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VALIDATION OF POSITIVE EXPECTATION DEPENDENCE
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Abstract. In this paper, we develop tests for positive expectation dependence. The proposed tests
are based on weighted Kolmogorov−Smirnov type statistics. These originate from the function valued
monotonic dependence function, describing local changes of the strength of the dependence. The result-
ing procedure is supported by a simple and insightful graphical device. This paper presents asymptotic
and simulation results for such tests. We show that an inference relying on p-values and wild bootstrap
allows to overcome inherent difficulties of this testing problem. Our simulations show that the new
tests perform well in finite samples. A Danish fire insurance data set is examined to demonstrate the
practical application of the proposed inference methods.
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1. Introduction

There is quickly growing evidence that the dependence structure of random vectors cannot be neglected
in reliable data analysis. In particular, this problem is crucial in insurance and finance. For example, Dhaene
and Goovaerts [16] presented several sources of dependencies between various risks and searched for the type
of dependency between individuals that gives rise to the largest stop-loss premiums. They also summarized
the work of Kaas [25], who demonstrated that such dependencies may have disastrous effects on stop-loss
premiums. Albers [1] showed that substantial deviations in the fair price of stop-loss premiums may occur even
when there are small departures from independence. Denuit and Scaillet [15] emphasized the following: “In
the management of large portfolios, the main risk is the joint occurrence of a number of default events or the
simultaneous downside evolution of prices. A better knowledge of the dependence between financial assets or
claims is crucial to assess the risk of loss clustering.” Extensive work by practitioners has also revealed that
some well known global measures of the strength of dependence, for example the correlation coefficient, are not
capable of explaining the complex character of many relations, while some other existing or new notions may
be much more useful in current practice and specific applications. For some illustration, discussion and new
ideas, see Embrechts et al. [18], Denuit and Scaillet [15], Baur [4], Berentsen and Tjøstheim [6], Li et al. [35],
Ledwina [33] and the references therein.
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In recent years, the role of the notion of positive expectation dependence has become increasingly important in
various research areas. This notion was introduced formally by Yanagimoto [46] and investigated thoroughly by
Kowalczyk and Pleszczyńska [29], who studied a function valued measure of the strength of dependence. Later,
this approach was rediscovered in econometrics by Wright [45]. Interest in this concept has grown markedly in
the few last years, due to its fruitful applications in finance. Below, we provide the definition of this concept,
recall some alternative names for it which have appeared in the literature, and briefly mention a few applications.

Let (X, Y ) be a bivariate random variable with finite expectations and continuous marginal distribution
functions. Positive expectation dependence of Y on X occurs when

E(Y |X ≤ x) ≤ EY for all x ∈ R, (1.1)

or equivalently E(Y |X > x) ≥ EY for all x ∈ R. The interpretation of this notion is clear. The information
that X is greater than some value x increases the expected value of Y . This notion is weaker than the well
known concept of positive quadrant dependence (PQD in short). Positive expectation dependence and positive
quadrant dependence are two formalizations of so-called monotonic dependence. Roughly speaking, Y is mono-
tone dependent on X if large values of Y tend to be associated with large values of X (positive dependence) or
with small values of X (negative dependence).

Some earlier notation and alternative names for (1.1) are: P(1, E) (Yanagimoto [46]; see also Yanagimoto
and Shibuya [47] for the corresponding definition of RE), EQD+ (Kowalczyk and Pleszczyńska [29]), positive
expectation dependence (Wright [45]), PQDE and positive quadrant dependence in expectation (Balakrishnan
and Lai [2]), as well as first-degree positive expectation dependence (Hong et al. [24]). We shall follow the
terminology introduced by Wright and the notation EQD+ proposed by Kowalczyk and Pleszczyńska.

Ćwik et al. [10] applied this notion to the chronological ordering of Poisson streams. Wright [45] showed its
usefulness in solving a classical problem of portfolio theory. Hong et al. [24] used the concept of expectation
dependence to provide necessary and sufficient conditions for Mossin’s Theorem to hold when initial wealth is
random. Egozuce et al. [17] demonstrated that, under EQD+, Grüss-type inequalities for covariances can be
considerably sharpened and concluded that the notion of expectation dependence is ideally suited for analyzing
the covariance between Y and certain non-decreasing functions of X . They also mentioned that, in a number of
situations, analyzing the allocation of capital involves such quantities. Guo et al. [22] extended the concept of
expectation dependence and applied it to their generalization of the Rothschild−Stiglitz type of increasing risk
in the framework of background risk. Denuit and Mesfioui [14] provided some further insight into this problem.
Moreover, recent work by Denuit et al. [13] and Guo and Li [21] gave an excellent discussion of a wide range of
further applications of (1.1). Guo and Li [21] concluded that expectation dependence is a key concept in many
economic and financial studies.

The above discussion shows that there is strong motivation to provide tools to test for the existence of
positive expectation dependence. The first test for the existence of the relation (1.1) was recently proposed
by Zhu et al. [49]. Their approach is to estimate both sides of (1.1) and to reject the hypothesis of positive
expectation dependence when the supremum (over the values of x) of the estimates of the differences of the
form E(Y |X ≤ x) − EY is too large. This approach was recently advanced by Guo and Li [21], who provided
confidence bounds for the curve ED(x) = EY − E(Y |X ≤ x).

We propose an alternative test of (1.1). Our starting point is the simple observation that one can re-
parametrize (1.1) by introducing xp = F−1(p), where p ∈ (0, 1), F denotes the marginal distribution function
of X and F−1 denotes its inverse. Using this notation, (1.1) is equivalent to

E(Y |X ≤ xp) ≤ EY for all p ∈ (0, 1). (1.2)

In other words, in contrast to using a fixed threshold based on (1.1), we shall consider a threshold based on quan-
tile hits. Quantile hits have a well established position in the statistical literature, especially in economics and in
social sciences, and sometimes are simply indispensable to making meaningful inference. For some discussion of
this issue, see Handcock and Morris [23], as well as Linton and Whang [36]. Moreover, this re-parametrization
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allows us to make additional interpretations regarding the form of expectation dependence. To be specific,
observe that, after elementary integration in (1.2), we can present an equivalent formulation of (1.1) as follows:

GLC(p) ≤ p for all p ∈ (0, 1), where GLC(p) =
1

EY

∫ p

0

E(Y |X = xs)ds,

provided that EY �= 0. The function GLC(p) is called the generalized Lorenz curve for the regression function
E(Y |X). Typically, the definition of GLC(p) is restricted to non-negative random variables X and Y . For
Y = X , GLC(p) is the standard Lorenz curve, denoted here by LC(p), while in the general case it can be
interpreted (at least in some important cases) as the Lorenz curve in the presence of a covariate. For more
details on generalized Lorenz curves, see Muliere and Petrone [37]. Zenga [48] introduced a new curve describing
economic inequality, denoted here by ZC(p), given by ZC(p) = 1 − E(Y |Y ≤ yp)/E(Y |Y > yp), p ∈ (0, 1), for
a non-negative Y with continuous distribution function and finite expectation. For more details, see Nair and
Sreelakshmi [38]. Analogously to GLC(p), we introduce GZC(p) = 1 − E(Y |X ≤ xp)/E(Y |X > xp) and note
that, for non-negative Y , (1.1) holds if and only if GZC(p) ≥ 0 for all p ∈ (0, 1). Note also that in Rao and
Zhao [39] the function m(s) = E(Y |X = xs) is called the quantile regression function of Y on X , while the
integral f(p) =

∫ p

0
m(s)ds is called the cumulative quantile regression function. In contrast, the integral f(p) is

called the correlation function of Y on X in Kowalczyk and Szczesny [30], where further discussion and references
can also be found. The function f(p) was also studied, interpreted in terms of the absolute concentration curve
and its role in economics extensively discussed in Schechtman et al. [42].

It is intuitively clear that, when making inference regarding (1.1) or (1.2), it is useful not only to look at the
absolute differences between the two sides of these inequalities, but also to take into account their relative mag-
nitudes. For this purpose, we consider a standardized difference based on (1.2). This standardization is closely
related to the monotonic dependence function introduced and investigated in Kowalczyk and Pleszczyńska [29]
and later papers. This dependence function possesses several appealing properties and allows us, in particular,
to measure and visualize the strength of the relationship (1.2). The form of this standardization depends on
whether or not (1.2) holds. If (1.2) is satisfied, then the monotonic dependence function μY,X(p), p ∈ (0, 1),
takes the form

μY,X(p) = μ+
Y,X(p) =

E(Y |X > xp) − EY

E(Y |Y > yp) − EY
=

EY − E(Y |X ≤ xp)
EY − E(Y |Y ≤ yp)

=
p − GLC(p)
p − LC(p)

, (1.3)

with yp = G−1(p), where G−1 is the inverse of G, the distribution function of Y . In contrast, when (1.2) is
violated for some p ∈ (0, 1), then GLC(p) > p and the function μY,X takes the form

μY,X(p) = μ−
Y,X(p) = −μ+

−Y,X(p) =
E(Y |X > xp) − EY

EY − E(Y |Y ≤ y1−p)
=

p − GLC(p)
(1 − p) − LC(1 − p)

· (1.4)

Analogous expressions involving ZC(p) and GZC(p) can be obtained in a similar manner. A concise formula
for μY,X(p) is given in Section 2.1.

Note that an equivalent form of (1.2) is given by E(Y |X > xp) ≥ EY for all p ∈ (0, 1), since the denominator
in (1.4) is positive for all p ∈ (0, 1). Therefore, it is natural to reject positive expectation dependence when the
infimum (over the values of p) of the estimates of μ−

Y,X(p) is sufficiently small. Observe also that the functions
in both the numerator and the denominator of (1.3) and (1.4) tend to 0 as p tends to either 0 or 1. Therefore,
the weight used in (1.4) blows up the value of the numerator of (1.4) when p is close to 0 or 1. In our simulation
study, we also consider lighter weight. For the details, see Section 4. Note that if one would like to verify the
negative expectation dependence of Y on X , then the supremum (over the values of p) of the estimate of μ+

Y,X(p)
would be a good candidate for the appropriate test statistic.

From the form of (1.4), it is clear that when estimating μ−
Y,X(p) and the dependence function, in general,

we are faced by the analysis of processes that naturally appear in studies of generalized and classical Lorenz
curves. Hence, we shall rely on the approach and asymptotic results of Davydov and Egorov [11]. For alternative
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approaches, see Goldi [19], Rao and Zhao ([39, 40]), Tse [43] and the references therein. The limiting processes
of the natural estimators of the numerator and the denominator in (1.4) are Gaussian and their parameters
depend on the underlying distribution of (X, Y ). Hence, when constructing the appropriate rejection region,
we have to overcome two basic difficulties: the fact that the parameters of the limiting distributions of the
underlying processes are unknown and the need to control the inequality constraints under the null hypothesis.
To solve both problems, we shall follow the ideas developed by Barrett and Donald [3] in the context of testing
for stochastic dominance. In particular, we shall apply a rejection rule relying on p-values and combine it with
a resampling procedure based on multiplier central limit theory in C[0, 1] space. The resampling plan belongs
to a class of wild bootstrap procedures. The details are given in Section 3 and Appendix A.

The remainder of this paper is structured as follows. In Section 2.1 we recall the definition of the monotonic
dependence function and briefly summarize its properties. When one is investigating the relation (1.2) for some
given model, the monotonic dependence function enables seeing whether (1.2) holds, for which values of p (1.2)
is possibly violated, and what is the local (at a given value of p) strength of the monotonic dependence. In
Section 2.2 we present a natural estimator of this function, introduced and studied in Kowalczyk [26]. This
estimator inherits all the basic properties of the monotonic dependence function. It reflects the magnitude of
and local changes in the strength of the expectation dependence. Therefore, this estimator can be used as a
diagnostic tool to observe, understand, and infer possible reasons for any departure from the null hypothesis. Its
shape can also be useful when selecting an appropriate model for the data at hand, or at least to invalidate several
inappropriate candidates for models. In short, the estimated monotonic dependence function plays a similar role
in verifying EQD+ to the one played by a Q−Q plot in classical goodness-of-fit tests. Obviously, it would also
be desirable if such analysis could be accompanied by the construction of confidence bounds for the unknown
monotonic dependence function. This, however, requires further work on the corresponding asymptotic theory
and is beyond the scope of the present study. The paper by Csörgő et al. [9], concerning confidence intervals for
the classical Lorenz curve, illustrates the inherent complexity of the underlying problem well. Section 3 presents
a description of our basic test procedure and collates results on its asymptotic behavior. The corresponding
proofs are given in Appendix A. In Section 4 we present the empirical behavior of the test based on our
basic construction, defined in Section 3, along with analogous results for a variant of this test. Moreover, these
two solutions are compared with the test introduced in Zhu et al. [49]. In this Section we display the results
mainly graphically, while the full set of numerical results is presented in Appendix C. Our simulation study was
extensive and concerned twelve different models of various monotonic dependence functions. In approximately
half of the cases considered, the solution of Zhu et al. [49] is slightly better than ours. However, the remaining
cases clearly illustrate the positive effect of the weighting applied in our construction. The average powers of
our tests are several percent greater than that of the test presented by Zhu et al. [49]. On the basis of our
simulation experiments, we have also proposed a third test, whose average power dominates the power of the
tests considered so far. Analytical formulas for the monotonic dependence function for the models considered in
Section 4 are presented in Appendix B. In Section 5 we illustrate our approach by applying it to a well known
data set. Section 6 provides some concluding remarks.

2. Monotonic dependence function

2.1. Definition and properties

Throughout this paper we assume that (X, Y ) belongs to the set B of random vectors which have joint
distribution function H(x, y), finite expectations and continuous marginal distribution functions F (x) and G(y),
respectively.

Set
lY,X(p) = E

{
Y

[
p − I(X ≤ xp)

]}
and observe that (1.2) holds if and only if lY,X(p) ≥ 0 for all p ∈ (0, 1).
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For any (X, Y ) ∈ B, define the function μY,X : (0, 1) → [−1, 1], called the monotonic dependence function
of Y on X , as follows

μY,X(p) = μ+
Y,X(p) if lY,X(p) ≥ 0

and
μY,X(p) = μ−

Y,X(p) if lY,X(p) < 0,

where μ+
Y,X(p) and μ−

Y,X(p) are given by (1.3) and (1.4), respectively.
Before we list some of the properties of μY,X(p), let us introduce some conventions. Namely, we shall say that

the function h : R → R is F -increasing (decreasing), if for all s, t ∈ R the relation F (s) < F (t) implies that
h(s) < h(t) (h(s) > h(t)). Moreover, for any two random variables U and V , we write U

.= V , if Pr(U = V ) = 1.
Finally, by U =d V we mean that U and V have the same distributions.

Lemma 2.1. If (X, Y ) ∈ B and p ∈ (0, 1), then

1. μY,X(p) is continuous.
2. For any real a and b, a �= 0, it holds that μaY +b,f(X)(p) = (sgna)μY,X(p) if f is F -increasing and

μaY +b,f(X)(p) = (−sgna)μY,X(1 − p) if f is F -decreasing.
3. −1 ≤ μY,X(p) ≤ 1.
4. μY,X(p) = 1 ⇔ Pr(X < xp, Y > yp) = Pr(X > xp, Y < yp) = 0. Moreover, μY,X(p) ≡ 1 ⇔ there exists an

F -increasing f such that Y
.= f(X) ⇔ H(x, y) = min{F (x), G(y)}.

5. μY,X(p) = −1 ⇔ Pr(X < x1−p, Y < yp) = Pr(X > x1−p, Y > yp) = 0. Moreover, μY,X(p) ≡ −1 ⇔ there
exists an F -decreasing f such that Y

.= f(X) ⇔ H(x, y) = max{0, F (x) + G(y) − 1}.
6. μY,X(p) ≡ 0 ⇔ E(Y |X) .= EY .
7. Suppose that there exists an increasing function h : R → R and ρ, 0 �= ρ ∈ [−1, 1], for which h(X) and

(sgn ρ)Y have the same distribution. Then μY,X(p) ≡ ρ if and only if E(Y |X) .= ρh(X) + (1 − |ρ|)EY .
Moreover, if the correlation coefficient of X and Y exists and is equal to ρ �= 0, then μY,X(p) ≡ ρ if and only
if E(Y |X) .= ρh(X) + (1 − |ρ|)EY and h is linear.

8. Suppose that (X, Y ) and (X ′, Y ′) have identical pairs of marginal distributions F and G. The equality μY,X ≡
μY ′,X′ holds if and only if E(Y |X) and E(Y ′|X ′) have the same distribution. This shows that the form of
μY,X depends only on the distribution of E(Y |X).

9. Consider (X, Y ) ∈ B such that F (x) = G(x) for all x and F possesses a strictly positive density. Then
• if r(x) = E(Y |X = x) is continuous, nonlinear, non-decreasing and convex (concave), then μX,Y (p) is

positive and increasing (decreasing). If r(x) = E(Y |X = x) is continuous, nonlinear, non-increasing and
convex (concave), then μX,Y (p) is negative and increasing (decreasing).

• r(x) is linearly increasing ⇔ μY,X(p) is constant and positive. Moreover, r(x) is linearly decreasing
⇔ μY,X(p) is constant and negative.

• r(x) is constant ⇔ μY,X(p) ≡ 0.

Properties 1−6 and 8 were stated and proved in Kowalczyk and Pleszczyńska [29], while property 7 comes
from Kowalczyk [26]. These properties are also valid without the assumption on the continuity of the marginal
distributions F and G. This was shown in Kowalczyk [26]. Property 9 is a special case of Theorem 1 and
Corollary 1 in Kowalczyk [27], which was designed to studying a non-trivial interpretation of the information on
the joint distribution H contained in the shape of the monotonic dependence function μY,X . Some preliminary
results on the shape of the monotonic dependence function can be found in Ćwik et al. [10].

Remark 2.2. Suppose that (X, Y ) and (X ′, Y ′) are from B and have identical pairs of marginal distributions.
Then μY,X(p) ≥ μY ′,X′(p) for all p ∈ (0, 1) ⇔ E(Y |X ≤ xp) ≤ E(Y ′|X ′ ≤ xp) for all p ∈ (0, 1). In words, if
small values of Y are more strongly associated with small values of X than small values of Y ′ are associated
with small values of X ′, then the dependence function of (X, Y ) takes a larger value than that of (X ′, Y ′).
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From property 3, this tendency is strongest when μY,X(p) ≡ 1 and weakest when μY,X(p) ≡ −1, i.e. when
there exist monotonic functions that relate Y to X . We can also say that the tendency is undetermined if
E(Y |X ≤ xp) = EY for each p or, equivalently, if μY,X(p) ≡ 0. In the case of EQD+ distributions, the
weakest form of dependence corresponds to μY,X(p) ≡ 0, i.e. the function describing the regression of Y on X
is constant; cf. point 6 of Lemma 2.1. From (1.3), we can rephrase this as follows: larger values of μY,X mean a
greater similarity between the generalized Lorenz curve for r(X) = E(Y |X) and the Lorenz curve for Y . Similar
conclusions hold in the case of negative expectation dependence.

From the above, μY,X(p) ≡ μY ′,X′(p) ⇔ E(Y |X) =d E(Y ′|X ′) ⇔ the GLCs of (X, Y ) and (X ′, Y ′) coincide.

2.2. Empirical monotonic dependence function

As mentioned earlier, our test statistic is based on an estimator of μY,X . Therefore, we start with a natural
estimator μ̂Y,X of the function μY,X , which was proposed and investigated in Kowalczyk [26]. That paper
extended the definition of μY,X to all random vectors (X, Y ) which have finite expectations and marginal
distributions that are not concentrated on one point. This extension preserves the properties 1–8 of μY,X that
were listed in Section 2.1. The estimator μ̂Y,X is simply the monotonic dependence function calculated for the
empirical distribution of the sample.

To introduce this estimator, we need some notation. Consider (X, Y ) ∈ B and independent, identi-
cally distributed random vectors (X1, Y1), . . . , (Xn, Yn) with the same distribution as (X, Y ). Let X(i) and
Y(i), i = 1, . . . , n, be the i-th order statistics in the sequences X1, . . . , Xn and Y1, . . . , Yn, respectively. The
p-th sample quantiles x̂p and ŷp are defined to be x̂p = X(�np�+1) and ŷp = Y(�np�+1), accordingly, where 	•

denotes the integer part of the real number •. From the above, the estimator μ̂Y,X of μY,X is of the form

μ̂Y,X(p) = μ̂+
Y,X(p) if LY,X(p) ≥ 0

and
μ̂Y,X(p) = μ̂−

Y,X(p) if LY,X(p) < 0,

while

μ̂+
Y,X(p) =

LY,X(p)
M+

Y (p)
, μ̂−

Y,X(p) =
LY,X(p)
M−

Y (p)
,

LY,X(p) =
1
n

n∑
i=1

Yi

[
p − I(Xi < x̂p) − (np − 	np
)I(Xi = x̂p)

]
,

M+
Y (p) =

1
n

n∑
i=1

Yi

[
p − I(Yi < ŷp)

]
−

(
p − 1

n
	np


)
ŷp,

M−
Y (p) =

1
n

n∑
i=1

Yi

[
I(Yi > ŷ1−p) − p

]
+

(
p − 1 +

1
n
	n(1 − p) + 1


)
ŷ1−p

where I(A) denotes the indicator function of the set A. Observe that, given any sample, the functions
LY,X(p), M+

Y (p) and M−
Y (p) are continuous on (0,1). Moreover, M−

Y (p) = M+
−Y (p). Also, M+

Y (p) and M−
Y (p)

are positive on (0,1). For (X, Y ) ∈ B, the estimator μ̂Y,X is consistent; cf. Kowalczyk [26].

3. Construction of the test and its properties

Since our testing problem can also be rephrased as

H0 : μY,X(p) ≥ 0 for all p ∈ (0, 1),
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against
H1 : μY,X(p) < 0 for some p ∈ (0, 1),

the following is a natural decision rule: reject H0 if inf0<p<1 μ̂Y,X(p) is sufficiently small or, equivalently, when
sup0<p<1{−μ̂Y,X(p)} is sufficiently large. However, from Proposition 3.2, the standardized estimators μ̂+

Y,X(p)
and μ̂−

Y,X(p) are asymptotically centered Gaussian processes. Therefore, for large samples, when testing at a
significance level from (0,1/2), the part μ̂+

Y,X(p) of μ̂Y,X(p) leads to rejection of the null hypothesis negligibly
often. Hence, a simpler procedure, which rejects H0 for sufficiently large values of sup0<p<1{−μ̂−

Y,X(p)}, is
equally good when standard significance levels are used.

In what follows, we restrict attention to values of p in [ε, 1 − ε], where ε ∈ (0, 1/2). Remembering that the
denominator of μ−

Y,X(p) and, in consequence its estimator as well, tend to 0 for p close to 0 or 1, introducing
such a sub-interval results in our solution being more stable for finite samples. We discuss this question further
in Section 4. In consequence, given ε ∈ (0, 1/2), we set

S−(ε) = sup
ε≤p≤1−ε

√
n
{
−μ̂−

Y,X(p)
}

= sup
ε≤p≤1−ε

{
−√

nLY,X(p)
M−

Y (p)

}

and reject H0 for large positive values of S−(ε). To implement this rule in practice, we shall rely on some
asymptotic results and Monte Carlo methods, which mimic the asymptotic results for finite samples. We present
these issues in the two next subsections. Here, we conclude with a useful observation on an alternative form of
S−(ε).

Remark 3.1. Note that, given realizations of (X1, X2), . . . , (Xn, Yn), both the numerator and the denominator
of μ̂Y,X(p) are continuous functions of p, p ∈ (0, 1), that are linear on the intervals ([k−1]/n, k/n), k = 1, . . . , n.
Therefore, their ratio is piecewise monotonic on these intervals. In particular, this implies that

sup
ε≤p≤1−ε

{
−μ̂−

Y,X(p)
}

= max
k(ε)≤j≤n−k(ε)

{
−LY,X(j/n)
M−

Y (j/n)

}
,

where k(ε) = 	nε
. A similar expression is valid for supε≤p≤1−ε μ̂+
Y,X(p).

3.1. Auxiliary asymptotic results

We introduce the two continuous functions on (0, 1)

m+
Y (p) = E

{
Y

[
p − I(Y ≤ yp)

]}
, m−

Y (p) = E
{
Y

[
(1 − p − I(Y ≤ y1−p)

]}
,

and the processes

Zn(p) =
√

n
{

LY,X(p) − lY,X(p)
}
, V +

n (p) =
Zn(p)
M+

Y (p)
, V −

n (p) =
Zn(p)
M−

Y (p)
, p ∈ (0, 1),

which take values in the space C[0, 1] of continuous functions on [0, 1]. By ⇒ we denote weak convergence in
the space of functions on [0, 1] under consideration. The uniform distance is applied in all function spaces under
consideration and Pr→ stands for convergence in probability. Although some of the results presented below could
be stated for C[0, 1], in view of the form of our test statistic, we restrict our attention throughout to [ε, 1 − ε].
This means that fewer assumptions are required and a more concise presentation is possible.

Proposition 3.2. Let ε be a constant in (0, 1/2). Suppose EY 2 < ∞ and the quantiles of Y are uniquely
determined. Then

Zn ⇒ Z, M+
Y

Pr→ m+
Y , M−

Y
Pr→ m−

Y , V +
n ⇒ V +, and V −

n ⇒ V −, in C[ε, 1 − ε], (3.1)

where Z, V + and V − are centered Gaussian processes concentrated on C[ε, 1 − ε].
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A justification of (3.1), the structure of the limiting processes and their parameters are briefly discussed
in Appendix A. Basically, these results follow from Theorem 1 in Davydov and Egorov [11]. The covariance
function of V − is not simple and depends on the underlying distribution function H in a rather involved way.
However, Proposition 3.2 allows us to formulate an asymptotic result for a prototype version of our final test.
This is the subject of Proposition 3.3, below.

To formulate our first result on S−(ε), define V̄ −(ε) such that V̄ −(ε) = supε≤p≤1−ε{−V −(p)}.

Proposition 3.3. Given ε ∈ (0, 1/2) and the assumptions of Proposition 3.2, for any c ∈ (0,∞) it holds that

(i) if H0 is true,
lim sup

n→∞
Pr(S−(ε) > c) ≤ Pr(V̄ −(ε) > c) (3.2)

with equality when lY,X(p) ≡ 0 on [ε, 1 − ε];
(ii) if H0 is false,

lim
n→∞

Pr(S−(ε) > c) = 1,

provided that there exists a p0 ∈ [ε, 1 − ε] such that lY,X(p0) < 0.

Note that the distribution of the random variable V̄ −(ε) dominates the limiting law of S−(ε) and the bound
given by (3.2) is exact for those elements of H0 for which μY,X(p) ≡ 0 on [ε, 1− ε]. Set αH(c) = Pr(V̄ −(ε) > c).
The above proposition implies that in the case when, given α ∈ (0, 1/2), one can find a c such that αH(c) = α,
the test rejecting H0 when S(ε) > c has the significance level α for the one-sided composite null hypothesis H0.
However, the bounding random variable is not observable. In the next step, we describe a resampling method
which allows us to approximate the distribution of V̄ −(ε).

3.2. Multiplier method, working test procedure and main asymptotic result

Let U = (U1, . . . , Un) denote a sample of independent N (0, 1) random variables that are independent of the
sample (X1, Y1), . . . , (Xn, Yn). Define

LU
Y,X(p) =

1
n

n∑
i=1

Ui

{
(Yi − Ȳ )

[
p − I(Xi < x̂p) − (np − 	np
)I(Xi = x̂p)

]
− LY,X(p)

}
,

where Ȳ =
∑n

i=1 Yi/n. Denote by μ̂U−
Y,X(p) the randomized estimator of μ−

Y,X(p) defined as

μ̂U−
Y,X(p) =

LU
Y,X(p)

M−
Y (p)

and set
SU−(ε) = sup

ε≤p≤1−ε

{
−
√

nμ̂U−
Y,X(p)

}
(3.3)

for the randomized version of S−(ε).
Given the sample (X1, Y1), . . . , (Xn, Yn), consider the corresponding value of S−(ε) and the probability

p̂(n, ε) = PrU

(
sup

ε≤p≤1−ε

{
−
√

nμ̂U−
Y,X(p)

}
> S−(ε)

)
= PrU

(
SU−(ε) > S−(ε)

)
. (3.4)

The probability defined by (3.4) depends on the normal random variables U1, . . . , Un and is conditional on the
realizations of (X, Y )’s. To emphasize this, this probability is denoted by PrU . The following is an operational
variant of the test with the critical region {S−(ε) > c}:

reject H0 if p̂(n, ε) < α. (3.5)
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Theorem 3.4. Suppose that the assumptions of Proposition 3.3 are satisfied and α ∈ (0, 1/2). Then

(i) if H0 is true,
lim sup

n→∞
Pr

(
p̂(n, ε) < α

)
≤ α (3.6)

with equality when lY,X(p) ≡ 0 on [ε, 1 − ε];

(ii) if H0 is false,
lim

n→∞
Pr

(
p̂(n, ε) < α

)
= 1, (3.7)

provided that there exists a p0 ∈ [ε, 1 − ε] such that lY,X(p0) < 0.

Remark 3.5. In order to implement (3.5), one has to calculate the supremum in (3.4) and to approximate the
quantity p̂(n, ε), which is not directly observable. The first question is resolved by a similar argument to the
one made in Remark 3.1. This shows that the supremum can be calculated easily and explicitly. The second
question is solved by standard simulation techniques. More specifically, let U (1), . . . , U (r) denote independent
copies of U = (U1, . . . , Un). Then the probability p̂(n, ε) is approximated using

p̂(n, ε) � 1
r

r∑
i=1

I
(
SU(i)− > S−(ε)

)
.

4. Simulation study

4.1. Description of the experiments, some motivations and discussion

In the Monte Carlo experiments, we investigated the finite sample properties of S−(ε) =
supε≤p≤1−ε{−

√
nLY,X(p)/M−

Y (p)} and its re-weighted variant given by

R−(ε) = sup
ε≤p≤1−ε

⎧⎨
⎩−√

nLY,X(p)√
M−

Y (p)

⎫⎬
⎭ .

The statistic R−(ε) puts a lighter weight on extreme values of Y than S−(ε) does. This modification does
not imply the need for major modifications in the analysis of the asymptotics. Therefore, we do not present
obvious analogies of our basic asymptotic results concerning S−(ε). Some more general weight functions could
be considered as well. However, in this paper we only present an analysis of the natural weighting function M−

Y

and its simple variant.
We also compare S−(ε) and R−(ε) to the unweighted test statistic of Zhu et al. [49], who reject H0 for large

values of

T = sup
x∈R

{
− 1√

n

n∑
i=1

(Yi − Ȳ )

[
I(Xi > x) − 1

n

n∑
i=1

I(Xi > x)

]}
.

Note that the process defined by T has jumps at successive order statistics X(1), . . . , X(n). The process LY,X(p),
considered here, has continuous paths, but also attains local maxima at the order statistics. Moreover, LY,X(p)
is invariant to a shift of the Yi’s. Therefore, in principle, we can interpret our test statistics as weighted variants
of T .

The procedure based on estimating p-values using the multiplier method was applied for each of these three
statistics.

We designed the simulation scheme according to Zhu et al. [49]. Namely, r = 2000 Monte Carlo replications are
used to approximate p-values, and each experiment is repeated 1000 times to compare the empirical significance
level and power of these three tests at a nominal significance level of α = 0.05.
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In our study, we consider the two linear regression models introduced in Zhu et al. [49] and ten additional
ones, which include quadratic regression, heavy tailed distributions, a bivariate exponential model, mixtures
of bivariate Gaussian distributions, and some transformations of bivariate Gaussian models. These models are
labeled M1−M12. Here, we only provide some brief information on their notation and construction. Appendix B
contains some further details and analytical formulas for the shape of the corresponding monotonic dependence
functions.

M1 : t-symm(ν, ρ); symmetric bivariate Student t distribution with ν degrees of freedom.
M2 : LR1(θ); linear regression of X on Y : X = θY + Z, where Y and Z are independent N (0, 1) variables

and θ ≤ 0; cf. Zhu et al. [49].
Mj : j = 3, 4, 5, and 8, TBN(j, ρ); transformed bivariate normal distribution. Following Kowalczyk

et al. [28], we consider (X, fj(Y )), where (X, Y ) has a bivariate normal distribution with parameter vector
(EX, EY, VarX, VarY, ρ), while f3(y) = sgn(y)[1 − exp{−|y|}], f4(y) = sgn(y)[exp{|y|} − 1], and f5(y) =
f8(y) = exp{y}. In the models M3, M4 and M5, the parameter vector was set to be (0, 0, 1, 1, ρ), while in the
model M8 it was (0, 0, 4, 4, ρ). Note that TBN(5, ρ) and TBN(8, ρ) are bivariate log-normal models, which only
differ according to the variances of the marginal distributions.

M6 : t-skew(ν, γ1, γ2); skew bivariate Student t distribution with ν degrees of freedom.
M7 : Exp(θ); bivariate exponential distribution with the distribution function

F (x, y) = 1 − e−x − e−y + e−x−y−θxy, for x, y > 0.
M9 : QR(θ); quadratic regression of Y on X : Y = θX2 + Z, where X and Z are independent, X ∼

U [−1, 1], Z ∼ U
[
− 1

2 , 1
2

]
, θ ∈

[
0, 3

4

]
. Here, U [a, b] denotes the uniform distribution on [a, b].

M10 : Mix(δ, ρ); mixture of three bivariate normal distributions PXi,Yi , i = 1, 2, 3. This mixture is given
by the formula (1 − 2η)PX1,Y1 + ηPX2+δ,Y2−δ + ηPX3−δ,Y3+δ, where η = 0.05 and (X1, Y1), (X2, Y2), (X3, Y3)
are independent bivariate normal random variables each with the parameter vector (0, 0, 1, 1, ρ); cf. Kowalczyk
et al. [28].

M11 : LR2(θ); linear regression of X on Y : X = θY + Z, Y and Z are independent, Y ∼ U [−1, 1], Z ∼
U [−1, 1], θ ∈ [−1, 0]; see Zhu et al. [49].

M12 : U(θ) uniform distribution on the set A = {(x, y) : x ∈ [−1, 1], y ∈ [0, (1 − x2)θ]}, θ ≥ 0.
It is worth noticing that model M2 is based on a bivariate normal distribution with parameter vector

(0, 0, 1, 1, ρ(θ)), where ρ(θ) = θ/
√

θ2 + 1. The transformations of the bivariate normal models defining M3

and M4 correspond to Y having longer and shorter tails, respectively, compared to the normal distribution. In
models M5 and M8, the right tails of the distribution of Y are made longer by the transformation. Model M12

supplements a series of illustrative cases describing the shape of μX,Y for uniform distributions on certain sets
as presented in Kowalczyk et al. [28].

In Figure 1 we present the monotonic dependence functions for each of the models, along with the empirical
significance levels and powers for a sample size n = 200. In the case of the test statistics S−(ε) and R−(ε), we
give results corresponding to ε = 0.100. In the case of the test statistic T , we proceed exactly as in Zhu et al. [49]
and omit the 0.5% most extreme observations. We have also considered larger sample sizes and other trimming
levels, i.e. different values of ε defining the test statistics S−(ε) and R−(ε). In Tables C.1−C.3 of Appendix C
we present the empirical significance levels and powers for the following sample sizes: n = 200, n = 400 and
n = 1000. In the cases n = 400 and n = 1000, the parameters of the alternatives M1 − M12 were chosen to
guarantee that the test based on T has practically the same empirical power as it has when n = 200 with
the parameter values given in Figure 1. The corresponding values of the parameters for larger sample sizes are
given in Tables C.2−C.3. For each sample size, we considered values of the test statistics R−(ε) and S−(ε)
corresponding to ε = 0.100, 0.075 and 0.050. The codes were written in C Sharp.

Below, we briefly comment on some of the shapes of the monotonic dependence functions in Figure 1 and
the relation between these shapes and the expected powers of the new tests. Further discussion on empirical
significance levels and powers is postponed to Sections 4.2 and 4.3, respectively.

As we are now considering alternatives to EQD+, it is useful to recall that EQD− denotes negative expecta-
tion dependence, which means that E(Y |X ≤ xp) ≥ EY for all p ∈ (0, 1). Any EQD− distribution corresponds
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Figure 1. Monotonic dependence functions for models M1 − M12 with the corresponding
parameters displayed under each figure. The empirical significance levels (middle row of the
tables) and empirical powers (last row) are given for ε = 0.100 and n = 200; α = 0.05.
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to the alternative hypothesis, H1. Obviously, H1 covers all distributions for which EQD+ is violated for at
least one point p ∈ (0, 1). In simple terms, we should remember that, under H1, increasing the local strength of
dependence at some point p means that μY,X is negative at this point and increasing in absolute value.

For the distribution defined by M1, the correlation coefficient is equal to ρ, while E(Y |X) .= ρX . Therefore,
from points 7 or 9 of Lemma 2.1, μY,X(p) ≡ ρ. The same properties apply to M2. Note that Kowalczyk
et al. [28] discuss μY,X in the general case of the symmetric bivariate Student distribution, including the Cauchy
distribution.

From property 9, we infer that models M3-M12 have non-linear regression functions. For illustration, consider
the last two models on the list. One can easily check that for M11 the conditional expectation E(Y |X = x)
is non-increasing and convex for x < x0.5, while it is non-increasing and concave for x > x0.5. For M12, the
conditional expectation E(Y |X = x) is increasing and concave for x < x0.5, while it is decreasing and concave
for x > x0.5. The signs and regions of monotonicity of μY,X can be determined from point 9 of Lemma 2.1 and
are reflected in the shape of the corresponding μY,X in Figure 1.

Model M3 illustrates how the local strength of EQD− according to the bivariate Gaussian model M2 changes
when equal portions of the probability mass of the distribution of Y are transferred to each tail. Obviously, the
strength of dependence should thus be larger for both small and large values of p and, indeed, we see such an
effect. Analogously, when the mass of Y is only reallocated towards the right tail, in comparison to M2, which
takes place in the case of models M5 and M8, the strength of EQD− dependence only increases for large values
of p. In contrast, the transformation corresponding to M4 shrinks the probability density of the distribution of
Y based on M2 towards the point 0 and, in effect, the measure of the strength of EQD− decreases for values
of p close to 0 or 1 and increases for values of p around 0.5.

In cases where the strength of EQD− is large near at least one of the ends of (0,1), one might expect that
the weighted variants of the Kolmogorov−Smirnov test for EQD+ should lead to more powerful tests than the
unweighted version of this statistic, T ; cf. the comment on the relation between T and LY,X(p) at the beginning
of this section. Indeed, such a situation occurs for models M7 − M12. In the cases of M3 and M5, the interval
where μY,X is large is very narrow and so closely located to one or both end points of (0,1) that it cannot be
detected well using either S−(0.100) or R−(0.100). Note also that heavier tails than Gaussian ones, asymmetric
distributions, and uncorrelated but dependent random variables are common in many current applications. For
more discussion, see Cont [8], Baur [4] and related papers. Therefore, the detection of alternatives of such types
is of vital interest.

We close this Section with some remarks on possible choices of a weight for sup-type statistics. In many
problems, a form of studentization is useful. For example, when testing for uniformity, this idea leads to the
simple weight function

√
p(1 − p), p ∈ (0, 1), i.e. an Anderson–Darling sup-type statistic. The impact of this

weight on the power of the resulting test is easily predictable, at least qualitatively. In our problem, the form
of the asymptotic variance of LY,X(p) is very complex (cf. the comment following Prop. 3.2) and there is
little chance that some plug-in estimator results in a sensitive and stable weighted test statistic. Besides, the
following question is even more important: what kind of deviations from the null hypothesis might be detected
more reliably after applying such a weight function. A big advantage of applying M−

Y (p), is the predictable
effect of the weight on behavior of the appropriate test, at least in some important cases that we have discussed
above. Obviously, these effects depend on the form of the monotonic dependence function.

As mentioned in Section 4.1, other weights can be considered as well, since in the proof of the validity
of the resampling method only the weak law of large numbers is applied to the denominator defining the
respective analogue of R−(ε). However, we do not wish to overload this paper with further technicalities and
simulations. Our contribution casts new light into some aspects of testing for EQD+, while our tests provide
some improvement in comparison to the existing one, as shown in Section 4.2. Our approach also opens space
to develop new tests. For example, one could consider the integral of the negative part of μ̂Y,X(p) over (0,1),
which would result in an integral-type Anderson–Darling statistic for EQD+. However, this direction of research
requires elaborating new ways of proving the validity of the resampling method and should be the subject of
future work.
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4.2. Empirical significance levels

Theorem 3.4 shows that to control the empirical significance level of our tests, it is sufficient to carry out
simulations based on the models M1 - M12 with parameters which ensure that μY,X(p) ≡ 0. Their parametriza-
tions correspond to the appropriate parameters being simply equal to zero. These parameters are displayed in
the first row of the tables in Figure 1. Following Scaillet (2005), we call a fraction of rejections of H0 under
μY,X(p) ≡ 0 the empirical significance level. The Monte Carlo experiments show that the multiplier method
yields appropriate empirical significance levels in the majority of the cases considered. Some deficiencies are
observed for S−(ε) under long-tailed alternatives (M1, M5, M6 and M8) when n = 200. For larger sample sizes
the situation improves, except in the case M8. In this case, T also yields inappropriate empirical significance
levels for all the sample sizes under consideration; cf. Tables C.1−C.3. We have also applied a classical bootstrap
algorithm in a preliminary study, but we abandoned it, since the results of the multiplier method were more
encouraging.

4.3. Empirical powers

In Figure 2, we present a graphical summary of the empirical powers of the tests based on T , S−(0.100)
and R−(ε) with ε = 0.050, 0.750, 0.100 for the three cases n = 200, n = 400 and n = 1000 when the nominal
significance level is 5%. The vertical bars represent the differences between the powers of the test based on T
and the powers of the new tests for the corresponding ε’s and n’s.

These outcomes show that in most cases the new test based on R−(ε) with ε = 0.050, 0.750 and 0.100 is
comparable to or better than the existing test based on T . The only exception is for the model based on the
symmetric bivariate Student distribution with four degrees of freedom. Although the monotonic dependence
function for the Student distribution is almost the same as for the bivariate normal model M2, the heavier tails
of the marginals influences the magnitude of the empirical processes defining (3.4) and make it harder to reject
the null hypothesis. However, this deficiency disappears relatively quickly as the sample size increases. On the
other hand, the noticeable deficiencies of the test based on T for models M7 − M12 only decrease marginally
as n increases. The test based on S−(ε) is less stable than the one based on R−(ε) in the sense that it gives
greater gains in some cases, but the loss of power (with respect to the test based on T ) in some other situations
are also greater. As n increases the comparative empirical power of the test based on S−(ε) stabilizes.

To obtain a more concise picture of the empirical powers of these three tests as indicated by Figure 2, we
calculated the average powers of S−(0.100), R−(0.100) and T over the twelve alternatives for each sample size
n. The experiments summarized in Figure 2 also indicate that it is beneficial to slowly decrease ε as n increases.
Our empirical observation is that ε = ε(n) =

√
2/n is a reasonable choice. Therefore, we additionally considered

the statistic R−(ε(n)) in this comparison. For each of the three weighted statistics, we calculated the difference
between the average power of the corresponding test and the test based on T . These results are presented in
Figure 3.

This short summary clearly shows that introducing weighting in any of the three forms considered in Figure 3
is beneficial. Moreover, the variant R−(0.100) is more powerful (on average) than S−(0.100) and can thus be
recommended as a well studied improvement to the test based on T . Note also that the simulation results
presented in Tables C.1−C.3 show that the empirical significance levels for the tests based on R−(ε(n)) are
stable and satisfactorily precise, while the average powers of the tests based on R−(ε(n)) are the greatest, see
Figure 3, and show the appealing tendency of growing with n. Therefore, although our theoretical considerations
do not cover this case, the test based on R−(ε(n)) may also be considered to be a useful solution.

5. Example based on real data

We shall consider the Danish fire insurance data set available at http://www.ma.hw.ac.uk/~mcneil/data.
html. These data consist of losses in Danish Krone for the years 1980 to 1990. This is a multivariate data
set containing the financial loss to buildings Xi, to contents Yi and to profits Zi caused by fire number i,

http://www.ma.hw.ac.uk/~mcneil/data.html
http://www.ma.hw.ac.uk/~mcneil/data.html
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Figure 2. Differences between the empirical powers of the tests based on S−(0.100), R−(ε)
and T for given values of ε and n; α = 0.05, alternatives M1 − M12 with adjusted parameters
under n = 400 (b), and n = 1000 (c).

i = 1, . . . , 1502. A positive dependence between these losses is expected, since the insured objects were exposed
to the same cause of damage. Therefore, the hypothesis of positive quadrant dependence (PQD) for these data
was formulated and verified in Scaillet [41], Gijbels et al. [20], and Ledwina and Wy�lupek [34]. We concentrate
below mainly on inference for the losses (Xi, Yi), i = 1, . . . , 1502. Though some classical tests do not provide any
evidence against either the independence or PQD of these variables, the most specialized tests for PQD reject
it with p-values equal to 0. One explanation of these conflicting conclusions is that the dependencies among the
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Figure 3. Average gains in the power of the tests based on S−(0.100), R−(0.100) and R−(ε(n))
in comparison to the test based on T according to n; α = 0.05.
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Figure 4. Danish fire insurance data; n = 1502. Smoothed estimator of the dependence
measure q for loss to buildings X and loss to content Y .

variables are more complex than some approximately linear trend and had not been detected by the relatively
simple tools, that had been previously applied. To gain more insight into the dependence structure of these
data see Figure 4. This illustrates an estimator of the function valued measure of dependence q proposed in
Ledwina [33]. This measure is defined on (0, 1)× (0, 1) to be the appropriately standardized difference between
the underlying and independence copulas. This measure is non-negative (non-positive) if and only if PQD (NQD
− negative quadrant dependence) exists, while independence is equivalent to q ≡ 0. Several useful properties
of this measure are presented in Ledwina [33]. Here, we would like to add that the measure q is equivalent to
applying the concept of bivariate quantilogram (see Linton and Whang, [36]) to a bivariate copula. In view of
the evidence in Figure 4, it is clear that it is unreasonable to infer either independence or PQD for these data.
For a detailed analysis of the hypothesis of PQD for these data, see Ledwina and Wy�lupek [34].
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Figure 5. Danish fire insurance data; n = 1502. Empirical monotonic dependence functions:
(a) Y on X ; (b) X on Y .

Table 1. Danish fire insurance data; n = 1502. Estimated p-values from testing EQD+ of
Y on X and EQD+ of X on Y based on S−(ε), R−(ε) and T , ε = 0.050, 0.075, 0.100 and
ε = ε(n) = 0.036,. Based on 10 000 Monte Carlo runs.

Test S–(0,100) S–(0,075) S–(0,050) S–(0,036) R–(0,100) R–(0,075) R–(0,050) R–(0,036) T
p-value for 

EQD+ of Y on X
0.7598 0.7027 0.7375 0.7487 0.7603 0.6998 0.7330 0.7439 0.8131

p-value for 
EQD+ of X on Y

1 1 0.9998 0.9980 1 1 0.9997 0.9970 0.9974

In view of the above evidence, it is interesting to see whether or not a weaker form of positive dependence
than PQD, specifically positive expectation dependence EQD+, is appropriate for these data. In Figure 5
we present estimates of the monotonic dependence functions μY,X(p) and μX,Y (p), p ∈ [0.001, 0.999], for the
n = 1502 positive claims. Both curves are non-negative for all p ≥ 0.05 and indicate a non-decreasing trend for
p ∈ (0.1, 0.8). It can also be seen that the estimated dependence is not symmetrical with respect to X and Y .
When X is relatively small, the curves suggest that the dependence of Y on X is stronger than the dependence
of X on Y for claims in a similar range. On the other hand, the dependence of X on Y is slightly stronger that
the dependence of Y on X for moderate and large values of Y .

In Table 1 we present conclusions from tests of the hypotheses μY,X(p) ≥ 0 and μX,Y (p) ≥ 0. These tests
provide no evidence against the postulated type of positive dependence, while the p-values indicate very good
fit.

Similar analysis was also performed for the other two pairs of variables that may be constructed from the
trio of variables observed. In the case of losses to content and losses to profit, the appropriate hypotheses of
PQD, and thus EQD+, were accepted with the corresponding p-values all being close to 1. In the case of losses
to buildings and losses to profit, the hypothesis of PQD is rejected at standard levels of significance, while the
weaker hypothesis of EQD+ is again accepted, based on p-values being practically equal to 1 for the hypothesis
of EQD+ for loss to profit on loss to buildings and at least 0.8433 for EQD+ for loss to buildings on loss to
profit.

6. Summary and concluding remarks

In this paper, we have proposed nonparametric tests for positive expectation dependence. Our contributions
include the following: First, we proposed a useful reparametrization of the test and then inference based on a
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monotonic dependence function that measures the local strength of dependence. This step helps us to propose
an appropriate function for weighting the test statistic in a natural Kolmogorov−Smirnov type test and proves
that testing can be accompanied by graphical evidence of departures from the null hypothesis. Second, we
showed that the multiplier method gives sufficiently precise control of the significance level for finite samples.
Our solutions were compared to the currently used test procedure in an extensive simulation study and proved
to be competitive.

By introducing such a reparametrization, we introduce nuisance parameters into the analysis, which make
the argument more complex. These nuisance parameters are the pth quantiles, xp and yp, p ∈ (0, 1), of the
unknown marginal distributions. In our test procedure, we restrict attention to some subinterval of (0, 1). In
the case where one is interested in EQD+ dependence based on the concept of a copula or other bivariate
distribution with known marginals, similar analysis is possible and expected to be less involved.

Other solutions, such as integral-type statistics for the reparametrized problem, seem to be of interest for
further study. Also, it would be useful to develop nonparametric confidence bounds for the monotonic dependence
function. This would formalize the proposed graphical analysis of possible sources of deviation from positive
expectation dependence. Extensions of the approach to dependent samples would also be welcome.

Appendix A. Mathematical proofs

A.1. Proof of Proposition 3.2

First, consider the process Zn and observe that

sup
ε≤p≤1−ε

∣∣∣∣∣ 1√
n

n∑
i=1

Yi [(np − 	np
)I(Xi = x̂p)]

∣∣∣∣∣ ≤ max
1≤i≤n

{
1√
n
|Yi|

}
·

The assumption EY 2 < ∞ implies that max1≤i≤n{|Yi|/
√

n} = oP (1). Thus we can restrict attention to

λn(p) =
1
n

[
p

n∑
i=1

Yi −
n∑

i=1

YiI(Xi < x̂p)

]

and investigate the weak convergence of
√

n(λn − lY,X). For this purpose, recall that X(1) < . . . < X(n) are the
order statistics for the sample X1, . . . , Xn and denote the induced order statistics in the sample Y1, . . . , Yn by
Y[1], . . . , Y[n]. Thus

λn(p) =
1
n

⎛
⎝p

n∑
i=1

Y[i] −
�np�∑
i=1

Y[i]

⎞
⎠ .

Set

ξn(p) =
1
n

�np�∑
i=1

Y[i].

From Theorem 1 of Davydov and Egorov [11], restricted to [ε, 1− ε], it holds that
√

n(ξn − f) ⇒ ξ̄ in D[ε, 1− ε],
where f(p) =

∫ p

0
m(s)ds =

∫ p

0
E(Y |F (X) = s)ds and ξ̄ is a centered Gaussian process concentrated on C[ε, 1−ε].

The process ξ̄ has the structure given by (5) and (7) of Theorem 1, while its covariance function is presented
on pp. 302−303 ibidem. Since λn(p) = [pξn(1) − ξn(p)], the continuous mapping theorem and the above imply
that Zn ⇒ ξ̄ in D[ε, 1 − ε]. However, the process Zn takes values in C[0, 1] and therefore from Billingsley [7],
page 39, we obtain the first statement of Proposition 3.2.

The convergence
sup

ε≤p≤1−ε

[
M+

Y (p) − m+
Y (p)

]
→ 0 in probability

follows from Lemma 3 in Bednarski and Ledwina [5]. The same conclusion holds for M−
Y and m−

Y . The rest of
the proof is an immediate consequence of the properties of weak convergence. �
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A.2. Proof of Proposition 3.3

Proof of Part (i): From the definitions of S−(ε) and −V −
n (p), we obtain

S−(ε) ≤ sup
ε≤p≤1−ε

{−V −
n (p)} + sup

ε≤p≤1−ε

{
−
√

n
lY,X(p)
M−

Y (p)

}
·

Under H0 it holds that lY,X(p) ≥ 0 for all p. Hence, S−(ε) ≤ supε≤p≤1−ε{−V −
n (p)} and equality holds if

lY,X(p) ≡ 0 on [ε, 1 − ε]. Therefore, Proposition 3.2 and the continuous mapping theorem yield (3.2).

Proof of Part (ii): For p0 ∈ [ε, 1 − ε], assuming that H0 does not hold, we have Pr(S−(ε) > c) ≥
Pr(−

√
nμ̂−

Y,X(p0) > c). Since c > 0 and μY,X(p0) < 0, application of Proposition 3.2 concludes the proof.

A.3. Proof of Theorem 3.4

The analysis of the asymptotics of p̂(n, ε) under H0 is carried out via the three steps elaborated in Appen-
dices A.3.1−A.3.3. The main idea of the proof is to reduce considerations to the case in which the theoretical
quantiles of X are known and then apply the elegant result of Zinn on the almost sure central limit theorem for
variables taking values in a separable Banach space, published in Ledoux and Talagrand [31,32]. Appendix A.3.4
justifies the hypothesis regarding the asymptotic behavior of p̂(n, ε) under H1.

We start with an analysis of the numerator of SU−(p).

A.3.1. Approximation of LU
Y,X(p)

The approach is asymptotic and conditional on the realization of the sample (X1, Y1), . . . (Xn, Yn).
Set Y 0

i = Yi − EYi and write

√
nLU

Y,X(p) = λ1n(p) +
1√
n

n∑
i=1

Ui

{
lY,X(p) − LY,X(p)

}

+
1√
n

n∑
i=1

Ui(Ȳ − EY )
[
p − I(Xi < x̂p) − (np − 	np
)I(Xi = x̂p)

]
, (A.1)

where

λ1n(p) =
1√
n

n∑
i=1

Ui

{
Y 0

i

[
p − I(Xi < x̂p) − (np − 	np
)I(Xi = x̂p)

]
− lY,X(p)

}
.

For any δ ∈ (0,∞)

PrU

(
sup

ε≤p≤1−ε

∣∣∣∣∣ 1√
n

n∑
i=1

Ui {lY,X(p) − LY,X(p)}
∣∣∣∣∣ > δ

)
≤

[
sup

ε≤p≤1−ε
|lY,X(p) − LY,X(p)|

]2

×
[
δ−2E

(
1
n

n∑
i=1

U2
i

)]
.

(A.2)

From Proposition 3.2, the first factor in (A.2) tends to 0 for almost all sequences
(X1, Y1), (X2, Y2), . . . Since EU2

i = 1, i = 1, . . . , n, the second component of (A.1) is negligible condi-
tional on almost any sequence. A similar conclusion holds for the third component of (A.1).

Now observe that

λ1n(p) = λ2n(p) +
1√
n

n∑
i=1

UiY
0
i

[
p − F (x̂p)

]
+

1√
n

n∑
i=1

Ui

[
lY,X

(
F (x̂p)

)
− lY,X(p)

]
, (A.3)

where

λ2n(p) =
1√
n

n∑
i=1

Ui

{
Y 0

i

[
F (x̂p) − I(Xi < x̂p) − (np − 	np
)I(Xi = x̂p)

]
− lY,X

(
F (x̂p)

)}
.
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Since F and lY,X are continuous functions and supε≤p≤1−ε

∣∣x̂p − xp

∣∣ → 0 almost surely, arguing as above, we
conclude that the second and third components of (A.3) are negligible.

Finally, note that

λ2n(p) = λ3n(p) − 1√
n

n∑
i=1

Ui

{
Y 0

i

[
np − nF (x̂p) + 	nF

(
x̂p

)

 − 	np


]
I(Xi = x̂p)

}
+ oP (1), (A.4)

where

λ3n(p) =
1√
n

n∑
i=1

Ui

{
Y 0

i

[
F (x̂p) − I

(
F (Xi) < F (x̂p)

)]
− lY,X

(
F (x̂p)

)}
.

The remainder in (A.4) is stochastically small, while the order of the error term, oP (1), follows from a similar
argument to the one given in Section A.1.

Summarizing (A.1)–(A.4), we conclude that

√
nLU

Y,X(p) =
1√
n

n∑
i=1

Ui

{
Y 0

i

[
F (x̂p) − I

(
F (Xi) < F (x̂p)

)]
− lY,X

(
F (x̂p)

)}
+ rn, (A.5)

where rn = oP (1), conditional on almost any sample.

A.3.2. Approximation of the distribution of SU−(ε)

Recall that

SU−(ε) = sup
ε≤p≤1−ε

{
−
√

n
LU

Y,X(p)

M−
Y (p)

}
· (A.6)

The aim of this section is to show that, conditional on the sample (X1, Y1), . . . , (Xn, Yn), the asymptotic behavior
of SU−(ε) under Pr U is the same as that of the supremum of an appropriately defined variant of V −

n (p),
constructed on the basis of the sample (X1, Y1), . . . , (Xn, Yn), cf. (A.11) below. A crucial step in obtaining this
result is to approximate the supremum in (A.6) by the supremum of a corresponding process with values in
C[ε, 1 − ε] and to reduce the problem to a case in which the theoretical quantiles are known.

Observe first that the process described in (A.5) depends on p via the piecewise constant function x̂p. More-
over, from Proposition 3.2, M−

Y →Pr m−
Y . Also note that, in any derivation of the asymptotics, we have the

freedom to change the denominator in (A.6), as long as the limit m−
Y is retained. Moreover, when the analysis

solely concerns randomness due to U1, . . . , Un, we may consider a deterministic denominator. In addition, for
large n, without loss of generality, we can approximate the continuous function m−

Y by a continuous, piecewise
linear function on the intervals (0, F (X(1)), [F (X(k)), F (X(k+1))], k = 1, . . . , n − 1, (F (X(n), 1). Let us denote
such a function by m̃−

Y (p). The result (A.5) and the above argument show that instead of analyzing SU−(ε), it
suffices to analyze

SU−
3 (ε) = max

t∈T

−1√
n

∑n
i=1 Ui

{
Y 0

i

[
t − I

(
F (Xi) < t

)]
− lY,X(t)

}
m̃−

Y (t)
,

where T =
{
t = F (X(�εn�+1)), F (X(�εn�+2)), . . . , F (X(�(1−ε)n�+1))

}
.

Consider the following two auxiliary processes

υU
n (t) =

1√
nm̃−

Y (t)

n∑
i=1

Ui

{
Y 0

i

[
t − I

(
F (Xi) < t

)]
− lY,X(t)

}
, (A.7)

and

υn(t) =
1√

nm̃−
Y (t)

n∑
i=1

{
Y 0

i

[
t − I

(
F (Xi) < t

)]
− lY,X(t)

}
, (A.8)
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together with their polygonal interpolations

ωU
n (t) =

1√
nm̃−

Y (t)

n∑
i=1

Ui

{
Y 0

i

[
t − I

(
F (Xi) < t

)
+ ai(t)

]
− lY,X(t)

}

and

ωn(t) =
1√

nm̃−
Y (t)

n∑
i=1

{
Y 0

i

[
t − I

(
F (Xi) < t

)
+ ai(t)

]
− lY,X(t)

}
,

where ai(t) = {1 + n3[F (Xi) − t]} × I(F (Xi) < t ≤ F (Xi) + n−3). It can be seen that 0 ≤ ai(t) ≤ 1 and

sup
t∈(0,1)

∣∣∣∣∣ 1√
n

n∑
i=1

Y 0
i ai(t)

∣∣∣∣∣ → 0, sup
t∈(0,1)

∣∣∣∣∣ 1√
n

n∑
i=1

Y 0
i Uiai(t)

∣∣∣∣∣ → 0

in probability, where the final relation concerns the probability measure Pr U and holds for almost all
(X1, Y1), (X2, Y2), . . .. Using this notation, it follows that SU−

3 (ε) = maxt∈T {−υU
n (t)}. On the other hand,

by assumption, E(Y 0
i )2 < ∞. Therefore, from Theorem 10.14 of Ledoux and Talagrand [32], ωU

n satisfies the
central limit theorem in C[ε, 1 − ε], conditional on almost any sample (X1, Y1), (X2, Y2), . . ., if and only if ωn

does. More precisely, ωn ⇒ ω, if and only if ωU
n ⇒ ωU , conditional on the sample, where ωU is the Gaussian

process with the same covariance structure as ω. In addition, from part 1) of the proof of Theorem 1 of Davydov
and Egorov [11], the above, and the continuous mapping theorem, it follows that ωn ⇒ ω, in C[ε, 1 − ε], where
ω is the Gaussian process with Eω(t) = 0 and the covariance function is given on page 302 ibidem.

The above allow us to state that for any c ∈ R∣∣∣∣PrU

(
max
t∈T

{−ωU
n (t)} > c

)
− Pr

(
max
t∈T

{−ωn(t)} > c

)∣∣∣∣ →Pr 0 (A.9)

and ∣∣∣∣PrU

(
max
t∈T

{−υU
n (t)} > c

)
− Pr

(
max
t∈T

{−υn(t)} > c

)∣∣∣∣ →Pr 0.

Observe also that

max
t∈T

{−υU
n (t)} = sup

ε≤p≤1−ε

{
− λ3n(p)

m−
Y (F (x̂p))

}
, (A.10)

max
t∈T

{−υn(t)} = sup
ε≤p≤1−ε

⎧⎨
⎩

−1√
n

∑n
i=1

{
Y 0

i

[
F (x̂p) − I

(
F (Xi) < F (x̂p)

)]
− lY,X

(
F (x̂p)

)}
m−

Y (F (x̂p))

⎫⎬
⎭ .

Since m−
Y (F (x̂p)/M−

Y (p) → 1 in probability, the conclusion of this section is that
∣∣∣∣∣PrU

(
sup

ε≤p≤1−ε

{
−
√

n
LU

Y,X(p)

M−
Y (p)

}
> c

)
− Pr

(
sup

ε≤p≤1−ε

{
−
√

n
LY,X(p) − lY,X(F (x̂p))

M−
Y (p)

}
> c

)∣∣∣∣∣ →Pr 0. (A.11)

A.3.3. Asymptotic analysis of p̂(n, ε) under H0

From the definitions of the appropriate statistics

p̂(n, ε) = PrU
(
SU−(ε) > S−(ε)

)
= PrU

(
sup

ε≤p≤1−ε

{
−
√

n
LU

Y,X(p)

M−
Y (p)

}
> sup

ε≤p≤1−ε

{
−
√

n
LY,X(p)
M−

Y (p)

})
· (A.12)
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Now recall that lY,X(p) ≥ 0 under H0 and the same holds for lY,X(F (x̂p)) in the case where the sample
X1, X2, . . . is fixed. Hence, (A.12) yields

p̂(n, ε) ≥ PrU

(
sup

ε≤p≤1−ε

{
−
√

n
LU

Y,X(p)

M−
Y (p)

}
> sup

ε≤p≤1−ε

{
−
√

n
LY,X(p) − lY,X(F (x̂p))

M−
Y (p)

})
(A.13)

with equality holding if lY,X(p) ≡ 0 on [ε, 1 − ε]. From (A.13) and (A.6)

Pr
(

p̂(n, ε) < α
)
≤ Pr

(
PrU

(
SU−(ε) > sup

ε≤p≤1−ε

{
−
√

n
LY,X(p) − lY,X(F (x̂p))

M−
Y (p)

})
< α

)
. (A.14)

Set

Z1n = SU−(ε) and Z2n = sup
ε≤p≤1−ε

{
−
√

n
LY,X(p) − lY,X(F (x̂p))

M−
Y (p)

}
·

The expression on the right hand side of (A.14) can be written as

Pr
(
PrU (Z1n > Z2n|Z2n) < α

)
. (A.15)

For c ∈ R, set Dn(c) = Pr(Pr U (SU−(ε) < c)). Using this notation, from Section A.3.2, it follows that
lim

n→∞
Dn(c) = lim

n→∞
Pr(PrU (maxt∈T {−ωU

n (t)} < c)) = lim
n→∞

Pr(PrU (Z1n < c)). Hence, from (A.9) and (A.10),
we infer that the limiting distribution functions of Z1n and Z2n coincide. In addition, the above yields

lim
n→∞

Pr
(
p̂(n, ε) < α

)
≤ lim

n→∞
Pr (1 − Dn(Z2n) < α) . (A.16)

Observe that the process ωU
n takes values in C[ε, 1 − ε], has mean 0 and is Gaussian. Its weak limit ω has the

same properties. Therefore, from Theorem 1 of Tsirel’son [44], the distribution of maxt∈T {−ωU
n (t)} is absolutely

continuous on (0,∞). A similar conclusion holds for the weak limit of supε≤t≤1−ε{−ω(t)}. This ensures that
Dn(Z2n) satisfies limn→∞ Pr(1 − Dn(Z2n) < α) = α for α < 1/2. This proves (i) of Theorem 3.4.

A.3.4. Asymptotic analysis of p̂(n, ε) under H1

From (ii) of Proposition 3.3 we infer that S−(ε) tends to +∞. On the other hand, SU−(ε) is the supremum
of a process with mean 0 and continuous sample paths. Therefore, it is finite with PrU -probability 1. Hence,
Pr(p̂(n, ε) < α) = Pr(PrU (SU−(ε) > S−(ε)) < α) → 1, as n → ∞, and the proof is concluded.

Appendix B. Analytical formulas for µY,X(p) for the models M1 − M12

First, we introduce some auxiliary notation. Let Φ and Φ−1 denote the N (0, 1) distribution function and its
inverse, respectively. Also, let B(a,b) and B−1

(a,b) denote the distribution function of the beta distribution with
parameters a and b and its inverse, respectively.

The analytical forms of the monotonic dependence functions for some of the models we consider here are
already known. In particular, Kowalczyk et al. [28] give the appropriate results for the transformed bivariate
models M5 and M8, as well as the mixture model M10. Since M2 assumes a bivariate normal distribution, the
formula for μY,X(p) is a consequence of Theorem 2 in Kowalczyk and Pleszczyńska [29]. The remaining formulas
were obtained by direct calculation, which was sometimes simple and sometimes complex. Note also that the
models M1 and M6 are based on the definition of a bivariate Student t distribution as given in Demarta
and McNeil [12]. In particular, in the case of M1 we applied their formula (1) with μ = (0, 0) and Σ with
leading diagonal (1, 1) and off diagonal elements equal to ρ. In the case of M6, we used their formula (2) with
μ = (0, 0), γ = (γ1, γ2), g(w) = w and Z = (Z1, Z2), where Z1 and Z2 are independent standard normal.

Model M1 : ρ ∈ (−1, 1),

μY,X(p) = ρ.
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Model M2 : θ ∈ R,

μY,X(p) = θ√
θ2+1

.

Model M3 : ρ ∈ (−1, 0],

μY,X(p) =

p∫
1−p

2Φ

(
ρΦ−1(t)√

1−ρ2

)
+e

1+2ρΦ−1(t)−ρ2
2 Φ

(
ρ2−ρΦ−1(t)−1√

1−ρ2

)
−e

1−2ρΦ−1(t)−ρ2
2 Φ

(
ρ2+ρΦ−1(t)−1√

1−ρ2

)
dt−p

p+
√

e(Φ(1−Φ−1(p))−1)

for p ≤ 0.5, and

μY,X(p) =

1∫
p

2Φ

(
ρΦ−1(t)√

1−ρ2

)
+e

1+2ρΦ−1(t)−ρ2
2 Φ

(
ρ2−ρΦ−1(t)−1√

1−ρ2

)
−e

1−2ρΦ−1(t)−ρ2
2 Φ

(
ρ2+ρΦ−1(t)−1√

1−ρ2

)
dt−1+p

1−p+
√

e(Φ(Φ−1(p)+1)−1)

for p > 0.5.

Model M4 : ρ ∈ (−1, 0],

μY,X(p) =

p∫
1−p

2Φ

(
−ρΦ−1(t)√

1−ρ2

)
+e

1+2ρΦ−1(t)−ρ2
2 Φ

(
−ρ2+ρΦ−1(t)+1√

1−ρ2

)
−e

1−2ρΦ−1(t)−ρ2
2 Φ

(
−ρ2−ρΦ−1(t)+1√

1−ρ2

)
dt−p

√
e(Φ(1+Φ−1(p)))−p

for p ≤ 0.5, and

μY,X(p) =

1∫
p

2Φ

(
−ρΦ−1(t)√

1−ρ2

)
+e

1+2ρΦ−1(t)−ρ2
2 Φ

(
−ρ2+ρΦ−1(t)+1√

1−ρ2

)
−e

1−2ρΦ−1(t)−ρ2
2 Φ

(
−ρ2−ρΦ−1(t)+1√

1−ρ2

)
dt−1+p

√
e(Φ(1−Φ−1(p)))−1+p

for p > 0.5.

Model M5 : ρ ∈ (−1, 0],

μY,X(p) = p−Φ(Φ−1(p)−ρ)
Φ(Φ−1(p)+1)−p .

Model M6 : γ1 < 0, γ2 > 0,

μY,X(p) = lY,X (p)

m+
Y (p)

, if lY,X(p) ≥ 0, μY,X(p) = lY,X (p)

m−
Y (p)

, if lY,X(p) < 0, where

lY,X(p) =
2pγ1

√
4+x2

p−γ1e
γ2(xp−

√
4+x2

p)(xp+
√

4+x2
p)

(1−p)
√

4+x2
p

, m+
Y (p) =

e
γ1(yp+

√
4+y2

p)(4−γ1yp(4+y2
p−yp

√
4+y2

p))
(1−p)

√
4+y2

p(4+y2
p)

−

2γ1, m−
Y (p) = −2γ1

p
1−p − e

γ1(y1−p+
√

4+y2
1−p)(−4+γ1y1−p(4+y2

1−p−y1−p

√
4+y2

1−p))
(1−p)

√
4+y2

1−p(4+y2
1−p)

, while xp =

F−1(p), yp = G−1(p), F (t) =
eγ2(t−

√
4+t2)(6t+t3+4

√
4+t2+t2

√
4+t2+γ2(8+2t2+2t

√
4+t2))

2
√

4+t2(4+t2)
, G(t) = 1 +

eγ1(t+
√

4+t2)(6t+t3−4
√

4+t2−t2
√

4+t2+γ1(8+2t2−2t
√

4+t2))
2
√

4+t2(4+t2)
.

Model M7 : θ ∈ [0, 1],

μY,X(p) = (p−1)θ log(1−p)
(1−θ log(1−p))p log p .

Model M8 : ρ ∈ (−1, 0],

μY,X(p) = p−Φ(Φ−1(p)−2ρ)
Φ(Φ−1(p)+2)−p .

Model M9 : θ ∈ [0, 3/4],
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μY,X(p) = 2p(2p−1)(1−p)

1−p+ 3
10 θ− 1

2−3h(θ,p)
for p ∈

(
0, θ

3

]
, μY,X(p) = 4θp(2p−1)(1−p)

4
15 θ2+3p(1−p)

for p ∈
[

θ
3 , 1 − θ

3

]
,

μY,X(p) = 2p(2p−1)(p−1)

1−p+ 3
10 θ− 1

2−3h(θ,p)
for p ∈

[
1 − θ

3 , 1
)
, where g(x) = 2

3x3 − x2 for x ∈ [0, 1], while

h(θ, p) = 1
2

(
g−1

(
p
θ − 1

3

))2 − 1
3

(
g−1

(
p
θ − 1

3

))3 + θ
2

(
g−1

(
p
θ − 1

3

))4 − 2
5θ

(
g−1

(
p
θ − 1

3

))5.

Model M10 : η ∈ [0, 1/2], δ > 0, ρ ∈ (−1, 1),

μY,X(p) = −ρ + ηδ(1+ρ)[Φ(zp+δ)−Φ(zp−δ)]
(1−2η)ϕ(zp)+η[ϕ(zp−δ)+ϕ(zp+δ)+δΦ(zp+δ)−δΦ(zp−δ)] ,

where I(z) = (1 − 2η)Φ(z) + ηΦ(z − δ) + ηΦ(z + δ), zp = I−1(p), ϕ(x) = Φ′(x) = 1√
2π

e−
x2
2 .

Model M11 : θ ∈ [−1, 0],

μY,X(p) =
√
−8pθ+3θ

−3θ(1−p) for p ∈
(
0,− θ

2

]
, μY,X(p) = θ

6p(1−p) for p ∈
(
− θ

2 , 1 + θ
2

]
, μY,X(p) =

√
−8(1−p)θ+3θ

−3θp

for p ∈
(
1 + θ

2 , 1
)
.

Model M12 : θ ≥ 0,

μY,X(p) =
p−B(2θ+1,2θ+1)

(
B−1

(θ+1,θ+1)(p)
)

B(3/2,2θ)

(
B−1

(3/2,θ)(1−p)
)
−1+p

for p ∈
(
0, 1

2

)
, μY,X(p) =

B(2θ+1,2θ+1)

(
B−1

(θ+1,θ+1)(1−p)
)
−1+p

B(3/2,2θ)

(
B−1

(3/2,θ)(p)
)
−p

for

p ∈
[

1
2 , 1

)
.

Appendix C. Auxiliary simulation results

Table C.1. Empirical significance levels and powers for n = 200; α = 0.05.

M1 M2 M3

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.044 0.033 0.029 S–( ) 0.040 0.041 0.057 S–( ) 0.053 0.049 0.053
R–( ) 0.052 0.044 0.034 R–( ) 0.044 0.043 0.045 R–( ) 0.048 0.049 0.053
S–( ) 0.493 0.425 0.321 S–( ) 0.749 0.690 0.603 S–( ) 0.701 0.621 0.536
R–( ) 0.637 0.602 0.560 R–( ) 0.793 0.781 0.776 R–( ) 0.793 0.784 0.776

M4 M5 M6

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T c
S–( ) 0.042 0.043 0.041 S–( ) 0.076 0.073 0.079 S–( ) 0.041 0.040 0.032
R–( ) 0.046 0.043 0.042 R–( ) 0.041 0.042 0.040 R–( ) 0.042 0.044 0.042
S–( ) 0.676 0.653 0.597 S–( ) 0.614 0.584 0.563 S–( ) 0.529 0.475 0.374
R–( ) 0.723 0.711 0.692 R–( ) 0.635 0.621 0.604 R–( ) 0.687 0.669 0.638

M7 M8 M9

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.062 0.072 0.076 S–( ) 0.076 0.085 0.091 S–( ) 0.045 0.051 0.053
R–( ) 0.049 0.049 0.050 R–( ) 0.034 0.034 0.032 R–( ) 0.055 0.058 0.055
S–( ) 0.668 0.653 0.630 S–( ) 0.722 0.704 0.680 S–( ) 0.845 0.793 0.700
R–( ) 0.671 0.666 0.660 R–( ) 0.649 0.631 0.615 R–( ) 0.830 0.825 0.805

M10 M11 M12

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.055 0.041 0.040 S–( ) 0.058 0.051 0.040 S–( ) 0.060 0.045 0.049
R–( ) 0.058 0.058 0.058 R–( ) 0.058 0.057 0.053 R–( ) 0.057 0.056 0.052
S–( ) 0.811 0.867 0.918 S–( ) 0.746 0.857 0.941 S–( ) 0.906 0.936 0.951
R–( ) 0.752 0.824 0.886 R–( ) 0.662 0.746 0.843 R–( ) 0.780 0.817 0.841

0

0.490 -0.15

0.059 0

0.452 0.50

0.060 0/0

0.644 0.20/2.5

0.054

0

0.574 -0.35

0.054 0

0.689 0.40

0.046 0.0

0.593 0.20

0.020

0

0.623 -0.20

0.049 0

0.707 0.18

0.046 0

0.725 -0.20

0.038

0

0.791 -0.20

0.055 0

0.796 -0.20

0.048 0

0.708 -0.20

0.049
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Table C.2. Empirical significance levels and powers for n = 400; α = 0.05.

M1 M2 M3

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.051 0.036 0.030 S–( ) 0.050 0.059 0.060 S–( ) 0.048 0.053 0.048

R–( ) 0.059 0.052 0.046 R–( ) 0.040 0.042 0.041 R–( ) 0.052 0.058 0.054

S–( ) 0.565 0.478 0.375 S–( ) 0.717 0.692 0.619 S–( ) 0.642 0.581 0.481

R–( ) 0.646 0.631 0.596 R–( ) 0.789 0.791 0.784 R–( ) 0.747 0.740 0.728

M4 M5 M6

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T c
S–( ) 0.048 0.044 0.041 S–( ) 0.063 0.069 0.072 S–( ) 0.049 0.046 0.040

R–( ) 0.052 0.052 0.049 R–( ) 0.043 0.043 0.042 R–( ) 0.052 0.048 0.051

S–( ) 0.691 0.668 0.626 S–( ) 0.571 0.540 0.503 S–( ) 0.538 0.496 0.414

R–( ) 0.721 0.723 0.702 R–( ) 0.641 0.626 0.611 R–( ) 0.662 0.659 0.641

M7 M8 M9

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.066 0.071 0.066 S–( ) 0.078 0.083 0.087 S–( ) 0.054 0.060 0.062

R–( ) 0.050 0.051 0.054 R–( ) 0.036 0.035 0.035 R–( ) 0.054 0.054 0.060

S–( ) 0.718 0.698 0.662 S–( ) 0.698 0.692 0.673 S–( ) 0.870 0.853 0.790

R–( ) 0.739 0.747 0.743 R–( ) 0.648 0.638 0.625 R–( ) 0.845 0.852 0.847

M10 M11 M12

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.059 0.052 0.044 S–( ) 0.055 0.058 0.056 S–( ) 0.060 0.052 0.053

R–( ) 0.057 0.059 0.059 R–( ) 0.052 0.054 0.056 R–( ) 0.054 0.054 0.055

S–( ) 0.792 0.842 0.874 S–( ) 0.731 0.850 0.944 S–( ) 0.942 0.961 0.973

R–( ) 0.724 0.776 0.822 R–( ) 0.643 0.743 0.850 R–( ) 0.839 0.876 0.912

0.050 0

0.705 -0.150

0.042 0

0.792 -0.140

0.056 0

0.755 -0.135

0.058 0

0.726 -0.144

0.042 0

0.637 -0.144

0.058
0

0.668 0.108

0.048 0

0.667 0.144

0.021 0

0.595 -0.250

0.059 0

0.722 0.280

0.055 0/0

0.597 0.15/1.94

0.048 0

0.490 -0.106

0.060 0

0.533 0.300

Table C.3. Empirical significance levels and powers for n = 1000; α = 0.05.

M1 M2 M3

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.053 0.061 0.053 S–( ) 0.043 0.048 0.052 S–( ) 0.041 0.045 0.059

R–( ) 0.052 0.050 0.047 R–( ) 0.048 0.046 0.042 R–( ) 0.042 0.042 0.043

S–( ) 0.558 0.479 0.390 S–( ) 0.749 0.717 0.627 S–( ) 0.706 0.633 0.531
R–( ) 0.654 0.625 0.600 R–( ) 0.794 0.795 0.787 R–( ) 0.776 0.777 0.770

M4 M5 M6

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T c
S–( ) 0.056 0.055 0.051 S–( ) 0.064 0.054 0.063 S–( ) 0.050 0.039 0.048

R–( ) 0.058 0.057 0.058 R–( ) 0.050 0.054 0.057 R–( ) 0.049 0.047 0.049

S–( ) 0.752 0.742 0.724 S–( ) 0.528 0.506 0.479 S–( ) 0.628 0.601 0.537
R–( ) 0.777 0.773 0.774 R–( ) 0.624 0.596 0.595 R–( ) 0.678 0.685 0.696

M7 M8 M9

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.060 0.058 0.057 S–( ) 0.067 0.075 0.082 S–( ) 0.051 0.051 0.058

R–( ) 0.056 0.052 0.052 R–( ) 0.042 0.043 0.040 R–( ) 0.048 0.050 0.056

S–( ) 0.713 0.685 0.677 S–( ) 0.653 0.651 0.634 S–( ) 0.872 0.859 0.784
R–( ) 0.747 0.754 0.757 R–( ) 0.638 0.632 0.619 R–( ) 0.862 0.865 0.850

M10 M11 M12

0.100 0.075 0.050 T 0.100 0.075 0.050 T 0.100 0.075 0.050 T
S–( ) 0.057 0.043 0.046 S–( ) 0.050 0.053 0.057 S–( ) 0.059 0.052 0.048

R–( ) 0.044 0.041 0.041 R–( ) 0.043 0.043 0.046 R–( ) 0.058 0.047 0.056

S–( ) 0.742 0.771 0.778 S–( ) 0.742 0.848 0.952 S–( ) 0.866 0.904 0.937
R–( ) 0.685 0.711 0.741 R–( ) 0.667 0.737 0.865 R–( ) 0.761 0.806 0.845

0

0.487 -0.067

0.058 0

0.476 0.145

0.044 0/0

0.576 0.10/1.47

0.046

0.048 0

0.730 0.170

-0.093

0

0.088

0.037 0

0.591 -0.170

0.616 -0.091 0.681 0.065

0

0.775 -0.088

0 0.050
0

0

-0.093

0.047 0

0.806 -0.090

0.042 0

0.0450.055

0.683

0.678

0.060

0.049

0.775
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In the simulation study reported above r = 2000 Monte Carlo replications were used to approximate p-values,
and each experiment is repeated 1000 times to compare empirical significance levels and powers at the nominal
significance level α = 0.05.

Acknowledgements. The authors would like to thank an Associate Editor for several useful suggestions and two reviewers
for their helpful comments on the first version of this paper. The authors also wish to express their gratitude to Tadeusz
Inglot for helpful conversations, as well as Jan Mielniczuk, Yakov Nikitin and Sonia Petrone for help in obtaining papers
related to the topic. The research of the first author was co-founded by the European Union by the European Social
Fund via the Project entitled ”PO KL Information Technologies: Research and Their Interdisciplinary Applications”
(grant no. UDA-POKL.04.01.01-00-051/10-00).

References

[1] W. Albers, Stop-loss premiums under dependence. Insurance: Math. Econom. 24 (1999) 173−185.

[2] N. Balakrishnan and Ch.-D.Lai, Continuous Bivariate Distributions. Springer, Dordrecht (2009).

[3] G.F. Barrett and S.G. Donald, Consistent tests for stochastic dominance. Econometrica 71 (2003) 71–104.

[4] D.G. Baur, The structure and degree of dependence: A quantile regression approach. J. Bank. Fin. 37 (2013) 786–798.

[5] T. Bednarski and T. Ledwina, A note on the weak convergence of an estimator of monotonic dependence function of two
random variables. Math. Oper. Stat., Ser. Statist. 13 (1982) 555–560.

[6] G.D. Berentsen and D. Tjøstheim, Recognizing and visualizing departures from independence in bivariate data using local
Gaussian correlation. Statist. Comput. 24 (2014) 785–801.

[7] P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968).

[8] R. Cont, Empirical properties of asset returns: stylized facts and statistical issues. Quant. Fin. 1 (2001) 223–236.
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