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ERGODICITY OF LÉVY-TYPE PROCESSES ∗

Nikola Sandrić
1,2

Abstract. In this paper, conditions for transience, recurrence, ergodicity and strong, subexponential
(polynomial) and exponential ergodicity of a class of Feller processes are derived. The conditions are
given in terms of the coefficients of the corresponding infinitesimal generator. As a consequence, mixing
properties of these processes are also discussed.
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1. Introduction

The main goal of this paper is to derive conditions for transience, recurrence, ergodicity and strong, subexpo-
nential (polynomial) and exponential ergodicity of Feller processes generated by an integro-differential operator
of the form

Lf(x) = −a(x)f(x) +
d∑

i=1

bi(x)
∂f(x)
∂xi

+
1
2

d∑
i,j=1

cij(x)
∂2f(x)
∂xi∂xj

+
∫

Rd

(
f(y + x) − f(x) −

d∑
i=1

yi
∂f(x)
∂xi

1B(0,1)(y)

)
ν(x, dy). (1.1)

The class of Feller processes of this type is known as Lévy-type processes (see Sect. 2 for details). This work
is motivated by the works of Mandl [30] and Bhattacharya [3, 4] (see also [18, 19]), where the authors ob-
tained sufficient conditions for transience, recurrence and strong ergodicity of conservative elliptic diffusion
processes, that is, processes governed by an operator of the form (1.1) but with a(x) = 0 and ν(x, dy) = 0
for all x ∈ Rd. More precisely, under certain regularity conditions of the coefficients b(x) := (bi(x))1≤i≤d

and c(x) := (cij(x))1≤i,j≤d (local boundedness of b(x) and continuity, symmetry and nonsingularity of c(x)),
by defining A(x) := (1/2)|x|−2

∑d
i=1 cii(x), B(x) := |x|−2

∑d
i=1 xibi(x), C(x) := |x|−4

∑d
i,j=1 xixjcij(x),
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I(r) := inf |x|=r(2A(x) − C(x) + 2B(x))/C(x), I(r) := sup|x|=r(2A(x) − C(x) + 2B(x))/C(x),

T (r) :=
∫ r

r0

exp
{
−

∫ s

r0

I(u)/u du
}

ds, R(r) :=
∫ r

r0

exp
{
−

∫ s

r0

I(u)/u du
}

ds,

E(r) :=
∫ r

r0

(
exp

{
−

∫ s

r0

I(u)
/
u du

}∫ ∞

s

exp
{∫ u

r0

I(v)
/
v dv

} /
inf

|x|=u
C(x) du

)
ds, (1.2)

they have shown the following:

(i) the underlying process is transient if for some r0 > 0, limr−→∞ T (r) <∞;
(ii) the underlying process is recurrent if for some r0 > 0, limr−→∞R(r) = ∞;
(iii) the underlying process is strongly ergodic if for some r0 > 0, limr−→∞R(r) = ∞ and E(r) < ∞ for all

r ≥ r0.

The so-called Lyapunov functions T (r), R(r) and E(r), defined in (1.2), appear as an appropriate optimization
of solutions of certain second-order ordinary differential equations associated to L (see [3] for details). By using
a similar approach, in the general situation, certain ordinary integro-differential equations are associated to the
operator L. However, to the best of our knowledge, it is not completely clear how to solve these equations.
Therefore, we construct “universal” Lyapunov functions which do not depend on the coefficients of L and share
some properties of T (r), R(r) and E(r). By considering the simplest elliptic diffusion case: a(x) = 0, b(x) = 0
and c(x) = I for all x ∈ R

d (here, I denotes the d × d-identity matrix), that is, the case of a standard d-
dimensional Brownian motion, it is easy to see that adequate choices are 1 − r−α (for transience) and ln r or
rα (for recurrence) for some α > 0 and all r > 0 large enough (see also [41–43, 56, 61]). Then, by using these
functions and following the ideas presented in [3], we are in a position to derive the desired conditions (see
Thm. 3.3).

Except for elliptic diffusions, whose transience, recurrence and ergodicity property has been studied
in [3, 18, 19, 30, 56], transience, recurrence and ergodicity of certain special cases of Lévy-type processes only
have already been considered in the literature. More precisely, the transience and recurrence of Lévy processes
have been studied extensively in [46]. In [59, 60] the author has studied mixing properties of elliptic diffusions,
and in [11, 15] conditions for the polynomial ergodicity of elliptic diffusions and compound Poisson-process
driven Ornstein–Uhlenbeck-type processes have been obtained. The transience, recurrence, strong ergodicity
and mixing properties of general Ornstein-Uhlenbeck-type processes have been studied in [31, 47, 48, 54]. In
the closely related paper [61] the author has discussed the recurrence and strong ergodicity of one-dimensional
Lévy-type processes, while in [62,63] the transience, recurrence and strong ergodicity of multidimensional Lévy-
type processes but with uniformly bounded jumps and uniformly elliptic diffusion part have been considered.
In [6, 16, 17, 41–44] the authors have derived sufficient conditions for the transience, recurrence and strong
ergodicity of one-dimensional stable-like processes (see Sect. 3 for the definition of these processes). In recent
works [45, 52] Chung–Fuchs type conditions for the transience and recurrence of Lévy-type process with bounded
coefficients have been derived. In [32] the author has obtained conditions for the strong and exponential ergodic-
ity and mixing properties of strong solutions of Lévy-driven stochastic differential equations. Finally, in [29] the
exponential ergodicity of a strong solution of pure jump stochastic differential equation (Lévy-type processes
with zero diffusion part) has been studied.

In this paper, we extend the above mentioned results and obtain general conditions without any further
(regularity) assumptions and restrictions on the dimension of the state space and coefficients of the operator L.
Also, our conditions are given in terms of the operator L itself, which is usually much more accessible and
practical.

This paper is organized as follows. In Section 2 we give some preliminaries on Lévy-type processes and
in Section 3 we state the main results of this paper. In Section 4 we discuss conservativeness of Lévy-type
processes and in Section 5 we discuss transience and recurrence of these processes. Finally, in Section 6, we
discuss ergodicity and strong, subexponential (polynomial) and exponential ergodicity of Lévy-type processes.
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2. Preliminaries on Lévy-Type Processes

Let (Ω,F , {Px}x∈Rd , {Ft}t≥0, {θt}t≥0, {Mt}t≥0), denoted by {Mt}t≥0 in the sequel, be a d-dimensional
Markov process. A family of linear operators {Pt}t≥0 on Bb(Rd) (the space of bounded and Borel measur-
able functions), defined by

Ptf(x) := Ex[f(Mt)], x ∈ R
d, t ≥ 0, f ∈ Bb(Rd),

is associated with the process {Mt}t≥0. Since {Mt}t≥0 is a Markov process, the family {Pt}t≥0 forms a semigroup
of linear operators on the Banach space (Bb(Rd), ‖ · ‖∞), that is, Ps ◦ Pt = Ps+t and P0 = I for all s, t ≥ 0.
Here, ‖ · ‖∞ denotes the supremum norm on the space Bb(Rd). Moreover, the semigroup {Pt}t≥0 is contractive,
that is, ‖Ptf‖∞ ≤ ‖f‖∞ for all t ≥ 0 and all f ∈ Bb(Rd), and positivity preserving, that is, Ptf ≥ 0 for all t ≥ 0
and all f ∈ Bb(Rd) satisfying f ≥ 0. The infinitesimal generator (Ab,DAb) of the semigroup {Pt}t≥0 (or of the
process {Mt}t≥0) is a linear operator Ab : DAb −→ Bb(Rd) defined by

Abf := lim
t−→0

Ptf − f

t
, f ∈ DAb :=

{
f ∈ Bb(Rd) : lim

t−→0

Ptf − f

t
exists in ‖ · ‖∞

}
.

A Markov process {Mt}t≥0 is said to be a Feller process if its corresponding semigroup {Pt}t≥0 forms a
Feller semigroup. This means that the family {Pt}t≥0 is a semigroup of linear operators on the Banach space
(C∞(Rd), ‖ · ‖∞) and it is strongly continuous, that is,

lim
t−→0

‖Ptf − f‖∞ = 0, f ∈ C∞(Rd).

Here, C∞(Rd) denotes the space of continuous functions vanishing at infinity. Note that every Feller semigroup
{Pt}t≥0 can be uniquely extended to Bb(Rd) (see [49], Sect. 3). For notational simplicity, we denote this extension
again by {Pt}t≥0. Also, let us remark that every Feller process possesses the strong Markov property and has
(a modification with) càdlàg sample paths (see [23], Thms. 3.4.19 and 3.5.14). Further, in the case of Feller
processes, we call (A,DA) := (Ab,DAb ∩ C∞(Rd)) the Feller generator for short. Note that, in this case,
DA ⊆ C∞(Rd̄) and A(DA) ⊆ C∞(Rd). If the set of smooth functions with compact support C∞

c (Rd) is contained
in DA, then, according to ([9], Thm. 3.4), A|C∞

c (Rd) is a pseudo-differential operator, that is, it can be written
in the form

A|C∞
c (Rd)f(x) = −

∫
Rd

q(x, ξ)ei〈ξ,x〉f̂(ξ)dξ, (2.1)

where f̂(ξ) := (2π)−d
∫

Rd e−i〈ξ,x〉f(x)dx denotes the Fourier transform of the function f(x). The function
q : R

d ×R
d −→ C is called the symbol of the pseudo-differential operator. It is measurable and locally bounded

in (x, ξ) and continuous and negative definite as a function of ξ. Hence, by ([22], Thm. 3.7.7), the function
ξ �−→ q(x, ξ) has for each x ∈ Rd the following Lévy–Khintchine representation

q(x, ξ) = a(x) − i〈ξ, b(x)〉 +
1
2
〈ξ, c(x)ξ〉 −

∫
Rd

(
ei〈ξ,y〉 − 1 − i〈ξ, y〉1B(0,1)(y)

)
ν(x, dy), (2.2)

where a(x) is a nonnegative Borel measurable function, b(x) is an Rd-valued Borel measurable function, c(x) :=
(cij(x))1≤i,j≤d is a symmetric non-negative definite d× d matrix-valued Borel measurable function and ν(x, dy)
is a Borel kernel on Rd × B(Rd), called the Lévy measure, satisfying

ν(x, {0}) = 0 and
∫

Rd

(1 ∧ |y|2)ν(x, dy) <∞, x ∈ R
d.

The quadruple (a(x), b(x), c(x), ν(x, dy)) is called the Lévy quadruple of the pseudo-differential operator
A|C∞

c (Rd) (or of the symbol q(x, ξ)). Let us remark that the local boundedness of q(x, ξ) implies that for
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every compact set K ⊆ Rd there exists a finite constant cK > 0, such that

sup
x∈K

|q(x, ξ)| ≤ cK(1 + |ξ|2), ξ ∈ R
d, (2.3)

(see [22], Lem. 3.6.22). Moreover, due to ([50], Lem. 2.1 and Rem. 2.2), (2.3) is equivalent with the local
boundedness of the Lévy quadruple, that is, for every compact set K ⊆ Rd we have

sup
x∈K

a(x) + sup
x∈K

|b(x)| + sup
x∈K

|c(x)| + sup
x∈K

∫
Rd

(1 ∧ |y|2)ν(x, dy) <∞.

In addition, according to the same reference, the global boundedness of the Lévy quadruple is equivalent to

‖q(·, ξ)‖∞ ≤ c(1 + |ξ|2), ξ ∈ R
d,

for some finite c > 0. Further, note that by combining (2.1) and (2.2), A|C∞
c (Rd) has a representation as an

integro-differential operator (1.1). In the case when the symbol q(x, ξ) does not depend on the variable x ∈ Rd,
{Mt}t≥0 becomes a Lévy process, that is, a stochastic process with stationary and independent increments and (a
modification with) càdlàg sample paths. Moreover, every Lévy process is uniquely and completely characterized
through its corresponding symbol (see [46], Thms. 7.10 and 8.1). According to this, it is not hard to check that
every Lévy process satisfies (2.1) (see [46], Thm. 31.5). Thus, the class of processes we consider in this paper
contains a class of Lévy processes. Let us also remark here that, unlike in the case of Lévy processes, it is not
possible to associate a Feller process to every symbol (see [7] for details). Throughout this paper, the symbol
{Ft}t≥0 denotes a Feller process satisfying (2.1). Such a process is called a Lévy-type process. If ν(x, dy) = 0 for
all x ∈ Rd, according to ([7], Thm. 2.44), {Ft}t≥0 becomes an elliptic diffusion process. For more on Lévy-type
processes we refer the readers to the monograph [7].

3. Main results

In this section, we present the main results of this paper. Before stating the main results, we recall the defini-
tions of transience, recurrence and ergodicity of general Markov processes. Let (Ω,F , {Px}x∈Rd , {Ft}t≥0, {θt}t≥0,
{Mt}t≥0), denoted by {Mt}t≥0 in the sequel, be a Markov process with càdlàg sample paths and state space
(Rd,B(Rd)), where d ≥ 1 and B(Rd) denotes the Borel σ-algebra on Rd.

Definition 3.1. The process {Mt}t≥0 is called:

(i) Irreducible if there exists a σ-finite measure ϕ(dy) on B(Rd) such that whenever ϕ(B) > 0 we have∫ ∞
0

Px(Mt ∈ B)dt > 0 for all x ∈ Rd.
(ii) Transient if it is ϕ-irreducible and if there exists a countable covering of Rd with sets {Bj}j∈N ⊆ B(Rd),

such that for each j ∈ N there is a finite constant cj ≥ 0 such that
∫ ∞
0 Px(Mt ∈ Bj)dt ≤ cj holds for all

x ∈ Rd.
(iii) Recurrent if it is ϕ-irreducible and if ϕ(B) > 0 implies

∫ ∞
0

Px(Mt ∈ B)dt = ∞ for all x ∈ Rd.
(iv) Harris recurrent if it is ϕ-irreducible and if ϕ(B) > 0 implies Px(τB < ∞) = 1 for all x ∈ Rd, where

τB := inf{t ≥ 0 : Mt ∈ B}.
Let us remark that if {Mt}t≥0 is a ϕ-irreducible Markov process, then the irreducibility measure ϕ(dy) can

be maximized. This means that there exists a unique “maximal” irreducibility measure ψ(dy) such that for any
measure ϕ̄(dy), {Mt}t≥0 is ϕ̄-irreducible if, and only if, ϕ̄ � ψ (see [58], Thm. 2.1). According to this, from
now on, when we refer to irreducibility measure we actually refer to the maximal irreducibility measure. In the
sequel, we consider only the so-called open-set irreducible Markov processes, that is, Markov processes whose
maximal irreducibility measure is fully supported. An example of such a measure is Lebesgue measure, which
we denote by λ(dy). Clearly, a Markov process {Mt}t≥0 will be λ-irreducible if P

x(Mt ∈ B) > 0 for all x ∈ R
d

and t > 0 whenever λ(B) > 0. In particular, the process {Mt}t≥0 will be λ-irreducible if the transition kernel
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Px(Mt ∈ dy), x ∈ Rd, t > 0, possesses a strictly positive transition density function with respect to λ(dy). Let us
remark here that irreducibility of Lévy-type processes is a very well-studied topic in the literature. In particular,
we refer the readers to [53, 56] for the elliptic diffusion case, to [27, 28] for the case of stable-like processes (see
Example 3.6 for the definition of these processes), to ([25,26], [37], Rem. 3.3 and [45], Thm. 2.6) for the case of
Lévy-type processes with bounded coefficients and to [2,21,24,29,32,33,38,39] for the case of a class of Lévy-type
processes obtained as a solution of certain jump-type stochastic differential equations. Further, it is well-known
that every ψ-irreducible Markov process is either transient or recurrent (see [58], Thm. 2.3). Also, clearly, every
Harris recurrent Markov process is recurrent, but, in general, these two properties are not equivalent. They
differ on the set of the irreducibility measure zero (see [58], Thm. 2.5). However, for an open-set irreducible
Lévy-type process these two properties are actually equivalent (see Prop. 5.1).

Now, we recall notions of ergodicity of Markov processes. A probability measure π(dx) on B(Rd) is called
invariant for {Mt}t≥0 if ∫

Rd

P
x(Mt ∈ B)π(dx) = π(B), t > 0, B ∈ B(Rd).

A set B ∈ F is said to be shift-invariant if θ−1
t B = B for all t ≥ 0. The shift-invariant σ-algebra I is a collection

of all such shift-invariant sets.

Definition 3.2. The process {Mt}t≥0 is called:

(i) Ergodic if it possesses an invariant probability measure π(dx) and if I is trivial with respect to Pπ(dω),
that is, Pπ(B) = 0 or 1 for every B ∈ I. Here, for a probability measure μ(dx) on B(Rd), Pμ(dω) is defined
as Pμ(dω) :=

∫
Rd Px(dω)μ(dx).

(ii) Strongly ergodic if it possesses an invariant probability measure π(dx) and if

lim
t−→∞ ‖P

x(Mt ∈ ·) − π(·)‖TV = 0, x ∈ R
d,

where ‖ · ‖TV denotes the total variation norm on the space of signed measures on B(Rd).
(iii) Polynomially ergodic if it possesses an invariant probability measure π(dx) and if

‖P
x(Mt ∈ ·) − π(·)‖TV ≤ k(x)t−κ, x ∈ R

d, t ≥ 0,

for some k : Rd −→ [0,∞) and κ > 0.
(iv) Exponentially ergodic if it possesses an invariant probability measure π(dx) and if

‖P
x(Mt ∈ ·) − π(·)‖TV ≤ k(x)e−κt, x ∈ R

d, t ≥ 0,

for some k : Rd −→ [0,∞) and κ > 0.

Clearly, exponential ergodicity implies polynomial ergodicity, which implies strong ergodicity and strong ergod-
icity implies ergodicity (for the latter see [5], Prop. 2.5). On the other hand, ergodicity does not necessarily
imply strong ergodicity, strong ergodicity does not imply polynomial ergodicity which in general does not imply
exponential ergodicity (see [15, 36, 37]). However, for an open-set irreducible Lévy-type process which has an
irreducible skeleton chain, ergodicity and strong ergodicity actually coincide (see Sect. 6). Recall, a Markov
process {Mt}t≥0 has an irreducible skeleton chain if there are t0 > 0 and σ-finite measure ϕ(dy) on B(Rd), such
that the Markov chain {Mnt0}n≥0 is ϕ-irreducible, that is, whenever ϕ(B) > 0 we have

∑∞
n=0 Px(Mnt0 ∈ B) > 0

for all x ∈ Rd.
Now, we are in a position to state the main results of this paper, the proofs of which are given in Sections 5

and 6. First, we introduce some auxiliary notation we need in the sequel. For α ≥ 0, r0 > 1, 0 < ε ≤ 1 − r−α
0 ,
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r ≥ r0 and x ∈ Rd, |x| ≥ r0, define

Wα(r) := 1 − r−α, Vα(r) :=

{
ln r, α = 0

rα, α > 0,

DW
α (x) :=

α

2

(
(|x| + 1)−2−α − (2 + α)

(|x| + 1)2

(|x| − 1)4+α

) ∫
B(0,1)

|y|2ν(x, dy),

DV
α (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(|x| − 1)−2

∫
B(0,1)

|y|2ν(x, dy), α = 0

α

2
(|x| − 1)−2+α

∫
B(0,1)

|y|2ν(x, dy), 0 < α ≤ 2

α

2

(
(|x| − 1)−2+α − (2 − α)

(|x| + 1)2

(|x| − 1)4−α

)∫
B(0,1)

|y|2ν(x, dy), 2 < α ≤ 4

α

2
(
(|x| − 1)−2+α − (2 − α)(|x| + 1)α−2

) ∫
B(0,1)

|y|2ν(x, dy), α > 4,

EW
α (x) :=

∫
Bc(0,1)

(
Wα(|y + x|)1{|y+x|>r0}(y) + (Wα(r0) − ε)1{|y+x|≤r0}(y) −Wα(|x|)) ν(x, dy),

EV
α (x) :=

∫
Bc(0,1)

(Vα(|y + x| ∨ r0) − Vα(|x|))ν(x, dy),

Tα(x) := −a(x)Wα(|x|) + α|x|−α(A(x) − (1 + α/2)C(x) +B(x)) +DW
α (x) + EW

α ,

Rα(x) :=

{
−a(x)V0(|x|) +A(x) − C(x) +B(x) +DV

0 (x) + EV
0 (x), α = 0

−a(x)Vα(|x|) + α|x|α(A(x) − (1 − α/2)C(x) +B(x)) +DV
α (x) + EV

α , α > 0,
(3.1)

where a(x), A(x), B(x) and C(x) are defined in (1.1) and (1.2), B(x, r) denotes the open ball around x ∈ Rd of
radius r > 0 and a∧b and a∨b denote the minimum and maximum of a, b ∈ R, respectively. It is straightforward
to see (by employing Taylor’s formula) that for any C2-extensions W̄α, V̄α : Rd −→ [0,∞) of the functions
x �−→Wα(|x|) and x �−→ Vα(|x|), x ∈ R

d, |x| ≥ r0, such that the functions |x| −→ W̄α(x) and |x| −→ V̄α(x) are
nondecreasing and W̄α(0) = 1− r−α

0 − ε, we have that LW̄α(x) ≥ Tα(x) and LV̄α(x) ≤ Rα(x), x ∈ Rd, |x| ≥ r0.
Also, observe that

(i) if α ≤ 1, then for all x ∈ Rd, |x| ≥ r0,

EW
α (x) ≥ − α

r0|x|α
∫
{|y|≥1, |x|>|y+x|>r0}

|y|ν(x, dy) + (−1 + |x|−α)ν(x, {|y| ≥ 1, |y + x| ≤ r0}).

(ii) for all x ∈ Rd, |x| ≥ r0,

EV
α (x) ≤

⎧⎨
⎩

∫
Bc(0,1) ln

(
1 + |y|

|x|
)
ν(x, dy), α = 0∫

Bc(0,1) ((|x| + |y|)α − |x|α) ν(x, dy), α > 0.

In particular, if α ≤ 1, then for all x ∈ Rd, |x| ≥ r0,

EV
α (x) ≤

{ |x|−1
∫

Bc(0,1) |y|ν(x, dy), α = 0

α|x|−1+α
∫

Bc(0,1)
|y|ν(x, dy), 0 < α ≤ 1.

Theorem 3.3. Let {Ft}t≥0 be a d-dimensional open-set irreducible Lévy-type process generated by an operator
of the form (1.1) with coefficients (a(x), b(x), c(x), ν(x, dy)).
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(i) The process {Ft}t≥0 is transient if there exist α > 0, x0 > r0 > 1 and 0 < ε ≤ 1−r−α
0 , such that Tα(x) ≥ 0

for all x ∈ Rd, |x| ≥ x0.
(ii) The process {Ft}t≥0 is recurrent if there exist α ≥ 0 and x0 > r0 > 1, such that

z �−→
∫
{|y|≥1, |y+z|≥x0}

Vα(|y + z|)ν(z, dy) is locally bounded (3.2)

and Rα(x) ≤ 0 for all x ∈ Rd, |x| ≥ x0.
(iii) The process {Ft}t≥0 is (strongly) ergodic if it has an irreducible skeleton chain and if there exist α ≥ 0,

β > 0 and x0 > r0 > 1, such that (3.2) holds true and Rα(x) ≤ −β for all x ∈ R
d, |x| ≥ x0.

(iv) The process {Ft}t≥0 is polynomially ergodic if it has an irreducible skeleton chain and if there exist α ≥ 0,
0 < β < 1, γ > 0 and x0 > r0 > 1, such that (3.2) holds true and Rα(x) ≤ −γV β

α (|x|) for all x ∈ Rd,
|x| ≥ x0. In this case, the corresponding polynomial rate of convergence is tβ/(1−β), for any 0 < λ < γ(1−β)
and t0 > 0 there exists k > 0 such that

‖P
x(Xt ∈ ·) − π(·)‖TV

≤ k(1 − β)

(
t
1/(1−β)
0 +

λβ/(β−1)

γ(1 − β) − λ
V̄α(x) +

t0λ
β/(β−1)

γ(1 − β) − λ
sup

B(0,x0)

|LV̄α(x)|
)
t−β/(1−β) (3.3)

for all x ∈ Rd and t ≥ 0, and∫
Rd

V̄ β
α (x)π(dx) ≤ sup

x∈B(0,x0)

|LV̄α(x)|/γ + V β
α (x0), (3.4)

where V̄α(x) is any C2-extension of the function x �−→ Vα(|x|), x ∈ Rd, |x| ≥ r0, such that the function
|x| −→ V̄α(x) is nondecreasing and V̄α(0) > 0.

(v) The process {Ft}t≥0 is exponentially ergodic if it has an irreducible skeleton chain and if there exist α ≥ 0,
β > 0 and x0 > r0 > 1, such that (3.2) holds true and Rα(x) ≤ −βVα(|x|) for all x ∈ Rd, |x| ≥ x0. In this
case, for any 0 < λ < β, t0 > 0 and κ > 0 there exists k(κ) > 0 such that

‖P
x(Xt ∈ ·) − π(·)‖TV ≤

(
1 +

eλt0

β − λ
V̄α(x) +

t0eλt0

β − λ
sup

B(0,x0)

|LV̄α(x)| + eλt0 − 1
λ

)
ek(κ)−κt (3.5)

for all x ∈ R
d and t ≥ 0, and∫

Rd

V̄α(x)π(dx) ≤ sup
x∈B(0,x0)

|LV̄α(x)|/β + Vα(r0). (3.6)

Here, V̄α(x) is again any C2-extension of the function x �−→ Vα(|x|), x ∈ Rd, |x| ≥ r0, such that the
function |x| −→ V̄α(x) is nondecreasing and V̄α(0) ≥ 0.

Let us remark here that the condition in (3.2) can be relaxed by replacing V0(r) with

V−n+1(r) := ln ln · · · ln r, r ≥ r0 > en−1, n ∈ N.

Clearly, in that case, Theorem 3.3 still holds, but with some minor technical modifications.
As a direct consequence of Theorem 3.3 we can also discuss mixing properties of Lévy-type processes

(see also [32]). First, recall that α-mixing (or strong mixing) and β-mixing (or complete regularity, or the
Kolmogorov) coefficients of a Markov process {Mt}t≥0 with initial distribution μ(dx) are defined as follows

αμ(t) := sup
s≥0

sup
A∈Fs, B∈σ{Mu: u≥s+t}

|Pμ(A ∩B) − P
μ(A)Pμ(B)|

βμ(t) := sup
s≥0

E
μ

[
sup

B∈σ{Mu: u≥s+t}
|Pμ(B|Fs) − P

μ(B)|
]
.
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It is well-known that αμ
t ≤ βμ

t for every t ≥ 0 and every initial distribution μ(dy) of {Mt}t≥0 (see [8]). Further,
if π(dx) is an invariant distribution of {Mt}t≥0, then, by using the Markov property of {Mt}t≥0 and stationarity
of π(dx), we have the following

απ(t) = sup
A∈F0, B∈σ{Mu: u≥t}

|Pπ(A ∩B) − P
π(A)Pπ(B)|

βπ(t) =
∫

Rd

‖P
x(Mt ∈ ·) − π(·)‖TV π(dx)

(see [8, 10]). A Markov process {Mt}t≥0 with initial distribution μ(dx) is called αμ-mixing (respectively, βμ-
mixing) if limt−→∞ αμ(t) = 0 (respectively, limt−→∞ βμ(t) = 0).

Corollary 3.4. Let {Ft}t≥0 be a Lévy-type process satisfying the assumptions from Theorem 3.3(iii).
Then, {Ft}t≥0 is βπ-mixing. Furthermore, if {Ft}t≥0 satisfies the assumptions from Theorem 3.3(v), then
limt−→∞ eκtβπ(t) = 0 for every κ > 0. Here, π(dx) denotes the unique invariant distribution of {Xt}t≥0.

Let us now give some applications of the results presented above.

Example 3.5 (Elliptic diffusions). Assume that the coefficients b(x) = (bi(x))1≤i≤d and c(x) = (cij(x))1≤i,j≤d

satisfy the following:

(i) b(x) is continuous;
(ii) c(x) is symmetric and Lipschitz continuous;
(iii) for some constant κ ≥ 1 and all i = 1, . . . , d and x ∈ Rd,

|bi(x)| ≤ κ(1 + |x|) and κ−1
d∑

i=1

x2
i ≤

d∑
i,j=1

xixjcij(x) ≤ κ

d∑
i=1

x2
i .

Then, according to ([40], Thm. 22.12 and [56], Thm. 2.3), the operator L (with coefficients b(x) and c(x))
generates a unique open-set irreducible elliptic diffusion process which has an irreducible skeleton chain. Thus,
we are in position to apply Theorem 3.3. Specially, as a simple consequence we can deduce the well-known
transience and recurrence dichotomy of a standard Brownian motion, that is, a standard Brownian motion is
transient if, and only if, d > 2.

Example 3.6 (Stable-like processes). Let α : Rd −→ (0, 2), β := (βi)1≤i≤d : Rd −→ Rd and γ : Rd −→ (0,∞)
be such that:

(i) α, βi, γ ∈ C1
b (Rd), i = 1, . . . , d, where Ck

b (Rd), k ≥ 0, denotes the space of k times differentiable functions
such that all derivatives up to order k are bounded;

(ii) 0 < infx∈Rd α(x) ≤ supx∈Rd α(x) < 2 and infx∈Rd γ(x) > 0.

Then, under this assumptions (in [1], [27], Thm. 5.1 and [52], Thm. 3.3) it has been shown that there exists a
unique open-set irreducible Lévy-type process which has an irreducible skeleton chain, called a stable-like process,
determined by coefficients of the form (0, β(x), 0, γ(x)|y|−d−α(x)dy). Note that when α(x), β(x) and γ(x) are
constant functions, then we deal with a symmetric stable Lévy process with drift. Now, by a straightforward
application of Theorem 3.3, it is easy to see that

(i) if for some α ≤ 1 and r0 > 1,

lim inf
|x|−→∞

(
d∑

i=1

xiβi(x) − α(α+ 1)Sdγ(x)
2(2 − α(x))

− Vdr
d−1
0 γ(x)|x|2−α(x)−d(α|x| + r0|x|α)

)
> 0,

then the underlying stable-like process is transient;
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(ii) if lim inf |x|−→∞ α(x) > 1 and

lim sup
|x|−→∞

(
d∑

i=1

xiβi(x) +
Sdγ(x)

2(2 − α(x))
+

Sdγ(x)
α(x) − 1

|x|
)
< 0,

then the underlying stable-like process is recurrent (here we used V0(r) = ln r);
(iii) if for some 1 ≤ α < 2 and β > 0, lim inf |x|−→∞ α(x) > α and

lim sup
|x|−→∞

(
α

d∑
i=1

xiβi(x) +
αSdγ(x)

2(2 − α(x))
+
αSdγ(x)
α(x) − 1

|x| + αSdγ(x)
α(x) − α

|x|2−α + β|x|2−α

)
< 0,

then the underlying stable-like process is (strongly) ergodic (here we used Vα(r) = rα);
(iv) if for some 1 ≤ α < 2, 0 < β ≤ (α− 1)/α and γ > 0, lim inf |x|−→∞ α(x) > α and

lim sup
|x|−→∞

(
α

d∑
i=1

xiβi(x) +
αSdγ(x)

2(2 − α(x))
+
αSdγ(x)
α(x) − 1

|x| + αSdγ(x)
α(x) − α

|x|2−α + γ|x|2−α+αβ

)
< 0,

then the underlying stable-like process is polynomially ergodic with the rate of convergence tβ/(1−β) (here
we used Vα(r) = rα).

Here, Sd and Vd denote the surface and volume of a d-dimensional unit ball, respectively. Also, note that,
because of the boundedness of the coefficients, it is not clear that a stable-like process can be exponentially
ergodic.

Example 3.7 (Ornstein–Uhlenbeck-type processes). Let q := (qij)1≤i,j≤d be a d×d real matrix whose eigenval-
ues all have strictly positive real parts and let {Lt}t≥0 be an Rd-valued Lévy process determined by coefficients
(0, b, c, ν(dy)). Furthermore, let F0 be an Rd-valued random variable independent of {Lt}t≥0. The Ornstein-
Uhlenbeck-type processes is a strong Markov process defined by

Ft := e−tqF0 +
∫ t

0

e−(t−s)qdLs, t ≥ 0,

(see [48] for details). Under certain regularity conditions of the matrix q and coefficients (0, b, c, ν(dy)), in ([48],
Thm. 3.1) it has been shown that {Ft}t≥0 is an open-set irreducible Lévy-type process which has an irreducible
skeleton chain, determined by coefficients of the form (0, b − qx, c, ν(dy)). Now, assume that there exists a
constant κ > 0, such that

d∑
i,j=1

xixjqij(x) ≥ κ
d∑

i=1

x2
i , x ∈ R

d.

Then, {Ft}t≥0 is (strongly) ergodic if, and only if, ν(dy) satisfies (3.2) with V0(r) = ln(r). The necessity has been
proved in ([48], Thm. 4.2), while the sufficiency easily follows from Theorem 3.3. Let us also remark here that,
under the condition in (3.2) (with V0(r) = ln(r)), in ([48], Thm. 4.1) the authors have explicitly determined the
corresponding invariant measure. Finally, if ν(dy) satisfies (3.2) with Vα(r) = rα, for some α > 0, then again
by a straightforward application of Theorem 3.3 it is easy to see that {Ft}t≥0 is exponentially ergodic.

Example 3.8 (Lévy-driven SDEs). Let {Lt}t≥0 be an n-dimensional Lévy process and let Φ : Rd −→ Rd×n be
bounded and locally Lipschitz continuous. Then, the SDE

dFt = Φ(Ft−)dLt, F0 = x ∈ R
d,
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admits a unique strong solution which is a Lévy-type process (see [7], Thm. 3.8). In particular, if

(i) Lt = (lt, t), t ≥ 0, where {lt}t≥0 is a d-dimensional Lévy process determined by coefficients (Lévy triplet)
(0, b, c, ν(dy)) such that the Lévy measure ν(dy) is symmetric;

(ii) Φ(x) = (φ(x)I, ψ(x)), x ∈ Rd, where φ, ψ : Rd −→ R are bounded, locally Lipschitz continuous and
|φ(x)| > 0 for all x ∈ Rd,

then {Ft}t≥0 is a d-dimensional Lévy-type process determined by coefficients of the form

(0, ψ(x) + φ(x)b, |φ(x)|2c, ν(dy/|φ(x)|)).

The open-set irreducibility and existence of an irreducible skeleton chain of {Ft}t≥0 (in terms of Φ(x)) have
been discussed in [32]. Thus, we are again in position to apply Theorem 3.3.

The two main ingredients in proving Theorem 3.3 are: (i) characterizations of transience, recurrence, ergodicity
and strong, polynomial and exponential erodicity in terms of the first hitting time τB(0,x0) (see Prop. 5.1, [35],
Thm. 4.4, [15], Thm. 1 and [12], Thm. 6.2) and (ii) noticing that for any f ∈ C2(Rd) satisfying the condition
in (3.2) the process {

f(Ft∧τB(0,r0)) −
∫ t∧τB(0,r0)

0

Lf(Fs)ds
}

t≥0

is a Px-local martingale for all x ∈ Rd (the operator L will be an extension of the infinitesimal generator of
{Ft}t≥0 on this class of functions). Then, by an appropriate choice of the function f(x) (that is, f(x) = V̄α(x) or
W̄α(x), where V̄α(x) and W̄α(x) are adequate C2-extensions of the functions x �−→ Vα(|x|) and x �−→Wα(|x|),
respectively) and analysis of this process, we are in position to derive the desired conditions presented in
Theorem 3.3.

4. Conservativeness

In this section, we discuss conservativeness of Lévy-type processes. Let {Mt}t≥0 be a d-dimensional Markov
process and define

Tc := inf{t ≥ 0 : Mt /∈ R
d} and Te := lim

R−→∞
inf{t ≥ 0 : Mt ∈ Bc(0, R)}.

The process {Mt}t≥0 is called conservative if Px(Tc = ∞) = 1 for all x ∈ Rd and nonexplosive if Px(Te = ∞) = 1
for all x ∈ Rd. Observe that, due to the fact that {Mt}t≥0 has càdlàg sample paths, these two notions actually
coincide and they are equivalent with the fact that Px(Mt ∈ Rd) = 1 for all x ∈ Rd and t ≥ 0 (see [49]). Also,
note that Tc represents the moment the process ceases to be finitely valued. Usually, once Tc has been reached
we kill the process. This can be accomplished by a one-point compactification of the state space Rd, say Rd∞,
and by defining

P
x(Mt ∈ B) :=

{
1, x = ∞ and B = {∞}
0, x = ∞ and B = Rd.

Proposition 4.1. Let {Mt}t≥0 be a d-dimensional Markov process. If the function x �−→ Px(Tc <∞) is lower
semicontinuous, that is, lim infy−→x Py(Tc < ∞) ≥ Px(Tc < ∞) for all x ∈ Rd, and

∫ ∞
0 Px(Mt ∈ O)dt > 0 for

all x ∈ Rd and open sets O ⊆ Rd, then Px(Tc = ∞) = 1 for some x ∈ Rd if, and only if, Px(Tc = ∞) = 1 for
all x ∈ Rd.

Similarly, if the function x �−→ P
x(Tc < ∞) is upper semicontinuous, that is, lim supy−→x P

y(Tc < ∞) ≤
Px(Tc < ∞) for all x ∈ Rd, and

∫ ∞
0 Px(Mt ∈ O)dt > 0 for all x ∈ Rd and open sets O ⊆ Rd, then Px(Tc =

∞) = 0 for some x ∈ Rd if, and only if, Px(Tc = ∞) = 0 for all x ∈ Rd.
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Proof. Assume that Px0(Tc < ∞) > 0 for some x0 ∈ Rd. Then, because of the lower semicontinuity of x �−→
Px(Tc < ∞), there exists an open set O0 ⊆ Rd around x0 such that infx∈O0 Px(Tc < ∞) > 0. Next, let x ∈ Rd

and t > 0 be arbitrary. Then, by the Markov property, we have

P
x(Tc <∞) = P

x
(
inf{s ≥ t : Ms /∈ R

d} <∞)
=

∫
Rd

P
x(Mt ∈ dy)Py(Tc <∞) + P

x(Mt = ∞)

≥
∫

O0

P
x(Mt ∈ dy)Py(Tc <∞)

≥ inf
y∈O0

P
y(Tc <∞)Px(Mt ∈ O0).

Now, by assumption, for given x ∈ Rd and O0 ⊆ Rd, there exists T0 > 0 such that
∫ T0

0 Px(Mt ∈ O0)dt > 0.
Hence, Px(Tc <∞) > 0 for all x ∈ Rd, which leads to a contradiction.

To prove the second assertion, note first that the upper semicontinuity of the function x �−→ Px(Tc < ∞)
is equivalent with the lower semicontinuity of the function x �−→ Px(Tc = ∞). Now, the claim follows by
completely the same reasoning as above. �

Recall that a semigroup {Pt}t≥0 on (Bb(Rd), ‖ · ‖∞) is called a Cb-Feller semigroup if Pt(Cb(Rd)) ⊆ Cb(Rd)
for all t ≥ 0 and it is called a strong Feller semigroup if Pt(Bb(Rd)) ⊆ Cb(Rd) for all t ≥ 0. For sufficient
conditions for a Feller semigroup to be a Cb-Feller semigroup or a strong Feller semigroup see [49, 51]. Now, if
{Mt}t≥0 is a Markov process such that its corresponding semigroup satisfies the strong Feller property, then the
function x �−→ Px(Tc = ∞) is continuous. In particular, {Mt}t≥0 satisfies the lower and upper semicontinuity
assumptions from Proposition 4.1. Indeed, let t > 0 be arbitrary. Then, for any x ∈ Rd, by the Markov and
strong Feller properties, we have

lim
y−→x

P
y(Tc <∞) = lim

y−→x
P

y
(
inf{s ≥ t : Ms /∈ R

d} <∞)
= lim

y−→x

(
E

y
[
P

Mt(Tc <∞)1Rd(Mt)
]
+ P

y(Mt = ∞)
)

= lim
y−→x

E
y
[
P

Mt(Tc <∞)
]

= E
x

[
P

Mt(Tc <∞)
]

= P
x

(
inf{s ≥ t : Ms /∈ R

d} <∞)
= P

x(Tc <∞),

which proves the assertion.
Note that if {Mt}t≥0 is irreducible, then it is necessarily conservative (nonexplosive). Thus, every open-

set irreducible Lévy-type process is always conservative (nonexplosive). A sufficient condition for the conser-
vativeness of a Lévy-type process {Ft}t≥0 in terms of the corresponding symbol q(x, ξ) (or Lévy quadruple
(a(x), b(x), c(x), ν(x, dy))) is as follows

lim
k−→∞

sup
|y−x|≤2k

sup
|η|≤1/k

|q(y, η)| = 0, x ∈ R
d,

(see [49], Thm. 5.5). Clearly, the above relation automatically implies that a(x) = 0 for all x ∈ Rd. Moreover,
in the bounded coefficients case and under the assumption that a(x) is continuous, {Ft}t≥0 is conservative if,
and only if, a(x) = 0 for all x ∈ Rd (see [49], Thm. 5.2). In the following theorem, under the assumptions that
a Lévy-type process (not necessarily with bounded coefficients) is open-set irreducible and the corresponding
function a(x) is lower semicontinuous, we prove that a(x) = 0 for all x ∈ Rd.
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Theorem 4.2. Let {Ft}t≥0 be a d-dimensional open-set irreducible Lévy-type process with Feller generator
(A,DA) and Lévy quadruple (a(x), b(x), c(x), ν(x, dy)). If the function a(x) is lower semicontinuous, then a(x) =
0 for all x ∈ Rd.

Proof. As we commented above, the irreducibility of {Ft}t≥0 automatically implies its conservativeness. Hence,
Px(Ft ∈ Rd) = 1 for all x ∈ Rd and t ≥ 0. Next, let r > 0 and R > 0 be fixed and pick some ϕr ∈ C2

c (Rd)
such that 1B(0,r)(x) ≤ ϕr(x) ≤ 1B(0,2r)(x) for all x ∈ Rd. Here, Ck

c (Rd), k ≥ 0, denotes the space of k
times differentiable functions such that all derivatives up to order k have compact support. According to ([7],
Thm. 2.37) (which states that C2

c (Rd) ⊆ DA) and ([13], Thm. 2.2.13 and Prop. 4.1.7), we have

E
x

[
ϕr(Ft∧τBc(0,R))

] − ϕr(x) = E
x

[∫ t∧τBc(0,R)

0

Aϕr(Fs)ds
]

= E
x

[∫ t∧τBc(0,R)

0

Lϕr(Fs)ds
]
, x ∈ R

d, t ≥ 0,

where the operator L (given by (1.1)) is an extension of the generator (A,DA) on C2
b (Rd). Now, by letting

r −→ ∞, the dominated convergence theorem entails that

0 = E
x

[∫ t∧τBc(0,R)

0

L1Rd(Fs)ds
]

= −E
x

[∫ t∧τBc(0,R)

0

a(Fs)ds
]
, x ∈ R

d, t ≥ 0,

and, by letting R −→ ∞, the monotone convergence theorem implies that∫ ∞

0

a(Ft)dt = 0, P
x-a.s., x ∈ R

d,

(recall that {Ft}t≥0 is conservative and a(x) ≥ 0 for all x ∈ Rd). Thus, if there would exist some x0 ∈ Rd such
that a(x0) > 0, then, by the lower semicontinuity of a(x), a(x) > 0 on some open neighborhood around x0. But
this is in contradiction with the open-set irreducibility of {Ft}t≥0. �

Note that if {Ft}t≥0 is an elliptic diffusion determined by a Lévy quadruple (a(x), b(x), c(x), 0), then, due
to (2.1), the functions a(x), b(x) and c(x) are automatically continuous. As we have mentioned above, the
conservativeness of a Markov process is defined thorough the first exit times of open balls. In the following
theorem we give sufficient conditions for finiteness of exponential moments of these exit times. Let us remark
that this result generalizes ([7], Cor. 5.8) where only finiteness of the first moment has been discussed. First,
we prove the following elementary, but very useful, auxiliary result.

Proposition 4.3. Let {Ft}t≥0 be a d-dimensional Lévy-type process with symbol qF (x, ξ). Then, the process
{Mt}t≥0, Mt := (t, Ft), t ≥ 0, is a (d + 1)-dimensional Lévy-type process with symbol qM ((u, x), (ζ, ξ)) =
−iζ + qF (x, ξ), (u, x), (ζ, ξ) ∈ Rd+1, u, ζ ∈ R.

Proof. Clearly, {Mt}t≥0 is a (d + 1)-dimensional Markov process with respect to P
(u,x)
M (Mt ∈ B1 × B2) :=

δu+t(B1)Px
F (Ft ∈ B2), (u, x) ∈ Rd+1, t ≥ 0, B1 ∈ B(R) and B2 ∈ B(Rd). Here, δt(B), t ∈ R, B ∈ B(R), denotes

the Dirac delta measure. The Feller and strong continuity properties of {Mt}t≥0 easily follow from the facts that
Cc(Rd+1) is dense in C∞(Rd+1) and {∑n

i=1 ϕi(t)ψi(x) : n ∈ N, ϕi ∈ Cc(R), ψi ∈ Cc(Rd), i = 1, . . . , n} is dense
in Cc(Rd+1) (see [14], Chap. 4.7). Finally, let us denote by (AF ,DAF ) and (AM ,DAM ) the Feller generators of
{Ft}t≥0 and {Mt}t≥0, respectively. Then, by a straightforward computation (and by employing [7], Thm. 2.37),
we see that for all f ∈ C2

c (Rd+1) we have

AM (f)(u, x) =
∂f(u, x)
∂u

+ AF f(u, x), (u, x) ∈ R
d+1.

Hence, {Mt}t≥0 is a (d+1)-dimensional Lévy-type process with symbol qM ((u, x), (ζ, ξ)) = −iζ+ qF (x, ξ). �
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Theorem 4.4. Let {Ft}t≥0 be a d-dimensional Lévy-type process with Feller generator (A,DA) and symbol
q(x, ξ). Assume that for some x ∈ Rd and R > 0 the following two conditions are satisfied

sup
|ξ|≤1/(2R)

inf
|y−x|≤R

Re q(y, ξ) > 0 and sup
|ξ|≤1/(2R)

sup
|y−x|≤R

Re q(y, ξ)
|ξ|Im q(y, ξ)

≥ 2R. (4.1)

Then, for any

0 < λ <

√
2

8
sup

|ξ|≤1/(2R)

inf
|y−x|≤R

Re q (y, ξ) ,

we have Ex
[
eλτBc(x,R)

]
<∞.

Proof. Let x ∈ Rd, R > 0 and λ > 0 be as in the statement of the theorem and let us put ϕ(t) := eλt, t ∈ R,
and ψ(y) := cos (〈y − x, z〉/R) , y ∈ Rd, where z ∈ Rd, 0 < |z| ≤ 1/2, is such that the first condition in (4.1) is
satisfied for z/R, that is,

inf
|y−x|≤R

Re q
(
y,
z

R

)
> 0.

Further, let a > 0 be fixed and pick some ϕa ∈ C2
c (R) and ψa ∈ C2

c (Rd), such that 1B(0,a)(t) ≤ ϕa(t) ≤ 1B(0,2a)(t)
for all t ∈ R and 1B(x,a)(y) ≤ ψa(y) ≤ 1B(x,2a)(y) for all y ∈ Rd. Now, according to Proposition 4.3 and ([13],
Thm. 2.2.13 and Prop. 4.1.7), we have

E
x

[
(ϕϕa)(u + t ∧ τBc(x,R))(ψψa)(Ft∧τBc(x,R))

] − (ϕϕa)(u)(ψψa)(x)

= E
x

[∫ t∧τBc(x,R)

0

((ϕϕa)′(u+ s)(ψψa)(Fs) + (ϕϕa)(u + s)A(ψψa)(Fs))ds
]

= E
x

[∫ t∧τBc(x,R)

0

((ϕϕa)′(u+ s)(ψψa)(Fs) + (ϕϕa)(u + s)L(ψψa)(Fs))ds
]
, u ∈ R, t ≥ 0. (4.2)

Observe that, by letting a −→ ∞, the dominated convergence theorem implies that the above relation also holds
for ϕ(t) and ψ(y). Next, under (4.1), ([7], the proof of Thm. 5.5) shows that for any y ∈ R

d, |y − x| ≤ R, we
have

Lψ(y) ≤ −
√

2
8

inf
|y−x|≤R

Re q
(
y,
z

R

)
,

which, together with (4.2), implies

0 ≤ E
x

[
eλ(u+t∧τBc(x,R))ψ(Ft∧τBc(x,R))

]
= eλu + E

x

[∫ t∧τBc(x,R)

0

(λeλ(u+s)ψ(Fs) + eλ(u+s)Lψ(Fs))ds
]

≤ eλu +
eλu

(
λ−

√
2

8 inf |y−x|≤R Re q
(
y, z

R

))
λ

(
E

x
[
eλ(t∧τBc(x,R))

]
− 1

)
, u ∈ R, t ≥ 0.

Finally, by taking u = 0 and letting t −→ ∞, we get

E
x

[
eλτBc(x,R)

] ≤
√

2
8 inf |y−x|≤R Re q

(
y, z

R

)
√

2
8 inf |y−x|≤R Re q

(
y, z

R

) − λ
· �

Let us remark that the second condition in (4.1) is, for example, satisfied if

lim inf
|ξ|−→0

inf |y−x|≤R Re q(y, ξ)
|ξ|α > 0 and lim sup

|ξ|−→0

sup|y−x|≤R Im q(y, ξ)
|ξ| <∞

for some α ∈ (0, 2).
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5. Transience and recurrence

In this section, we discuss the recurrence and transience properties of Lévy-type processes. First, we provide
some characterizations of these properties which we need in the sequel (see also [45], Prop. 2.1). Recall that
every Feller semigroup {Pt}t≥0 has a unique extension onto the space Bb(Rd) (see [49], Sect. 3). For notational
simplicity, we denote this extension again by {Pt}t≥0. In particular, if {Pt}t≥0 is a semigroup of a conservative
Lévy-type process ([49], Cor. 3.4) implies that {Pt}t≥0 is also a Cb-Feller semigroup. Now, directly from ([6],
Thm. 4.3 and [34], Thm. 3.3 and [58], Thms. 4.1, 4.2 and 7.1) we get the following.

Proposition 5.1. Let {Ft}t≥0 be a d-dimensional open-set irreducible Lévy-type process. Then, the following
properties are equivalent:

(i) {Ft}t≥0 is recurrent;
(ii) {Ft}t≥0 is Harris recurrent;
(iii) there exists x ∈ Rd,

P
x
(
lim inf
t−→∞ |Ft − x| = 0

)
= 1;

(iv) there exists a compact set K ⊆ Rd such that

P
x(τK <∞) = 1, x ∈ R

d.

In addition, if we assume that {Ft}t≥0 is a strong Feller process, that is, if the corresponding Feller semigroup
also satisfies the strong Feller property, then directly from ([44], Pop. 2.4) we get the following.

Proposition 5.2. Let {Ft}t≥0 be a d-dimensional open-set irreducible Lévy-type process, such that the corre-
sponding Feller semigroup is a strong Feller semigroup. Then, the following properties are equivalent:

(i) {Ft}t≥0 is transient;
(ii) there exists x ∈ Rd,

P
x

(
lim

t−→∞ |Ft| = ∞
)

= 1;

(iii) there exist x ∈ Rd and an open bounded set O ⊆ Rd, such that

P
x

(∫ ∞

0

1{Ft∈O}dt = ∞
)

= 0.

Let us also remark that in Propositions 5.1 and 5.2 we can replace “there exists x ∈ Rd” with “for all x ∈ Rd”
and “there exists a compact set K ⊆ Rd” with “for every compact set K ⊆ Rd”.

Now, we prove the main results of this section.

Proof of Theorem 3.3(i). Let α > 0, x0 > r0 > 1 and 0 < ε ≤ 1 − r−α
0 . According to Proposition 5.1, it

suffices to prove that Px(τB(0,x0) < ∞) < 1 for some x ∈ Rd. Take wα : R −→ [0,∞) such that wα ∈ C2(R),
it is symmetric, nondecreasing on [0,∞), wα(0) = 1 − r−α

0 − ε and wα(u) = Wα(|u|) for |u| ≥ r0. Define
W̄α : Rd −→ [0,∞) by W̄α(x) := wα(|x|), x ∈ Rd. Clearly, W̄α ∈ C2(Rd). Next, fix a > 0 and R > x0 and
pick some ϕa ∈ C2

c (Rd) such that 1B(0,a)(x) ≤ ϕa(x) ≤ 1B(0,2a)(x) for all x ∈ Rd. Then, due to ([7], Thm. 2.37
and [13], Thm. 2.2.13 and Prop. 4.1.7),

E
x

[
(W̄αϕa)(Ft∧τB(0,x0)∧τBc(0,R))

]
− (W̄αϕa)(x) = E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

A(W̄αϕa)(Fs)ds
]

= E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

L(W̄αϕa)(Fs)ds
]
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for all x ∈ Rd and t ≥ 0 (recall that C2
c (Rd) ⊆ DA and A|C2

c (Rd) = L|C2
c (Rd)). By letting a −→ ∞ and applying

the dominated convergence theorem in the previous relation, we get

E
x

[
W̄α(Ft∧τB(0,x0)∧τBc(0,R))

]
= W̄α(x) + E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

LW̄α(Fs)ds
]

(5.1)

for all x ∈ Rd and t ≥ 0. Further, as we have commented in the first section, LW̄α(x) ≥ Tα(|x|) for all x ∈ Rd,
|x| ≥ x0, where the function Tα(r) is given in (3.1). Thus, by assumption, LW̄α(x) ≥ 0 for all x ∈ Rd, |x| ≥ x0.
Now, by using this fact and letting t −→ ∞ in (5.1), we get

Wα(x0)+P
x(τB(0,x0)>τBc(0,R)) ≥Wα(x0)Px(τB(0,x0) ≤ τBc(0,R)) + P

x(τB(0,x0) > τBc(0,R))

≥ E
x

[
W̄α(FτB(0,x0))1{τB(0,x0)≤τBc(0,R)}

]
+E

x
[
W̄α(FτBc(0,R))1{τB(0,x0)>τBc(0,R)}

]
= E

x
[
W̄α(FτB(0,x0)∧τBc(0,R))

]
≥ W̄α(x) (5.2)

for all x ∈ Rd. Finally, by letting R −→ ∞, the conservativeness property of {Ft}t≥0 entails

P
x(τB(0,x0) = ∞) ≥ W̄α(x) −Wα(x0), x ∈ R

d.

Thus, due to the fact that W̄α(x) = 1 − |x|−α > 1 − |x0|−α = Wα(x0) for all x ∈ R
d, |x| > |x0|, the assertion

follows. �

Proof of Theorem 3.3(ii). Let α ≥ 0 and x0 > r0 > 1. According to Proposition 5.1, it suffices to prove
that Px(τB(0,x0) < ∞) = 1 for all x ∈ Rd. We proceed similarly as in the Proof of Theorem 3.3(i). Take
vα : R −→ [0,∞) such that vα ∈ C2(R), it is symmetric, nondecreasing on [0,∞) and vα(u) = Vα(|u|) for
|u| ≥ r0, and define V̄α : Rd −→ [0,∞) by V̄α(x) := vα(|x|), x ∈ Rd. Clearly, V̄α ∈ C2(Rd). Next, fix a > 0 and
R > x0 and pick some cut-off function ϕa ∈ C2

c (Rd) as in the Proof of Theorem 3.3(i). Similarly as before ([7],
Thm. 2.37 and [13], Thm. 2.2.13 and Prop. 4.1.7) imply that

E
x

[
(V̄αϕa)(Ft∧τB(0,x0)∧τBc(0,R))

]
− (V̄αϕa)(x) = E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

A(V̄αϕa)(Fs)ds
]

= E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

L(V̄αϕa)(Fs)ds
]

for all x ∈ Rd and t ≥ 0. In particular,

E
x

[
(V̄αϕa)(Ft∧τBc(0,R))1{τB(0,x0)>τBc(0,R)}

]
≤ (V̄αϕa)(x) + E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

L(V̄αϕa)(Fs)ds
]

for all x ∈ Rd and t ≥ 0. Again, by letting a −→ ∞, the dominated and monotone convergence theorems
automatically yield

E
x

[
V̄α(Ft∧τBc(0,R))1{τB(0,x0)>τBc(0,R)}

]
≤ V̄α(x) + E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

LV̄α(Fs)ds
]

(5.3)

for all x ∈ Rd and t ≥ 0. Note that here we employed the fact that LV̄α(x) is locally bounded (assumption (3.2)).
Next, by construction, we have that LV̄α(x) ≤ Rα(|x|) for all x ∈ Rd, |x| ≥ x0, where the function Rα(r) is
given in (3.1). Hence, by assumption, LV̄α(x) ≤ 0 for all x ∈ Rd, |x| ≥ x0. Now, by employing this fact and
letting t −→ ∞ in the relation in (5.3), Fatou’s lemma implies

Vα(R)Px(τB(0,x0) > τBc(0,R)) ≤ E
x

[
V̄α(FτBc(0,R))1{τB(0,x0)>τBc(0,R)}

]
≤ V̄α(x), x ∈ R

d. (5.4)
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Finally, by letting R −→ ∞, the conservativeness property of {Ft}t≥0 entails that

P
x(τB(0,x0) = ∞) = 0, x ∈ R

d,

which proves the desired result. �

6. Ergodicity

In this section, we discuss ergodicity properties of Lévy-type processes. Let {Mt}t≥0 be a d-dimensional
Markov process. It is well-known that if {Mt}t≥0 is recurrent, then it possesses a unique (up to constant
multiples) invariant measue π(dx) (see [58], Thm. 2.6). If the invariant measure is finite, then it may be
normalized to a probability measure. If {Mt}t≥0 is recurrent with finite invariant measure, then {Mt}t≥0 is
called positive recurrent, otherwise it is called null recurrent. One would expect that every positive recurrent
process is (strongly) ergodic, but in general this is not true (see [35, 37]). However, in the case of open-set
irreducible Lévy-type processes which have an irreducible skeleton chain, due to Proposition 5.1 and ([35],
Thm. 6.1), these three properties coincide.

Further, note that a transient Markov process cannot have a finite invariant measure. Indeed, let {Mt}t≥0 be
a d-dimensional transient Markov process with finite invariant measure π(dx). Then, because of the transience,
there exists a countable covering of Rd with sets {Bj}j∈N ⊆ B(Rd), such that for each j ∈ N there is a finite
constant Mj ≥ 0 such that

∫ ∞
0

Px(Mt ∈ Bj)dt ≤Mj holds for all x ∈ Rd. Fix some t > 0. Then, for each j ∈ N,
we have

tπ(Bj) =
∫ t

0

∫
Rd

P
x(Ms ∈ Bj)π(dx)ds ≤Mjπ(Rd).

Now, by letting t −→ ∞ we get that π(Bj) = 0 for all j ∈ N, which is impossible. Therefore, open-set irreducible
transient Lévy-type processes can only have infinite invariant measures. Examples of such processes can be found
in the class of Lévy processes. Recall that Lebesgue measure is invariant for every Lévy process. Furthermore,
since a (non-trivial) Lévy process cannot have finite invariant measure (see [46], Example 29.6), recurrent Lévy
processes can only be null recurrent. In the following theorem we give a sufficient condition for null recurrence
of open-set irreducible Lévy-type processes.

Theorem 6.1. Let {Ft}t≥0 be a d-dimensional open-set irreducible Lévy-type process with Feller generator
(A,DA). Then, {Ft}t≥0 is null recurrent if there exist α1 > 0, α2 ≥ 0, β > 0, x0 > r0 > 1 and 0 < ε ≤ 1−r−α1

0 ,
such that Tα1(x) ≥ −β/Vα2(R) holds for all R > x0 and x ∈ Rd, x0 ≤ |x| ≤ R, and (3.2) and Rα2(x) ≤ 0 hold
for all x ∈ Rd, |x| ≥ x0, where the functions Tα1(x), Vα2(r) and Rα2(x) are defined in (3.1).

Proof. Let α1 > 0, α2 ≥ 0, β > 0, x0 > r0 > 1 and 0 < ε ≤ 1− r−α1
0 . Clearly, due to Theorem 3.3(ii), {Ft}t≥0 is

recurrent. Hence, according to ([55], Thm. 4.1), in order to prove null recurrence of {Ft}t≥0, it suffices to prove
that

λ
({
x ∈ R

d : E
x

[
τB(0,x0)

]
= ∞})

> 0. (6.1)

Let W̄α1 : Rd −→ [0,∞) and V̄α2 : Rd −→ [0,∞) be as in the proofs of Theorem 3.3(i) and (ii), that is,
W̄α1 (x) := wα1(|x|), x ∈ Rd, where wα1 : R −→ [0,∞) is such that wα1 ∈ C2(R), it is symmetric, nondecreasing
on [0,∞), wα1(0) = 1 − r−α1

0 − ε and wα1(u) = 1 − |u|−α1 for |u| ≥ r0, and V̄α2(x) := vα2(|x|), x ∈ Rd, where
vα2 : R −→ [0,∞) is such that vα2 ∈ C2(R), it is symmetric, nondecreasing on [0,∞) and vα2(u) = Vα2(|u|)
for |u| ≥ r0. Now, by assumption, we have that LW̄α1(x) ≥ Tα1(x) ≥ −β/Vα2(R) for all R > x0 and x ∈ R

d,
x0 ≤ |x| ≤ R, and LV̄α2 (x) ≤ Rα2(x) ≤ 0 for all x ∈ Rd, |x| ≥ x0. Combining these facts with (5.1) and (5.4)
we get

Vα2(R) P
x(τB(0,x0) > τBc(0,R)) ≤ V̄α2(x), x ∈ R

d,
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and

W̄α1(x) −
β

Vα2(R)
E

x
[
τB(0,x0) ∧ τBc(0,R)

] ≤ E
x

[
W̄α1(FτB(0,x0)∧τBc(0,R))

]
, x ∈ R

d,

respectively. Further, from (5.2) we see

E
x

[
W̄α1(FτB(0,x0)∧τBc(0,R))

]
≤Wα1(x0) + P

x(τB(0,x0) > τBc(0,R)), x ∈ R
d.

Thus,

Vα2(R) (W̄α1 (x) −Wα1 (x0)) − V̄α2(x) ≤ β E
x

[
τB(0,x0) ∧ τBc(0,R)

] ≤ β E
x

[
τB(0,x0)

]
, x ∈ R

d.

Finally, by letting R −→ ∞, we get Ex
[
τB(0,x0)

]
= ∞ for all x ∈ Rd, |x| > x0, which, together with open-set

irreducibility of {Ft}t≥0, concludes the proof. �

Finally, we prove Theorem 3.3(iii)–(v).

Proof of Theorem 3.3(iii). Let α ≥ 0, β > 0 and x0 > r0 > 1. According to our previous comment (that is,
positive recurrence and (strong) ergodicity are equivalent for open-set irreducible Lévy-type processes) and ([35],
Thm. 4.4), in order to prove the ergodicity of {Ft}t≥0, it suffices to show that

sup
x∈B(0,x0)

E
x

[
τ t0
B(0,x0)

]
<∞ (6.2)

for some t0 > 0, where τ t0
B(0,x0)

:= inf{t ≥ t0 : Ft ∈ B(0, x0)}. The proof proceeds similarly as in the case of
recurrence. Let V̄α : Rd −→ [0,∞) be as in the Proof of Theorem 3.3(ii). Next, fix a > 0 and R > x0 and pick
some cut-off function ϕa ∈ C2

c (Rd). As before, by ([7], Thm. 2.37 and [13], Thm. 2.2.13 and Prop. 4.1.7),

E
x

[
(V̄αϕa)(Ft∧τB(0,x0)∧τBc(0,R))

]
= (V̄αϕa)(x) + E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

A(V̄αϕa)(Fs)ds
]

= (V̄αϕa)(x) + E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

L(V̄αϕa)(Fs)ds
]

for all x ∈ Rd and t ≥ 0. In particular,

E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

L(V̄αϕa)(Fs)ds
]

+ (V̄αϕa)(x) ≥ 0, x ∈ R
d, t ≥ 0.

Further, by assumption, LV̄α(x) ≤ Rα(x) ≤ −β for all x ∈ Rd, |x| ≥ x0. By using this fact, local boundedness
of LV̄α(x) (assumption (3.2)) and letting a −→ ∞, t −→ ∞ and R −→ ∞ in the above relation, respectively,
the dominated and monotone convergence theorems yield

E
x

[
τB(0,x0)

] ≤ V̄α(x)
β

, x ∈ R
d.

Now, we prove (6.2). Let t0 > 0 be arbitrary. By the Markov property we have

E
x

[
τ t0
B(0,x0)

]
= E

x
[
E

x
[
τ t0
B(0,x0)

|Ft0

]]
= t0 + E

x
[
E

Ft0
[
τB(0,x0)

]] ≤ t0 +
Ex

[
V̄α(Ft0 )

]
β

, x ∈ R
d.
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Thus, in order to prove (6.2), it suffices to prove that supx∈B(0,x0) Ex
[
V̄α(Ft0)

]
< ∞. Again, fix a > 0 and

R > x0 and pick some cut-off function ϕa ∈ C2
c (Rd). As above,

E
x

[
(V̄αϕa)(Ft0∧τBc(0,R))

]
= (V̄αϕa)(x) + E

x

[∫ t0∧τBc(0,R)

0

A(V̄αϕa)(Fs)ds
]

= (V̄αϕa)(x) + E
x

[∫ t0∧τBc(0,R)

0

L(V̄αϕa)(Fs)ds
]
, x ∈ R

d, t ≥ 0.

Now, by letting a −→ ∞, the local boundedness of LV̄α(x) and dominated and monotone convergence theorems
imply that for all x ∈ Rd we have

E
x

[
V̄α(Ft0∧τBc(0,R))

]
= V̄α(x) + E

x

[∫ t0∧τBc(0,R)

0

LV̄α(Fs)ds
]

= V̄α(x) + E
x

[∫ t0∧τBc(0,R)

0

1B(0,x0)(Fs)LV̄α(Fs)ds
]

+ E
x

[∫ t0∧τBc(0,R)

0

1Bc(0,x0)(Fs)LV̄α(Fs)ds
]

≤ V̄α(x) + t0 sup
x∈B(0,x0)

|LV̄α(x)| + E
x

[∫ t0∧τBc(0,R)

0

1Bc(0,x0)(Fs)LV̄α(Fs)ds
]
. (6.3)

In particular, since LV̄α(x) ≤ −β for all x ∈ Rd, |x| ≥ x0,

E
x

[
V̄α(Ft0∧τBc(0,R))

] ≤ V̄α(x) + t0 sup
x∈B(0,x0)

|LV̄α(x)|, x ∈ R
d.

Finally, by letting R −→ ∞, Fatou’s lemma and the conservativeness property of {Ft}t≥0 imply

E
x

[
V̄α(Ft0)

] ≤ V̄α(x) + t0 sup
x∈B(0,x0)

|LV̄α(x)|, x ∈ R
d, (6.4)

that is,

sup
x∈B(0,x0)

E
x
[
τ t0
B(0,x0)

]
≤ t0 +

Vα(x0)
β

+
t0
β

sup
x∈B(0,x0)

|AV̄α(x)|,

which proves the assertion. �

Proof of Theorem 3.3(iv). Let α ≥ 0, 0 < β < 1, γ > 0 and x0 > r0 > 1. First, note that, according to Theo-
rem 3.3(iv), {Ft}t≥0 is automatically (strongly) ergodic. Therefore, in order to prove the polynomial ergodicity
of {Ft}t≥0 with rate of convergence tβ/(1−β), according to ([15], Thm. 1), it suffices to prove that

sup
x∈B(0,x0)

E
x

[(
τ t0
B(0,x0)

)1/(1−β)
]
<∞ and E

x

[(
τ t0
B(0,x0)

)1/(1−β)
]
<∞, x ∈ R

d, (6.5)

for some t0 > 0, where τ t0
B(0,x0)

is as in the proof of Theorem 3.3 (iii). Take vα : R −→ (0,∞) such that
vα ∈ C2(R), it is symmetric, nondecreasing on [0,∞) and vα(u) = Vα(|u|) for |u| ≥ r0, and define V̄α : Rd −→
[0,∞) by V̄α(x) := vα(|x|), x ∈ Rd. Clearly, V̄α(0) > 0 and V̄α ∈ C2(Rd). Next, fix some λ > 0 and define
f(u, x) := (λu + V̄ 1−β

α (x))1/(1−β). Obviously, f ∈ C2([0,∞) × R
d). Now, by fixing a > 0 and R > x0 and

picking some ϕa ∈ C2
c (Rd+1) such that 1B(0,a)(u, x) ≤ ϕa(u, x) ≤ 1B(0,2a)(u, x) for all (u, x) ∈ Rd+1, from
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Proposition 4.3 and ([13], Thm. 2.2.13 and Prop. 4.1.7), we have

E
x

[
(fϕa)(u+ t ∧ τB(0,x0) ∧ τBc(0,R), Ft∧τB(0,x0)∧τBc(0,R))

]
− (fϕa)(u, x)

= E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

(
∂(fϕa)(u+ s, Fs)

∂u
+ A(fϕa)(u + s, Fs)

)
ds

]

= E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

(
∂(fϕa)(u+ s, Fs)

∂u
+ L(fϕa)(u + s, Fs)

)
ds

]
, x ∈ R

d, u, t ≥ 0.

Observe that, due to (3.2), the function

(u, x) �−→
∫
{|y|≥1, |y+x|≥r0}

f(u, y + x)dy

is locally bounded, hence, by letting a −→ ∞, the dominated convergence theorem and (6.4) yield

E
x

[
f(u+ t ∧ τB(0,x0) ∧ τBc(0,R), Ft∧τB(0,x0)∧τBc(0,R))

]
− f(u, x)

= E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

(
∂f(u+ s, Fs)

∂u
+ Lf(u+ s, Fs)

)
ds

]
, x ∈ R

d, u, t ≥ 0. (6.6)

Now, let us discuss the right-hand side of (6.6). First, by assumption, it holds that

LV̄α(x) ≤ Rα(x) ≤ −γV̄ β
α (x) (6.7)

for all x ∈ Rd, |x| ≥ x0. Further, note that the process{
V̄α(Ft∧τB(0,x0)∧τBc(0,R)) + γ

∫ t∧τB(0,x0)∧τBc(0,R)

0

V̄ β
α (Fs)ds

}
t≥0

is a P
x-supermartingale for all x ∈ R

d. Indeed ([13], Thm. 2.2.13 and Prop. 4.1.7), we have

E
x

[
(V̄αϕa)(Ft∧τB(0,x0)∧τBc(0,R)) + γ

∫ t∧τB(0,x0)∧τBc(0,R)

0

(V̄ β
α ϕa)(Fv)dv

∣∣∣Fs

]

= E
x

[
(V̄αϕa)(Ft∧τB(0,x0)∧τBc(0,R))

+ γ

∫ t∧τB(0,x0)∧τBc(0,R)

0

(
(V̄ β

α ϕa)(Fv) +
A(V̄αϕa)(Fv)

γ
− A(V̄αϕa)(Fv)

γ

)
dv

∣∣∣Fs

]

= (V̄αϕa)(Fs∧τB(0,x0)∧τBc(0,R)) −
∫ s∧τB(0,x0)∧τBc(0,R)

0

A(V̄αϕa)(Fv)dv

+ γ

∫ s∧τB(0,x0)∧τBc(0,R)

0

(
(V̄ β

α ϕa)(Fv) +
A(V̄αϕa)(Fv)

γ

)
dv

+ γ E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

s∧τB(0,x0)∧τBc(0,R)

(
(V̄ β

α ϕa)(Fv) +
A(V̄αϕa)(Fv)

γ

)
dv

∣∣∣Fs

]

= (V̄αϕa)(Fs∧τB(0,x0)∧τBc(0,R)) −
∫ s∧τB(0,x0)∧τBc(0,R)

0

L(V̄αϕa)(Fv)dv

+ γ

∫ s∧τB(0,x0)∧τBc(0,R)

0

(
(V̄ β

α ϕa)(Fv) +
L(V̄αϕa)(Fv)

γ

)
dv

+ γ E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

s∧τB(0,x0)∧τBc(0,R)

(
(V̄ β

α ϕa)(Fv) +
L(V̄αϕa)(Fv)

γ

)
dv

∣∣∣Fs

]
,
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for all x ∈ Rd and u, s, t ≥ 0, s ≤ t. Here, again a > 0 and ϕa ∈ C2
c (Rd) is such that 1B(0,a)(x) ≤ ϕa(x) ≤

1B(2a)(x) for all x ∈ Rd. Now, by letting a −→ ∞, (6.4) (which ensures the integrability of the process), the
dominated convergence theorem and (6.7) imply

E
x

[
V̄α(Ft∧τB(0,x0)∧τBc(0,R)) + γ

∫ t∧τB(0,x0)∧τBc(0,R)

0

V̄ β
α (Fv)dv

∣∣∣Fs

]

= V̄α(Fs∧τB(0,x0)∧τBc(0,R)) −
∫ s∧τB(0,x0)∧τBc(0,R)

0

LV̄α(Fv)dv

+ γ

∫ s∧τB(0,x0)∧τBc(0,R)

0

(
V̄ β

α (Fv) +
LV̄α(Fv)

γ

)
dv

+ γ E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

s∧τB(0,x0)∧τBc(0,R)

(
V̄ β

α (Fv) +
LV̄α(Fv)

γ

)
dv

∣∣∣Fs

]

≤ V̄α(Fs∧τB(0,r0)∧τBc(0,R)) + γ

∫ s∧τB(0,r0)∧τBc(0,R)

0

V̄ β
α (Fv)dv,

for all x ∈ Rd and u, s, t ≥ 0, s ≤ t. Now, by using this fact ([20], Cor. 4.5) states that the process{
f(u+ t ∧ τB(0,x0) ∧ τBc(0,R), Ft∧τB(0,x0)∧τBc(0,R)) −

λ− γ(1 − β)
λ

∫ t∧τB(0,x0)∧τBc(0,R)

0

∂f(u+ s, Fs)
∂u

ds
}

t≥0

is also a Px-supermartingale for all x ∈ Rd and u ≥ 0. In particular,

E
x

[
f(u+ t ∧ τB(0,x0) ∧ τBc(0,R), Ft∧τB(0,x0)∧τBc(0,R)) −

λ− γ(1 − β)
λ

∫ t∧τB(0,x0)∧τBc(0,R)

0

∂f(u+ s, Fs)
∂u

ds
]

≤ f(u, x) (6.8)

for all x ∈ Rd and u, t ≥ 0. Now, by combining (6.6) and (6.8), we get

E
x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

Lf(u+ s, Fs)ds
]
≤ −γ(1 − β)

λ
E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

∂f(u+ s, Fs)
∂u

ds
]

(6.9)

for all x ∈ Rd and u, t ≥ 0, and, by combining (6.6) and (6.9), we obtain

f(u, x) +
λ− γ(1 − β)

λ
E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

∂f(u+ s, Fs)
∂u

ds
]
≥ 0, x ∈ R

d, u, t ≥ 0.

Specially, by taking u = 0 and 0 < λ < γ(1 − β), the above relation entails

γ(1 − β) − λ

1 − β
E

x

[∫ t∧τB(0,x0)∧τBc(0,R)

0

(λs+ V̄ 1−β
α (Fs))β/(1−β)ds

]
≤ V̄α(x), t ≥ 0, x ∈ R

d.

By letting t −→ ∞ and R −→ ∞, the monotone convergence theorem and conservativeness of {Ft}t≥0 auto-
matically imply

γ(1 − β) − λ

1 − β
E

x

[∫ τB(0,x0)

0

(λs+ V̄ 1−β
α (Fs))β/(1−β)ds

]
≤ V̄α(x), x ∈ R

d.

In particular,

E
x

[
τ

1/(1−β)
B(0,x0)

]
≤ λβ/(β−1)

γ(1 − β) − λ
V̄α(x), x ∈ R

d.
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Now, for an arbitrary t0 > 0, the Markov property yields

E
x

[(
τ t0
B(0,x0)

)1/(1−β)
]

= E
x

[
E

x

[(
τ t0
B(0,x0)

)1/(1−β) ∣∣∣Ft0

]]

= E
x

[
E

Ft0

[(
t0 + τB(0,x0)

)1/(1−β)
]]

≤ ct
1/(1−β)
0 + cEx

[
E

Ft0

[
τ

1/(1−β)
B(0,x0)

]]
≤ ct

1/(1−β)
0 +

cλβ/(β−1)

γ(1 − β) − λ
E

x[V̄α(Ft0)], x ∈ R
d,

where in the third step we used the fact that for a ≥ 0,

(1 + t)a ≤ c(1 + ta), t ≥ 0,

holds with c := supt≥0
(1+t)a

1+ta . The relations in (6.5) now follow by combining the previous result with (6.4).
Further, directly from (the proofs of) ([15], Thm. 1 and [57], Thm. 4.1) we see that for any 0 < λ < γ(1 − β)
and t0 > 0 there exists k > 0, such that

‖P
x(Xt ∈ ·) − π(·)‖TV ≤ k(1 − β)Ex

[(
τ t0
B(0,x0)

)1/(1−β)
]
t−β/(1−β), x ∈ R

d, t ≥ 0,

which proves (3.3). Finally, to obtain the relation in (3.4) we proceed as follows. First, by combining (6.3)
and (6.7) we get

E
x

[
V̄α(Ft∧τBc(0,R))

]
+ γE

x

[∫ t∧τBc(0,R)

0

1Bc(0,x0)(Fs)V̄ β
α (Fs)ds

]
≤ V̄α(x) + t sup

x∈B(0,x0)

|LV̄α(x)|

for all x ∈ Rd and t ≥ 0. Further, by letting R −→ ∞, Fatou’s lemma and the conservativeness of {Ft}t≥0 entail

E
x

[
V̄α(Ft) ∧m

]
+ γE

x

[∫ t

0

1Bc(0,x0)(Fs)
(
V̄ β

α (Fs) ∧m
)
ds

]
≤ V̄α(x) + t sup

x∈B(0,x0)

|LV̄α(x)|

for all x ∈ Rd, t ≥ 0 and m > 0. Now, by dividing the above relation by t and letting t −→ ∞, we obtain

γ lim sup
t−→∞

1
t
E

x

[∫ t

0

1Bc(0,x0)(Fs)
(
V̄ β

α (Fs) ∧m
)
ds

]
≤ sup

x∈B(0,x0)

|LV̄α(x)|, x ∈ R
d, m > 0.

Finally, by integrating the above relation with respect to π(dx) and employing Fatou’s lemma and invariance
property of π(dx), we get

γ

∫
Rd

1Bc(0,x0)(x)
(
V̄ β

α (x) ∧m)
π(dx) ≤ sup

x∈B(0,x0)

|LV̄α(x)|, m > 0,

which, together with Fatou’s lemma, proves the assertion. �

Proof of Theorem 3.3(v). Let α ≥ 0, β > 0 and x0 > r0 > 1. Then, again by Theorem 3.3 (iii), {Ft}t≥0 is
(strongly) ergodic. Therefore, in order to prove the exponential ergodicity of {Ft}t≥0, due to ([12], Thm. 6.2),
it suffices to prove that

sup
x∈B(0,x0)

E
x

[
eλτ

t0
B(0,x0)

]
<∞ and E

x
[
eλτ

t0
B(0,x0)

]
<∞, x ∈ R

d, (6.10)
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for some λ > 0 and t0 > 0. Let V̄α : Rd −→ [0,∞) be as in the Proof of Theorem 3.3(ii). By assumption,
LV̄α(x) ≤ Rα(|x|) ≤ −βV̄α(x) for all x ∈ Rd, |x| ≥ x0. Next, fix λ > 0 and R > x0 and define ϕ(t) := eλt

and ψ(x) := V̄α(x). Now, by similar arguments as in the proof of Theorem 4.4 (by applying Prop. 4.3 and [13],
Thm. 2.2.13 and Prop. 4.1.7), we get

E
x

[
eλ(t∧τB(0,x0)∧τBc(0,R))V̄α(Ft∧τB(0,x0)∧τBc(x,R))

]
= V̄α(x) + E

x

[∫ t∧τB(0,x0)∧τBc(x,R)

0

(λeλsV̄α(Fs) + eλsLV̄α(Fs))ds
]
, x ∈ R

d, t ≥ 0.

In particular,

V̄α(x) + E
x

[∫ t∧τB(0,x0)∧τBc(x,R)

0

(λ− β)eλsV̄α(Fs)ds
]
≥ 0, x ∈ R

d, t ≥ 0.

Thus, by taking 0 < λ < β, we get

E
x

[∫ t∧τB(0,x0)∧τBc(x,R)

0

eλsV̄α(Fs)ds
]
≤ V̄α(x)
β − λ

, x ∈ R
d, t ≥ 0,

and, by letting t −→ ∞ and R −→ ∞, Fatou’s lemma and the conservativeness property of {Ft}t≥0 entail

E
x

[∫ τB(0,x0)

0

eλsV̄α(Fs)ds
]
≤ V̄α(x)
β − λ

, x ∈ R
d.

Specially, we have

E
x

[
eλτB(0,x0 )

]
≤ λ

β − λ
V̄α(x) + 1, x ∈ R

d.

Now, for any t0 > 0, the Markov property yields

E
x

[
eλτ

t0
B(0,x0)

]
= E

x
[
E

x
[
eλτ

t0
B(0,x0)

∣∣∣Ft0

]]
= eλt0E

x
[
E

Ft0
[
eλτB(0,x0)

]]
≤ λeλt0

β − λ
E

x[V̄α(Ft0 )] + eλt0 , x ∈ R
d, (6.11)

which together with (6.4) proves (6.10). Furthermore, under (6.10), (the proofs of) ([12], Thms. 5.2 and 6.2)
imply that for any κ > 0 there exists k(κ) > 0, such that

‖P
x(Ft ∈ ·) − π(·)‖TV ≤

(
1 + E

x

[∫ τ
t0
B(0,x0)

0

eλtdt

])
ek(κ)−κt, x ∈ R

d, t ≥ 0.

Thus, by combining this with (6.4) and (6.11), we automatically conclude (3.5). Finally, the proof of the relation
in (3.6) follows by employing completely the same arguments as in the proof of (3.4), which concludes the proof
of the theorem. �
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[46] K.-I. Sato, Lévy processes and infinitely divisible distributions. Vol. 68. Cambridge University Press, Cambridge (1999).

[47] K.-I. Sato, T. Watanabe and M. Yamazato, Recurrence conditions for multidimensional processes of Ornstein–Uhlenbeck type.
J. Math. Soc. Japan 46 (1994) 245–265.

[48] K.-I. Sato and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck
type. Stochastic Process. Appl. 17 (1984) 73–100.

[49] R.L. Schilling, Conservativeness and extensions of feller semigroups. Positivity 2 (1998) 239–256.
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