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EXTREMES OF γ-REFLECTED GAUSSIAN PROCESSES WITH STATIONARY
INCREMENTS

Krzysztof Dȩbicki1, Enkelejd Hashorva2 and Peng Liu3

Abstract. For a given centered Gaussian process with stationary increments X(t), t ≥ 0 and c > 0,
let Wγ(t) = X(t) − ct − γ inf0≤s≤t (X(s) − cs) , t ≥ 0 denote the γ-reflected process, where γ ∈ (0, 1).
This process is important for both queueing and risk theory. In this contribution we are concerned with
the asymptotics, as u → ∞, of P

(
sup0≤t≤T Wγ(t) > u

)
, T ∈ (0,∞]. Moreover, we investigate the

approximations of first and last passage times for given large threshold u. We apply our findings to the
cases with X being the multiplex fractional Brownian motion and the Gaussian integrated process. As
a by-product we derive an extension of Piterbarg inequality for threshold-dependent random fields.
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1. Introduction

The seminal contribution [1] derived the exact asymptotics, as the initial capital u tends to infinity, of the
ruin probability

ψ0,∞(u) = P

(
sup
t≥0

W0(t) > u

)
, W0(t) := X(t)− ct, c > 0

for some general centered Gaussian processes X(t), t ≥ 0. A key merit of the aforementioned paper is that
it paved the way for the study of the tail asymptotics of supremum of Gaussian processes with trend over
unbounded intervals. With a strong impetus from [1] a wide range of asymptotic results for supremum of such
threshold dependent families of Gaussian processes were obtained in [2–9].

This paper is devoted to the analysis of extremes of γ-reflected processes Wγ , defined as

Wγ(t) = X(t)− ct− γ inf
0≤s≤t

(X(s)− cs) , γ ∈ [0, 1),
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where X is a centered Gaussian process with stationary increments and c > 0. The analysis of γ-reflected
processes is of interest for both queueing and risk theory. In risk theory γ is related to a fixed tax-payment rate,
with

ψγ,∞(u) = P

(
inf

0≤t<∞

(
u−Wγ(t)

)
< 0

)
= P

(
sup

0≤t<∞
Wγ(t) > u

)
(1.1)

representing the infinite-time ruin probability with initial capital u, see e.g., [10]. For γ = 1, W1 has also
interpretation as a transient queue length process in a fluid queueing system fed by X and emptied with
constant rate c > 0, see e.g., [11–14].

More importantly, investigation of extremes of such processes is related to investigation of extremes of Gaus-
sian random fields with interesting structures as already shown in [15]. Therein the asymptotics of (1.1) for
X = BH a fractional Brownian motion with Hurst index H ∈ (0, 1) has been investigated. Using the self-
similarity of BH , for any u > 0 and X = BH we have

ψγ,∞(u) = P

(
sup
t≥0

(
X(t)− ct− γ inf

s∈[0,t]
(X(s)− cs)

)
> u

)
= P

(
sup

0≤s≤t<∞

X(tu)− γX(su)
1 + c(t− γs) > u

)
= P

(
sup

0≤s≤t<∞
Y (s, t) > u1−H

)
, (1.2)

where Y (s, t) := X(t)−γX(s)
1+ct−cγs . In view of (1.2) it is clear that for X being an fBm, the approximation of ψγ,∞(u)

as u→∞ is closely related to the study of supremum of the Gaussian random field Y . The fact that Y does not
depend on the threshold u is crucial and leads to substantial simplifications of the problem at hand. However,
for a general centered Gaussian process X with stationary increments, due to the lack of self-similarity, one has
to analyse the tail behaviour of threshold-dependent random field

Yu(s, t) =
X(tu)− γX(su)

1 + ct− cγs , s, t ∈ [0,∞), (1.3)

which significantly increases the complexity of the problem due to the explicit dependence on the threshold u.
We overcome this difficulty by deriving extensions of two classical results in extreme value theory of Gaussian
processes. In particular, Lemma 5.3 provides a uniform (with respect to local behavior of variance-covariance
structure of family of processes Xu) version of the celebrated Pickands-Piterbarg lemma, as given in, e.g.,
Theorem D.2 in [16]. Lemma 5.1 extends Piterbarg inequality to threshold-dependent Gaussian random fields.
The generality of these findings makes them also applicable to other problems related with extremes of threshold-
dependent families of Gaussian random fields.

Under some conditions on the variance function σ2, assuming in particular that it is regularly varying with
index 2α0 and 2α∞ at 0 and∞, respectively, our main result presented in Theorem 2.1 below gives an asymptotic
expansion of ψγ,∞(u) as u → ∞. It turns out that three different types of asymptotics of ψγ,∞(u) take place,
mainly determined by the following limit (which we assume to exist)

ϕ := lim
u→∞

σ2(u)
u
∈ [0,∞], (1.4)

where σ2(t) = V ar(X(t)). Interestingly, this trichotomy is tightly related with the dependence structure of X .
For example, if X = BH , we can distinguish the case of ϕ ∈ (0,∞), i.e., X is a standard Brownian motion,
ϕ = 0 if H ∈ (0, 1/2) which is the well-known case of short range dependent fBm and ϕ =∞ corresponding to
H ∈ (1/2, 1], i.e., the case of long range dependent fBm.
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Comparing our findings with those obtained for γ = 0 in [4], using ∼ to denote the asymptotic equivalence,
we obtain the following asymptotic tax equivalence (derived for X = BH in [15])

ψγ,∞(u) ∼ Pγ
Vϕ
ψ0,∞(u), γ := (1− γ)/γ, γ ∈ (0, 1) (1.5)

as u→∞, with

Vϕ =
√

2cγ
ϕ

X, if ϕ ∈ (0,∞), Vϕ = Bαϕ , if ϕ ∈ {0,∞}. (1.6)

In our notation

Pa
Z = E

{
sup

t∈[0,∞)

e
√

2Z(t)−(1+a)Var(Z(t))

}
, a > 0

denotes the generalised Piterbarg constant, where Z is a centered Gaussian process with stationary increments
and continuous sample paths. Note in passing that by Theorem 1.1 in [17] a.s. continuity of Z at each t ∈ [0, S]
is equivalent to the sample-continuous assumption above. Further, the constants Pa

BH
, with BH a standard fBm,

are known only for

Pa
B1/2

= 1 +
1
a

and Pa
B1

=
1
2

(
1 +

√
1 +

1
a

)
, (1.7)

see e.g., [16, 18, 19]. For general H ∈ (0, 1), bounds for Pa
BH

are derived in [19, 20].
The asymptotics in (1.5) shows that the generalised Piterbarg constant governs the relation between the

two ruin probabilities corresponding to the model with tax and without tax, i.e., it defines what we call the
asymptotic tax equivalence. However, in view of [21,22] we know that for the case X = BH , the tax rate γ does
not influence the limiting distribution of the first and the last passage times. We investigate these problems in
more general models for X . Define therefore the first and last passage times of Wγ given that the ruin occurs by

(τ∗1 (u), τ∗2 (u)) d= (τ1(u), τ2(u))
∣∣∣(τ1(u) <∞), (1.8)

where

τ1(u) = inf{t ≥ 0,Wγ(t) > u} and τ2(u) = sup{t ≥ 0,Wγ(t) > u},

with the convention that inf{∅} =∞ and sup{∅} = 0. Here d= stands for equality of the distribution functions.
Complementary, in this contribution we address also finite-time horizon counterparts of the introduced above

problems. Namely

ψγ,T (u) := P

(
sup

0≤t≤T
Wγ(t) > u

)
(1.9)

for any finite T > 0 is analysed, extending partial results on ψ0,T given in [23]. Moreover, we shall deal also
with the approximation of the conditional first passage time

τ1(u)
∣∣(τ1(u) < T )

as u→∞ (see Thm. 2.5), which shows that the approximating random variable is exponentially distributed.



498 K. DȨBICKI ET AL.

The family of Gaussian processes X with stationary increments, considered in this contribution, covers general
classes such as

(A) Multiplex fBm model, i.e.,

X(t) =
n∑

i=1

BHi(t), t ≥ 0,

with BHi ’s being independent fBm’s;
(B) Gaussian integrated process model, that is the case where X(t) =

∫ t

0
Y (s)ds, t ≥ 0 with Y being a centered

stationary Gaussian process with a.s. continuous sample paths.

Organization of the paper: In Section 2 we present some preliminaries, followed by the main results for the
approximation of ψγ,T (u), T ∈ (0,∞], the approximating joint distribution for conditional scaled first and last
passage times for T ∈ (0,∞]. Section 3 is dedicated to applications related to model (A) and (B) mentioned
above. For reader’s convenience, we postpone all the proofs to Section 4; whereas some very technical claims
are presented in Appendix.

2. Main Results

In the rest of this paper X(t), t ≥ 0 is a centered Gaussian process with stationary increments, a.s. continuous
sample paths and variance function σ2(t). An canonical example is X = BH , H ∈ (0, 1] for which we have
σ2(t) = t2H . For a given centered Gaussian process Z with a.s. continuous sample paths set

HZ [0, S] = E

{
sup

t∈[0,S]

e
√

2Z(t)−Var(Z(t))

}
and define (whenever the limit exits) the generalised Pickands constant HZ by

HZ = lim
S→∞

S−1HZ [0, S].

See [2, 4, 16, 24–38] for various definitions, existence and basic properties of Pickands constant.

2.1. Infinite-time horizon
First we focus on the infinite-time horizon case. Due to the stationarity of increments, the covariance of

X is directly defined by σ2, therefore our assumptions on X shall be reduced to assumptions on the variance
function, namely:

AI : σ2(0) = 0 and σ2(t) is regularly varying at∞ with index 2α∞ ∈ (0, 2). Further, σ2(t) is twice continuously
differentiable on (0,∞) with its first derivative σ̇2(t) := dσ2

dt (t) and second derivative σ̈2(t) := d2σ2

dt2 (t)
being ultimately monotone at ∞.

AII : σ2(t) is regularly varying at 0 with index 2α0 ∈ (0, 2] and its first derivative σ̇2(t) is ultimately monotone
as t→ 0.

AIII : σ2(t) is increasing and σ2(t)
t2 is decreasing over (0,∞).

Define ϕ by (1.4) assuming that the limit exists. For notational simplicity we set

t∗ =
α∞

c(1− α∞)
> 0

and

Δγ(u) =

⎧⎪⎨⎪⎩
←−σ

( √
2σ2(ut∗)

γu(1 + ct∗)

)
, if ϕ =∞ or 0,

1, if ϕ ∈ (0,∞),
(2.1)

where ←−σ is the asymptotic inverse of σ (see e.g., [39, 40] for details).
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Let tu be a maximizer of σ(ut)
1+ct over t ≥ 0. In view of Lemma 4.1 for u large enough tu is unique and

lim
u→∞ tu = t∗∈ (0,∞).

Hereafter Ψ stands for the survival function of an N(0, 1) random variable.
Before stating our main result, let us observe that

ψγ,∞(u) = P

(
sup

0≤s≤t<∞

X(tu)− γX(su)
u(1 + ct− cγs) > 1

)

is valid for any u > 0. Typically the most likely point to reach high value u for a centered Gaussian random
field corresponds to the point that maximizes its variance function, i.e., in our case

(su, tu) := argsup(s,t): 0≤s≤t<∞Var
(
X(tu)− γX(su)
u(1 + ct− cγs)

)
·

It will be shown in Lemma 4.1 that su = 0 for u large and thus tu = argsupt: t≥0
σ(ut)

u(1+ct) . This explains the
exponential term in the derived asymptotics. The following theorem extends results derived in [15], where the
special case X = BH is considered.

Theorem 2.1. If AI-AIII are satisfied, then for any γ ∈ (0, 1) and ϕ ∈ [0,∞] we have

ψγ,∞(u) ∼ 1
c

√
2α∞π
1− α∞

HVϕPγ
Vϕ

σ(ut∗)
Δ1(u)

Ψ

(
u(1 + ctu)
σ(utu)

)
,

with Vϕ =
√

2c
ϕ X if ϕ ∈ (0,∞) , Vϕ = Bαϕ if ϕ ∈ {0,∞} and γ := (1− γ)/γ.

An immediate application of the above theorem, together with the known results in [4] for the case γ = 0, yields
that, as u→∞

ψγ,∞(u) ∼ Pγ
Vϕ
ψ0,∞(u).

The above asymptotic tax equivalence shows that ψγ,∞(u) is proportional to ψ0,∞(u) as u → ∞, where the
proportionality constant is determined by the generalised Piterbarg constant Pγ

Vϕ
.

Theorem 2.2. If AI-AIII are satisfied, then for any γ ∈ (0, 1) and ϕ ∈ [0,∞] we have the convergence in
distribution (

τ∗1 − utu
A(u)

,
τ∗2 − utu
A(u)

)
d→ (N ,N ) , u→∞,

where A(u) = σ(ut∗)
c

√
α∞

1−α∞
and N ∼ N(0, 1).

The above result implies that the standardized conditional first pasage time τ∗
1 −utu

A(u) and last passage time τ∗
2 −utu

A(u)

both weakly converge to standard normal random variables and τ∗
2 (u)−τ∗

1 (u)
A(u) → 0 in probability as u→∞.



500 K. DȨBICKI ET AL.

2.2. Finite-time horizon

Next, we consider the finite-time horizon ruin probability, investigating ψγ,T for T a finite positive constant.
Since we consider the finite-time horizon, we shall impose weaker assumptions on the variance function σ2,
namely:

BI : σ2(0) = 0 and σ2(t) is twice differentiable over interval (0, T ].
BII : σ2(t) is regularly varying at 0 with index 2α0 ∈ (0, 2].
BIII : For t ∈ (0, T ], the first derivative σ̇2(t) > 0 and σ2(t)

t2 is decreasing.

For notational simplicity we set below

q(u) =←−σ
(√

2σ2(T )
u+ cT

)
·

Theorem 2.3. Suppose that BI–BIII hold and γ ∈ (0, 1).

(i) If s = o(σ2(s)) as s→ 0, then

ψγ,T (u) ∼ HBα0
Pγ

Bα0

2σ4(T )

σ̇2(T )q(u)u2
Ψ

(
u+ cT

σ(T )

)
·

(ii) If lims→0
σ2(s)

s = b ∈ (0,∞), then

ψγ,T (u) ∼ P
σ̇2(T )

b

B1/2
Pβ(b,γ)

B1/2
Ψ

(
u+ cT

σ(T )

)
, β(b, γ) :=

b(γ − γ2) + γσ̇2(T )
bγ2

·

(iii) If σ2(s) = o(s) as s→ 0, then

ψγ,T (u) ∼ Ψ

(
u+ cT

σ(T )

)
·

Remarks 2.4.
(i) From the proof of Theorem 2.3, we can similarly get the asymptotics of ψ0,T (u) (see also [23]), which

compared with ψγ,T (u), γ ∈ (0, 1), gives

ψγ,T (u) ∼ Kψ0,T (u), u→∞,
with

K =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pγ
Bα0

, ifs = o(σ2(s)),

Pβ(b,γ)
B1/2

, if lims→0
σ2(s)

s = b ∈ (0,∞),

1, ifσ2(s) = o(s).

(ii) The approach used in the proofs of Theorem 2.1 and Theorem 2.3 enables us to find exact asymptotics
of ψγ,Tu(u) as u → ∞, for some scenarios where the time-horizon Tu is a deterministic function of u. For
example, if utu = o(Tu) as u→∞, then by the proof of Theorem 2.1 we have ψγ,Tu(u) ∼ ψγ,∞(u), u→∞.
Additionally, if Tu → T as u→∞, then the asymptotics of ψγ,Tu(u) can be obtained by replacing Tu with
T in the corresponding formulas of Theorem 2.3. On the other side, the case Tu ∼ t∗u as u→∞, is out of
the approach given in this paper. We suspect that it leads to the asymptotics of qualitatively other type
than derived in Theorems 2.1, 2.3.
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Next we consider a finite-time counterpart of Theorem 2.2. While for the infinite-time horizon the limit
distribution in Theorem 2.2 is Gaussian, as shown below, this is not the case for finite-time horizon, where
the limit distribution is exponential. The intuitive explanation for this is that the local behaviour of variance
function of the considered Gaussian field in neighbourhood of the variance maximizer plays the key role for the
type of the limit distribution. In particular, if the first derivative of the variance function is positive at this
point, then the limiting distribution is exponential, while the first derivative equal to 0 at that point leads to
limit with Normal distribution; compare Lemma 4.1 with Lemma 4.3.

Theorem 2.5. If BI–BIII are satisfied and lims→0
σ2(s)

s ∈ [0,∞], then the convergence in distribution

σ̇2(T )
2σ4(T )

u2(T − τ1)
∣∣(τ1 ≤ T ) d→ E

holds, as u→∞, with E a unit exponential random variable.

3. Applications

In this section, we shall focus on two important classes of processes with stationary increments. We discuss
first the sum of independent fBm’s with different Hurst parameters and then investigate Gaussian integrated
processes.

3.1. Multiplex fBm

Let next BHi , 1 ≤ i ≤ n be independent standard fBm’s with index 0 < H1 < H2 ≤ · · · ≤ Hn−1 < Hn < 1
and define for t ≥ 0

X(t) = MH(t) :=
n∑

i=1

BHi(t), H = (H1, · · · , Hn). (3.1)

A motivation to consider such a process stems from the insurance models with tax, where BHi represents the
aggregated claims of the sub-portfolios of the insurance company. We have that

σ2(t) = σ2
MH

(t) =
n∑

i=1

t2Hi

satisfies AI-AIII with α0 = H1, α∞ = Hn. Further,

ϕ =

⎧⎨⎩∞, 1/2 < Hn < 1,
1, Hn = 1/2,
0, 0 < Hn < 1/2

implying the following result:

Corollary 3.1. Suppose that X is defined by (3.1).

(i) If 0 < Hn < 1/2, then

ψγ,∞(u) ∼ HBH1
Pγ

BH1
2

H1−1
2H1
√
πc

2Hn−H1Hn−H1
H1 H

H1−4Hn+2H1Hn
2H1

n (1−Hn)
4Hn−H1−2H1Hn−2

2H1

×u
H1Hn−2Hn+1

H1 Ψ

(
inf
t>0

u(1 + ct)
σMH (ut)

)
·
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(ii) If Hn = 1/2, then

ψγ,∞(u) ∼ H√
2cMH

Pγ√
2cγMH

√
2πu
c3

Ψ

(
inf
t>0

u(1 + ct)
σMH (ut)

)
·

(iii) If 1/2 < Hn < 1, then

ψγ,∞(u) ∼ HBHn
Pγ

BHn
2

Hn−1
2Hn

√
πc1−HnH

2Hn−3
2

n (1−Hn)
3Hn−2−2H2

n
2Hn u

(1−Hn)2

Hn Ψ

(
inf
t>0

u(1 + ct)
σMH (ut)

)
·

Moreover, since BI-BIII are satisfied for MH(t), we obtain for any T > 0.

Corollary 3.2. Suppose that X is defined by (3.1).

(i) If 0 < H1 < 1/2, then

ψγ,T (u) ∼ HBH1
Pγ

BH1
2−

1
2H1

(∑n
i=1 T

2Hi
) 2H1−1

H1∑n
i=1HiT 2Hi−1

u
1−2H1

H1 Ψ

(
u+ cT√∑n

i=1 T
2Hi

)
·

(ii) If H1 = 1/2, then

ψγ,T (u) ∼ P2
∑n

i=1 HiT
2Hi−1

B1/2
P

γ−γ2+2γ
∑n

i=1 HiT2Hi−1

γ2

B1/2
Ψ

(
u+ cT√∑n

i=1 T
2Hi

)
·

(iii) If 1/2 < H1 < 1, then

ψγ,T (u) ∼ Ψ
(

u+ cT√∑n
i=1 T

2Hi

)
·

Remark 3.3. In the above corollaries, the main contribution to the asymptotics depends on all Hi’s while the
polynomial terms depend on the properties of variance function at time 0 and∞ which is determined by Hurst
parameters H1 and Hn. It follows from the fact that the formula under Φ(·) comes from global optimum of the
variance function of the appropriate Gaussian field, while the polynomial part of the asymptotics follows from
the asymptotic relation between local behavior of variance and correlation in the neighbourhood of the variance
optimizer.

3.2. Gaussian integrated processes

Suppose that

X(t) =
∫ t

0

Y (s)ds, t ≥ 0, (3.2)

where Y is a stationary centered Gaussian process with unit variance and a.s. continuous sample paths.
Let R(t) = Cov (Y (s), Y (s+ t)) , s, t ≥ 0. In this subsection, we shall consider two scenarios:

SRD (short-range dependent), i.e., we shall assume that

(i) R(t) is decreasing over [0,∞),
(ii)

∫∞
0
R(t)dt = G ∈ (0,∞).

LRD (long-range dependent), i.e., we shall suppose that

(i) R(t) is decreasing over [0,∞),
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(ii) R(t) is regularly varying at infinity with index 2H − 2, H ∈ (1/2, 1). It follows that AI-AIII are satisfied
if X is SRD or LRD, implying our next results.

Corollary 3.4. Suppose that X is defined by (3.2).

(i) If X is SRD, then

ψγ,∞(u) ∼ H√
2c

G X
Pγ√

2γc
G X

√
2πGu
c3

Ψ

(
inf
t>0

u(1 + ct)
σ(ut)

)
·

(ii) If X is LRD, then

ψγ,∞(u) ∼ HBHPγ
BH

2
H−1
2H
√
πc1−HH

1−4H+2H2
2H (1−H)

3H−2−2H2
2H (2H − 1)

1−H
2H

u
√
R(u)

R∗(u)
Ψ

(
inf
t>0

u(1 + ct)
σ(ut)

)
,

with R∗ the asymptotic inverse function of u
√
R(u).

Since, BI-BIII are satisfied (note that σ2(t) ∼ t2 = o(t) as t→ 0) for R(t) positive and decreasing on [0, T ],
applying Theorem 2.3 we arrive at the following corollary.

Corollary 3.5. If X is defined by (3.2) with R(t) positive and decreasing on [0, T ], then

ψγ,T (u) ∼ Ψ

(
u+ cT

σ(T )

)
, u→∞.

4. Proofs

We begin with introduction of some useful notation. Namely we write

D := {(s, t) : 0 ≤ s ≤ t <∞}, σ2
γ(s, t) := Var(X(t)− γX(s)),

σγ,u(s, t) :=
σγ(us, ut)

1 + c(t− γs)
and set further for (s, t), (s1, t1) ∈ D

ru(s, t, s1, t1) := Cor(X(ut) − γX(us), X(ut1)− γX(us1)).

Hereafter, Q, Qi, i = 1, 2, . . . are positive constants that may change from line to line. For any non-zero random
variable X we shall define

X :=
X√

Var(X)
.

In our proofs multiple limits appear; the order when passing to limit is important. We shall write for instance

au(S, S1)→ 0, u→∞, S →∞, S1 →∞
to mean that

lim
S1→∞

lim
S→∞

lim
u→∞ au(S, S1) = 0.

This convention applies for other instances of double or triple limits.
We briefly comment on some useful properties of σ. For λ ∈ R, by AI and AII, the function

gλ(t) :=
σ2(t)
tλ

(4.1)

is regularly varying at 0 with index 2α0 − λ and at infinity with index 2α∞ − λ.
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Further, by uniform convergence theorem (UCT) in [40–42], we have that for any T > 0 and 0 < λ <
min(2α0, 2α∞)

lim
u→0

sup
t∈(0,T ]

∣∣∣∣gλ(ut)
gλ(u)

− |t|2α0−λ

∣∣∣∣ = 0

implying that for any T > 0, when u is sufficiently small

σ2(ut)
σ2(u)

=
gλ(ut)
gλ(u)

|t|λ ≤ 2|T |2α0−λ|t|λ, t ∈ [0, T ]. (4.2)

Moreover, Potter’s bounds (see e.g., [40–42]) show that for any 0 < ε < 2α0, there exists T > 0 and Q1, Q2 > 0
such that for all 0 < s, t < T

Q1 min

((
t

s

)2α0−ε

,

(
t

s

)2α0+ε
)
≤ σ2(t)
σ2(s)

≤ Q2 max

((
t

s

)2α0−ε

,

(
t

s

)2α0+ε
)
· (4.3)

4.1. Proof of Theorem 2.1

First, we re-write for any u > 0 the ruin probability ψγ,∞(u) as

ψγ,∞(u) = P

(
sup
t≥0

(
X(t)− ct− γ inf

s∈[0,t]
(X(s)− cs)

)
> u

)
= P

(
sup

0≤s≤t<∞

X(tu)− γX(su)
1 + c(t− γs) > u

)

= P

(
sup

(s,t)∈D

Zu(s, t) > m(u)

)
,

with

Zu(s, t) =
(
X(ut)− γX(us)

1 + c(t− γs)
)(

1 + ctu
σ(utu)

)
, (s, t) ∈ D,u > 0, (4.4)

and

m(u) = inf
t≥0

u(1 + ct)
σ(ut)

=
u(1 + ctu)
σ(utu)

, u > 0. (4.5)

Hereafter we shall denote

E(u) := E1(u)× E2(u), E1(u) =

[
0,
←−σ (

u−1σ2(u) lnu
)

u

)
, E2(u) =

(
tu − σ(u) lnu

u
, tu +

σ(u) lnu
u

)
· (4.6)

As it will be shown below, the set E(u) covers sufficiently large neighbourhood of the maximizer of variance of
Zu in order to determine the asymptotics of ψγ,∞(u) by supremum of Zu(s, t) over E(u). More formally, for
any u > 0 we write

Θ(u) ≤ ψγ,∞(u) ≤ Θ(u) +Θ0(u), (4.7)

with

Θ(u) = P

(
sup

(s,t)∈E(u)

Zu(s, t) > m(u)

)
, Θ0(u) = P

(
sup

(s,t)∈D\E(u)

Zu(s, t) > m(u)

)
.

The strategy of the proof is to derive first the exact asymptotics of Θ(u) as u → ∞ and then to show that
(recall (4.7)) that limu→∞Θ0(u)/Θ(u) = 0.

Before proceeding to details of these steps of the proof, we summarize some dependence properties of the
analyzed Gaussian field which will be needed in our proofs.
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4.1.1. Dependence structure of Zu

Proofs of the following lemmas are deferred to Appendix.

Lemma 4.1. If the variance function σ2 of X satisfies AI-AII, then for u large enough, the unique maximizer
of σγ,u(s, t) over D is (0, tu) and limu→∞ tu = t∗ ∈ (0,∞). Moreover, for any 0 < ε < min(a1, a2), when u is
large enough and δ is small enough

(a1 − ε)(t− tu)2 + (a2 − ε)σ
2(us)
σ2(u)

≤ 1− σγ,u(s, t)
σγ,u(0, tu)

≤(a1 + ε)(t− tu)2+(a2 + ε)
σ2(us)
σ2(u)

, |t− tu| < δ, 0 ≤ s < δ,

with

a1 =:
c2(1− α∞)3

2α∞
, a2 =:

γ(1− γ)
2

[
c(1− α∞)

α∞

]2α∞

.

Lemma 4.2. If AI-AIII are satisfied and δu > 0, u > 0 are such that limu→∞ δu = 0, then we have

lim
u→∞ sup

(s,t) 	=(s1,t1)∈[0,δu)×(tu−δu,tu+δu)

∣∣∣∣∣∣ 1− ru(s, t, s1, t1)
σ2(u|t−t1|)+γ2σ2(u|s−s1|)

2σ2(ut∗)

− 1

∣∣∣∣∣∣ = 0.

4.1.2. Asymptotic upper bound for Θ0(u)

For notational simplicity we define next (recall that D = {(s, t) : 0 ≤ s ≤ t <∞})

DT = {(s, t) : 0 ≤ s ≤ t ≤ T }, Dc
T = D \DT , Dδ,u = DT \ ([0, δ]× [tu − δ, tu + δ])

and
D∗

δ,u = ([0, δ]× [tu − δ, tu + δ])\E(u).

For any u > 0

P

(
sup

(s,t)∈D\E(u)

Zu(s, t) > m(u)

)

≤ P

(
sup

(s,t)∈Dc
T

Zu(s, t) > m(u)

)
+ P

(
sup

(s,t)∈Dδ,u

Zu(s, t) > m(u)

)
+ P

(
sup

(s,t)∈D∗
δ,u

Zu(s, t) > m(u)

)

:= p1(u) + p2(u) + p3(u).

Lemma 5.1 leads to

pi(u) = o

(
u

m(u)Δ1(u)
Ψ(m(u))

)
, i = 1, 2, 3 (4.8)

implying that

Θ0(u) = o

(
u

m(u)Δ1(u)
Ψ(m(u))

)
, u→∞. (4.9)

Since the proof of (4.8) is quite technical, we shall present it in Appendix.
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4.1.3. Asymptotics of Θ(u)

We shall distinguish three scenarios: ϕ = 0, ϕ ∈ (0,∞) and ϕ =∞. The reason for this is that after rescaling
the time of the correlation function in Lemma 4.2, we get

m2(u)
(

1− ru(
Δγ(u)s
u

,
Δ1(u)t
u

,
Δγ(u)s1

u
,
Δ1(u)t1

u
)
)
∼ σ2(Δ1(u)|t− t1|)

σ2(Δ1(u))
+
σ2(Δγ(u)|s− s1|)

σ2(Δγ(u))
· (4.10)

If ϕ = 0, then limu→∞Δγ(u) = 0 for γ ∈ (0, 1], implying that only the local behaviour of σ2 at 0 contributes
to the limit in (4.10). If ϕ ∈ (0,∞), then limu→∞Δγ(u) ∈ (0,∞), indicating that the whole function σ2

determines the limit in (4.10). If ϕ = ∞, then limu→∞Δγ(u) = ∞, which means that the value of σ2(t) as
t→∞ is sufficient for the limit in (4.10).
Case ϕ = 0. We shall apply the uniform double sum technique which is based on appropriate division

of the set E(u) on “tiny” intervals for which one can uniformly derive exact asymptotics utilising our novel
result in Lemma 5.3 in Appendix. For this purpose we define

Fk,S(u) =

[
tu + k

Δ1(u)
u

S, tu + (k + 1)
Δ1(u)
u

S

]
, k ∈ Z, S > 0

Ll,S(u) =

[
l
Δγ(u)
u

S, (l + 1)
Δγ(u)
u

S

]
, l ∈ N ∪ {0}, S > 0

and set

Ik,l,S,S1(u) = Ll,S1(u)× Fk,S(u), Ik(u) := Ik,0,S,S1 , (4.11)

with k ∈ N, l ∈ N ∪ {0}, S, S1 > 0. Recall that, due to (2.1), Δγ(u) =←−σ
(√

2σ2(ut∗)
γu(1+ct∗)

)
. Further, let

NS,u =
[
σ(u) ln u
Δ1(u)S

]
+ 1, N

(1)
S1,u =

[←−σ (
u−1σ2(u) lnu

)
Δγ(u)S1

]
+ 1 (4.12)

and put
V1 = {(k, k1),−NS,u ≤ k < k1 ≤ NS,u, |k − k1| > 1},
V2 = {(k, k1),−NS,u ≤ k < k1 ≤ NS,u, k + 1 = k1}.

We begin with the derivation of an upper estimate for Θ(u), as u→∞.
Upper bound of Θ(u). Bonferroni inequality yields

Θ(u) ≤
NS,u∑

k=−NS,u

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u)

)

+
NS,u∑

k=−NS,u

N
(1)
S1,u∑
l=1

P

(
sup

(s,t)∈Ik,l,S,S1(u)

Zu(s, t) > m(u)

)
:= Θ1(u) +Θ2(u). (4.13)

In light of Lemma 4.1 for u large enough

Θ1(u) ≤
NS,u∑

k=−NS,u

P

⎛⎝ sup
(s,t)∈Ik(u)

Zu(s, t)

1 + (a2 − ε)σ2(us)
σ2(u)

> m−ε
k,0(u)

⎞⎠ , (4.14)
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with ε ∈ (0,min(a1, a2)) and

m±ε
k,0(u) = m(u)

(
1 + (a1 − ε)

(
k∗
Δ1(u)
u

S

)2
)
, k∗ = min(|k|, |k + 1|).

In order to derive an upper bound for Θ1(u), we apply Lemma 5.3 in Appendix, which gives uniform asymptotics
for all terms in (4.14). For this purpose, let

gu,k = m−ε
k,0(u), ξu,k =

Zu,k(s, t)
1 + fu,k(s, t)

, (s, t) ∈ E = [0, S1]× [0, S], (4.15)

with k ∈ Ku = {k : −NS,u ≤ k ≤ NS,u}, where

Zu,k(s, t) = Zu

(
Δγ(u)
u

s, tu,k +
Δ1(u)
u

t

)
, fu,k(s) = (a2 − ε)σ

2(Δγ(u)s)
σ2(u)

, s ∈ [0, S1]

and for u > 0

tu,k = tu + k
Δ1(u)
u

S.

We check that the conditions of Lemma 5.3 hold with the above introduced notation. We start off with proving
that P1–P3 (see Appendix) hold with

V (s, t) = Bα0(s) +B∗
α0

(t), (s, t) ∈ [0, S1]× [0, S],

where Bα0 and B∗
α0

are independent fBm’s with index α0. It is straightforward that condition P1 holds. For
P2, by Lemma 4.2 and the fact that

gu,k ∼ m(u), u→∞
uniformly with respect to k ∈ Ku, we have that for all k ∈ Ku and (s, t), (s1, t1) ∈ E, as u→∞

(gu,k)2Var (Zu,k(s, t)− Zu,k(s1, t1)) = 2(gu,k)2
(

1− ru
(
Δγ(u)
u

s,
Δ1(u)
u

t,
Δγ(u)
u

s1,
Δ1(u)
u

t1

))
∼ (gu,k)2

σ2(Δ1(u)|t− t1|) + γ2σ2(Δγ(u)|s− s1|)
σ2(ut∗)

∼ 2
(
σ2(Δ1(u)|t− t1|)

σ2(Δ1(u))
+
σ2(Δγ(u)|s− s1|)

σ2(Δγ(u))

)
,

implying that we can set

θu,k(s, t, s1, t1) =
σ2(Δ1(u)|t− t1|)

σ2(Δ1(u))
+
σ2(Δγ(u)|s− s1|)

σ2(Δγ(u))
, (s, t), (s1, t1) ∈ E, k ∈ Ku. (4.16)

Moreover, since
lim

u→∞Δγ(u) = 0, γ ∈ (0, 1]

by UCT

lim
u→∞ sup

k∈Ku

sup
(s,t),(s1,t1)∈E

∣∣θu,k(s, t, s1, t1)− |s− s1|2α0 − |t− t1|2α0
∣∣

= lim
u→∞ sup

(s,t),(s1,t1)∈E

∣∣∣∣σ2(Δγ(u)|s− s1|)
σ2(Δγ(u))

+
σ2(Δ1(u)|t− t1|)

σ2(Δ1(u))
− |s− s1|2α∞ − |t− t1|2α0

∣∣∣∣ = 0.
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This means that P2 holds. For P3, by (4.2) we have that for u sufficiently large

θu,k(s, t, s1, t1)) =
σ2(Δ1(u)|t− t1|)

σ2(Δ1(u))
+
σ2(Δγ(u)|s− s1|)

σ2(Δγ(u))
≤ 2

(
S2α0−λ + S2α0−λ

1

) (|s− s1|λ + |t− t1|λ
)

for (s, t), (s1, t1) ∈ E and all k ∈ Ku with 0 < λ < min(2α0, 2α∞). By UCT, we have for all (s, t), (s1, t1) ∈ E

sup
|(s,t)−(s1,t1)|<ε

|θu,k(s, t, 0, 0)− θu,k(s1, t1, 0, 0)|

≤ sup
|(s,t)−(s1,t1)|<ε

∣∣∣∣σ2(Δ1(u)t)− σ2(Δ1(u)t1)
σ2(Δ1(u))

+
σ2(Δγ(u)s)− σ2(Δγ(u)s1)

σ2(Δγ(u))
− (t2α0 − t2α0

1 + s2α0 − s2α0
1 )

∣∣∣∣
+ sup

|(s,t)−(s1,t1)|<ε

|t2α0 − t2α0
1 + s2α0 − s2α0

1 |

≤ 2ε+ sup
|(s,t)−(s1,t1)|<ε

|t2α0 − t2α0
1 + s2α0 − s2α0

1 | ≤ Cεα0 , u→∞, (4.17)

with C depending only on α0 (but not on k ∈ Ku). Moreover, using UCT, we have for (s, t), (s1, t1) ∈ E,
|(s, t)− (s1, t1)| < ε and k ∈ Ku∣∣∣∣(gu,k)2

(
1− ru

(
su,l +

Δγ(u)
u

s, tu,k +
Δ1(u)
u

t, su,l, tu,k

))
− θu,k(s, t, 0, 0)

∣∣∣∣ ≤ ε|θu,k(s, t, 0, 0)|

≤ 2(S2α0 + S2α0
1 )ε

for all u large. Consequently, as u→∞

(gu,k)2E{[Zu,k(s, t)− Zu,k(s1, t1)]Zu,k(0, 0)}

≤
∣∣∣∣(gu,k)2

(
1− ru(su,l +

Δγ(u)
u

s, tu,k +
Δ1(u)
u

t, su,l, tu,k)
)
− θu,k(s, t, 0, 0)

∣∣∣∣
+
∣∣∣∣(gu,k)2

(
1− ru(su,l +

Δγ(u)
u

s1, tu,k +
Δ1(u)
u

t1, su,l, tu,k)
)
− θu,k(s, t, 0, 0)

∣∣∣∣
+|θu,k(s, t, 0, 0)− θu,k(s, t, 0, 0)|
≤ Cεα0 + 4(S2α0 + S2α0

1 )ε

uniformly for (s, t), (s1, t1) ∈ E, |(s, t) − (s1, t1)| < ε and k ∈ Ku. Letting ε → 0, we confirm that P3 holds.
Hence we can conclude that P1–P3 hold with V (s, t) = Bα0(s) + B∗

α0
(t), (s, t) ∈ E, where Bα0 and B∗

α0
are

independent fBm’s with index α0. Therefore, by the fact that for all ε > 0 sufficiently small (hereafter⇒ means
uniform convergence)

g2
u,kfu,k(s)⇒ γεs

2α0 , s ∈ [0, S1], with γε =
a2 − ε
a2

γ,

and Lemma 5.3 we have

P

(
sup(s,t)∈E ξu,k(s, t) > gu,k

)
Ψ(gu,k)

→Rγεs2α0

V (E) = HBα0
[0, S]Pγε

Bα0
[0, S1], u→∞ (4.18)
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uniformly with respect to −NS,u ≤ k ≤ NS,u. From (4.14) and (4.18) it follows that

Θ1(u) ≤
NS,u∑

k=−NS,u

HBα0
[0, S]Pγε

Bα0
[0, S1]Ψ(m−ε

k,0(u))(1 + o(1))

≤
NS,u∑

k=−NS,u

HBα0
[0, S]Pγε

Bα0
[0, S1]Ψ(m(u))e−(a1−ε)

(
k∗m(u)

Δ1(u)
u S

)2

(1 + o(1))

≤ HBα0
[0, S]
S

Pγε

Bα0
[0, S1](a1 − ε)−1/2Ψ(m(u))

u

m(u)Δ1(u)

∫ ∞

−∞
e−x2

dx(1 + o(1))

∼ (a1 − ε)−1/2
√
πHBα0

Pγε

Bα0
Ψ(m(u))

u

m(u)Δ1(u)
, (4.19)

as u→∞, S, S1 →∞ (in this order).
Next, we deal with Θ2(u). By UCT, for any ε > 0 sufficiently small

(a2 − ε) sup
s∈E1(u)

σ2(us)
σ2(u)

→ 0, u→∞.

Moreover, by (4.3) for u large enough

inf
s∈Ll,S(u)

(
m−ε

k,0(u)
)2 σ2(us)

σ2(u)
≥ 1

2
inf

s∈[lS1,(l+1)S1]

σ2(Δγ(u)s)
σ2(Δγ(u))

σ2(Δγ(u))
σ2(u)

m2(u)

≥ Q inf
s∈[lS1,(l+1)S1]

σ2(Δγ(u)s)
σ2(Δγ(u))

≥ Q(lS1)λ, 1 ≤ l ≤ N (1)
S1,u, 0 < λ < min(2λ0, 2α∞).

Consequently, by Lemma 4.1 and 5.3 (note that we can similarly show the validity of P1–P3 for Zu(s, t)) we
have for any ε > 0

Θ2(u) ≤
NS,u∑

k=−NS,u

N
(1)
S1,u∑
l=1

P

(
sup

(s,t)∈Ik,l,S,S1(u)

Zu(s, t) > m−ε
k,0(u)

(
1 + (a2 − ε) inf

s∈Ll,S(u)

σ2(us)
σ2(u)

))

≤
NS,u∑

k=−NS,u

N
(1)
S1,u∑
l=1

HBα0
[0, S]HBα0

[0, S1]Ψ(m−ε
k,0(u))e−Q1(lS1)

λ

(1 + o(1))

≤
NS,u∑

k=−NS,u

HBα0
[0, S]HBα0

[0, S1]Ψ(m−ε
k,0(u))e−Q2Sλ

1 (1 + o(1))

= o

(
Ψ(m(u))

u

m(u)Δ1(u)

)
, (4.20)

as u→∞, S, S1 →∞. Combining (4.19) and (4.20), and letting ε→ 0, we derive the upper bound of Θ(u).
Lower bound of Θ(u). By Bonferroni inequality we obtain

Θ(u) ≥
NS,u−1∑

k=−NS,u+1

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u)

)
−Σ1(u)−Σ2(u) := J(u)−Σ1(u)−Σ2(u), (4.21)
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with

Σi(u) =
∑

(k,k1)∈Vi

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u), sup
(s,t)∈Ik1 (u)

Zu(s, t) > m(u)

)
, i = 1, 2. (4.22)

With similar arguments as in the derivation of (4.19) we have

J(u) ≥ (a1 + ε)−1/2
√
πHBα0

Pγ−ε

Bα0
Ψ(m(u))

u

m(u)Δ1(u)
(1 + o(1)), u→∞, S, S1 →∞. (4.23)

In light of Lemma 4.2 and (4.3) we have for (s, t, s1, t1) ∈ Ik(u)× Ik1(u) with (k, k1) ∈ V1

2 ≤ Var(Zu(s, t) + Zu(s1, t1)) = 4− 2(1− ru(s, t, s1, t1))

≤ 4− γ2σ2(u|s− s1|) + σ2(u|t− t1|)
2σ2(ut∗)

≤ 4− 1
2m2(u)

σ2(Δ1(u)|u(t− t1)/Δ1(u)|)
σ2(Δ1(u))

≤ 4−Q3
|k1 − k|λSλ

m2(u)
,

where 0 < λ < min(2α0, 2α∞), implying thus

Σ1(u) ≤
∑

(k,k1)∈V1

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m−ε
k,0(u), sup

(s,t)∈Ik1 (u)

Zu(s, t) > m−ε
k1,0(u)

)

≤
∑

(k,k1)∈V1

P

(
sup

(s,t,s1,t1)∈Ik(u)×Ik1 (u)

(
Zu(s, t) + Zu(s1, t1)

)
> 2m̃−ε

k,k1,0(u)

)

≤
∑

(k,k1)∈V1

P

⎛⎝ sup
(s,t,s1,t1)∈Ik(u)×Ik1 (u)

(
Zu(s, t) + Zu(s1, t1)

)
>

2m̃−ε
k,k1,0(u)√

4−Q3
|k1−k|λSλ

m2(u)

⎞⎠ ,

with m̃−ε
k,k1,0(u) = min(m−ε

k,0(u),m−ε
k1,0(u)).

Let next
ru(t, s, t1, s1, t′, s′, t

′
1, s

′
1) = Cor(Zu(s, t) + Zu(s1, t1), Zu(s′, t′) + Zu(s

′
1, t

′
1)).

By Lemma 4.2 and (4.3), for u sufficiently large

1− ru(s, t, s1, t1, s′, t′, s′1, t
′
1) ≤

Var(Zu(s, t) + Zu(s1, t1)− Zu(s′, t′)− Zu(s
′
1, t

′
1))

2
√

Var(Zu(s, t) + Zu(s1, t1))
√

Var(Zu(s′, t′) + Zu(s′1, t
′
1)

≤ 1− ru(s, t, s′, t′) + 1− ru(s1, t1, s
′
1, t

′
1)

≤ 2
m2(u)

σ2(Δγ(u)|u(s− s1)/Δγ(u)|) + σ2(Δγ(u)|u(s′ − s′1)/Δγ(u)|)
σ2(Δγ(u))

+
2

m2(u)
σ2(Δ1(u)|u(t− t1)/Δ1(u)|) + σ2(Δ1(u)|u(t′ − t′1)/Δ1(u)|)

σ2(Δ1(u))

≤ Q4(S∗)2

m2(u)

[(
u

Δγ(u)

)κ (
|s−s′|κ+|s1−s′1|κ

)
+
(

u

Δ1(u)

)κ (
|t−t′|κ+|t1−t′1|κ

)]
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holds for (t, s, t1, s1), (t′, s′, t
′
1, s

′
1) ∈ Ik(u) × Ik1 (u) with 0 < κ < min(2α∞, 2α0) and S∗ = max(S, S1) ≥ 1.

Define the following homogeneous Gaussian field

X∗
u(s, t, s1, t1) = 2−1(X1

u(s) +X2
u(t) +X3

u(s1) +X4
u(t1)), (s, t, s1, t1) ∈ R

4,

with X i
u(s), 1 ≤ i ≤ 4, being independent with the correlation functions

r(i)u (s, s′) = e−8Q4(S∗)2
(

u
Δ1(u)

)κ |s−s′|κ
m2(u) , i = 1, 3,

r(i)u (s, s′) = e−8Q4(S∗)2
(

u
Δγ (u)

)κ |s−s′|κ
m2(u) , i = 2, 4.

We denote the correlation function of X∗
u by r∗u. Clearly, for (t, s, t1, s1), (t′, s′, t

′
1, s

′
1) ∈ Ik(u) × Ik1(u) and u

large enough

1− ru(s, t, s1, t1, s′, t′, s
′
1, t

′
1) ≤ 1− r∗u(s, t, s1, t1, s′, t′, s

′
1, t

′
1).

In light of Slepian’s inequality (see e.g., Thm. 2.2.1 in [43]; note in passing that there is a remarkable extension
of this inequality for stable processes, see [44]) and Lemma 5.3 we have

Σ1(u) ≤
∑

(k,k1)∈V1

P

⎛⎝ sup
(s,t,s1,t1)∈Ik(u)×Ik1 (u)

X∗
u(s, t, s1, t1) >

2m̃−ε
k,k1,0(u)√

4−Q3
|k1−k|λSλ

m2(u)

⎞⎠
≤

∑
(k,k1)∈V1

(HBκ/2 [0, S2]
)2 (HBκ/2 [0, S3]

)2
Ψ

⎛⎝ 2m̃−ε
k,k1,0(u)√

4−Q3
|k1−k|λSλ

m2(u)

⎞⎠ (1 + o(1))

≤
NS,u∑

k=−NS,u

(HBκ/2 [0, S2]
S2

)2 (HBκ/2 [0, S3]
S3

)2

Ψ(m−ε
k,0(u))S−2

2 S−2
3

∑
j≥1

e−Q5(jS)λ

(1 + o(1))

≤ Q6Ψ(m(u))
u

m(u)Δ1(u)
S−2

1 e−Q7Sλ

(1 + o(1))

= o

(
Ψ(m(u))

u

m(u)Δ1(u)

)
, (4.24)

with S2 = (2Q4(S∗)2)1/κS and S3 = (2Q4(S∗)2)1/κS1, as u→∞, S →∞ (in this order). Further, we obtain

Σ2(u) =
NS,u∑

k=−NS,u

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u), sup
(s,t)∈Ik+1(u)

Zu(s, t) > m(u)

)

≤
NS,u∑

k=−NS,u

[
P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u)

)
+ P

(
sup

(s,t)∈Ik+1(u)

Zu(s, t) > m(u)

)

−P

(
sup

(s,t)∈Ik(u)∪Ik+1(u)

Zu(s, t) > m(u)

)]

≤
NS,u∑

k=−NS,u

(
2HBα0

[0, S]−HBα0
[0, 2S]

)Pγε

Bα0
[0, S1]Ψ(m̃−ε

k,k+1,0(u))(1 + o(1))

= o

(
Ψ(m(u))

u

m(u)Δ1(u)

)
(4.25)
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as u → ∞, S1 → ∞, S → ∞. Combining (4.23)–(4.25) and letting ε → 0, the lower bound of Θ(u) is derived.
Since the upper and lower bound coincide, then we have

Θ(u) ∼
√

π

a1
HBα0

Pγ
Bα0

Ψ(m(u))
u

m(u)Δ1(u)

and therefore the claim follows by (4.7) and (4.9)–

Case ϕ ∈ (0, ∞). The main difference to the above proof is that Δγ(u) = 1 and γ ∈ (0, 1], which influ-
ences (4.16) and (4.18) and hence the resulting Pickands or Piterbarg constants that show up in the result.
Therefore, in order to avoid repetitions, we present only the counterpart of the derivations of (4.16) and (4.18).
Next, we check P2–P3 (conditions P1 is easy to verify) by using the same notation as in (4.15) and (4.16). In
order to prove P2, in light of Lemma 4.2 and the fact that gu,k ∼ m(u) as u → ∞ uniformly with respect to
k ∈ Ku, we have that for all k ∈ Ku and (s, t), (s1, t1) ∈ E, as u→∞

(gu,k)2Var (Zu,k(s, t)− Zu,k(s1, t1)) = 2(gu,k)2
(

1− ru
(
Δγ(u)
u

s,
Δ1(u)
u

t,
Δγ(u)
u

s1,
Δ1(u)
u

t1

))
∼ (m(u))2

σ2(Δ1(u)|t− t1|) + γ2σ2(Δγ(u)|s− s1|)
σ2(ut∗)

∼ 2
(

2c2γ2

ϕ2
σ2(|s− s1) +

2c2

ϕ2
σ2(|t− t1|)

)
·

Hence, we can set that

θu,k(s, t, s1, t1) =
2c2γ2

ϕ2
σ2(|s− s1) +

2c2

ϕ2
σ2(|t− t1|), (s, t), (s1, t1) ∈ E, k ∈ Ku,

which ensures that P2 holds. Next, for P3, in light of (4.3) we derive that for u sufficiently large and λ ∈
(0,min(2α0, 2α∞)),

θu,k(s, t, s1, t1) =
2c2

ϕ2
|σ2(|s− s1|) + σ2(|t− t1|)| ≤ Q

(|s− s1|λ + t− t1|λ
)
,

with k ∈ Ku, (s, t), (s1, t1) ∈ E. In addition, for (s, t), (s1, t1) ∈ E, |(s, t)−(s1, t1)| < ε, k ∈ Ku and u sufficiently
large we have

(gu,k)2E{[Zu,k,l(s, t)− Zu,k,l(s1, t1)]Zu,k,l(0, 0)}

≤
∣∣∣∣(gu,k)2

(
1− ru(su,l +

1
u
s, tu,k +

1
u
t, su,l, tu,k)

)
− θu,k(s, t, 0, 0)

∣∣∣∣
+
∣∣∣∣(gu,k)2

(
1− ru(su,l +

1
u
s1, tu,k +

1
u
t1, su,l, tu,k)

)
− θu,k(s1, t1, 0, 0)

∣∣∣∣
+|θu,k(s, t, 0, 0)− θu,k(s1, t1, 0, 0)|
≤ ε|θu,k(s, t, 0, 0) + θu,k(s1, t1, 0, 0)|+ |θu,k(s, t, 0, 0)− θu,k(s1, t1, 0, 0)|
≤ C2

(
ε+

∣∣σ2(t)− σ2(t1)
∣∣ +

∣∣σ2(s)− σ2(s1)
∣∣)→ 0, ε→ 0.

Thus P3 is satisfied. Next let

V (s, t) =
1 + ct∗√
2ϕt∗2α∞

[
γX(s) +X∗(t)

]
=
√

2c
ϕ

[
γX(s) +X∗(t)

]
, (s, t) ∈ E,
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with X∗ an independent copy of X . Hence by Lemma 5.3 and the fact that (recall that γε = a2−ε
a2

γ)

(gu,k)2fu,k(s, t)⇒ γεγ
2(1 + ct∗)2

2t∗4α∞ϕ2
σ2(s) =

2γεc
2γ2

ϕ2
σ2(s), (s, t) ∈ E, u→∞,

we have

P

(
sup(s,t)∈E ξu,k(s, t) > gu,k

)
Ψ(gu,k)

→R
2γεc2γ2

ϕ2 σ2(s)

V (E) = H√
2c

ϕ X
[0, S]Pγε√

2cγ
ϕ X

[0, S1], u→∞

uniformly with respect to k ∈ Ku. Repeating the derivations of (4.19)–(4.25), we conclude that the claim follows
with the generalised Pickands and Piterbarg constants above instead of those for case ϕ = 0. Note that the
existence of HX∗ has been proved, see e.g. [2, 4, 16]; the proof of the finiteness of the generalised Piterbarg
constants limS1→∞ Pγε√

2cγ
ϕ X

[0, S1] is postponed to Lemma 5.4 in the Appendix.

Case ϕ = ∞. Since Δγ(u) is the same as in the case ϕ = 0, the proof is very similar to that case. The main
difference is that the limiting Gaussian process V that appears in (4.18) is here different, namely P1–P3 hold
with

V (s, t) = Bα∞(s) +B∗
α∞(t), (s, t) ∈ [0, S1]× [0, S],

where Bα∞ and B∗
α∞ are independent fBm’s with index α∞. We omit details. �

4.2. Proof of Theorem 2.2

We begin with transformation of the distribution of the conditional passage time to the ratio of two tail
probabilities of supremum of γ-reflected Gaussian process over appropriately chosen intervals. Using the same
notation as introduced in the proof of Theorem 2.1, first we focus on τ∗1 (u). Let Dx,u = {(s, t) : 0 ≤ s ≤ t ≤
xu−1A(u) + tu}. For all u large we have

P

(
τ∗1 (u)− utu

A(u)
≤ x

)
=

P (τ1(u) ≤ xA(u) + utu)
P (τ1(u) <∞)

=
P

(
supt∈[0,xA(u)+utu]Wγ(t) > u

)
ψγ,∞(u)

=
P

(
sup(s,t)∈Dx,u

Zu(s, t) > m(u)
)

ψγ,∞(u)
, (4.26)

with Zu(s, t) defined in (4.4) and m(u) defined in (4.5). By Theorem 2.1, it suffices to find the asymptotics of
P

(
sup(s,t)∈Dx,u

Zu(s, t) > m(u)
)
, for which we write

πx(u) ≤ P

(
sup

(s,t)∈Dx,u

Zu(s, t) > m(u)

)
≤ πx(u) + P

(
sup

(s,t)∈D\E(u)

Zu(s, t) > m(u)

)
, (4.27)

where

πx(u) = P

(
sup

(s,t)∈E1(u)×Ex
2 (u)

Zu(s, t) > m(u)

)
, Ex

2 (u) =
(
tu − σ(u) ln u

u
, tu + xu−1A(u)

)
with D defined in (4.4) and E1(u), E(u) defined in (4.6). Moreover,

Jx(u)−Σ1(u)−Σ2(u) ≤ πx(u) ≤ πx
1 (u) +Θ2(u), (4.28)
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where

πx
1 (u) =

Nx
S,u∑

k=−NS,u

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u)

)
, Jx(u) =

Nx
S,u−1∑

k=−NS,u+1

P

(
sup

(s,t)∈Ik(u)

Zu(s, t) > m(u)

)

with Nx
S,u =

[
xA(u)

Δ1(u)S

]
+ 1, Ik(u) defined in (4.11), NS,u in (4.12), Θ2(u) in (4.13) and Σi(u), i = 1, 2 in (4.22).

Case ϕ = 0. Similarly as in (4.19), with ε ∈ (0, a1) and k∗ = min(|k|, |k + 1|), we have that

πx
1 (u) ≤

Nx
S,u∑

k=−NS,u

HBα0
[0, S]Pγε

Bα0
[0, S1]Ψ(m(u))e−(a1−ε)

(
k∗m(u)

Δ1(u)
u S

)2

(1 + o(1))

=
HBα0

[0, S]
S

Pγε

Bα0
[0, S1](a1 − ε)−1/2Ψ(m(u))

u

m(u)Δ1(u)

∫ √
a1−ε
2a1

x

−∞
e−y2

dy(1 + o(1))

∼
√
π/a1Φ(x)HBα0

Pγ
Bα0

Ψ(m(u))
u

m(u)Δ1(u)
, (4.29)

as u→∞, S, S1 →∞, ε→ 0, and

Jx(u) ≥
√
π/a1Φ(x)HBα0

Pγ
Bα0

Ψ(m(u))
u

m(u)Δ1(u)
(1 + o(1)). (4.30)

By (4.9)

P

(
sup

(s,t)∈D\E(u)

Zu(s, t) > m(u)

)
= o(πx

1 (u)) = o(Jx(u)).

Furthermore, it follows from (4.20), (4.24) and (4.25) that Θ2(u), Σ1(u) and Σ2(u) are all negligible in compar-
ison with πx

1 (u) and Jx(u) for x ∈ (−∞,∞]. Therefore, as u→∞,

P

(
sup

(s,t)∈Dx,u

Zu(s, t) > m(u)

)
∼
√
π/a1Φ(x)HBα0

Pγε

Bα0
Ψ(m(u))

u

m(u)Δ1(u)
∼ Φ(x)ψγ,∞(u), (4.31)

which together with (4.26) implies

lim
u→∞ P

(
τ∗1 (u)− utu

A(u)
≤ x

)
= Φ(x), x ∈ (−∞,∞].

Next, we investigate the last passage time. Similarly as above, for x ∈ (−∞,∞] we have

P

(
τ∗2 (u)− utu

A(u)
≤ x

)
= 1− P

(
τ2(u)− utu

A(u)
> x

∣∣∣τ1(u) <∞
)

(4.32)

= 1−
P

(
supt∈[xA(u)+utu,∞)Wγ(t) > u

)
P (τ1(u) <∞)

= 1−
P

(
supt∈[xu−1A(u)+tu,∞) Zu(s, t) > m(u)

)
P (τ1(u) <∞)

→ 1− Ψ(x) = Φ(x)

as u→∞. Hence application of Lemma 2.1 in [21] (recall that τ1(u) ≤ τ2(u)) yields that for any x, y ∈ R

P

(
τ∗1 − utu
A(u)

≤ x, τ
∗
2 − utu
A(u)

≤ y
)
→ P (N ≤ min(x, y)) , u→∞.
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Case ϕ ∈ (0, ∞). Note that (4.29) and (4.30) are also valid by replacing HBα0
[0, S] with H√

2c
ϕ X

[0, S]

and Pγε

Bα0
[0, S1] with Pγε√

2cγ
ϕ X

[0, S1]. As shown in the proof of i) in Theorem 2.1, Θ2(u), Σ1(u), Σ1(u) and

P

(
sup(s,t)∈D\E(u) Zu(s, t) > m(u)

)
are all negligible in comparison with Jx(u), x ∈ (−∞,∞] and πx

1 (u). Hence

P

(
sup

(s,t)∈Dx,u

Zu(s, t) > m(u)

)
∼
√
π/a1Φ(x)H√

2cγ
ϕ X
Pγε√

2cγ
ϕ X

Ψ(m(u))
u

m(u)Δ1(u)

∼ Φ(x)ψγ,∞(u), u→∞.
In light of (4.26), we have

lim
u→∞ P

(
τ∗1 (u)− utu

A(u)
≤ x

)
= Φ(x), x ∈ (−∞,∞].

Further, (4.32) can be proven using the same arguments. The joint weak convergence of the passage times
follows now by a direct application of Lemma 2.1 in [21].

Case ϕ = ∞. The proof of this case follows line by line the same as the proof of case ϕ = 0 with the ex-
ception that we have to substitute Bα0 with Bα∞ throughout the proof of case ϕ = 0. This completes the proof.�

4.3. Proof of Theorem 2.3

For any u positive

ψγ,T (u) = P

(
sup

0≤t≤T

(
X(t)− ct− γ inf

s∈[0,t]
(X(s)− cs)

)
> u

)
= P

(
sup

0≤t≤T
Z1,u(s, t) > m1(u)

)
,

where m1(u) = u+cT
σ(T ) and

Z1,u(s, t) =
(
X(t)− γX(s)
u+ c(t− γs)

)
m1(u).

Below, for notational simplicity we set

σ2
1,u(s, t) := V ar (Z1,u(s, t)) ,

r1(s, t, s1, t1) := Cor(Z1,u(s, t), Z1,u(s1, t1)) = Cor(X(t)− γX(s), X(t1)− γX(s1)).

Let DT = {(s, t), 0 ≤ s ≤ t ≤ T } and Aδ = [0, δ]× [T − δ, T ] with 0 < δ < T/2. For all large u

π∗(u) ≤ ψγ,T (u) ≤ π∗(u) + π∗∗(u) (4.33)

holds with

π∗(u) := P

(
sup

(s,t)∈Aδ

Z1,u(s, t) > m1(u)

)
, π∗∗(u) := P

(
sup

(s,t)∈DT \Aδ

Z1,u(s, t) > m1(u)

)
·

The idea of the proof is to apply to π∗(u) Theorem 3.1 in [45] which gives the tail asymptotics of supremum
of Gaussian random fields with unique maximum variance point and to show that π∗∗(u) is asymptotically
negligible compared to π∗(u). For this we need to know the dependence structure of the random field Z1,u,
which is analyzed in the next step of the proof.
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4.3.1. Dependence structure of Z1,u

Proofs of the following lemmas are postponed to Appendix.

Lemma 4.3. If σ2 satisfies BI and BIII, then the unique maximizer of σ1,u(s, t) over {(s, t) : 0 ≤ s ≤ t ≤ T }
is (0, T ). Moreover, for u large enough and as (s, t)→ (0, T )

1− σ1,u(s, t) =

(
σ̇2(T )
2σ2(T )

− a3(u)

)
(T − t)(1 + o(1))

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γσ̇2(T )
2σ2(T )

− γa3(u)

)
s(1 + o(1)), if σ2(s) = o(s)(

b(γ − γ2) + γσ̇2(T )
2σ2(T )

− γa3(u)

)
s(1 + o(1)), if vf(s) ∼ bs

γ − γ2

2σ2(T )
σ2(s)(1 + o(1)), if s = o(σ2(s)),

(4.34)

where a3(u) = c
u+cT → 0, as u→∞.

Lemma 4.4. If σ2 satisfies BI–BII and t2 = o(σ2(t)) as t→ 0, then

1− r1(s, t, s1, t1) ∼ σ2(|t− t1|) + γ2σ2(|s− s1|)
2σ2(T )

(4.35)

holds for (s, t), (s1, t1)→ (0, T ).

4.3.2. Upper estimate of π∗∗(u)

By Lemma 4.3, there exists a positive constant 0 < η < 1 such that

sup
(s,t)∈DT \Aδ

V ar (Z1,u(s, t)) ≤ 1− η.

In addition, it follows from BII that

Var(Z1,u(s, t)− Z1,t(s′, t′)) ≤ Q1 (|t− t′|α0 + |s− s′|α0) , (s, t) ∈ DT .

Using Lemma 5.1 for u large enough we obtain

P

(
sup

(s,t)∈DT \Aδ

Z1,u(s, t) > m1(u)

)
≤ Q2T

2(m1(u))
4

α0 Ψ

(
m1(u)√
1− η

)
· (4.36)

4.3.3. Asymptotics of π∗(u)

Case s = o(σ2(s)) as s → 0. In light of Lemma 4.3, for any positive δ and ε sufficiently small we have

P

(
sup

(s,t)∈Aδ

Z2,ε(s, t) > m1(u)

)
≤ π∗(u) ≤ P

(
sup

(s,t)∈Aδ

Z2,−ε(s, t) > m1(u)

)
,

where

Z2,±ε(s, t) =
X(t)− γX(s)(

1 + σ̇2(T )±ε
2σ2(T ) (T − t)

)(
1 + γ−γ2±ε

2σ2(T ) σ
2(s)

) , (s, t) ∈ Aδ,
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where Z means standardisation of Z, i.e., Z(t) = Z(t)/
√
V ar(Z(t). In view of Lemma 4.4 and using Theorem 3.1

in [45], we derive

P

(
sup

(s,t)∈Aδ

Z2,±ε(s, t) > m1(u)

)
∼ HBα0

P
1−γ±ε/γ

γ

Bα0

2σ2(T )

σ̇2(T )± ε
Ψ (m1(u))
q(u)m2

1(u)
, u→∞. (4.37)

Letting δ → 0, ε→ 0 leads to

π∗(u) ∼ HBα0
Pγ

Bα0

2σ2(T )

σ̇2(T )

Ψ (m1(u))
q(u)m2

1(u)
, u→∞,

which together with (4.33) and (4.36) establishes the claim.
Case σ2(s) ∼ bs as s → 0: In light of Theorem 3.1 in [45], in this case (4.37) is changed to

P

(
sup

(s,t)∈Aδ

Z2,±ε(s, t) > m1(u)

)
∼ P

σ̇2(T )±ε
b

B1/2
Pβ(b,γ)± ε

bγ2

B1/2
Ψ (m1(u)) , u→∞,

with

Z2,±ε(s, t) =
X(t)− γX(s)(

1 + σ̇2(T )±ε
2σ2(T ) (T − t)

)(
1 + b(γ−γ2)+γσ̇2(T )±ε

2σ2(T ) s
) , (s, t) ∈ Aδ.

Thus letting δ → 0, ε→ 0 and using (4.33) and (4.36) establishes the claim.
Case σ2(s) = o(s) as s → 0: For any ε > 0, if δ is sufficiently small, then

1− r1(s, t, s1, t1) ≤
2
(
σ2(|t− t1|) + σ2(|s− s1|)

)
σ2(T )

≤ ε (|t− t1|+ |s− s1|) , (s, t), (s1, t1) ∈ Aδ.

Let Z∗
ε (s, t) be a stationary Gaussian field over [0, T ]2 with variance 1 and correlation function

e−4εs + e−4εt

2
, s, t ∈ [0, T ].

It follows that

1− r1(s, t, s1, t1) < 1− e−4ε|s−s1| + e−4ε|t−t1|

2
, (s, t), (s1, t1) ∈ Aδ.

In light of Lemma 4.3, by Slepian’s inequality (see e.g., Thm. 2.2.1 in [43]) and Theorem 3.1 in [45], we have,
for positive δ sufficiently small

π∗(u) ≤ P

⎛⎝ sup
(s,t)∈Aδ

Z∗
ε (s, t)(

1 + σ̇2(T )
4σ2(T ) (T − t)

)(
1 + γσ̇2(T )

4σ2(T ) s
) > m1(u)

⎞⎠
∼ P

σ̇2(T )
8εσ2(T )
B1/2

P
γσ̇2(T )
8εσ2(T )
B1/2

Ψ (m1(u)) , u→∞. (4.38)

Moreover,

π∗(u) ≥ P (Z1,u(0, T ) > m1(u)) ∼ Ψ (m1(u)) , u→∞.
Thus letting ε→ 0 in (4.38) leads to

π∗(u) ∼ Ψ (m1(u)) , u→∞,
which together with (4.33) and (4.36) completes the proof. �
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Proof of Theorem 2.5 For x > 0, let Tx,u = T − 2σ4(T )x

σ̇2(T )u2 . For all the three cases, using Theorem 2.3 and

Remark 2.4 ii) we have

P

(
σ̇2(T )u2(T − τ1)

2σ4(T )
> x

∣∣∣τ1 ≤ T
)

=
ψTx,u(u)
ψT (u)

∼
Ψ
(

u+cTx,u

σ(Tx,u)

)
Ψ
(

u+cT
σ(T )

) ∼ e
(u+cT )2

2σ2(T )
− (u+cTx,u)2

2σ2(Tx,u) , u→∞,

where for any x > 0

(u + cT )2

2σ2(T )
− (u+ cTx,u)2

2σ2(Tx,u)
=

(u + cT )2

2σ2(T )

⎛⎝1− (1− c(T−Tx,u)
u+cT )2

σ2(Tx,u)
σ2(T )

⎞⎠
∼ (u + cT )2

2σ2(T )

⎛⎝1− (1 − c(T−Tx,u)
u+cT )2

1− σ̇2(T )(T−Tx,u)
σ2(T )

⎞⎠
→ −x, u→∞.

Thus the claim is established. �

5. Appendix

In this section we present an extension of Theorem 8.1 in [16] to threshold-dependent Gaussian fields, followed
by a uniform version of Pickands–Piterbarg lemma motivated by Lemma 2 in [4]. Then we give lemma that
deals with existence and positivity of generalized Piterbarg constants, which is followed by the proof of (4.8).
Finally, we display the proofs of Lemmas 4.1-4.5. Before proceeding to the proofs in Appendix, we first present
some regularly varying properties on σ2. By AI and Theorem 1.7.2 in [41], we have that

lim
u→∞

uσ̇2(u)
σ2(u)

= 2α∞, (5.1)

lim
u→∞

uσ̈2(u)
σ2(u)

= 2α∞(2α∞ − 1). (5.2)

Lemma 5.2 in [46] shows that AI implies that in a neighborhood of 0

σ2(t) ≥ Ct2, (5.3)

then the function

1
g2(t)

=
t2

σ2(t)
, t ∈ (0,∞) (5.4)

is regularly varying at infinity with index 2(1 − α∞) > 0 and is bounded in a neighborhood of zero. By (5.4)
and uniform convergence theorem in [41] we have that for any T > 0

lim
u→∞ sup

t∈(0,T ]

∣∣∣∣ g2(u)
g2(ut)

− |t|2−2α∞

∣∣∣∣ = 0. (5.5)

Moreover, Potter’s bound in [41] shows that for any 0 < ε < 2α∞, there exists T > 0 and Q1, Q2 > 0 such that
for all s, t > T > 0

Q1 min

((
t

s

)2α∞−ε

,

(
t

s

)2α∞+ε
)
≤ σ2(t)
σ2(s)

≤ Q2 max

((
t

s

)2α∞−ε

,

(
t

s

)2α∞+ε
)

(5.6)
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By UCT, similarly as in (4.2) we have that for 0 < λ < min(2α0, 2α∞) as u sufficiently large,

σ2(ut)
σ2(u)

=
gλ(ut)
gλ(u)

|t|λ ≤ 2|T |2α∞−λ|t|λ, t ∈ [0, T ]. (5.7)

By AII and Theorem 1.7.2 in [41] that

tσ̇2(t) ∼ 2α0σ
2(t), t→ 0,

which combined with (5.3) gives that t/σ̇2(t) is bounded in a neighbourhood of zero. Therefore if AI–AII hold,
we have from (5.1) that

K(t) := t(σ̇2(t))−1, t ∈ (0,∞) (5.8)

is a regularly varying function at infinity with index 2(1− α∞) > 0 and bounded in a neighbourhood of zero.

5.1. Extensions of Piterbarg inequality and Pickands-Piterbarg lemma

Piterbarg inequality, e.g. [16], (Thm. 8.1), provides a precise upper bound for tail distribution of supremum
for a wide class of Gaussian processes. Our next result extends Piterbarg inequality to threshold-dependent
Gaussian random fields with general covariance structure, allowing for supremum to be taken on sets that
depend on u.

Lemma 5.1. Let Xu,τ (t), t ∈ Rd, τ ∈ Ku, u > 0 be a centered Gaussian field with variance σ2
u,τ (t), t ∈ Eu,τ and

a.s. continuous sample paths where Ku are some index sets. Let further Eu,τ ⊂
∏d

i=1[−Mu,i,Mu,i], u > 0, τ ∈ Ku

be compact sets, and put σu,τ := supt∈Eu,τ
σu,τ (t). Suppose that 0 < a < σu,τ < b < ∞ holds for τ ∈ Ku and

all large u. If for all u large and for any s, t ∈ Eu,τ

V ar
(
Xu,τ (t)−Xu,τ (s)

)
≤ C

d∑
i=1

|ti − si|γi , s = (s1, . . . , sd), t = (t1, . . . , td), τ ∈ Ku, (5.9)

with γi ∈ (0, 2], 1 ≤ i ≤ d, then for some C1 > 0 and u0 > 0 not depending on u and τ ∈ Ku

P

(
sup

t∈Eu,τ

|Xu,τ (t)| > u

)
≤ C1

d∏
i=1

(
Mu,iu

2
γi + 1

)
Ψ
(
u/σu,τ

)
, u > u0. (5.10)

Proof of Lemma 5.1. Let E(1)
u,τ = {t ∈ Eu,τ : σu,τ (t) > σu,τ/2} and Ec

u,τ := Eu,τ \ E(1)
u,τ . Then for s, t ∈ E(1)

u,τ ,

1− Cor(Xu,τ (t)Xu,τ (s)) ≤ Var(Xu,τ (t)−Xu,τ (s))
2σu,τ (t)σu,τ (s)

≤ 2C
a2

d∑
i=1

|ti − si|γi .

Let Y (t), t ∈ Rd be a homogeneous Gaussian process with variance 1 and correlation function

rY (t) = Cov (Y (s), Y (s+ t)) = e−
4C
a2

∑d
i=1|ti|γi

, s, t ∈ R
d,

and let

Lk(u) =
d∏

i=1

[
kiu

− 2
γi , (ki + 1)u−

2
γi

]
,
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with k = (k1, . . . , kd) and ki ∈ Z, i = 1, . . . , n. By Slepian’s inequality (see e.g., Thm 2.2.1 in [43]) for u large
enough we have

P

(
sup

t∈E
(1)
u,τ

|Xu,τ (t)| > u

)
≤ 2P

(
sup

t∈E
(1)
u,τ

Xu,τ (t) >
u

σu,τ

)

≤
∑

k:Lk(u)∩E
(1)
u,τ 	=∅

2P

(
sup

t∈Lk(u)∩E
(1)
u,τ

Xu,τ (t) >
u

σu,τ

)

≤
∑

k:Lk(u)∩E
(1)
u,τ 	=∅

2P

(
sup

t∈Lk(u)∩E
(1)
u,τ

Y (t) >
u

σu,τ

)

≤
∑

k:Lk(u)∩E
(1)
u,τ 	=∅

2P

(
sup

t∈L0(u)

Y (t) >
u

σu,τ

)
.

Further, by Lemma 6.1 in [16] and the fact that

inf
τ∈Ku

u

σu,τ
→∞, u→∞,

we have

lim
u→∞ sup

τ∈Ku

∣∣∣∣∣∣
P

(
supt∈L0(u) Y (t) > u

σu,τ

)
Ψ( u

σu,τ
)

−
d∏

i=1

HBγi/2

[
0,
(
4ca−2

)1/γi
]∣∣∣∣∣∣ = 0.

Consequently, for u sufficiently large

P

(
sup

t∈E
(1)
u,τ

|Xu,τ (t)| > u

)
≤ 2

d∏
i=1

[
HBγi/2 [0,

(
4ca−2

)1/γi ]
(
[2Mu,iu

2
γi ] + 1

)]
Ψ(u/σu,τ )

≤ C1

d∏
i=1

(
[2Mu,iu

2
γi ] + 1

)
Ψ(u/σu,τ ) (5.11)

uniformly with respect to τ ∈ Ku. By (5.9) for any 0 < h ≤ 1

sup
|ti−si|≤h,1≤i≤d

√
V ar(Xu,τ (t)−Xu,τ (s)) ≤

(
C

d∑
i=1

|ti − si|γi

)1/2

≤ (Cd)1/2hγ0/2,

with γ0 = min1≤i≤d γi. Thus by (2.2) in [47] and (5.9), for any Ec
u,τ ∩ Lk(1) �= ∅, we have

P

(
sup

t∈Ec
u,τ∩Lk(1)

|Xu,τ (t)| >
[
b+ (2 +

√
2)(Cd)1/2

∫ ∞

1

2−
γ0y2

2 dy

]
x

)
≤ 5

2
22d
√

2πΨ (x) (5.12)

for all x ≥ (1 + 4d ln 2)1/2, which implies that we can find a constant y such that

P

(
sup

t∈Ec
u,τ∩Lk(1)

Xu,τ (t) > y

)
< 1/2
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holds for all k with Ec
u,τ ∩ Lk(1) �= ∅. Further, using Borell-TIS inequality, see e.g., [43, 48, 49]

P

(
sup

t∈Ec
u,τ

Xu,τ (t) > u

)
≤

∑
k:Ec

u,τ∩Lk(1) 	=∅
P

(
sup

t∈Ec
u,τ∩Lk(1)

|Xu,τ (t)| > u

)

≤ 2d
d∏

i=1

(Mu,i + 1)Ψ
(
2(u− y)/σu,τ

)

= o

(
d∏

i=1

(
Mu,iu

2
γi + 1

)
Ψ
(
u/σu,τ

))
,

hence the claim is established by considering also (5.11). �

Remarks 5.2.
(i) In case Xu,τ = X and Eu,τ = E for all u and γi = γ, i ≤ d, the claim of Lemma 5.1 coincides with that

of Theorem 8.1 in [16]. Note in passing that Piterbarg inequality gives sharper bounds than Borell-TIS
inequality. The later however holds under weaker assumptions.

(ii) In the formulation of Lemma 5.1 we write (Mu,iu
2/γi + 1) and not simply Mu,iu

2/γi since we want to cover
also the case that limu→∞Mu,iu

2/γi = 0.

The classical Pickands lemma gives the exact asymptotics of Gaussian processes on short intervals. We present
below an extension of that lemma; our result is uniform with respect to some parameter τu ∈ Ku. Let therefore
E ⊂ Rd be a compact set with positive Lebesgue measure containing the origin and let Ku some index sets. We
denote C0(E) the space of all continuous functions f on E, such that f(0) = 0, equipped with the sup-norm.
For fu,τ ∈ C0(E) define

ξu,τ (t) =
Zu,τ (t)

1 + fu,τ (t)
, t ∈ E, τ := τu ∈ Ku,

with Zu,τ a centered Gaussian field with unit variance and a.s. continuous sample paths. In the following lemma
we derive the uniform asymptotics of

pu,τ (E) := P

(
sup
t∈E

ξu,τ (t) > gu,τ

)
, u→∞,

with respect to τ ∈ Ku. We need the following assumptions, which are similar to those imposed in [46], (Lem. 5.1)
and [4], (Lem. 2).

P1: infτ∈Ku gu,τ →∞ as u→∞.
P2: Let θu,τ (s, t) be a function such that

lim
u→∞ sup

τ∈Ku

sup
s	=t∈E

∣∣∣∣g2
u,τ

V ar (Zu,τ (t)− Zu,τ (s))
2θu,τ (s, t)

− 1
∣∣∣∣ = 0.

There exists a centered Gaussian random field V (t), t ∈ Rd with V (0) = 0, covariance function (σ2
V (t)+σ2

V (s)−
σ2

V (t− s))/2, s, t ∈ Rd and a.s. continuous sample paths such that

lim
u→∞ sup

τ∈Ku

|θu,τ (s, t)− σ2
V (t− s)| = 0, ∀s, t ∈ E.

P3: There exists some a > 0 such that

lim sup
u→∞

sup
τ∈Ku

sup
s	=t,s,t∈E

θu,τ (s, t)∑d
i=1 |si − ti|a

<∞
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and further

lim
ε↓0

lim sup
u→∞

sup
τ∈Ku

sup
‖t−s‖<ε,s,t∈E

g2
u,τE {[Zu,τ (t)− Zu,τ (s)]Zu,τ (0)} = 0.

Lemma 5.3. Let gu,τ , V, θu,τ satisfy P1–P3. Assume that fu,τ ∈ C0(E), u > 0, τ ∈ Ku

lim
u→∞ sup

τ∈Ku,t∈E
|g2

u,τfu,τ (t)− f(t)| = 0. (5.13)

Then we have

lim
u→∞ sup

τ∈Ku

∣∣∣∣pu,τ (E)
Ψ(gu,τ )

−Rf
V (E)

∣∣∣∣ = 0, (5.14)

with Rf
V (E) := E

{
supt∈E e

√
2V (t)−σ2

V (t)−f(t)
}
∈ (0,∞).

Proof of Lemma 5.3. By conditioning on ξu,τ (0) = gu,τ − w
gu,τ

, w ∈ R for all u > 0 large we obtain

√
2πgu,τe

g2
u,τ
2 P

(
sup
t∈E

ξu,τ (t) > gu,τ

)
=
∫

R

e
w− w2

2g2
u,τ P

(
sup
t∈E

χu,τ (t) > w

)
dw =: Iu,τ ,

where
χu,τ (t) = ζu,τ (t)|ζu,τ (0) = 0, ζu,τ (t) = gu,τ (ξu,τ (t)− gu,τ ) + w.

In order to establish the proof we need to show that

lim
u→∞ sup

τ∈Ku

∣∣∣∣Iu,τ −Rf
V (E)

∣∣∣∣ = 0. (5.15)

It follows that

sup
τ∈Ku

|Iu,τ −Rf
V (E)| ≤ sup

τ∈Ku

∣∣∣∣∫ M

−M

[
e
w− w2

2g2
u,τ P

(
sup
t∈E

χu,τ (t) > w

)
− ew

P

(
sup
t∈E

V (t) > w

)]
dw

∣∣∣∣
+ sup

τ∈Ku

∫
|w|>M

e
w− w2

2g2
u,τ P

(
sup
t∈E

χu,τ (t) > w

)
dw

+
∫
|w|>M

ew
P

(
sup
t∈E

V (t) > w

)
dw.

Next, we give an upper bound of each term in the right hand side of the above inequality. Clearly, χu,τ (0) = 0
almost surely, and the finite-dimensional distributions of χu,τ (t), t ∈ E coincide with that of

1
1 + fu,τ (t)

(
gu,τ

(
Zu,τ (t)− rZu,τ (t, 0)Zu,τ (0)

)
+ μu,τ,w(t)

)
, t ∈ E,

where

μu,τ,w(t) = −g2
u,τ

(
1− rZu,τ (t, 0) + fu,τ (t)

)
+ w(1 − rZu,τ (t, 0) + fu,τ (t)), rZu,τ (t, s) := Cor(Zu,τ (t), Zu,τ (s)).

Consequently, by P1–P3 and (5.13) we have that uniformly with respect to t ∈ E, τ ∈ Ku, w ∈ [−M,M ]

μu,τ,w(t) → −(σ2
V (t) + f(t)), u→∞ (5.16)
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and also for any (s, t) ∈ E uniformly with respect to τ ∈ Ku, w ∈ [−M,M ]

vu(s, t) := Var
(
(1 + fu,τ (t))χu,τ (t)− (1 + fu,τ (s))χu,τ (s)

)
= g2

u,τ

[
E

{(
Zu,τ (t)− Zu,τ (s)

)2
}
− (

rZu,τ (t, 0)− rZu,τ (s, 0)
)2]

→ 2Var(V (t)− V (s)), u→∞. (5.17)

Note that vu(s, t) does not depend on w and f ∈ C0(E). Consequently, following the proof of Lemma 4.1 in [50],
the finite-dimensional distributions of (1 + fu,τ (t))χu,τ (t) converge uniformly for τ ∈ Ku, w ∈ [−M,M ] where
M > 0 is fixed. By P3, the uniform convergence in (5.16), (5.17) and

lim
u→∞ sup

τ∈Ku,t∈E
|fu,τ (t)| = 0 (5.18)

imply along the lines of the proof of second part of Lemma 4.1 in [50] that for arbitrary M > 0, ε > 0

lim
u→∞ sup

τ∈Ku,w∈[−M,M ],w 	∈[−ε,ε]

∣∣∣∣P(
sup
t∈E

χu,τ (t) > w

)
− P

(
sup
t∈E

V (t) > w

)∣∣∣∣ = 0,

where we use the fact that supt∈E V (t) has a continuous distribution H(t), t ≥ 0 for all t > 0, see e.g., [51]
(Thm. 7.1) (recall that since 0 ∈ E and V (0) = 0, then supt∈E V (t) ≥ 0). Further, by P1

lim
u→∞ sup

τ∈Ku,w∈[−M,M ]

ew[1− e
− w2

2g2
u,τ ] ≤ eMM2

2 lim infu→∞ infτ∈Ku g
2
u,τ

→ 0, u→∞

we obtain by the fact that ε > 0 can be chosen arbitrary small

lim
u→∞ sup

τ∈Ku

∣∣∣∣∫ M

−M

[
e
w− w2

2g2
u,τ P

(
sup
t∈E

χu,τ (t) > w

)
− ew

P

(
sup
t∈E

V (t) > w

)]
dw

∣∣∣∣ = 0.

Using (5.16) for δ ∈ (0, 1/2), |w| > M with M sufficiently large and all u large we have

sup
τ∈Ku,t∈E

E {(1 + fu,τ (t))χu,τ (t)} ≤ δ|w|.

It follows from P3 that for u large enough,

Var ((1 + fu,τ (t))χu,τ (t)− (1 + fu,τ (s))χu,τ (s)) ≤ Q
d∑

i=1

|si − ti|a, (s, t) ∈ E.

Thus by (5.18) and the result of Lemma 5.1, we obtain for some ε, δ ∈ (0, 1/2) and all u and M large∫
|w|>M

e
w− w2

2g2
u,τ P

(
sup
t∈E

χu,τ (t) > w

)
dw

≤
∫
|w|>M

ew
P

(
sup
t∈E

((1 + fu,τ (t))χu,τ (t)− E {(1 + fu,τ (t))χu,τ (t)})

> w/2− sup
t∈E,τ∈Ku

E {(1 + fu,τ (t))χu,τ (t)}
)

dw

≤
∫ −M

−∞
ewdw +

∫ ∞

M

ew
P

(
sup
t∈E

(χu,τ (t)− E {χu,τ (t)}) > w/2− δw
)

dw

≤ e−M +
∫ ∞

M

ewΨ
(
(1− ε)(1/2− δ)w) dw

=: A1(M)→ 0, M →∞.
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Moreover, using Borell-TIS inequality (see e.g., [43, 49])

A2(M) :=
∫
|w|>M

ew
P

(
sup
t∈E

V (t) > w

)
dw→ 0, M →∞.

Hence (5.15) follows since

sup
τ∈Ku

|Iu,τ −Rf
V (E)| ≤ sup

τ∈Ku

∣∣∣∣∫ M

−M

[
e
w− w2

2g2
u,τ P

(
sup
t∈E

χu,τ (t) > w

)
−ew

P

(
sup
t∈E

V (t) > w

)]
dw

∣∣∣∣+A1(M)+A2(M)

→ A1(M) +A2(M), u→∞,
→ 0, M →∞.

Since further

lim
u→∞ sup

τ∈Ku

∣∣∣∣√2πgu,τe
g2

u,τ
2 Ψ(gu,τ )− 1

∣∣∣∣ = 0,

the proof is completed. �

5.2. Piterbarg-type constant

In this subsection we prove the existence and positivity of the generalized Piterbarg constant that appears in
Theorem 2.1. Let X be a centered Gaussian process with stationary increments, a.s. continuous sample paths
and variance function satisfying the following two assumptions:

C0: σ2(t) is regularly varying at infinity with index 2α∞ ∈ (0, 2) and its first derivative is continuously
differentiable over (0,∞) with σ̇2(t) being ultimately monotone at infinity.

C1: σ2(t) is regularly varying at zero with index 2α0 ∈ (0, 2].

Then we have

1− Cor (X(ut), X(us)) =
σ2(u|t− s|)− (σ(ut)− σ(us))2

2σ(ut)σ(us)
=
σ2(u|t− s|)− (uσ̇(uθ)(t− s))2

2σ(ut)σ(us)
,

with θ ∈ [s, t]. Note that (5.1) implies

lim
u→∞

uσ̇(u)
σ(u)

= α∞,

which together with (5.5) implies that

1− Cor (X(ut), X(us)) ∼ σ2(u|t− s|)
2σ(ut)σ(us)

(
1− α2

∞
θ2

σ2(uθ)(t− s)2
σ2(u|t− s|)

)

=
σ2(u|t− s|)
2σ(ut)σ(us)

(
1− α2

∞
g2(uθ)

g2(u|t− s|)
)

(5.19)

∼ σ2(u|t− s|)
2σ2(u)

(5.20)

as u→∞ for s, t ∈ [1, 1 + u−1 lnu].
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Lemma 5.4. If X is a centered Gaussian process with stationary increments and a.s. continuous sample paths
such that its variance function satisfies C0,C1, then

Pa
X = lim

S→∞
Pa

X [0, S] <∞

holds for any a ∈ (0,∞).

Proof of Lemma 5.4. We first introduce some notation. For S > 0, u > 1 define

Yu(t) =
X(u(t+ 1))

1 + aσ2(ut)
2σ2(u)

, t ∈ [0, u−1 lnu],

Ik(u) = [ku−1S, u−1(k + 1)S], 0 ≤ k ≤ N(u), with N(u) := [S−1 ln u] + 1.

It follows that for S sufficiently large

p0(u) ≤ P

(
sup

t∈[0,u−1 ln u]

Yu(t) >
√

2σ(u)

)
≤ p0(u) +

N(u)∑
k=1

pk(u), (5.21)

where

p0(u) = P

(
sup

t∈I0(u)

Yu(t) >
√

2σ(u)

)
,

pk(u) = P

(
sup

t∈Ik(u)

X(u(t+ 1)) >
√

2σ(u)
(

1 +
aσ2(kS)
4σ2(u)

))
, k ≥ 1.

In order to apply Lemma 5.3, by (5.19) we set

Ku = {k : 0 ≤ k ≤ N(u)}, E = [0, S], gu,k =
√

2σ(u)
(

1 +
aσ2(kS)
4σ2(u)

)
, k ∈ Ku, (5.22)

Zu,k(t) = X(u(u−1kS + u−1t+ 1)), k ∈ Ku,

θu,k(s, t) = g2
u,k

σ2(|t− s|)
2σ2(u)

, s, t ∈ E, k ∈ Ku,

fu,0(t) =
aσ2(t)
2σ2(u)

, t ∈ E, fu,k = 0, k ∈ Ku \ {0}, V = X.

Since P1–P2 are obviously fulfilled, we shall verify next P3. By C1 we have, for u sufficiently large

θu,k(s, t) = g2
u,k

σ2(|t− s|)
2σ2(u)

≤ 2σ2(|t− s|) ≤ Q|t− s|α0 , s, t ∈ E, k ∈ Ku.

Moreover, by (5.19)

sup
k∈Ku

sup
‖t−s‖<ε,s,t∈E

g2
u,kE {[Zu,k(t)− Zu,τ (s)]Zu,k(0)}

≤ sup
k∈Ku

sup
‖t−s‖<ε,s,t∈E

g2
u,k

(
σ2(t)

2σ2(u)
(1 + o(1))− σ2(s)

2σ2(u)
(1 + o(1))

)
≤ sup

k∈Ku

sup
‖t−s‖<ε,s,t∈E

g2
u,k

2σ2(u)
(|σ2(t)− σ2(s)|+ o(1)

)→ 0, u→∞, ε ↓ 0.
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Thus P3 is satisfied. Hence

g2
u,0fu,0(t)→ aσ2(t), u→∞

uniformly with respect to t ∈ E and

g2
u,kfu,k(t) = 0, t ∈ E, k ∈ Ku \ {0}, u > 0,

implying that

lim
u→∞

p0(u)
Ψ(
√

2σ(u))
= Pa

X [0, S]

and

lim
u→∞ sup

k∈Ku/{0}

∣∣∣∣ pk(u)

Ψ
(√

2σ(u)
(
1 + aσ2(kS)

4σ2(u)

)) −HX [0, S]
∣∣∣∣ = 0. (5.23)

Dividing (5.21) by Ψ(
√

2σ(u)), letting u→∞ and applying (5.6) for sufficiently large S1 we have

Pa
X [0, S] ≤ Pa

X [0, S1] +HX [0, S1]
∞∑

k=1

e−
aσ2(kS1)

2

≤ Pa
X [0, S1] +HX [0, S1]

∞∑
k=1

e−Q1(kS1)α∞

≤ Pa
X [0, S1] +HX [0, S1]e−Q2Sα∞

1 .

Letting S →∞ leads to

lim
S→∞

Pa
X [0, S] ≤ Pa

X [0, S1] +HX [0, S1]e−Q2Sα∞
1 <∞

establishing the proof. �

5.3. Proofs of (4.8)

We begin with p1, assuming that T ∈ N is sufficiently large. For (s, t) ∈ [k, k + 1]× [l, l + 1] with l ≥ T and
0 ≤ k ≤ l, by (5.6), we have

Var(Zu(s, t)) =
[(1− γ)σ2(ut) + (γ2 − γ)σ2(us) + γσ2(u|t− s|)](1 + ctu)2

(1 + c(t− γs))2 σ2(utu)

≤ Q
t2α∞+ε

(1 + c(1− γ)t)2

≤ Qt−(2−2α∞−ε)

≤ Ql−(2−2α∞−ε)
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for u sufficiently large, with 0 < ε < min(2α∞, 2 − 2α∞). Moreover, in view of (5.7), for (s, t), (s1, t1) ∈
[k, k + 1]× [l, l+ 1] with l ≥ T and 0 ≤ k ≤ l and u large enough

Var(Zu(s, t)− Zu(s1, t1)) = 2− 2Cov
(
X(ut)− γX(us)

σγ(us, ut)
,
X(ut1), γX(us1)
σγ(us1, ut1)

)
=

Var (X(ut)−X(ut1) + γX(us1)− γX(us))− (σγ(us, ut)− σγ(us1, ut1))2

σγ(us, ut)σγ(us1, ut1)

≤ 2
σ2(u|t− t1|) + σ2(u|s− s1|)

σγ(us, ut)σγ(us1, ut1)

≤ 4
(1− γ)2

σ2(u|t− t1|) + σ2(u|s− s1|)
σ2(ul)

≤ QT

(|s− s1|λ + |t− t1|λ
)
,

where QT is a positive constant depending on T and 0 < λ < min(2α0, 2α∞). Thus from the above results and
using further Lemma 5.1, for T large enough we have

p1(u) ≤
∞∑

l=T

l∑
k=0

P

(
sup

(s,t)∈[k,k+1]×[l,l+1]

Zu(s, t) > m(u)

)

≤
∞∑

l=T

l∑
k=0

P

(
sup

(s,t)∈[0,1]2
Zu(s+ k, t+ l) >

m(u)√
Ql−(2−2α∞−ε)

)

≤
∞∑

l=T

Q2l
(
m2(u)l2−2α∞−ε

)2/λ
e−Q1m2(u)l2−2α∞−ε

≤ e−Q3m2(u)T 2−2α∞−ε

= o

(
u

m(u)Δ1(u)
Ψ(m(u))

)
·

Next, we show that p2(u) is also negligible. By UCT, we have

Var(Zu(s, t))→ [(1− γ)t2α∞ + (γ2 − γ)s2α∞ + γ|t− s|2α∞ ](1 + ct∗)2

(1 + c(t− γs))2 t∗2α∞
=

f(s, t)
f(0, t∗)

, u→∞

uniformly over Dδ,u, where f(s, t) is defined in (5.25) with (0, t∗) the unique maximum point over D. Conse-
quently, there exists a constant 0 < bδ < 1 such that for u large enough

sup
(s,t)∈Dδ,u

Var(Zu(s, t)) < bδ.

Furthermore, by (5.7) for u large enough we have

Var(Zu(s, t)− Zu(s1, t1)) =
(1 + ctu)2

σ2(utu)
E

{(X(ut)− γX(us)
1 + c(t− γs) − X(ut1)− γX(us1)

1 + c(t1 − γs1)
)2}

≤ Q4

(
σ2(u|t− t1|)
σ2(utu)

+
σ2(u|s− s1|)
σ2(utu)

+ (t− t1)2 + (s− s1)2
)

≤ Q5(|t− t1|λ + |s− s1|λ), (s, t), (s1, t1) ∈ DT , (5.24)

with λ ∈ (0,min(2α0, 2α∞)). Consequently, by Lemma 5.1

p2(u) ≤ Q6T
2(m(u))4/λΨ

(
m(u)
bδ

)
= o

(
u

m(u)Δ1(u)
Ψ(m(u))

)
·
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Finally, we focus on p3(u). In light of Lemma 4.1, we know that for δ sufficiently small and u sufficiently large

sup
(s,t)∈D∗

δ,u

Var(Zu(s, t)) ≤ sup
(s,t)∈D∗

δ,u

(
1− a1

2
(t− tu)2 − a2

2
σ2(us)
σ2(u)

)
≤ sup

(s,t)∈D∗
δ,u

(
1− a1

2
(t− tu)2

)
≤ 1−Q7

(
lnm(u)
m(u)

)2

,

which together with (5.24) and the application of Lemma 5.1 leads to

p3(u) ≤ Q8(m(u))
4
λΨ

⎛⎜⎜⎝ m(u)√
1−Q7

(
ln m(u)
m(u)

)2

⎞⎟⎟⎠ = o

(
u

m(u)Δ1(u)
Ψ(m(u))

)
, u→∞

establishing (4.8). �

5.4. Proofs of Lemmas 4.1–4.4

In this section we present details of the proof of Lemmas 4.1–4.4.
Proof of Lemma 4.1. For any u > 0 we have

σ2
γ,u(s, t) =

(1 − γ)σ2(ut) + (γ2 − γ)σ2(us) + γσ2(u(t− s))
(1 + c(t− γs))2 .

By UCT we have as u→∞
σ2

γ,u(s, t)
σ2(u)

→ (1− γ)t2α∞ + (γ2 − γ)s2α∞ + γ(t− s)2α∞

(1 + c(t− γs))2 =: f(s, t) (5.25)

uniformly for 0 ≤ s ≤ t ≤ T with T any positive constant. Using (5.6) for any 0 < ε < min(2α∞, 2−2α∞) there
exists a constant uε > 0 such that for all 0 ≤ s ≤ t <∞, t > T > 1 and u > uε, we have

σ2
γ,u(s, t)
σ2(u)

≤ Q ((1 − γ)t2α∞+ε + γt2α∞+ε)
(1 + c(t− γs))2 ≤ Q

t2−2α∞−ε
⇒ 0, t→∞. (5.26)

It follows from [15] that f(s, t) has one unique maximum point (0, t∗) over D, which combined with (5.25)
and (5.26) yields that for u large enough, the maximum point of σ2

γ,u(s, t) denoted by (su, tu) must be attained
over 0 ≤ s ≤ t ≤ T with T > t∗ large enough. Further, (su, tu) → (0, t∗). By contradiction, suppose that
(su, tu)→ (s∗1, t

∗
1) �= (0, t∗). Hence, by (5.25), we have that

f(s∗1, t
∗
1) = lim

u→∞
σ2

γ,u(su, tu)
σ2(u)

≥ lim
u→∞

σ2
γ,u(0, t∗)
σ2(u)

= f(0, t∗).

This contradicts the fact that (0, t∗) is the unique maximum point of f(s, t) over D. Next, we prove that the
maximum point is unique. It follows that for 0 < s < t <∞

∂σ2
γ,u(s, t)
∂s

= γA−4(s, t)
{(

(γ − 1)σ̇2(us)u− σ̇2(u(t− s))u
)
A2(s, t) + 2cσ2

γ(us, ut)A(s, t)
}
,

∂σ2
γ,u(s, t)
∂t

= A−4(s, t)
{(

(1− γ)σ̇2(ut)u+ γσ̇2(u(t− s))u
)
A2(s, t)− 2cσ2

γ(us, ut)A(s, t)
}
, (5.27)
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with A(s, t) = 1 + c(t− γs). Suppose that su > 0, then by the continuous differentiability of σ2
γ,u(s, t), we have

∂σ2
γ,u(s, t)
∂s

∣∣∣
(s,t)=(su,tu)

=
∂σ2

γ,u(s, t)
∂t

∣∣∣
(s,t)=(su,tu)

= 0,

which implies that

σ̇2(usu) = σ̇2(utu)− σ̇2(u(tu − su)) = σ̈2(uθu)usu,

with θu ∈ (tu − su, tu). For K(t) = t/σ̇2(t) defined in (5.8), the last equation can be re-written as

uθuσ̈2(uθu)

σ̇2(uθu)

K(usu)
K(uθu)

= 1. (5.28)

Since AI holds, then by (5.1-5.2) and using UCT, we have

lim
u→∞

uθuσ̈2(uθu)

σ̇2(uθu)
= 2α∞ − 1, lim

u→∞
K(usu)
K(uθu)

= 0.

Hence, for u large enough

uθuσ̈2(uθu)

σ̇2(uθu)

K(usu)
K(uθu)

< 1,

which contradicts (5.28). Consequently, for u large enough then su = 0 and tu is the maximum point of
σ2

γ,u(0, t) = σ2(ut)
(1+ct)2 . It follows that (the following derivatives are all with respect to t)

˙σ2
γ,u(0, t)
σ2(u)

→ ḟ(0, t), and
¨σ2
γ,u(0, t)
σ2(u)

→ f̈(0, t) < 0, u→∞

hold uniformly over [t∗−δ, t∗+δ] for δ > 0 small enough. This implies that
˙σ2

γ,u(0,t)

σ2(u) is decreasing over [t∗−δ, t∗+δ]
for δ > 0. Thus tu is unique and then (0, tu) is unique. We also have that the first derivative of σ2

γ,u(0, t) with
respect to t at point tu equals zero (see (5.27)), i.e.,

∂σ2
γ,u(0, t)
∂t

∣∣∣
t=tu

= A−4(0, tu)
{(

(1− γ)σ̇2(utu)u+ γσ̇2(utu)u
)
A2(0, tu)− 2cσ2

γ(0, utu)A(0, tu)
}

= 0,

which is equivalent to

uσ̇2(utu)(1 + ctu)2 = 2cσ2(utu)(1 + ctu). (5.29)

For any u > 0

(1+ctu+c(t−tu−γs))2σ2(utu)=(1+ctu)2σ2(utu)+2c(1+ctu)(t−tu−γs)σ2(utu)+c2(t−tu−γs)2σ2(utu)

and by Taylor expansion

σ2(ut) = σ2(utu) + σ̇2(utu)u(t− tu) +
1
2
σ̈2(uθ1,u)u2(t− tu)2,

σ2(u(t− s)) = σ2(utu) + σ̇2(utu)u(t− tu − s) +
1
2
σ̈2(uθ2,u)u2(t− tu − s)2,
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with θ1,u ∈ (t, tu) and θ2,u ∈ (t−s, tu). Inserting the above expansions to the following equation and using (5.29),
we have

1− σ2
γ,u(s, t)

σ2
γ,u(0, tu)

=
(1 + c(t− γs))2σ2(utu)− [

(1 − γ)σ2(ut) + (γ2 − γ)σ2(us) + γσ2(u(t− s))] (1 + ctu)2

(1 + c(t− γs))2σ2(utu)

=
(γ − γ2)(1 + ctu)2σ2(us)− 1−γ

2 u2σ̈2(uθ1,u)(1 + ctu)2(t− tu)2

(1 + c(t− γs))2σ2(utu)

+
σ2(utu)c2(t− tu − γs)2 − γ

2 σ̈
2(uθ2,u)u2(1 + ctu)2(t− tu − s)2

(1 + c(t− γs))2σ2(utu)

=
(γ − γ2)(1 + ctu)2σ2(us) +

(
σ2(utu)c2 − 1−γ

2 u2σ̈2(uθ1,u)(1 + ctu)2 − γ
2 σ̈

2(uθ2,u)u2(1 + ctu)2
)

(t− tu)2

(1 + c(t− γs))2σ2(utu)

+
σ2(utu)c2(γ2s2 − 2γ(t− tu)s)− γ

2 σ̈
2(uθ2,u)u2(1 + ctu)2(s2 − 2(t− tu)s)

(1 + c(t− γs))2σ2(utu)
(5.30)

It follows from (5.5) that for any δ > 0 and u large enough

s2

σ2(us)
σ2(utu)

= t2u
g2(utu)
g2(us)

≤ 2t2α∞∗ δ2−2α∞ , s ∈ (0, δ]. (5.31)

Following (5.2), we have that

σ̈2(uθi,u)u2

σ2(utu)
∼ 2α∞(2α∞ − 1)

(t∗)2
, u→∞, i = 1, 2. (5.32)

Moreover, for δ > 0 sufficiently small and u sufficiently large

|t− tu|s ≤ δ(1−α∞)/2|t− tu|δ−(1−α∞)/2s

≤ δ1−α∞(t− tu)2 + δα∞−1s2

≤ Qδ1−α∞

(
σ2(us)
σ2(u)

+ (t− tu)2
)
, s ∈ (0, δ]. (5.33)

Hence inserting (5.31)–(5.33) into (5.30), we have that for u sufficiently large

(2a1 −Qδ1−α∞)(t− tu)2 + (2a2 −Qδ1−α∞)
σ2(us)
σ2(u)

≤ 1− σ2
γ,u(s, t)

σ2
γ,u(0, tu)

≤ (2a1 +Qδ1−α∞)(t− tu)2 + (2a2 +Qδ1−α∞)
σ2(us)
σ2(u)

for 0 < s < δ and |t− tu| < δ with δ > 0 sufficiently small and Q a fixed constant, which establishes the claim. �

Proof of Lemma 4.2. It follows from the direct calculation that

1− ru(s, t, s1, t1) =
D1,u(s, t, s1, t1)−D2,u(s, t, s1, t1) + γD3,u(s, t, s1, t1)

2σγ(us, ut)σγ(us1, ut1)
,

with

D1,u(s, t, s1, t1) = σ2(u|t− t1|) + γ2σ2(u|s− s1|), D2,u(s, t, s1, t1) = (σγ(us, ut)− σγ(us1, ut1))2,
D3,u(s, t, s1, t1) = σ2(u|t− s|) + σ2(u|t1 − s1|)− σ2(u|t1 − s|)− σ2(u|t− s1|).
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Using Taylor expansion, we have

D3,u(s, t, s1, t1) = uσ̇2(u(t1 − s))(t− t1) +
1
2
u2σ̈2(uθ1)(t− t1)2

+uσ̇2(u(t− s1))(t1 − t) +
1
2
u2σ̈2(uθ2)(t− t1)2

=
1
2
u2σ̈2(uθ1)(t− t1)2 +

1
2
u2σ̈2(uθ2)(t− t1)2

+u2σ̈2(uθ3)(t− t1)(t1 − t+ s1 − s)
≤ u2

(
1
2
σ̈2(uθ1) +

1
2
σ̈2(uθ2) + 2σ̈2(uθ3)

)
(t− t1)2 + 2u2σ̈2(uθ3)(s− s1)2,

where θ1, θ2 and θ3 are some positive constants (depending on u) satisfying t∗
2 < θi <

3
2 t∗, i = 1, 2, 3 for u

sufficiently large. From (5.2) and (5.4), we have that for δ > 0

sup
t∈(0,δ)

∣∣∣u2σ̈2(u)t2

σ2(ut)

∣∣∣ ≤ Q sup
t∈(0,δ)

σ2(u)t2

σ2(ut)
= Q sup

t∈(0,δ)

g2(u)
g2(ut)

,

which together with (5.5) implies that if δu → 0 as u→∞

sup
t∈(0,δu)

∣∣∣u2σ̈2(u)t2

σ2(ut)

∣∣∣ ≤ Q sup
t∈(0,δu)

g2(u)
g2(ut)

→ 0, u→∞.

Therefore we get that uniformly for (s, t) �= (s1, t1) ∈ [0, δu)× (tu − δu, tu + δu)

D3,u(s, t, s1, t1)
D1,u(s, t, s1, t1)

→ 0, u→∞.

By (5.4) and AIII we have for any x ∈ (0,∞) and any y ∈ [0, 1]

1 ≥ σ2(xy)
σ2(x)

=
g2(xy)
g2(x)

y2 ≥ y2.

Hence by UCT for 0 ≤ s1 < s < δu with δu → 0

(
σ2(us)− σ2(us1)

)2
σ2(u|s− s1|)σ2(u)

=
σ2(us)
σ2(u)

(
1− σ2(us1)

σ2(us)

)2

σ2(us(1−s1/s))
σ2(us)

≤ σ2(us)
σ2(u)

(1 + s1/s)2 ≤ 4
σ2(us)
σ2(u)

→ 0, u→∞. (5.34)

By (5.1) and (5.4) we have

D2,u(s, t, s1, t1)
D1,u(s, t, s1, t1)

≤ 4
(1− γ)2(σ2(ut)− σ2(ut1))2 + γ2(σ2(u(t− s))− σ2(u(t1 − s1)))2 + (γ − γ2)2(σ2(us)− σ2(us1))2

D1,u(s, t, s1, t1) (σγ(us, ut) + σγ(us1, ut1))
2

≤ Q

(
(uσ̇2(u))2(t− t1)2
σ2(u)σ2(u|t− t1|) +

(uσ̇2(u))2(s− s1)2
σ2(u)σ2(u|s− s1|) +

(
σ2(us)− σ2(us1)

)2
σ2(u|s− s1|)σ2(u)

)

≤ Q1

(
g2(u)

g2(u|t− t1|) +
g2(u)

g2(u|s− s1|) +

(
σ2(us)− σ2(us1)

)2
σ2(u|s− s1|)σ2(u)

)
·
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Further, it follows from (5.5) and (5.34) that

D2,u(s, t, s1, t1)
D1,u(s, t, s1, t1)

→ 0,

as u→∞ uniformly for (s, t) �= (s1, t1) ∈ [0, δu)× (tu − δu, tu + δu) with δu → 0. This completes the proof. �

Proof of Lemma 4.3. We have

σ2
1,u(s, t) =

(1 − γ)σ2(t) + (γ2 − γ)σ2(s) + γσ2(t− s)
σ2(T )

(u+ cT )2

(u + c(t− γs))2
=: f1(s, t)f2,u(s, t), (s, t) ∈ DT = {(s, t), 0 ≤ s ≤ t ≤ T }.

In light of BIII, f1(s, t) is strictly increasing with respect to t and strictly decreasing with respect to s for
(s, t) ∈ DT . Moreover,

lim
u→∞ sup

(s,t)∈DT

|f2,u(s, t)− 1| = 0.

Thus we conclude that the maximum value of σ2
1,u(s, t) over DT must be attained in a sufficiently small neigh-

bourhood of (0, T ) for u large enough. Further, as (s, t)→ (0, T )

1− f1(s, t) =
σ̇2(T )
σ2(T )

(T − t)(1 + o(1)) +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γσ̇2(T )
σ2(T )

s(1 + o(1)), if σ2(s) = o(s),

b(γ − γ2) + γσ̇2(T )
σ2(T )

s(1 + o(1)), if σ2(s) ∼ bs,
γ − γ2

σ2(T )
σ2(s)(1 + o(1)), if s = o(σ2(s)),

and for u > 1
1− f2,u(s, t) =

−2c
u+ cT

(T − t+ γs) (1 + o(1)),

which imply that (4.34) holds and further the maximum point of σ1,u(s, t) in a neighbourhood of (0, T ) is
(0, T ). Thus the claim is established. �

Proof of Lemma 4.4. The proof is similar to that of Lemma 4.2. We have

1− r1(s, t, s1, t1) =
D1(s, t, s1, t1)−D2(s, t, s1, t1) + γD3(s, t, s1, t1)

2σγ(s, t)σγ(s1, t1)
,

with

D1(s, t, s1, t1) = σ2(|t− t1|) + γ2σ2(|s− s1|), D2(s, t, s1, t1) = (σγ(s, t)− σγ(s1, t1))2,
D3(s, t, s1, t1) = σ2(|t− s|) + σ2(|t1 − s1|)− σ2(|t1 − s|)− σ2(|t− s1|).

Using Taylor expansion and the fact that t2 = o(σ2(t)) as t ↓ 0, we have

D3(s, t, s1, t1) = σ̇2(t1 − s)(t− t1) +
1
2
σ̈2(θ4)(t− t1)2 + σ̇2(t− s1)(t1 − t) +

1
2
σ̈2(θ5)(t− t1)2

=
1
2
σ̈2(θ4)(t− t1)2 +

1
2
σ̈2(θ5)(t− t1)2 + σ̈2(θ6)(t− t1)(t1 − t+ s1 − s)

≤
(

1
2
σ̈2(θ4) +

1
2
σ̈2(θ5) + 2σ̈2(θ6)

)
(t− t1)2 + 2σ̈2(θ6)(s− s1)2

= o (D1(s, t, s1, t1)) , s, s1 → 0, t, t1 → T,
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where θ4, θ5 and θ6 are some positive constants satisfying T
2 < θi <

3
2T, i = 4, 5, 6. By (5.4) and BIII we have

for any x ∈ (0,∞) and any y ∈ [0, 1]

1 ≥ σ2(xy)
σ2(x)

=
g2(xy)
g2(x)

y2 ≥ y2,

hence for 0 ≤ s1 < s < T/2

(
σ2(s)− σ2(s1)

)2
σ2(|s− s1|) = σ2(s)

(
1− σ2(s1)

σ2(s)

)2

σ2(s(1−s1/s))
σ2(s)

≤ σ2(s)(1 + s1/s)2

≤ 4σ2(s)→ 0, s→ 0. (5.35)

By (5.4), (5.35) and the fact that t2 = o(σ2(t)) as t ↓ 0, we have

D2(s, t, s1, t1) =
(σ2

γ(s, t)− σ2
γ(s1, t1))2

(σγ(s, t) + σγ(s1, t1))2

=

(
(1− γ)(σ2(t)− σ2(t1)) + (γ2 − γ)(σ2(s)− σ2(s1)) + γ(σ2(t− s)− σ2(t1 − s1))

)2
(σγ(s, t) + σγ(s1, t1))2

≤ 8
σ2(T )

(
(σ̇2(T ))2(t− t1)2 + (σ̇2(T ))2(t− t1 − s+ s1)2 + (σ2(s)− σ2(s1))2

)
= o (D1(s, t, s1, t1)) , s, s1 → 0, t, t1 → T.

Therefore, we have

1− r1(s, t, s1, t1) ∼ σ2(|t− t1|) + γ2σ2(|s− s1|)
2σ2(T )

, s, s1 → 0, t, t1 → T,

which completes the proof. �
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[18] K. Dȩbicki and M. Mandjes, Exact overflow asymptotics for queues with many Gaussian inputs. J. Appl. Probab. 40 (2003)
704–720.
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[45] K. Dȩbicki, E. Hashorva and P. Liu, Extremes of Gaussian random fields with regularly varying dependence structure. Extremes
20 (2017) 333–392.
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