,

if β1 = β2 = β.

The exact expressions for the distributions of the limiting additive process are described by Theorem 4.1,
Corollary 4.2, and Corollary 3.6. The expressions involve triple integrals with respect to x1, x2 and u. The
integral with respect to u takes the form

∫ t

0

u−β1−β2
[
Au−β1 +Bu−β1

]−α
du = J (β1, β2) (5.2)

say, where A = x1 (αβ1 + 1)−1/α and B = x2 (αβ2 + 1)−1/α.
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The integral in (5.2) can also be expressed in terms of the Gauss hypergeometric function. Using equa-
tion (3.194.1) in Gradshteyn and Ryzhik [15], we have

J (β1, β2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tαβ1−β1−β2+1

Aα (αβ1 − β1 − β2 + 1)

·2F1

(
α,
αβ1 − β1 − β2 + 1

β1 − β2
;
αβ1 − β1 − β2 + 1

β1 − β2
+ 1;−B

A
tβ1−β2

)
,

if β1 > β2,

tαβ2−β1−β2+1

Bα (αβ2 − β1 − β2 + 1)

·2F1

(
α,
αβ2 − β1 − β2 + 1

β2 − β1
;
αβ2 − β1 − β2 + 1

β2 − β1
+ 1;−A

B
tβ2−β1

)
,

if β2 > β1,

t(α−2)β+1

(A+B)α [(α− 2)β + 1]
,

if β1 = β2 = β.

The Gauss hypergeometric function is well known and well established in the mathematics literature, see
Prudnikov et al. [49] and Gradshteyn and Ryzhik [15] for detailed properties. In-built numerical routines for
computing the Gauss hypergeometric function are available in most mathematical packages, for example, Maple,
Mathematica and Matlab.

Corollaries 3.2 and 4.3 gave results involving self-similarity. Self-similar processes have a scaling property, that
is the process X(t), t ≥ 0 is self-similar if X(at) has the same distribution as aHX(t) for any positive constant
a. In the multivariate case (when X(t), t ≥ 0 is a vector-valued process) the scaling factors could be different in
each coordinate. In this case, the process is said to be operator self-similar. This property is useful for modeling
of many real phenomena. Let us mention a few applications in financial modeling: Rachev and Mittnik [50]
show that the scaling index will vary between elements of a portfolio containing different stocks; Similar results
were obtained by Meerschaert and Scheffler [35] for exchange rates; Jansen and de Vries [20] use these models
to explain the 1987 stock market crash. In the analysis of financial data, it is useful to consider the waiting time
between trades and the resulting price change as a two dimensional random vector. Meerschaert and Scalas [33]
show that different indices apply to price jumps and waiting times. We refer the readers to Chapter 9 in [10]
and Chapter 11 in [34] for detailed results and further references on operator self-similar processes.

Next, we discuss how the dependence function in (3.2) compares to known dependence functions in the
literature. Some of the most well known dependence functions are:

A(w) = 1 − (θ + φ)w + θw2 + φw3 (5.3)

due to Tawn [52], where θ ≥ 0, θ + 3φ ≥ 0, θ + φ ≤ 1 and θ + 2φ ≤ 1;

A(w) = (1 − φ1) (1 − w) + (1 − φ2)w +
[
(φ1w)1/θ + (φ2(1 − w))1/θ

]θ
(5.4)

due to Tawn [52], where 0 < θ ≤ 1 and 0 ≤ φ1, φ2 ≤ 1;

A(w) = wΦ

(
1
θ

+
θ

2
log

w

1 − w

)
+ (1 − w)Φ

(
1
θ
− θ

2
log

w

1 − w

)
(5.5)
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due to Hüsler and Reiss [17], where θ ≥ 0 and Φ(·) denotes the d.f. of a standard normal random variable;

A(w) =
∫ 1

0

max
[
(1 − β)(1 − w)t−β , (1 − δ)w(1 − t)−δ

]
dt (5.6)

due to Joe et al. [23] and Coles and Tawn [7], where (β, δ) ∈ (0, 1)2 ∪ (−∞, 0)2; and,

A(w) = wtξ+1

(√
1 + ξ

1 − ρ2

[(
w

1 − w

)1/ξ

− ρ

])
+ (1 − w)tξ+1

(√
1 + ξ

1 − ρ2

[(
1 − w

w

)1/ξ

− ρ

])
(5.7)

due to Demarta and McNeil [8], where −1 < ρ < 1, ξ > 0 and tν(·) denotes the d.f. of a Student’s t random
variable with ν degrees of freedom.

There are no well developed methods to compare dependence functions. Here, we suggest one new method
to compare dependence functions. A known measure of dependence due to Tawn [52] is

D1 = 2 − 2A
(

1
2

)
· (5.8)

A measure of asymmetry proposed recently by Rosco and Joe [51] is

D2 = sup
0<u<1,0<v<1

|C(u, v) − CR(u, v)| , (5.9)

where C(u, v) denotes the copula corresponding to (3.1) and CR(u, v) = 1−u−v+C(1−u, 1−v). The possible
values of D1 are 0 ≤ D1 ≤ 1. Values of D1 close to 1 correspond to high degrees of dependence and values of
D1 close to 0 correspond to low degrees of dependence. The possible values of D2 are 0 ≤ D2 ≤ 1/3. Values of
D2 close to 1/3 correspond to high degrees of asymmetry and values of D2 close to 0 correspond to low degrees
of asymmetry.

The method we suggest for comparing dependence functions is a plot ofD1 versusD2 for all possible parameter
values. The area covered by the plot will be a measure of flexibility of A(w). The bigger the area the greater
the flexibility.

The (D1, D2) plots for A(w) given by (3.2), (5.3)−(5.7) are shown in Figure 1. We can see that (3.2) is more
flexible than all five of the dependence functions but (5.4), which appears to be the most flexible model. The
A(w) in (5.6) appears to be the third most flexible model. The A(w) in (5.3) appears to be the fourth most
flexible model. The A(w) in (5.7) appears to be the fifth most flexible model. The A(w) in (5.5) appears to be
the least flexible model.

Hence, we can expect (3.2) to be a better model to all areas where the models given by (5.6), (5.3), (5.7)
and (5.5) have been applied.

Some recent applications of (5.3) have included storm frequency analysis [56], financial risk assessment [36],
modeling of SOA medical large claims database [6], estimation of the probability of two dependent catastrophic
events [25], and estimation of risk measures in energy portfolios [21].

Some recent applications of (5.5) have included portfolio risk measurement [5], fitting joint cumulative returns
between a market index and a single stock to daily data [16], risk management for Jamaican equity and foreign
exchange markets [24], extreme dependence of multivariate catastrophic losses [26], estimation of risk measures
in energy portfolios [21], and probabilistic landslide hazard assessment [39].

Some applications of (5.6) have included models for structural design [7] and models for extreme wind
speeds [12].

Some recent applications of (5.7) have included models for multivariate high-frequency data in finance [9],
risk management [29], spatio-temporal variations of precipitation extremes in Xinjiang, China [57], modeling of
multivariate drought characteristics [30], performance assessment of reconstructed watersheds [40], and regional
air quality conformity in transportation networks with stochastic dependencies [41].
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Figure 1. (D1, D2) plots for A(w) given by (3.2) (top left), (5.3) (top right), (5.4) (middle
left), (5.5) (middle right), (5.6) (bottom left) and (5.7) (bottom right).
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The dependence functions in (5.3)−(5.7) have also been applied to areas where the marginals are assumed
to be Pareto distributed, consistent with the assumptions in Section 2. Examples include temporal and spatial
variability of drought in mountain catchments of the Nysa Klodzka basin [53] and estimation of portfolio value
at risk [14].

The effect of the parameters, α, β1 and β2, of (3.2) on the degree of dependence can be described as follows:
small values of α (i.e., the values of α close to 0) correspond to large values of D1 (i.e., the values of D1 close
to 1); large values of α correspond to small values of D1 (i.e., the values of D1 close to 0); for small values of α
(i.e., the values of α close to 0) larger values of β1 and β2 correspond to larger values of D2 (i.e., the values of
D2 closer to 1/3); for large values of α larger values of β1 and β2 correspond to smaller values of D2 (i.e., the
values of D2 closer to 0).

Finally, we state the multivariate case of the problem considered in this paper. Suppose Xk =
(X1k, X2k, . . . , Xpk), k = 1, 2, 3, . . . are independent random vectors having the p-variate Pareto distributions

P {X1k > x1, X2k > x2, . . . , Xpk > xp} =

⎡
⎣ p∑

j=1

xj

cj(k)
− p+ 1

⎤
⎦
−α

,

xi > ci(k) ≥ 0, i = 1, 2, . . . , p,

where

ci(k) = Cik
βi , Ci > 0, βi > 0, i = 1, 2, . . . , p and 0 < α < 1.

Define a(n), n = 1, 2, . . . as follows

a(n) = (a1(n), a2(n), . . . , ap(n)) =

⎡
⎣(Cα

1 n
αβ1+1

αβ1 + 1

)1/α

,

(
Cα

2 n
αβ2+1

αβ2 + 1

)1/α

, . . . ,

(
Cα

p n
αβp+1

αβp + 1

)1/α
⎤
⎦ ·

The sequence of extremal processes and the sequence of additive processes defined by (2.4) and (2.5) generalize
to

Yn(t) =
�nt�∨
k=1

[
X1k

a1(n)
,
X2k

a2(n)
, . . . ,

Xpk

ap(n)

]
, t > 0

and

Sn(t) =
�nt�∑
k=1

[
X1k

a1(n)
,
X2k

a2(n)
, . . . ,

Xpk

ap(n)

]
, t > 0,

respectively. Under this set up, we seek to generalize Theorems 1 and 2. That is, the problem is to determine
the limiting process of Yn(t) and the limiting process of Sn(t) as n→ ∞.
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