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MINIMAX REGRESSION ESTIMATION FOR POISSON COPROCESS ∗

Benôıt Cadre1, Nicolas Klutchnikoff2 and Gaspar Massiot2

Abstract. For a Poisson point process X, Itô’s famous chaos expansion implies that every square
integrable regression function r with covariate X can be decomposed as a sum of multiple stochastic
integrals called chaos. In this paper, we consider the case where r can be decomposed as a sum of δ chaos.
In the spirit of Cadre and Truquet [ESAIM: PS 19 (2015) 251–267], we introduce a semiparametric
estimate of r based on i.i.d. copies of the data. We investigate the asymptotic minimax properties of
our estimator when δ is known. We also propose an adaptive procedure when δ is unknown.

Mathematics Subject Classification. 62G08, 62H12, 62M30.

Received November 29, 2016. Revised March 2, 2017. Accepted March 5, 2017.

1. Introduction

1.1. Regression estimation

Regression estimation is a central problem in statistics. It is widely used and studied in the litterature.
Among all the methods explored to deal with the regression problem, nonparametric statistics have been widely
investigated (see the monographies by Tsybakov [14] for a full introduction to nonparametric estimation and
Györfi et al. [5] for a clear account on nonparametric regression). A more recent challenge regarding this
statistical problem is the regression onto a functional covariate (see the books by Ramsay and Silverman [13]
and Horváth and Kokozska [6] for more precision on functional data analysis). Although very challenging, the
functional regression problem in the minimax setting has little coverage up to our knowledge. In the kernel
estimation setting, Mas [11] studied the small ball probabilities over some Hilbert spaces to derive minimax
lower bounds at fixed points. More recently, Chagny and Roche [4] derived minimax lower bounds at fixed points
for adaptive nonparametric estimation of the regression under some Wiener measure domination assumptions
on the small ball probabilities. Based on the k-nearest neighbor approach, Biau, Cérou and Guyader [1] used
compact embedding theory to get bounds on the minimax risk. See also the references therein for a more
complete overview.
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1.2. Minimax regression for Poisson coprocess

In this paper, we focus on a regression problem for which the covariate is a Poisson point process. In the
spirit of Cadre and Truquet [3], we use a method based on the chaotic decomposition of Poisson functionals.
Let X be a Poisson point process on a compact domain X ⊂ R

d equipped with its Borel σ-algebra X . Letting
δx the Dirac measure on x ∈ X, the state space is identified to S = {s =

∑m
i=1 δxi : m ∈ N

∗, xi ∈ X} equipped
with the smallest σ-algebra making the mappings s �→ s(B) measurable for all Borel set B in X . We denote by
PX the distribution of X whereas L

2(PX) denotes the space of all measurable functions g : S → R such that

‖g‖2
L2(PX) = Eg(X)2 < +∞.

Let P be a distribution on S ×R and (X,Y ) with law P. Provided E|Y | < +∞ where E is the expectation with
respect to P, we consider the regression function r : S → R defined by r(s) = E(Y | X = s).

We assume that r belongs to L
2(PX) and we aim at estimating r on the basis of an i.i.d. sample randomly

drawn from the distribution P of (X,Y ). In this context, any measurable map r̃ : (S × R)n → L
2(PX) is an

estimator, the accuracy of which is measured by the risk

Rn(r̃, r) = E
n‖r̃ − r‖2

L2(PX),

where E
n denotes the expectation with respect to the distribution P

⊗n. Following the minimax approach, we
define the maximal risk of r̃ over a class P of distributions for the random pair (X,Y ) by

Rn(r̃,P) = sup
P∈P

Rn(r̃, r).

We are interested in finding an estimator r̂ such that

Rn(r̂,P) � inf
r̃
Rn(r̃,P),

where the infimum is taken over all possible estimates of r and un � vn stands for 0 < lim infn unv−1
n ≤

lim supn unv−1
n < +∞. Such an estimate is called asymptotically minimax over P .

1.3. Chaotic decomposition in the Poisson space

Roughly, Itô’s famous chaos expansion (see Itô [8] and Nualart and Vives [12] for technical details) says
that every square integrable and σ(X)-measurable random variable can be decomposed as a sum of multiple
stochastic integrals, called chaos. To be more precise, we now recall some basic facts about chaos decomposition
in the Poisson space. Let μ be the mean measure of the Poisson point Process X , defined by μ(A) = EX(A)
for A ∈ X , whenever X(A) is the number of points of X lying in A. Fix k ≥ 1. Provided g ∈ L

2(μ⊗k), we can
define the kth chaos Ik(g) associated with g, namely

Ik(g) =
∫
Δk

gd
(
X − μ)⊗k, (1.1)

where Δk = {x ∈ X
k : xi �= xj for all i �= j}. In Nualart and Vives [12], it is proved that every square integrable

σ(X)-measurable random variable can be decomposed as an infinite sum of chaos. Applied to our regression
problem, this statement writes as

r(X) = EY +
∑
k≥1

1
k!
Ik(fk), (1.2)

where equality holds in L
2(PX), provided EY 2 <∞. In the above formula, each fk is an element of L

2
sym(μ⊗k)

–the subset of symmetric functions in L
2(μ⊗k)–, and the decomposition is defined in a unique way.
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1.4. Organization of the paper

In this paper we introduce a new estimator of the regression function r based on independent copies of (X,Y )
and we study its minimax properties. Section 2 is devoted to the definition of a semiparametric model i.e. the
construction of the family P of distributions of (X,Y ). In particular, we assume that r is a sum of δ chaos. In
Section 3, we provide a lower bound for the minimax risk over P . When δ is known, we prove that our estimator
achieves this bound up to a logarithmic term. Finally, in Section 4, we define an adaptive procedure when δ is
unknown, the risk of which is also proved to be optimal up to a logarithmic term. Last sections contain proofs.

2. Model

In the rest of the paper, we let Θ ⊂ R
p. For each θ ∈ Θ, ϕθ : X → R+ is a Borel function. The family

{ϕθ}θ∈Θ contains the constant function 1X/λ(X), and is such that there exists three positive constants ϕ, ϕ
and γ1 satisfying, for all x, y ∈ X and θ, θ′ ∈ Θ,

ϕ ≤ ϕθ(x) ≤ϕ, (2.1)
|ϕθ(x) − ϕθ′(x)| ≤ϕ|θ − θ′|, (2.2)
|ϕθ(x) − ϕθ(y)| ≤ γ1|x− y|, (2.3)

where, here and in the following, | · | stands for the euclidean norm.
Let (X,Y ) be a pair of random variables taking values in S × R with distribution P, where S is the Poisson

space over the compact domain X ⊂ R
d. Here, X is a Poisson point process on X with intensity ϕθ, i.e. for all

set A ∈ X :
EX(A) =

∫
A

ϕθdλ, (2.4)

where λ is the Lebesgue measure and E is the expectation with respect to P. In other words, the mean measure
of X , say μ, has a Radon−Nikodỳm derivative ϕθ with respect to λ. We assume that for all l ≥ 1, there exists
an estimator

θ̃l :
(S × R)l → Θ,

such that,

E
l|θ̃l − θ|2 ≤ κ

l + 1
, (2.5)

where κ > 0 is an absolute constant that does not depend on l and E
l is the expectation with respect to P

⊗l.
As shown in Birgé ([2], Prop. 3.1), the above property is satisfied by a wide class of models, provided θ̃l is a
maximum likelihood estimate.

Moreover, the real-valued random variable Y satisfies, for some u,M > 0, the exponential moment condition:

EY 2eu|Y | ≤M, (2.6)

As seen in (1.2), the regression function r(s) = E(Y | X = s) has a chaotic decomposition. In our model,
we consider the case of a finite chaotic decomposition, i.e. there exists a strictly positive integer δ and f1 ∈
L

2
sym(μ), . . . , fδ ∈ L

2
sym(μ⊗δ) such that

r(X) = EY +
δ∑

k=1

1
k!
Ik(fk), (2.7)

where the Ik(fk)’s are defined in (1.1). The coefficients fk’s of the chaos lie in a nonparametric family, for which
there exists two strictly positive constants γ2 and f̄ such that for all k = 1, . . . , δ, and x, y ∈ X

k

|fk(x) − fk(y)| ≤ γ2|x− y|, (2.8)
|fk(x)| ≤ f̄ . (2.9)
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Remark 2.1 (On the finiteness of the number of chaos).

(1) Finiteness of the number of chaos roughly implies that the regression function r(X) is unbounded. Indeed,
consider for simplicity the case where r(X) is decomposed onto only one chaos, i.e.

r(X) =
∫

X

fd(X − λ).

Here X is a simple Poisson process on the domain X ⊂ R with unit intensity and f is any λ-integrable
function on X. Observe that, if f ≥ a > 0, then

r(X) ≥ aX(X) −
∫

X

fdλ.

Consequently, r(X) is unbounded. The same tendency may be expected whatever the number of chaos.
(2) Finiteness of the chaotic decomposition relies on the distribution of (X,Y ) via the Malliavin calculus.

Indeed, as proved in Proposition 4.1 by Last and Penrose [10], the decomposition in δ chaos of r(X) holds
if and only if the (δ + 1)th Malliavin derivative of r is null.

In the rest of the paper, the constants ϕ,ϕ, γ1, u,M, δ, γ2, f̄ and κ will be fixed, and we shall denote by P the
set of distributions P of (X,Y ) such that the assumptions (2.1)−(2.9) are satisfied. In this setting, θ implicitly
denotes the true value of the parameter, that is ϕθ is the intensity of X (with mean measure μ).

3. Minimax properties for known δ

3.1. Chaos estimator

Our task is to construct an estimate of the regression function which achieves fast rates over P . Let P ∈ P
and (X,Y ) ∼ P where X has mean measure μ = ϕθ · λ.

First recall some basic facts about chaos decomposition in the Poisson space. If g ∈ L
2(μ⊗k) and h ∈ L

2(μ⊗l)
for k, l ≥ 1, we have the so-called Itô Isometry Formula:

EIk(g)Il(f) = k!
∫

Xk

ghdμ⊗k1{k=l} and EIk(g) = 0, (3.1)

where g and h are the symmetrizations of g and h, that is, for all (x1, . . . , xk) ∈ X
k:

g(x1, . . . , xk) =
1
k!

∑
σ

g(xσ(1), . . . , xσ(k)), (3.2)

the sum being taken over all permutations σ =
(
σ(1), . . . , σ(k)

)
of {1, . . . , k}, and similarly for h.

Now let W be a strictly positive constant and W be a density on X such that supX W ≤ W . Furthermore,
let hk = hk(n) > 0 a bandwidth to be tuned later on and denote

Whk
(·) =

1
hdk
W

( ·
hk

)
·

One may easily deduce from relations (1.2) and (3.1) that

EY Ik
(
W⊗k
hk

(x − ·)) =
∫

Xk

fkW
⊗k
hk

(x− ·)ϕ⊗k
θ dλ⊗k,
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where, here and in the following, for any real-valued function g defined on X, the notation g⊗k denotes the
real-valued function on X

k such that

g⊗k(x) =
k∏
i=1

g(xi), x = (x1, . . . , xk) ∈ X
k.

Thus, under the smoothness assumptions (2.1) on ϕθ and (2.9) on fk, the right-hand side converges to
fk(x)ϕ⊗k

θ (x), provided hk → 0.
Now let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. with distribution P. Based on this observation, a semipara-

metric estimate denoted Îk,hk
(X) of the kth chaos Ik(fk) of (1.1) may be defined as follows:

1
n

n∑
i=1

Yi1|Yi|≤Tn

∫
Δ2

k

W⊗k
hk

(x− y)

ϕ⊗k
θ̂i

(x)

(
Xi − ϕθ̂i

· λ)⊗k(dy)(X − ϕθ̂i
· λ)⊗k(dx), (3.3)

where Tn > 0 is a truncation parameter to be tuned later on and the θ̂i’s are the leave-one-out estimates defined
by θ̂i = θ̃n−1

(
(Xj)j≤n,j �=i

)
(see Sect. 2).

3.2. Results

Based on the estimate (3.3) of the kth chaos, we may define the following empirical mean type estimator of
the regression function r for any strictly positive integer l

r̂l(X) = Y n +
l∑

k=1

1
k!
Îk,hk

(X), (3.4)

where Y n is the empirical mean of Y1, . . . , Yn.
In this subsection, we study the performance of the estimate r̂δ of the regression function from a minimax

point of view when the number of chaos δ is known.

Theorem 3.1. Let ε > 0 and set Tn = (lnn)1+ε and hk = (T 2
nn

−1)1/(2+dk). Then,

lim sup
n→+∞

(
n

(lnn)2+2ε

)2/(2+dδ)

sup
P∈P

Rn
(
r̂δ, r) <∞.

Remark 3.2. Thus, the optimal rate of convergence over P is upper bounded by
(
(lnn)2+2εn−1

)2/(2+dδ)
. Here

it is noticeable that, up to a logarithmic factor, we recover the optimal rate n−2/(2+dδ) corresponding to the
dδ-dimensional regression with a Lipschitz regression function (see, e.g., Thm. 1 in Kohler et al. [9]).

In our next result, we provide a lower bound for the optimal rate of convergence over P in order to assess
the tightness of the upper bound obtained in Theorem 3.1.

Theorem 3.3. We have,

lim inf
n→+∞ n2/(2+dδ) inf

r̃
sup
P∈P

Rn(r̃, r) > 0,

where the infimum is taken over all estimates r̃.

Remark 3.4. Theorem 3.3 indicates that the optimal rate of convergence over P is lower bounded by n−2/(2+dδ)

which, up to a logarithmic factor, corresponds to the upper bound found in Theorem 3.1. As a conclusion, up
to a logarithmic factor, the estimate r̂δ is asymptotically minimax on P .
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4. Adaptive properties for unknown δ

We now consider the case of an unknown number of chaos δ. For m > 0, we set

P(m) = {P ∈ P : ‖fk‖ ≥ m; k ∈ 1, . . . , δ},

where ‖·‖ stands for the L
2-norm relatively to the Lebesgue measure. Thus, whenever P ∈ P(m),

δ = min(k : ‖fk‖ = 0) − 1.

Based on this observation, a natural estimate of δ may be obtained as follows. Let we assume that the dataset
is of size 2n, and let (X1, Y1), . . . , (X2n, Y2n) be i.i.d. with distribution P ∈ P(m). For k ∈ 1, . . . , δ, we introduce
the empirical counterpart of ϕθfk defined by

ĝk(x) =
1
n

2n∑
i=n+1

Yi

∫
Δk

W⊗k
bk

(x− y)
(
Xi − ϕθ̂ · λ

)⊗k(dy), (4.1)

where θ̂ = θ̃n(Xn+1, . . . , X2n) is defined in Sect. 2), and bk = bk(n) is a bandwidth to be tuned later. The
estimator δ̂ of δ is then defined by

δ̂ = min(k : ‖ĝk‖ ≤ ρk) − 1, (4.2)

where ρk = ρk(n) is a vanishing sequence of positive numbers that we choose later on. We may now define the
adaptative estimator r̂ of r by

r̂ = r̂δ̂,

where r̂l is defined in (3.4) for all strictly positive integer l.

Theorem 4.1. Let ε > dδ ≥ 2, α, β > 0 such that α+ β < 1 and 2α+ β > 1/(2 + dδ), and set Tn = (lnn)1+ε.
Then, if we take for all integer k,

hk = (T 2
nn

−1)1/(2+dk), ρk = ((2k)!)2n(α+β−1)/2 and bk = n−β/(2dk),

we obtain, for all m > 0,

lim sup
n→+∞

(
n

(lnn)2+2ε

)2/(2+dδ)

sup
P∈P(m)

Rn(r̂, r) < +∞.

Remark 4.2. Here it is noticeable that despite the estimation of the number of chaos δ and up to a logarithmic
factor, we recover the optimal rate n−2/(2+dδ) of Theorems 3.1 and 3.3.

5. Proof of Theorem 3.1

In this section, we assume without loss of generality that the constants ϕ, γ1, γ2, f̄ , λ(X) and W are greater
than 1 and that ϕ is smaller than 1. Moreover, C denotes a positive number that only depends on the parameters
of the model, i.e. u, ϕ, ϕ, γ1, γ2, f̄ , δ, θ, κ, λ(X),M and W , and whose value may change from line to line.

We let P ∈ P and, for simplicity, we may denote E = E
n and var stands for the variance relatively to P

⊗n.
Finally, let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. with distribution P.
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5.1. Technical results

Let k ≥ 1 be fixed and denote for all x, y ∈ X and i = 1, . . . , n:

gi(x, y) =
Whk

(x − y)
ϕθ̂i

(x)
and g(x, y) =

Whk
(x− y)
ϕθ(x)

· (5.1)

We also let

dX̂i = dXi − ϕθ̂i
dλ, dX̂ ′

i = dX − ϕθ̂i
dλ, (5.2)

dX̃i = dXi − ϕθdλ and dX̃ = dX − ϕθdλ. (5.3)

With this respect, we have (see (3.3)):

Îk,hk
(X) =

1
n

n∑
i=1

Yi1|Yi|≤Tn

∫
Δ2

k

g⊗ki (x, y)X̂⊗k
i (dy)X̂ ′⊗k

i (dx).

Furthermore, denote for all x ∈ X
k:

Zi,k(x) = Yi1|Yi|≤Tn

∫
Δk

g⊗k(x, y)X̃⊗k
i (dy). (5.4)

Lemma 5.1. Let i = 1, . . . , n and k ≤ δ be fixed. Then for all x ∈ X
k:

var
(
Zi,k(x)

) ≤ T 2
n

k!Ck

hdkk
, and |EZi,k(x) − fk(x)| ≤ Ck

(
φ
k!
hdkk

)1/2

+ Ckhk,

where φ = EY 21|Y |>Tn
.

Proof. On the one hand, by the isometry formula (3.1) over the set P ,

var
(
Zi,k(x)

) ≤ T 2
nE

(∫
Δk

g⊗k(x, y)X̃⊗k(dy)
)2

≤ T 2
nk!
∫

Xk

g⊗k
2
(x, y)ϕ⊗k

θ (y)dy

≤ T 2
n

W
k
ϕk

ϕ2k

k!
hdkk

,

where g⊗k(x, ·) is the symmetrization –see (3.2)– of the function g⊗k(x, ·) defined in (5.1). On the other hand,
denote

Z̃i,k(x) = Yi

∫
Δk

g⊗k(x, y)X̃⊗k
i (dy),

then by the isometry formula (3.1):

EZ̃i,k(x) = Er(X)
∫
Δk

g⊗k(x, y)X̃⊗k(dy) =
∫

Xk

fk(y)g⊗k(x, y)ϕ⊗k
θ (y)dy

=
1

ϕ⊗k
θ (x)

∫
Xk

fk(x− hkz)W⊗k(z)ϕ⊗k
θ (x− hkz)dz.
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Furthermore, by assumptions (2.1), (2.3), (2.8) and (2.9) on the model, we have for all x, y ∈ X
k:

|fk(x)ϕ⊗k
θ (x) − fk(y)ϕ⊗k

θ (y)| ≤ ϕk|fk(x) − fk(y)| + f̄ |ϕ⊗k
θ (x) − ϕ⊗k

θ (y)|
≤ (ϕkγ2 + kf̄ϕk−1γ1

) |x− y|
≤ 2kf̄ϕkγ2γ1|x− y|.

Hence, letting ωk =
∫

Xk |z|W⊗k(z)dz,

|EZi,k(x) − fk(x)| ≤ |E(Zi,k(x) − Z̃i,k(x)
)| + |EZ̃i,k(x) − fk(x)|

≤ ∣∣EY 1|Y |>Tn

∫
Δk

g⊗k(x, y)X̃⊗k(dy)
∣∣+ |EZ̃i,k(x) − fk(x)|

≤ φ1/2

(
E

(∫
Δk

g⊗k(x, y)X̃⊗k(dy)
)2
)1/2

+ 2kf̄ωk
ϕkγ2γ1

ϕk
hk·

One last application of the isometry formula (3.1) to the first term on the right-hand side of above gives the
Proposition. �

With the help of notations (5.1)–(5.3), define

Ri1k = E

(∫
Δ2

k

g⊗ki (x, y)X̂⊗k
i (dy)

[
X̂ ′⊗k
i (dx) − X̃⊗k(dx)

])2

, (5.5)

Ri2k = E

(∫
Δ2

k

g⊗ki (x, y)
[
X̂⊗k
i (dy) − X̃⊗k

i (dy)
]
X̃⊗k(dx)

)2

. (5.6)

Lemma 5.2. Let i = 1, . . . , n and k ≤ δ be fixed. Then, for j = 1 or 2:

Rijk ≤ Ck
(k!)2

nhdkk
·

Proof. The proofs for the bounds for Ri1k and Ri2k being similar, we only prove the one for Ri1k. We have

Ri1k = EE

⎡
⎣(∫

Δ2
k

g⊗ki (x, y)X̂⊗k
i (dy)

[
X̂ ′⊗k
i (dx) − X̃⊗k(dx)

])2

|(Xl)l≤n

⎤
⎦ ,

Using the independence of X and (Xl)l≤n, we can apply Lemma 4.2 from Cadre and Truquet [3], which entails

Ri1k ≤
k−1∑
j=0

j!
(
k

j

)2

ϕj
∫

Xk

E

[
V k−ji

(∫
Δk

g⊗ki (x, y)X̂⊗k
i (dy)

)2
]

dx, (5.7)

where Vi = ‖ϕθ̂i
− ϕθ‖2. Now let x ∈ X

k and j = 0, . . . , k − 1 be fixed. We have

EV k−ji

(∫
Δk

g⊗ki (x, y)X̂⊗k
i (dy)

)2

≤ 2EV k−ji

(∫
Δk

g⊗ki (x, y)
(
X̂⊗k
i (dy) − X̃⊗k

i (dy)
))2

+ 2EV k−ji

(∫
Δk

g⊗ki (x, y)X̃⊗k
i (dy)

)2

.
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We proceed to bound the two terms on the right-hand side of above. As before, we apply Lemma 4.2 from Cadre
and Truquet [3], but conditionally on (Xl)l≤n,l �=i. For notational simplicity, and since it does change the result
anymore, we do not specify the symmetrized version of the functions when using the isometry formula. By (3.1)
and assumption (2.1), we then get

EV k−ji

(∫
Δk

g⊗ki (x, y)X̂⊗k
i (dy)

)2

≤ 2
k−1∑
l=0

l!
(
k

l

)2

ϕlEV 2k−l−j
i

∫
Xk

g⊗ki (x, y)2dy

+ 2k!ϕkEV k−ji

∫
Xk

g⊗ki (x, y)2dy.

Note that for all m ≥ 1, by (2.2), we have

V mi ≤ (ϕ2λ(X)
)m−1( sup

X

|ϕθ̂i
− ϕθ|

)2
λ(X)

≤ (ϕ2λ(X)
)m|θ̂i − θ|2,

and

∫
Xk

g⊗ki (x, y)2dy ≤ W
k

ϕ2khdkk
·

Hence, since l!
(
k

l

)
≤ k!, we get with (2.5):

EV k−ji

(∫
Δk

g⊗ki (x, y)X̂⊗k
i (dy)

)2

≤ 2k!
W

k

φ2k

κ

nhdkk

(
φ

2
λ(X)

)k−j(
ϕ+ ϕ2λ(X)

)k
.

Finally, we deduce with similar arguments and inequality (5.7) that

Ri1k ≤ 2(k!)2
W

k

ϕ2k

κ

nhdkk

(
ϕ+ ϕ2λ(X)

)2k

≤ 2(k!)2
4kW

k
ϕ4k

ϕ2k

κ

nhdkk
λ(X)2k,

because both ϕ and λ(X) are greater than 1. The Lemma is proved. �

Lemma 5.3. Let ε > 0 be fixed and set Tn = (lnn)1+ε. Then, for all k ≤ δ:

E
(
Îk,hk

(X) − Ik(fk)
)2 ≤ Ck(k!)2

(
(lnn)2+2ε

nhdkk
+ h2

k

)
·

Proof. With the help of notations (5.1)−(5.3), we let

J1 =
1
n

n∑
i=1

Yi1|Yi|≤Tn

∫
Δ2

k

g⊗ki (x, y)X̃⊗k
i (dy)X̃⊗k(dx),

J2 =
1
n

n∑
i=1

Yi1|Yi|≤Tn

∫
Δ2

k

g⊗k(x, y)X̃⊗k
i (dy)X̃⊗k(dx).
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Then, using notations of Lemma 5.2, by Jensen’s Inequality

E
(
Îk,hk

(X) − J1

)2 ≤ 2
T 2
n

n

n∑
i=1

(Ri1k +Ri2k),

Hence, by Lemma 5.2

E
(
Îk,hk

(X) − J1

)2 ≤ T 2
nC

k (k!)2

nhdkk
· (5.8)

Moreover, sequentially conditioning on (Xl)l≤n, then on (Xl)l≤n,l �=i, and using assumption (2.1), we find with
two successive applications of the isometry formula (3.1) that

E
(
J1 − J2

)2 ≤ (k!)2T 2
nϕ

2k
E

∫
X2k

(
g⊗k1 (x, y) − g⊗k(x, y)

)2

dxdy.

Now let x, y ∈ X
k be fixed. We have

∣∣g⊗k1 (x, y) − g⊗k(x, y)
∣∣ ≤ W⊗k

hk
(x− y)

ϕ⊗k
θ (x)

k
ϕk−1

ϕk
sup

X

|ϕθ̂1 − ϕθ|,

so that (2.2) and (2.5) give

E
(
J1 − J2

)2 ≤ CkT 2
n

(k!)2

nhdkk
· (5.9)

Finally, using notation (5.4), by the isometry formula (3.1), we have

E
(
J2 − Ik(fk)

)2 = E

(∫
Δk

(
1
n

n∑
i=1

Zi,k(x) − fk(x)

)
X̃⊗k(dx)

)2

= k!
∫

Xk

E
( 1
n

n∑
i=1

Zi,k(x) − fk(x)
)2
ϕ⊗k
θ (x)dx

= k!
∫

Xk

(
1
n

var
(
Z1,k(x)

)
+
(
EZ1,k(x) − fk(x)

)2)
ϕ⊗k
θ (x)dx.

By Lemma 5.1, we thus get

E
(
J2 − Ik(fk)

)2 ≤ T 2
n

(k!)2Ck

nhdkk
+ Ck(k!)2

φ2

hdkk
+ Ckk!h2

k.

Moreover, given that (2.6) gives φ ≤ e−uTn EY 2eu|Y |. Consequently,

E
(
J2 − Ik(fk)

)2 ≤ Ck(k!)2
(

T 2
n

nhdkk
+

e−2uTn

hdkk
+ h2

k

)
·

Finally, combining inequalities (5.8), (5.9) and above, we deduce that with the choice Tn = (lnn)1+ε:

E
(
Îk,hk

(X) − Ik(fk)
)2 ≤ Ck(k!)2

(
(lnn)2+2ε

nhdkk
+ h2

k

)
,

hence the Lemma. �
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5.2. Proof of Theorem 3.1

According to Jensen Inequality and Lemma 5.3, we have by (3.4) and (2.7):

E
(
r̂δ(X) − r(X)

)2 = E

(
Ȳn − EY +

δ∑
k=1

1
k!
(
Îk,hk

(X) − Ik(fk)
))2

≤ 2var(Y )
n

+ δ

δ∑
k=1

Ck
(

(lnn)2+2ε

nhdkk
+ h2

k

)
·

Setting hk =
(
(lnn)2+εn−1

)1/(2+dk), we deduce that, since var(Y ) ≤M :

E
(
r̂δ(X) − r(X)

)2 ≤ 2M
n

+ C

(
(lnn)2+2ε

n

)2/(2+dδ)

,

hence the theorem. �

6. Proof of Theorem 3.3

In this section we assume for simplicity that X contains the hypercube X0 = [0, 1]d.

6.1. Technical results

We introduce the set F = Fδ(γ2, f̄) of functions f : X
δ → R in L

2
sym(λ⊗δ) for which conditions (2.8) and (2.9)

hold, and let R = Rδ(γ2, f̄) be the class of functions rf : S → R with f ∈ F such that

rf (·) =
1
δ!

∫
Δδ

fd(· − λ)⊗δ . (6.1)

Letting P the distribution of the Poisson point process on X with unit intensity, we may define the following
distance D on R by

D(rf0 , rf1) = ‖rf0 − rf1‖L2(P ). (6.2)

Whenever P ∈ P , we can associate the regression function r. To stress the dependency on r, we now write Pr

instead of P. Now let N > 0. We define the following three conditions for any sequence of size N+1 of functions
r(0), . . . , r(N) from S to R:

(R1) r(j) ∈ R, for j = 0, . . . , N ;
(R2) D(r(i), r(j)) ≥ 2n−1/(2+dδ), for 0 ≤ i < j ≤ N ;

(R3)
1
N

N∑
j=1

K(P⊗n
r(j)

,P⊗n
r(0)

) ≤ α logN for some 0 < α < 1/8 where K is the Kullback-Leibler divergence (see e.g.

Tsybakov [14]).

Lemma 6.1. Introduce f0 ≡ 0, f1, . . . , fN , N + 1 functions from X
δ to R such that

(F1) fj ∈ F ;
(F2) ‖fi − fj‖ ≥ 2n−1/(2+dδ);

(F3)
1
N

N∑
i=1

n

2
‖fi‖2 ≤ α logN for some 0 < α < 1/8.

Then, the sequence of functions rf0 , . . . , rfN defined by (6.1) verify conditions R1, R2 and R3.
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Proof. First of all, remark that since fj ∈ F for j = 0, . . . , N , by definition of the rfj ’s and the set R, we
have rfj ∈ R. Hence condition R1 is satisfied by the rfj ’s. Now remark that the Itô isometry (3.1) gives for
any 0 ≤ i, j ≤ N

D(rfj , rfi) = ‖fj − fi‖.

This ensures that the rfj ’s statisfy condition R2. Finally, for all j = 0, . . . , N

K(P⊗n
rfj
,P⊗n

rf0

)
= nK(Prfj

,Prf0
)

= nErf0

(
log

dPrf0

dPrfj

(X,Y )

)

= nErf0
Erf0

(
log

dPrf0

dPrfj

(X,Y ) | X
)
,

where Erf0
is the expectation under Prf0

. Denote by p the density of the N (0, 1). Then, since f0 ≡ 0

Erf0

(
log

dPrf0

dPrfj

(X,Y ) | X
)

=
∫

R

log

(
p(u)

p
(
u− rfj (X)

)
)
p(u)du.

Simple calculus then give

Erf0

(
log

dPrf0

dPrfj

(X,Y ) | X
)

≤ 1
2
(
rfj (X)

)2
.

Thus, by the Itô Isometry,

K(P⊗n
rfj
,P⊗n

rf0

) ≤ n

2
‖fj‖2,

hence the lemma. �

6.2. Proof of Theorem 3.3

Let P0 be the subset of distributions Pr of (X,Y ) in P for which X is a Poisson point process with unit
intensity (recall that the unit function lies in {ϕθ}θ∈Θ, see Sect. 2) and such that

Y = r(X) + ε, (6.3)

where r ∈ R and ε is independent from X with distribution N (0, 1). Since P0 ⊂ P , we have

inf
r̃

sup
Pr∈P0

Rn(r̃, r) ≤ inf
r̃

sup
Pr∈P

Rn(r̃, r).

As a result, in order to prove Theorem 3.3, we need only to prove that

lim inf
n→+∞ n2/(2+dδ) inf

r̃
sup

Pr∈P0

Rn(r̃, r) > 0,

which accordingly to (6.2) may be written

lim inf
n→+∞ n2/(2+dδ) inf

r̃
sup

Pr∈P0

E
n
rD

2(r̃, r) > 0, (6.4)
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where E
n
r denotes expectation with respect to P

⊗n
r . Then, according to Lemma 6.1 and Theorem 2.5 page 99 in

the book by Tsybakov [14], in order to prove (6.4), we need only to prove the existence of a sequence of functions
satisfying conditions F1, F2 and F3 defined in the previous subsection. To this end, we let ψ ∈ L

2
sym(λ⊗δ) be a

nonzero function such that Supp(ψ) = X
δ
0 and, for all x, y ∈ X

δ
0:∣∣ψ(y) − ψ(x)

∣∣ ≤ γ2

2
|y − x| and |ψ(x)| ≤ f̄ . (6.5)

Let Q =
⌊
c0n

dδ/(2+dδ)
⌋ ≥ 8 where c0 > 0 and �·� is the integer part and let an = (1/Q)1/(dδ). One may easily

prove that there exists t1, . . . , tQ in X
δ
0 such that the functions

ψq(·) = anψ

( · − tq
an

)
, for q = 1, . . . , Q,

verify the following assumptions

(1) Supp(ψq) ⊂ X
δ
0, for q = 1, . . . , Q;

(2) Supp(ψq) ∩ Supp(ψ′
q) = ∅, for q �= q′;

(3) λ⊗δ
(
Supp(ψq)

)
= Q−1.

Now let, for all ω ∈ {0, 1}Q:

fω(·) =
Q∑
q=1

ωqψq(·),

According to the Varshamov−Gilbert Lemma (see the book by Tsybakov [14], Lem. 2.8 p. 104), there exists a
subset Ω = {ω(0), . . . , ω(N)} of {0, 1}Q such that ω(0) = (0, 0, . . .), N ≥ 2Q/8, and for all j �= k:

Q∑
q=1

|ω(j)
q − ω(k)

q | ≥ Q

8
·

Now fix 0 < α < 1/8 and set
c0 = (4‖ψ‖2α−1)dδ/(2+dδ).

We may now prove that functions {fω(j) : j = 0, . . . , N} satisfy conditions F1, F2 and F3. First of all, let j �= k
be fixed and remark that,

‖fω(j) − fω(k)‖2 ≤
∫

Xδ
0

(
fω(j)(x) − fω(k)(x)

)2dx
=
∫

Xδ
0

( Q∑
q=1

(
ω(j)
q − ω(k)

q

)
ψq(x)

)2

dx

=
Q∑
q=1

∫
Supp(ψq)

(
ω(j)
q − ω(k)

q

)2
a2
nψ

2

(
x− tq
an

)
dx,

=
a2
n

Q

Q∑
q=1

∣∣ω(j)
q − ω(k)

q

∣∣ ∫
Xδ

0

ψ2(x)dx.

Furthermore, by definition of the set Ω, we have

Q

8
≤

Q∑
q=1

∣∣ω(j)
q − ω(k)

q

∣∣ ≤ Q,
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so that

‖ψ‖2

8
a2
n ≤ ‖fω(j) − fω(k)‖2 ≤‖ψ‖2a2

n. (6.6)

Now let 0 ≤ j ≤ N . Since ψ ∈ L
2
sym(λ⊗δ) it is clear that fω(j) inherits that property. Then, using the first part

of assumption (6.5) on ψ and assumption (ii) on the ψq’s, one may easily prove that fω(j) is a Lipschitz function
with constant γ2. Finally, using the second part of assumption (6.5) on ψ and assumption (ii) on the ψq’s, we
get that for all x ∈ X

k, |fω(j)(x)| ≤ anf̄ with an ≤ 1 as soon as n ≥ c
−(2+dδ)/(dδ)
0 . We conclude that fω(j) ∈ F

so that condition F1 is satisfied by fω(j) . Now, taking k = 0 in (6.6) gives

1
N

N∑
j=1

n

2
‖fω(j)‖2 ≤ n‖ψ‖2

2
a2
n ≤ ‖ψ‖2

2
c
−(2+dδ)/(dδ)
0 Q.

Since N ≥ 2Q/8 and c0 ≥ (4‖ψ‖2α−1)dδ/(2+dδ), we get

1
N

N∑
j=1

n

2
‖fω(j)‖2 ≤ 4‖ψ‖2c

−(2+dδ)/(dδ)
0 logN ≤ α logN,

so that F3 is satisfied. Finally, according to (6.6), we have

‖fω(j) − fω(k)‖ ≥ ‖ψ‖
2
√

2
an =

‖ψ‖
2
√

2
(2c0)−1/(dδ)n−1/(2+dδ)·

We can now conclude that conditions F1, F2 and F3 are satisfied so that according to Theorem 2.5 page 99
from the book by Tsybakov [14] and Lemma 6.1, (6.4) is verified. Theorem follows. �

7. Proof of Theorem 4.1

In this section, we assume without loss of generality that the constants ϕ, γ1, γ2, f̄ , λ(X) and W are greater
than 1 and that ϕ and m are smaller than 1. Moreover, C denotes a positive number that only depends on the
parameters of the model, i.e. m,u, ϕ, ϕ, δ, γ1, γ2, f̄ , θ, κ, λ(X),M and W , and whose value may change from line
to line.

We let P ∈ P(m), and for simplicity, we denote E = E
2n the expectation with respect to P

⊗2n. Recall that
the pairs (X,Y ), (X1, Y1), . . . , (X2n, Y2n) are i.i.d. with distribution P.

7.1. Technical results

For k ≥ 1, denote for all x ∈ X
k:

gk(x) =
1
n

n∑
i=1

Yi

∫
Δk

W⊗k
bk

(x− y)
(
Xi − ϕθ · λ

)⊗k(dy). (7.1)

We also let

Sk =
1
n

n∑
i=1

|Yi|
(
Xi(X) + ϕλ(X)

)k
. (7.2)

Lemma 7.1. We have, for all k:

‖ĝk − gk‖ ≤ CkSk
|θ̂ − θ|
b
dk/2
k

·
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Proof. Let μ̂ the signed measure

μ̂(dy) =
1
n

n∑
i=1

Yi

[(
Xi − ϕθ̂ · λ

)⊗k(dy) − (Xi − ϕθ · λ
)⊗k(dy)]

=
1
n

n∑
i=1

Yi

k−1∑
l=0

(
k

l

)
(−1)k−l

l∏
j=1

Xi(dyj)

⎡
⎣ k∏
j=l+1

ϕθ̂(yj)dyj −
k∏

j=l+1

ϕθ(yj)dyj

⎤
⎦ .

Then,

‖ĝk − gk‖2 =
∫

Xk

(∫
Δk

W⊗k
bk

(x− y)μ̂(dy)
)2

dx

=
∫
Δ2

k

[∫
Xk

W⊗k
bk

(x− y(1))W⊗k
bk

(x− y(2))dx
]
μ̂(dy(1))μ̂(dy(2)).

But,

∫
Xk

W⊗k
bk

(x− y(1))W⊗k
bk

(x− y(2))dx ≤ W
k

bdkk
·

Furthermore, one gets by induction that for l = 0, . . . , k − 1:∣∣∣∣∣∣
k∏

j=l+1

ϕθ̂(yj) −
k∏

j=l+1

ϕθ(yj)

∣∣∣∣∣∣ ≤ ϕk−l−1
k∑

j=l+1

|ϕθ̂(yj) − ϕθ(yj)|,

and by assumptions (2.1) and (2.2),

∫
Xk−l

k∑
j=l+1

|ϕθ̂(yj) − ϕθ(yj)|dyl+1 . . . dyk ≤ (k − l)λ(X)k−l−1

∫
X

|ϕθ̂ − ϕθ|dλ

≤ (k − l)λ(X)k−lϕ|θ̂ − θ|.

Puting all pieces together, we get

‖ĝk − gk‖2 ≤ W
k

bdkk

(
1
n

n∑
i=1

|Yi|
k−1∑
l=0

k

(
k − 1
l

)
Xi(X)lϕk−l−1λ(X)k−l|θ̂ − θ|

)2

.

We can then conclude

‖ĝk − gk‖2 ≤ W
k
k2λ(X)2

bdkk
|θ̂ − θ|2

(
1
n

n∑
i=1

|Yi|
(
Xi(X) + ϕλ(X)

)k−1

)2

.

Lemma follows, since ϕλ(X) ≥ 1. �

Denote for all i, j ≥ 0

si,j = E|Y |i(X(X) + ϕλ(X)
)j
. (7.3)

Moreover, (Vn)n is a sequence of real numbers, bigger than 1 and tending to infinity, to be tuned latter.
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Lemma 7.2. Let l ≥ 0 be fixed. Then for all x ∈ X
k,

E

∣∣∣Y ∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣l ≤ sl,lk

Clk

bldkk
·

Moreover,

E

(
Y

∫
Δk

W⊗k
bk

(x − y)X̃⊗k(dy)
)2

≤ Ck
√
s4,4k

(
k!
V 2
n

bdkk
+

e−uVn/2

b2dkk

)
·

Proof. First observe that

∣∣∣∣
∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣∣ ≤ W

k

bdkk

k∑
l=0

(
k

l

)
ϕk−lλ(X)k−lX(X)l

≤ W
k

bdkk

(
X(X) + ϕλ(X)

)k
.

Hence,

E

∣∣∣∣Y
∫
Δk

W⊗k
bk

(x − y)X̃⊗k(dy)
∣∣∣∣
l

≤ W
lk
sl,lk

bldkk

Regarding the second inequality, we observe that

E

(
Y

∫
Δk

W⊗k
bk

(x − y)X̃⊗k(dy)
)2

≤ V 2
nE

(∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
)2

+ E

(
Y 1|Y |>Vn

∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
)2

.

By (3.1),

E

(∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
)2

≤ k!
Ck

bdkk
·

Moreover, by the Cauchy−Schwarz Inequality, (2.6) and above,

[
E

(
Y 1|Y |>Vn

∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
)2
]2

≤ P(|Y | > Vn)

+ E

(
Y

∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
)4

≤ Cks4,4k
e−uVn

b4dkk

·

Puting all pieces together gives the result. �

Lemma 7.3. Let k > δ be fixed. Then,

P(δ̂ = k) ≤ Ck
((2k)! + s1,k)2

n(ρkb
dk/2
k )2

+
s2,2k

n((2k)!)2
+
Ck

ρ8
k

s8,8k max
(

n

(nbdkk )8
,
(k!)4V 8

n

(nbdkk )4
+

e−2uVn

(nb2dkk )4

)
·
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Proof. Since k > δ, we have with notation (7.1)

P(δ̂ = k) ≤ P(‖ĝk‖ > ρk)

≤ P(‖ĝk − gk‖ + ‖gk‖ > ρk)
≤ P(2‖ĝk − gk‖ > ρk) + P(2‖gk‖ > ρk). (7.4)

Regarding the first term on the right-hand side, we observe that by Lemma 7.1 and (2.5):

P(2‖ĝk − gk‖ > ρk) ≤ P

(
CkSk

|θ̂ − θ|
b
dk/2
k

≥ ρk

)

≤ P

(
Ck
(
(2k)! + s1,k

)|θ̂ − θ| ≥ ρkb
dk/2
k

)
+ P (|Sk − s1,k| ≥ (2k)!)

≤ Ck
((2k)! + s1,k)2

n(ρkb
dk/2
k )2

+
E|Sk − s1,k|2

((2k)!)2
·

Regarding the latter term on the right-hand side of inequality (7.4), since k > δ, we have

EY

∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy) = 0,

by (3.1). Thus, according to the Rosenthal Inequality (e.g. see Ibragimov and Sharakhmetov [7]), we get

E‖gk‖8 ≤ λ(X)3kE
∫

Xk

g8
kdλ

≤ Ck
∫

Xk

max
(

1
n7
Dk,8(x),

1
n4

(Dk,2)4(x)
)

dx,

where for all j ≥ 0 and x ∈ X
k:

Dk,j(x) = E

∣∣∣∣Y
∫
Δk

W⊗k
bk

(x− y)X̃⊗k(dy)
∣∣∣∣
j

.

Finally, according to Lemma 7.2 and since s24,4k ≤ s8,8k, we obtain

E‖gk‖8 ≤ Cks8,8k max

(
n(

nbdkk
)8 , (k!)4V 8

n

(nbdkk )4
+

e−2uVn

(nb2dkk )4

)
·

Lemma follows. �

From now on, denote

E2
k+1 = 2(ϕk+1γ2 + kf̄ϕk)ωk+1λ(X)k+2f̄ , (7.5)

where ωk+1 =
∫

Xk+1 |x|K⊗k+1(x)dx and the other constants are defined in assumptions (2.8) and (2.9) on the
model.

Lemma 7.4. Let k < δ be fixed. Then,

‖Egk+1‖ ≥ m− Ek+1

√
bk+1, and

E‖gk+1 − Egk+1‖2 ≤ C

(
V 2
n

nb
d(k+1)
k+1

+
e−uVn/2

nb
2d(k+1)
k+1

)
·



MINIMAX REGRESSION ESTIMATION FOR POISSON COPROCESS 155

Proof. By (3.1), for all x ∈ X
k+1,

Egk+1(x) =
∫

Xk+1
fk+1(y)W⊗k+1

bk+1
(x− y)ϕ⊗k+1

θ (y)dy

=
∫

Xk+1

(
fk+1ϕ

⊗k+1
θ )(x− bk+1z

)
W⊗k+1(z)dz.

By assumptions (2.1)−(2.8) on the model, we have

|(fk+1ϕ
⊗k+1
θ )(x− bk+1z) − (fk+1ϕ

⊗k+1
θ )(x)| ≤ (ϕk+1γ2 + kf̄ϕk)bk+1|z|.

Hence, since
∫

X
Wdλ = 1,

Egk+1 ≥ fk+1(x) − (ϕk+1γ2 + kf̄ϕk)bk+1ωk+1.

Then,

‖Egk+1‖2 ≥
∫

Xk+1

(
fk+1(x) − (ϕk+1γ2 + kf̄ϕk)bk+1ωk+1

)2
dx

≥ ‖fk+1‖2 − 2(ϕk+1γ2 + kf̄ϕk)bk+1ωk+1

∫
Xk+1

fk+1dλ

≥ ‖fk+1‖2 − 2(ϕk+1γ2 + kf̄ϕk)bk+1ωk+1λ(X)k+1‖fk+1‖.
First part of the lemma follows, since ‖fk+1‖ ≥ m and |fk+1| ≤ f̄ . Moreover, the second part is straightforward
from Lemma 7.2, since

E‖gk+1 − Egk+1‖2 =
∫

Xk+1
var
(
gk+1(x)

)
dx

=
1
n

∫
Xk+1

var

(
Y

∫
Δk+1

W⊗k+1
bk+1

(x− y)X̃⊗k+1(dy)

)
dx

≤ 1
n

∫
Xk+1

E

(
Y

∫
Δk+1

W⊗k+1
bk+1

(x− y)X̃⊗k+1(dy)

)2

dx. �

Lemma 7.5. We have, for all k < δ:

P(δ̂ = k) ≤ C

(
V 2
n

nb
d(k+1)
k+1

+
e−uVn/2

nb
2d(k+1)
k+1

)
·

Proof. Since ‖fk+1‖ �= 0,

P(δ̂ = k) ≤ P(‖ĝk+1‖ ≤ ρk+1)
≤ P(‖ĝk+1 − gk+1‖ + ‖gk+1 − Egk+1‖ ≥ ‖Egk+1‖ − ρk+1)

≤ P

(
‖ĝk+1 − gk+1‖ ≥ ‖Egk+1‖ − ρk+1

2

)

+ P

(
‖gk+1 − Egk+1‖ ≥ ‖Egk+1‖ − ρk+1

2

)
· (7.6)

According to Lemma 7.1 and using the lower bound obtained in Lemma 7.4, we find that the first term on the
right-hand side of (7.6), denoted by p1, is upper bounded by

P

(
CkSk+1

|θ̂ − θ|
b
d(k+1)/2
k+1

≥ 1
2

(
m− Ek+1

√
bk+1 − ρk+1

))
.
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Since by assumption bk+1, ρk+1 tend to 0 as n tends to +∞, for all k < δ:

p1 ≤ P

(
Sk+1|θ̂ − θ| ≥ b

d(k+1)/2
k+1 I

)
,

for some I > 0 that does not depend on n and k < δ. Thus, by the Markov Inequality,

p1 ≤ P

(
(1 + s1,k+1)|θ̂ − θ| ≥ b

d(k+1)/2
k+1 I

)
+ P (|Sk+1 − s1,k+1| ≥ 1)

≤ (1 + s1,k+1)2

I2

E|θ̂ − θ|2
b
d(k+1)
k+1

+ E(Sk+1 − s1,k+1)2

≤ C

nb
d(k+1)
k+1

+
C

n
, (7.7)

by assumption (2.5) on the model, and since s2,2(k+1) ≤ C. In a similar fashion, regarding the latter term on
the right-hand side of (7.6), further denoted by p2, we obtain with Lemma 7.4:

p2 ≤ 4
I2

E‖gk+1 − Egk+1‖2 ≤ C

(
V 2
n

nb
d(k+1)
k+1

+
e−uVn/2

nb
2d(k+1)
k+1

)
·

We conclude the proof combining (7.6), (7.7) and above, since Vn ≥ 1. �

7.2. Proof of Theorem 4.1

First observe that for all k ≥ 1, δ̂ is independent from r̂k, so that

E
(
r̂δ̂(X) − r(X)

)2 ≤ E
(
r̂δ(X) − r(X)

)2 +
∑
k<δ

E
(
r̂k(X) − r(X)

)2
P(δ̂ = k)

+
∑
k>δ

E
(
r̂k(X) − r(X)

)2
P(δ̂ = k). (7.8)

By Lemma 5.3, it is clear that for k < δ,

E
(
r̂k(X) − r(X)

)2 ≤ C.

Moreover, following the arguments of the proof of Theorem 3.1 (see Sect. 5.2), we can prove that for all k ≥ δ
(recall that C > 0 does not depend on k nor n):

E
(
r̂k(X) − r(X)

)2 ≤ Ck
(
T 2
n

n

)2/(2+dk)

·

Thus, by Theorem 3.1, (7.8) and above,

E
(
r̂δ̂(X) − r(X)

)2 ≤ C

(
T 2
n

n

)2/(2+dδ)

+ C
∑
k<δ

P(δ̂ = k)

+
∑
k>δ

CkP(δ̂ = k). (7.9)
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Let ρk and bk be defined in Theorem 4.1, and let Vn = 2(lnn)ξ/u, where ξ > 1. Then by Lemma 7.5, we get
for k < δ:

P(δ̂ = k) ≤ C
(lnn)2ξ

n1−β/2 ·
Provided ε > dδ, ξ ≤ (2 + ε)/(2 + dδ) and β ≤ 2dδ/(2 + dδ), we have

∑
k<δ

P(δ̂ = k) ≤ C

(
T 2
n

n

)2/(2+dδ)

. (7.10)

Note that when β < 1, the previous condition on β holds if dδ ≥ 2. Our task now is to bound P(δ̂ = k) when
k > δ. First, we observe that for all i, j ≥ 0:

si,j ≤
(
EY 2i

)1/2[(
E
(
X(X)2j

))1/2

+ ϕjλ(X)j
]

≤ (EY 2i
)1/2 [eϕλ(X)

√
(2j)! + ϕjλ(X)j

]
according to the Cauchy−Schwarz Inequality. Consequently, by Lemma 7.3, if k > δ:

P(δ̂ = k) ≤ Ck

((2k)!)2nα+β/2
+
Ck
√

(4k)!
n((2k)!)2

+
Ck
√

(16k)!
((2k)!)16

max
(

1
n4α+3

,
(k!)4V 8

n

n4α+2β
+

e−2uVn

n4α

)
·

Noticing that by the Stirling Formula,

∑
k≥1

Ck

(√
(4k)!

((2k)!)2
+

(k!)4
√

(16k)!
((2k)!)16

)
<∞,

we deduce, whenever 2α+ β > 1/(2 + dδ):

∑
k>δ

P(δ̂ = k) ≤ C

(
T 2
n

n

)2/(2+dδ)

·

Theorem is now a straightforward consequence of (7.9), (7.10) and above. �
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