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ADAPTIVE NONPARAMETRIC DRIFT ESTIMATION OF AN

INTEGRATED JUMP DIFFUSION PROCESS

Benedikt Funke1,* and Émeline Schmisser2

Abstract. In the present article, we investigate nonparametric estimation of the unknown drift
function b in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on
a compact set based on a high-frequency data sample.

Instead of observing the jump diffusion process V itself, we observe a discrete and high-frequent
sample of the integrated process

Xt :=

∫ t

0

Vsds.

Based on the available observations of Xt, we will construct an adaptive penalized least-squares estimate
in order to compute an adaptive estimator of the corresponding drift function b. Under appropriate
assumptions, we will bound the L2-risk of our proposed estimator. Moreover, we study the behavior of
the proposed estimator in various Monte Carlo simulation setups.
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1. Introduction

In this paper, we consider a two-dimensional stochastic process (Xt, Vt)t≥0 such that

dXt = Vtdt, X0 = 0,

dVt = b(Vt)dt+ σ(Vt)dWt + ξ(Vt−)dLt, V0
D
= η, (1.1)

where W = (Wt)t≥0 is a standard Brownian Motion and L = (Lt)t≥0 is a centered Lévy process with finite
variance E

(
L2

1

)
:=
∫
R y

2ν(dy) <∞ such that

dLt =

∫
R
z(µ(dt, dz)− ν(dz)dt).
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W and L are independent and η is independent of both W and L. Moreover, µ denotes the corresponding
Poisson random measure of L with intensity measure ν.

Our aim is the nonparametric estimation of the unknown drift function b exclusively based on observations of
the first coordinate of (1.1). For our purposes the process Xt will be called an integrated jump diffusion process.

Remark 1.1. We shortly remark, that the system (1.1) is a special case of a two-dimensional stochastic
differential equation where no noise is contained in the first coordinate. Moreover, note that the pure jump Lévy
process L is a centered L2-martingale with respect to its augmented canonical filtration under our assumptions.

In many applications in physics, economics or financial mathematics, several occurring stochastic processes
can be interpreted as integrated processes, which, for instance, means that at time t they possess cumulatively
all information up to this time point. For example, Comte et al. [10] refer to a model where Vt denotes the
velocity of a particle and Xt represents its coordinate. Further models and applications of such processes in
the context of paleoclimate data can be found in Ditlevsen and Sørensen [12] as well as in Lefebvre [17] and
Baltazar-Larios and Sørensen [3].

Especially in mathematical finance, if Vt acts as a model for a certain asset price, then Xt denotes the (log-)
return of this asset up to time t. If, for instance, only the return series with time lag ∆

Rt,∆ := Xt∆ −X(t−1)∆ =

∫ t∆

(t−1)∆

b(Vt)dt+

∫ t∆

(t−1)∆

σ(Vt)dWt +

∫ t∆

(t−1)∆

ξ(Vt−)dLt

is available, our approach allows us to reconstruct the underlying price process and to estimate its drift function;
see also Campbell et al. [8] for further reasons for investigating the return series rather than the price process
itself. In addition, we emphasize that we deal with high-frequency data (∆→ 0), which is nowadays a common
tool for investigating statistical properties of financial processes and which is often readily available to the
practitioner. Moreover, we remark that Xt is not assumed to be stationary and a quite simple example for a non-
Markovian process with increasing observations as long as Vt stays positive. In addition, many researchers have
investigated the estimation of the integrated volatility in stochastic volatility models, which acts a variability
measure; see for example Bollerslev and Zhou [7] or Andersen et al. [1]. Hence, when assuming that Vt is positive,
our model and estimation approach can be applied in this context, too.

Usual estimation schemes for diffusion processes, as for example in Florens-Zmirou [13], Bandi and Phillips
[5], Bandi and Nguyen [4] or Comte et al. [9], are based on a sample of the original process V . In contrast to
this setting, we are now assuming that we cannot observe the process V itself but rather a running integral over
this process. In particular, we only observe the first coordinate

Xt =

∫ t

0

Vsds

of the original bidimensional process at equidistant time points k∆, k = 1, . . . , n + 2, over the time interval
[0, T ], such that

T := (n+ 2)∆→∞ and ∆→ 0 as n→∞.

Statistical inference for such integrated processes has been, to the best of our knowledge, sporadically inves-
tigated. Besides the mentioned articles, further parametric inference has been conducted in some additional
works; see for example Gloter [14, 15] as well as Gloter and Gobet [16]. But in general, this topic has not arisen
much attention, although it is quite interesting and important for real data applications.

In the nonparametric framework, we are only aware of few works, in which the coefficients of such models
have been consistently estimated. For example, Nicolau [20] uses kernel estimators for the pointwise consistent
estimation of b(x) and σ2(x). In contrast to the kernel based approach, Comte et al. [10] use a model selection
approach to construct adaptive nonparametric estimators of b and σ on a fixed compact interval in an integrated
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Figure 1. Example of trajectories of (Vt), (Xt) and (V̄k∆).

diffusion model without jumps. This work extends their approach for estimating ordinary univariate diffusions
and was also pursued by Schmisser [21] in the case of univariate jump diffusions.

In view of these two papers, we will conduct an analogous approach for the case of estimating the drift in an
integrated jump diffusion model. To the best of our knowledge, adaptive nonparametric inference for the drift
function in an integrated jump diffusion model has not been investigated in the literature before. In contrast,
empirical likelihood inference for this model has been conducted in Song and Lin [23]. Moreover, a re-weighted
kernel estimation procedure has been used by Song et al. [24] for estimating the function σ2 + ξ2 and a kernel
based approach for estimating b pointwisely has been used in Song [22].

2. Assumptions

Let us at first impose the following assumptions, which guarantee the existence of a unique strong solution
(Vt) in equation (1.1); sell also Figure 1 for an example of possible processes under investigation.

A1. i) The functions b, σ and ξ are globally Lipschitz-continuous.
ii) The function σ is bounded away from zero as well as uniformly bounded for all x:

∃ σ1, σ0 ∈ R+ : ∀x ∈ R : 0 < σ1 ≤ σ(x) ≤ σ0.

iii) The function ξ is non-negative and also bounded:

∃ ξ0 ∈ R+ : ∀x ∈ R : 0 ≤ ξ(x) ≤ ξ0.

iv) The function b is elastic (cf. Masuda [18]), which means that

∃ M > 0 : ∀x ∈ R, |x| > M : xb(x) . −x2.

We remark that b cannot be bounded as required in Bandi and Nguyen [4].
v) The Lévy measure ν possesses the properties that

Var (L1) =

∫
R
y2ν(dy) = 1, ν({0}) = 0,

∫
R
y4ν(dy) <∞.
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Under Assumption A1,i) a unique strong solution (Vt) of (1.1) exists (cf. Masuda [18]). Moreover, under
A1,i)–iv), this solution is equipped with a unique invariant probability distribution Γ (dx). In addition, V is
exponentially β-mixing with mixing coefficient βV (t), which means that

∃ γ > 0 : βV (t) :=

∫
R
||Pt(x, ·)− Γ (·)||TV Γ (dx) = O(e−γt), as t→∞,

where (Pt)t∈R+
denotes the transition probability of the underlying process V and || · ||TV defines the total

variation norm, see Comte et al. [10].
Assumption A1,v) simply ensures that ν has moments up to order 4. Indeed, the condition Var (L1) = 1 is

only an identifiability condition.
Using Theorem 2.1 in Masuda [18], we can deduce the ergodicity of (Vt), which means that for all measurable

functions g ∈ L1(Γ (dx)):

1

T

∫ T

0

g(Vs)ds −→
∫
R
g(x)Γ (dx) a.s., as T →∞.

Due to our assumptions on the Lévy measure ν and the Lipschitz-continuity of the coefficients b, σ and ξ, we
have that E

(
V 4
t

)
< ∞ for all t ≥ 0. This can easily be proven by applying the Cauchy-Schwarz inequality

successively. We will focus on this property later on.
Moreover, we impose that

A2. vi) Γ is absolutely continuous with respect to the Lebesgue measure and, thus, possesses a Lebesgue
density πV such that Γ (dx) = πV (x)dx.

vii) The process (Vt) starts in its invariant law:

V0 ∼ Γ (dx)

such that (Vt) is stationary.

Remark 2.1. These assumptions are largely congruent to those in Schmisser [21], who investigated the
nonparametric estimation of b in the usual non-integrated setting.

We will now concretize our estimation approach. Hence, let us assume that we are aware of a high-frequent
data set {Xk∆, k = 1, . . . , n + 2} of the process (Xt) given by (1.1). As mentioned, the process (Vt) is not
observable and has to be approximated. The idea behind our estimation approach relies on the following
transformation. We set

V̄k∆ := V̄k :=
1

∆

(
X(k+1)∆ −Xk∆

)
=

1

∆

∫ (k+1)∆

k∆

Vsds, 1 ≤ k ≤ n+ 1.

Remark 2.2. We point out that (V̄k)k≥0 shares some crucial properties of the underlying process V . According
to Comte et al. [10], the averaged process (V̄k)k≥0 is stationary and exponentially β-mixing, too. The latter fact
can be seen due to the fact that

βV̄ (k) ≤ βV (k∆), k = 1, . . . , n+ 1.

Let us now start with a very useful proposition acting as a key point for our proofs. The following proposition
generalizes Lemmas 7.1–7.3 in Comte et al. [10] to the case of integrated jump diffusions.

Proposition 2.3. Under Assumptions A1 and A2, the following observations hold true:
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a) We have that

V̄k +
1

∆

∫ (k+1)∆

k∆

(u− k∆)dVu = V(k+1)∆, 1 ≤ k ≤ n+ 1.

b) For 1 ≤ k ≤ n− 1 it holds that

Yk+1 :=
V̄k+2 − V̄k+1

∆
=

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)dVu,

where

ψk(u) := (u− k∆)1[k∆,(k+1)∆[(u) + ((k + 2)∆− u)1[(k+1)∆,(k+2)∆[(u).

c) To value the goodness of our used approximation, we state that

E
(
(V(k+1)∆ − V̄k)2

)
. ∆, 1 ≤ k ≤ n+ 1.

d) Additionally, we state that

E
(
(V(k+1)∆ − V̄k)4

)
. ∆, 1 ≤ k ≤ n+ 1.

Based on the sample {V̄k, k = 1, . . . , n+ 1}, we will now propose the drift estimator for the considered model
and start with the following decomposition based on Proposition 2.3:

Y(k+1)∆ :=
V̄(k+2)∆ − V̄(k+1)∆

∆
=

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)dVu

=
1

∆2

[∫ (k+3)∆

(k+1)∆

ψk+1(u)b(Vu)du+

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu +

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

]

= b(V(k+1)∆) +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

+
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

= b(V̄k∆) + b(V(k+1)∆)− b(V̄k∆) +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

+
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu +
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

:= b(V̄k∆) +R
(1)
k∆ +R

(2)
k∆ + Z

(1)
k∆ + Z

(2)
k∆.

Hence, Y(k+1)∆ will act as an approximation of b(V̄k∆) with

R
(1)
k∆ = b(V(k+1)∆)− b(V̄k∆), R

(2)
k∆ =

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du



ADAPTIVE NONPARAMETRIC DRIFT ESTIMATION OF AN INTEGRATED JUMP DIFFUSION PROCESS 241

and

Z
(1)
k∆ =

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu, Z
(2)
k∆ =

1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu.

We set

Rk∆ := R
(1)
k∆ +R

(2)
k∆

and

Zk∆ := Z
(1)
k∆ + Z

(2)
k∆,

and denote by

Ft := σ(V0, (Ws)0≤s≤t, (Ls)0≤s≤t)

the natural filtration of Vt. Let us remark that V̄k∆ belongs to F(k+1)∆ whereas Zk∆ and Rk∆ belong to F(k+3)∆.
In order to control the approximation error Rk∆ as well as the noise term Zk∆ we will need the following lemma.

Lemma 2.4. Under Assumptions A1 and A2 we have that for ∆ ≤ 1

a) E
(
R2
k∆

)
. ∆ and E

(
R4
k∆

)
. ∆.

b) E
(
Z

(1)
k∆|F(k+1)∆

)
= 0 and E

(
Z

(2)
k∆|F(k+1)∆

)
= 0.

c) E
((

Z
(1)
k∆

)2

|F(k+1)∆

)
. 1/∆ and E

((
Z

(2)
k∆

)2

|F(k+1)∆

)
. 1/∆.

d) E
((

Z
(1)
k∆

)4

|F(k+1)∆

)
. 1/∆2 and E

((
Z

(2)
k∆

)4

|F(k+1)∆

)
. 1/∆3.

3. Spaces of approximation

Let us now turn to our essential aim, namely to estimate nonparametrically the drift function b on a compact
set K. To do this, we consider a sequence of nested subspaces S0, . . . , Sm, . . . such that

⋃
m∈N0

Sm is dense in

L2(K). We minimize a contrast function γn(t) on each Sm and then choose the best estimator by introducing
a penalty function (see for instance Barron et al. [6]). The rate of convergence of our estimator will depend on
the regularity of the drift, i.e. its modulus of smoothness.

Definition 3.1 (Modulus of smoothness). The modulus of continuity of a function f at t is defined by

ω(f, t) = sup
|x−y|≤t

|f(x)− f(y)|.

If f is Lipschitz, the modulus of continuity is proportional to t. If ω(f, t) = o(t), then f is constant: the modulus
of continuity cannot measure higher smoothness.

We define the modulus of smoothness by

ωr(f, t)p = sup
0<h≤t

‖∆r
h(f, .)‖Lp where ∆r

h(f, x) =

r∑
k=0

(−1)k
(
r

k

)
f(x+ kh).
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If f ∈ C r, then for 1 ≤ p ≤ ∞:

ωr(f, t)p ≤ trω(f (r), t)p.

Definition 3.2 (Besov space). The Besov space Bα2,∞ is the set of functions:

Bα2,∞ :=

{
f ∈ L2, sup

t>0
t−αωr(f, t)2 <∞

}
,

where r = bα+ 1c. The norm on a Besov space is defined by:

‖f‖Bα2,∞ := sup
t>0

t−αωr(f, t)2 + ‖f‖L2 .

For more details see DeVore and Lorentz [11].
We consider a series of nested vectorial subspaces satisfying the following assumptions:

A3. i) The subspaces Sm have finite dimension Dm.
ii) On Sm, the L2-norm and the L∞-norm are connected:

∃φ1 > 0, ∀m ∈ N, ∀s ∈ Sm, ‖s‖2∞ ≤ φ1Dm ‖t‖2L2 .

This implies that, for an orthonormal basis ϕλ of Sm,
∥∥∥∑Dm

λ=1 ϕ
2
λ

∥∥∥
∞
≤ φ2

1Dm.

iii) We can control the bias term: for an integer r called the regularity, there exists a constant C > 0 such
that for any function s ∈ Bα2,∞, α ≤ r, ∀m ∈ N,

‖s− sm‖L2 ≤ C2−mα ‖s‖Bα2,∞ ,

where sm is the orthogonal projection of s in Sm.
iv) The subspaces are nested: let us set

M̃n := {m ∈ N, Dm ≤ Nn},

where Nn is an integer. Then there exists Sn, satisfying properties i), ii) and iii), such that ∀m ∈ M̃n,
Sm ⊆ Sn.

Those assumptions are standard for estimation by projection. The subspaces generated by wavelets of regu-
larity r, piecewise polynomials of degree r or trigonometric polynomials satisfy these assumptions (see Meyer
[19]); cf. Figure 2 for an illustration of an approximation by piecewise linear functions.

4. Estimation of the drift function

We consider the mean square contrast function

γn(s) :=
1

n

n∑
k=1

(s(V̄k∆)− Yk∆)2
1V̄k∆∈K .

For any m ∈Mn, where Mn := {m ∈ N, D2
m ≤ n∆/ ln(n)} we consider the contrast estimator

b̂m = arg min
s∈Sm

γn(s).
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Figure 2. Example of approximation by piecewise linear functions.

As Vk∆ is not available, we consider the empirical risk

R(s) = E

(
1

n

n∑
k=1

(s(V̄k∆)− b(V̄k∆))2
1V̄k∆∈K

)
.

The process V̄k∆ is stationary like Vk∆. We denote by π its stationary density and we assume that this density
is bounded from below and above on K:

A4. There exist π0, π1 such that for any x ∈ K:

0 < π1(x) ≤ π(x) ≤ π0 <∞.

Remark 4.1. Assumption A4 is quite mild, as it only assumes that the stationary density of V̄k∆ is bounded
on a compact set. However, it is not easy to prove. For diffusions, the stationary density of Vt is explicit and
Gloter and Gobet [16] give some conditions on the coefficients which ensure the boundedness of π: b and σ have
to be bounded, C3 and their derivatives must also be bounded. However, it is not a necessary condition, as it is
also satisfied for Ornstein-Uhlenbeck processes. For jump diffusions, to our knowledge, there do not exist any
explicit expression of the stationary density of Vt and it will be quite difficult to express Assumption A4 with
respect to certain conditions on the coefficients. However, the simulations show that A4 seems to be satisfied
for our Monte Carlo simulation setups.

We obtain the following bound:

Proposition 4.2. Under Assumptions A1–A4, for any m ∈Mn,

R(b̂m) ≤ 8

3
‖b− bm‖2π + 48(σ2

0 + ξ2
0)
Dm

n∆
+ C∆ +

C ′

n
,

where bm is the orthogonal projection of b on Sm and ‖s‖2π =
∫
K
s2(x)π(x)dx.

The term ‖b− bm‖2π is a bias term, which occurs due to the fact that our estimator belongs to Sm. It
decreases when m increases. The variance term Dm/(n∆) increases with m. ∆ and 1/n are two remainders
terms: ∆ appears because the observations are not continuous, it is linked with the difference b(Vs)− b(V̄k∆),
and the term in 1/n comes from our approximation method.
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We obtain a collection of estimators (b̂0, b̂1, . . .) and would like to select the “best” estimator, which is the
estimator that minimizes the empirical risk and, in particular, the trade-off between bias and variance terms.
If the drift function b belongs to the Besov space Bα2,∞, then we have an explicit bound for the bias term:

‖b− bm‖2π ≤ D
−2α
m

and the risk of the estimator b̂m is bounded by

R(b̂m) . D−2α
m +

Dm

n∆
+ ∆.

This quantity is minimal for Dmopt ∝ (n∆)1/(2α+1). The risk of the optimal estimator b̂mopt satisfies:

R(b̂mopt) . (n∆)(−2α)/(2α+1) + ∆.

If n∆2 tends to 0, that is if we have high frequency data, b̂mopt converges towards b with the nonparametric

rate (n∆)−2α/(2α+1).
As we do not usually know the regularity of the drift function b, we now aim at selecting the best estimator

without knowing it. Let us introduce the penalty function

pen(m) := κ(σ2
0 + ξ2

0)Dm/(n∆),

which is proportional to the variance term and let us also choose the “best” dimension according to

m̂ = arg inf
m∈Mn

{γn(b̂m) + pen(m)}.

We obtain an adaptive estimator b̂m̂. To prove that our estimator selects the “best” dimension m, we make use
of Bernstein-type inequalities. We need the following additional assumption in order to control the big jumps
of V :

A5. We assume that the Lévy measure ν is sub-exponential:

∃C, λ > 0, ∀z > 1 ν(]− z, z[c) ≤ Ce−λ|z|.

Hence, the tails of the jumps cannot be too heavy.

Remark 4.3. We remark that we only need to control the tail of the jumps. For example, Poisson processes
with sub-exponential tails, nearly stable processes or CGMY processes satisfy our assumptions.

We are now ready to state the bound of the L2-risk of the proposed adaptive drift estimator b̂m̂.

Theorem 4.4. Under Assumptions A1–A5, there exists κ0 such that for any κ ≥ κ0

E
[∥∥∥b̂m̂ − bm∥∥∥2

n

]
≤ inf
m∈Mn

{
8

3
‖b− bm‖2π + 4pen(m)

}
+
c

n
+ C∆,

where pen(m) = κ(ξ2
0 + σ2

0)Dm/(n∆) is defined as above.

Remark 4.5. In a comparable model, Song [22] investigated the nonparametric pointwise estimation of the
unknown drift b as well as of the function σ2 + ξ2 in an integrated jump diffusion model using a kernel based
approach. The resulting estimator is consistent and asymptotically normal distributed possessing a rate of
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Figure 3. Spline functions ϕ(r).

convergence of
√
n∆h. In contrast to Song [22], we are interested in estimating adaptively the unknown function

b on a compact set K using a model selection approach under quite general assumptions on the driving jump
process L. Moreover, we derive the empirical L2-risk and state assumptions under which the usual nonparametric
rate of (n∆)−2α/(2α+1) is reached by our estimator as long as b ∈ Bα2,∞ .

5. Simulations

In order to practically construct our estimators, we choose the vectorial subspaces generated by spline
functions; cf. Figure 3.

In that case,

Sm,r =

{
Vect

((
ϕ

(r)
λ,m

)
0≤m≤2m−1

)}
, where ϕ

(r)
λ,m(x) = 2m/2ϕ(r)(2m(x− λ))

and

ϕ(r) = 1[0,1] ∗ · · · ∗ 1[0,1]

is the r-times convolution product of the indicator function of [0, 1]. The subspace Sm can also be described
as the subspace of all the piecewise polynomials of degree r which belong to C r−1. To obtain the adaptive
estimator, we select both (m, r) (0 ≤ r ≤ 7) simultaneously. We have the same rate of convergence as if the
regularity r was equal to 7.

Let us now focus on the Monte Carlo simulation settings. For each model, we are interested in estimating
the drift b on the compact interval K := [−1, 1]. Thanks to an Euler scheme, we realize for each model five
simulations of (X0, . . . , Xn∆) for the number of observations n = 105 and the sampling interval ∆ = 10−2 and
draw the estimators. We also estimate the stationary densities for each model. They look very much alike,
therefore we only draw the estimated density of Model 1, cf. Figure 4.
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Figure 4. Density estimate of V̄k∆.

Figure 5. Model 1.
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For each value of (n,∆), we also realize fifty simulations by an Euler scheme of sampling interval δ = ∆/10.

We compute the estimators b̂m̂ and b̂mopt as well as the empirical risks R̂n(b̂m̂) and R̂n(b̂mopt), where

R̂n(t) =
1

n

n∑
k=1

(t(V̄k∆)− b(V̄k∆))2.

Moreover, we derive the means of R̂n(b̂m̂), denoted by risk, as well as the means of m̂ and r̂.
In addition, we compute

or := mean

(
R̂n(b̂m̂)

R̂n(b̂mopt)

)

to check that our estimator is really adaptive. Indeed, if the choice of m̂ is in some sense good, this quantity
should be close to 1. For the sake of completeness, we also give Tc, the mean of the computation times. Tc
depends on both n∆ (and therefore Mn and the number of estimators b̂m computed) and n.1

From the results it can be seen that for the number of observation n = 105 and the sampling interval ∆ = 10−2,
the adaptive estimators are very close to the true drift function (they are nearly superposed). Moreover, the
risk of our estimator decreases as the observed time horizon of the underlying process, T = n∆, increases.
This coincides with our theoretical findings in the previous sections. The best results (in bold) are obtained for
n = 105,∆ = 10−2, that is, ∆ small enough, and n∆ large enough. The oracle is greater for Model 3 (which
does not satisfy Assumption A5) than for the other models, especially when n∆ is big, that is when we can try
more models. The choice of the best dimension seems more difficult.

Model 1: Ornstein-Uhlenbeck process with binomial jumps

dVt = −2Vtdt+ dWt + dLt

with binomial jumps: ν(dz) = 1
21z=±1 (Figs. 4 and 5).

Model 2: Cubic function with Laplace jumps

dVt =
(
−(Vt − 1/4)3 − (Vt + 1/4)3

)
dt+

V 2
t− + 3

V 2
t− + 1

dWt + dLt

with Laplace jumps (Fig. 6):

f(dz) = ν(dz) = 0.5e−|2
1/3z|.

Model 3: Ornstein-Uhlenbeck process with jumps of Student law

dVt = −2Vt + dWt + dLt

with Lt a compound Poisson process of intensity λ = 1 with jumps according to

f(dz) = ν(dz) =
1√
6π

Γ (9/2)

Γ (4)

(
1 +

z2

6

)− 9
2

.

1The programming was done with the software R, the code is available on http://math.univ-lille1.fr/∼schmisse/recherche.html.

http://math.univ-lille1.fr/~schmisse/recherche.html
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Figure 6. Model 2.

Figure 7. Model 3.



ADAPTIVE NONPARAMETRIC DRIFT ESTIMATION OF AN INTEGRATED JUMP DIFFUSION PROCESS 249

Figure 8. Model 4.

This process satisfies Assumptions A1–A2 and A4, but not Assumption A5. Indeed, E
(
L8
t

)
=∞ (Fig. 7).

Model 4: Nearly stable Ornstein-Uhlenbeck process

dVt = −2Vtdt+ dWt + dLt with ν(dz) =
1

4z5/2
1|z|≤1dz.

Note that in this model, the jumps have infinite intensity (Fig. 8).

6. Proofs

In this section, we will present the proofs of the stated results. The Burkholder-Davis-Gundy inequality for
stochastic integrals driven by L2-martingales will be one of the keys for the proofs. For the sake of completeness,
we will state its formulation at first.

Proposition 6.1 (Applebaum [2]; denoted as Kunita’s first inequality). Let V = (Vt)t≥0 be the solution of
(1.1) and let

Ft := σ(V0, (Ws)s≤t, (Ls)s≤t).

Then, under Assumptions A1 and A2 for any p ≥ 2 such that
∫
R |y|

pν(dy) <∞ and
∫
R y

2ν(dy) = 1, there exists
a deterministic positive constant Cp such that

E

(
sup

s∈[t,t+∆]

∣∣∣∣ ∫ s

t

σ(Vu)dWu

∣∣∣∣p∣∣∣∣Ft

)
≤ Cp

(
E

(∣∣∣∣ ∫ t+∆

t

σ2(Vu)du

∣∣∣∣p/2∣∣∣∣Ft

))
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as well as

E

(
sup

s∈[t,t+∆]

∣∣∣∣ ∫ s

t

ξ(Vu−)dLu

∣∣∣∣p∣∣∣∣Ft

)
≤ CpE

(∣∣∣∣ ∫ t+∆

t

ξ2(Vu)du

∣∣∣∣p/2∣∣∣∣Ft

)

+Cp

∫
R
|y|pν(dy)E

((∫ t+∆

t

|ξ(Vu)|pdu

)∣∣∣∣Ft

)
.

A consequence of this proposition is the following corollary. Its proof is fairly classical and can be found for
instance in Gloter [14, Proposition A] for diffusion processes.

Corollary 6.2. Let V = (Vt)t≥0 be defined as in Proposition 6.1. Under Assumptions A1 and A2 it exists a
constant C > 0 such that

E

(
sup

s∈[t,t+∆]

(Vs − Vt)2

)
≤ C∆,

for every t ≥ 0, provided that ∆ ≤ 1.
Moreover, the fourth moment can also be bounded by

E

(
sup

s∈[t,t+∆]

(Vs − Vt)4

)
≤ C̃∆,

for every t ≥ 0 provided that ∆ ≤ 1 and whereby C̃ denotes another positive and deterministic constant.

6.1. Proof of Proposition 2.3

We start with the proof of a), which is more or less an interchanging of integrals according to

V̄k =
1

∆

∫ (k+1)∆

k∆

Vsds =
1

∆

∫ (k+1)∆

k∆

(V(k+1)∆ + Vs − V(k+1)∆)ds

=
1

∆

∫ (k+1)∆

k∆

(
V(k+1)∆ −

∫ (k+1)∆

s

dVu

)
ds = V(k+1)∆ −

1

∆

∫ (k+1)∆

k∆

(∫ u

k∆

ds

)
dVu

= V(k+1)∆ −
1

∆

∫ (k+1)∆

k∆

(u− k∆)dVu = V(k+1)∆ +
1

∆

∫ (k+1)∆

k∆

(k∆− u)dVu.

By the use of a), we are able to deduce statement b) as follows:

Yk+1 =
1

∆

(
V(k+3)∆ −

1

∆

∫ (k+3)∆

(k+2)∆

(u− (k + 2)∆)dVu − V(k+2)∆ +
1

∆

∫ (k+2)∆

(k+1)∆

(u− (k + 1)∆)dVu

)
=

1

∆2

∫ (k+3)∆

(k+1)∆

(
(u− (k + 1)∆)1[(k+1)∆,(k+2)∆)(u) + ((k + 3)∆− u)1[(k+2)∆,(k+3)∆)(u)

)
dVu

=
1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)dVu.



ADAPTIVE NONPARAMETRIC DRIFT ESTIMATION OF AN INTEGRATED JUMP DIFFUSION PROCESS 251

The proof of c) is based on Corollary 6.2 as well as the Cauchy-Schwarz inequality and is derived as follows:

E
(
(V(k+1)∆ − V̄k)2

)
=

1

∆2
E

(∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)ds

)2


≤ 1

∆2

∫ (k+1)∆

k∆

∆E
(
(V(k+1)∆ − Vs)2

)
ds . ∆.

Statement d) can be deduced by using a) and the Cauchy-Schwarz inequality twice as follows

E
((
V(k+1)∆ − V̄k

)4)
=

1

∆4
E

(∫ (k+1)∆

k∆

(V(k+1)∆ − Vs)ds

)4


≤ 1

∆4
· E

(∆

∫ (k+1)∆

k∆

(V(k+1)∆−Vs)2ds

)2
≤ 1

∆2
· E

(∫ (k+1)∆

k∆

(V(k+1)∆−Vs)2ds

)2


≤ 1

∆2
·∆
∫ (k+1)∆

k∆

E
(
(V(k+1)∆ − Vs)4

)
ds .

1

∆
·∆2 = ∆.

6.2. Proof of Lemma 2.4

Let us start with a). Obviously, we have that

E
(
R2
k∆

)
≤ 2

(
E
((

R
(1)
k∆

)2
)

+ E
((

R
(2)
k∆

)2
))

.

By using the Lipschitz-continuity of b as well as Proposition 2.3 we can conclude that

E
(

(R
(1)
k∆)2

)
= E

((
b(V(k+1)∆)− b(V̄k∆)

)2) ≤ C2
b · E

((
V(k+1)∆ − V̄k∆

)2)
. ∆,

where Cb denotes the Lipschitz constant of the drift function b.

Using the Cauchy-Schwarz inequality as well as the fact that∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du =

2∆3

3
,

the second term can be handled as follows

E
((

R
(2)
k∆

)2
)

= E

( 1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

)2


≤ 1

∆4

∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du · E

(∫ (k+3)∆

(k+1)∆

(b(Vu)− b(V(k+1)∆))2du

)

=
2

3∆

∫ (k+3)∆

(k+1)∆

E
(
(b(Vu)− b(V(k+1)∆))2

)
du ≤ 2C2

b

3∆

∫ (k+3)∆

(k+1)∆

E
(
(Vu − V(k+1)∆)2

)
du

.
1

∆
·∆2 = ∆.
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The fourth moment of Rk∆ is treated in an analogous manner. At first, it holds that

E
(
R4
k∆

)
≤ 8

(
E
(

(R
(1)
k∆)4

)
+ E

(
(R

(2)
k∆)4

))
.

Again by Proposition 2.3, statement d), we have that

E
((

R
(1)
k∆

)4
)

= E
((
b(V(k+1)∆)− b(V̄k∆)

)4) ≤ C4
b · E

((
V(k+1)∆ − V̄k∆

)4)
. ∆.

In order to derive the second summand, we make use of the Cauchy-Schwarz inequality twice:

E
((

R
(2)
k∆

)4
)

= E

( 1

∆2

∫ (k+3)∆

(k+1)∆

ψk+1(u)(b(Vu)− b(V(k+1)∆))du

)4


≤ 1

∆8

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

)2

· E

(∫ (k+3)∆

(k+1)∆

(b(Vu)− b(V(k+1)∆))2du

)2


≤ 4∆6

9∆8
E

(
∆

∫ (k+3)∆

(k+1)∆

(b(Vu)− b(V(k+1)∆))4du

)
≤ 4C4

b

9∆

∫ (k+3)∆

(k+1)∆

E
(
(Vu − V(k+1)∆)4

)
du

.
1

∆
·∆2 = ∆,

which concludes the proof of statement a).

Statement b) is a direct consequence of the fact that both Z
(1)
k∆ and Z

(2)
k∆ are martingale difference sequences

with respect to the canonical filtration Ft. We explicitly remark that V̄k∆ belongs to F(k+1)∆ such that Zk∆ is
centered, conditionally on V̄k∆, by the use of the martingale property of (Wt) and (Lt).

Concerning statement c), we make use of Proposition 6.1 as follows

E
((

Z
(1)
k∆

)2
∣∣∣∣F(k+1)∆

)
=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu

)2 ∣∣∣∣F(k+1)∆


=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)σ2(Vu)du

∣∣∣∣F(k+1)∆

)
≤ σ2

0

∆4

∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

=
σ2

0

∆4
· 2∆3

3
≤ 2σ2

0

3∆
.

In order to handle the Lévy-driven part Z
(2)
k∆ we proceed analogously

E
((

Z
(2)
k∆

)2
∣∣∣∣F(k+1)∆

)
=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

)2 ∣∣∣∣F(k+1)∆


=

1

∆4
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)ξ2(Vu)du

∣∣∣∣F(k+1)∆

)
≤ ξ2

0

∆4

∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

=
ξ2
0

∆4
· 2∆3

3
=

2ξ2
0

3∆
.
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The fourth conditional moments of Z
(1)
k∆ and Z

(2)
k∆ can also be treated by Proposition 6.1:

E
((

Z
(1)
k∆

)4
∣∣∣∣F(k+1)∆

)
=

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)σ(Vu)dWu

)4 ∣∣∣∣F(k+1)∆


.

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)σ2(Vu)du

)2 ∣∣∣∣F(k+1)∆

 ≤ σ4
0

∆8

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

)2

=
σ4

0

∆8
· 4∆6

9
.

1

∆2

as well as

E
((

Z
(2)
k∆

)4
∣∣∣∣F(k+1)∆

)
=

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψk+1(u)ξ(Vu−)dLu

)4 ∣∣∣∣F(k+1)∆


.

1

∆8
E

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)ξ2(Vu)du

)2 ∣∣∣∣F(k+1)∆


+

1

∆8

∫
R
y4ν(dy) · E

(∫ (k+3)∆

(k+1)∆

ψ4
k+1(u)ξ4(Vu)du

∣∣∣∣F(k+1)∆

)

≤ ξ4
0

∆8

(∫ (k+3)∆

(k+1)∆

ψ2
k+1(u)du

)2

+

∫
R
y4ν(dy)

∫ (k+3)∆

(k+1)∆

ψ4
k+1(u)du


=

ξ4
0

∆8

(
4∆6

9
+

∫
R
y4ν(dy)

2∆5

5

)
.

1

∆8

(
∆6 + ∆5

)
=

1

∆2
+

1

∆3
.

1

∆3

with regard on ∆ ≤ 1 and

∫ (k+3)∆

(k+1)∆

ψ4
k+1(u)du =

2∆5

5
.

6.3. Proof of Proposition 4.2

We introduce the empirical norm

‖s‖2n =
1

n

n∑
k=1

s2(V̄k∆).

We have that

γn(s) =
1

n

n∑
k=1

(
s(V̄k∆)− Yk∆

)2
=

1

n

n∑
k=1

(
s(V̄k∆)− b(V̄k∆) + b(V̄k∆)− Yk∆

)2
= ‖s− b‖2n + γn(b) +

2

n

n∑
k=1

(
s(V̄k∆)− b(V̄k∆)

) (
b(V̄k∆)− Yk∆

)
.



254 B. FUNKE AND É. SCHMISSER

Therefore, as Yk∆ = b(V̄k∆) +Rk∆ + Zk∆,

γn(s)− γn(b) = ‖s− b‖2n −
2

n

n∑
k=1

(s(V̄k∆)− b(V̄k∆))(Rk∆ + Zk∆).

By definition, γn(b̂m) ≤ γn(bm) and thus

∥∥∥b− b̂m∥∥∥2

n
≤ ‖b− bm‖2n +

2

n

n∑
k=1

(b̂m(V̄k∆)− bm(Vk∆))(Rk∆ + Zk∆). (6.1)

By the use of the Cauchy-Schwarz inequality, it holds for any a > 0:

2

n

n∑
k=1

(b̂m(V̄k∆)− bm(Vk∆))Rk∆ ≤
1

a

∥∥∥b̂m − bm∥∥∥2

n
+
a

n

n∑
k=1

R2
k∆. (6.2)

Due to Proposition 2.3, it holds that E
(
R2
k∆

)
. ∆. Let us consider the linear form

νn(s) =
1

n

n∑
k=1

s(V̄k∆)Zk∆.

Moreover, let us define Bm :=
{
s ∈ Sm, ‖s‖2π = 1

}
, the unit ball (for the ‖.‖π norm) of Sm. We have, for any

c > 0, by the use of the Cauchy-Schwarz inequality:

2

n

n∑
k=1

(b̂m(V̄k∆)− bm(V̄k∆))Zk∆ ≤ 2
∥∥∥b̂m − bm∥∥∥

π
· sup
s∈Bm

νn(s) ≤ 1

c

∥∥∥b̂m − bm∥∥∥2

π
+ c sup

s∈Bm

ν2
n(s). (6.3)

Let us introduce the event

Ωn :=

{
ω ∈ Ω, ∀m ∈Mn,∀s ∈ Sm,

∣∣∣∣∣‖s‖2n‖s‖2π
− 1

∣∣∣∣∣ ≤ 1/2

}

on which the norms ‖.‖π and ‖.‖n are equivalent.
Note that for any deterministic function s, it holds that

E [‖s‖n] = ‖s‖π .

Ωn happens nearly all the time, as shown by the following Lemma 6.1 from [9].

Lemma 6.3. As

i) V̄k is exponentially β-mixing,
ii) V̄k is stationary and its stationary density π is bounded from below and above on K,

iii) the vectorial subspaces Sm satisfy Assumption A3,

then

P(Ωcn) ≤ c/n6. (6.4)
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We first control the risk on Ωn. Gathering (6.1)–(6.3),

E
(∥∥∥b− b̂m∥∥∥2

n
1Ωn

)
≤ E

(
‖b− bm‖2n

)
+

1

a
E
(∥∥∥b̂m − bm∥∥∥2

n

)
+

1

c
E
(∥∥∥b̂m − bm∥∥∥2

π

)
+cE

(
sup
s∈Bm

ν2
n(s)

)
+ aE

(
R2

∆

)
.

By the triangular inequality, it holds for any norm that∥∥∥b̂m − bm∥∥∥2

≤ 2
∥∥∥b̂m − b∥∥∥2

+ 2 ‖b− bm‖2 .

As b− bm is a deterministic function, we have that

E
[
‖b− bm‖2n

]
= ‖b− bm‖2π .

Moreover, on Ωn, we conclude the relation ‖s‖2π ≤ 2 ‖s‖2n. Therefore, it holds that

E
(∥∥∥b̂m − bm∥∥∥2

π
1Ωn

)
≤ 4E

(∥∥∥b̂m − b∥∥∥2

n

)
+ 2 ‖b− bm‖2π

and

E
(∥∥∥b̂m − bm∥∥∥2

n

)
≤ 2E

(∥∥∥b̂m − b∥∥∥2

n

)
+ 2 ‖b− bm‖2π

such that consequently

E
(∥∥∥b− b̂m∥∥∥2

n
1Ωn

)(
1− 2

a
− 4

c

)
≤ ‖b− bm‖2π

(
1 +

2

a
+

2

c

)
+ aE

(
R2

∆

)
+ cE

(
sup
s∈Bm

ν2
n(s)

)
.

Let us set a = c = 12, then we have

E
(∥∥∥b− b̂m∥∥∥2

n
1Ωn

)
≤ 8

3
‖b− bm‖2π + C∆ + 24E

(
sup
s∈Bm

ν2
n(s)

)
(6.5)

and, moreover, let us consider (ϕλ), an orthonormal basis (for the norm ‖.‖π) of Sm. We have that

Bm =

{
s ∈ Sm, s =

∑
λ

aλϕλ,
∑
λ

a2
λ ≤ 1

}
.

Using the Cauchy-Schwarz inequality, we obtain that

E
(

sup
s∈Bm

ν2
n(s)

)
= E

 sup∑
λ

a2
λ≤1

(∑
λ

aλνn(ϕλ)

)2


≤ sup∑
λ

a2
λ≤1

(∑
λ

E
(
ν2
n(ϕλ)

))(∑
λ

a2
λ

)
≤
∑
λ

E
(
ν2
n(ϕλ)

)
.
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Moreover,

E
(
ν2
n(ϕλ)

)
= E

( 1

n

n∑
k=1

ϕλ(V̄k∆)Zk∆

)2


= E

(
1

n2

n∑
k=1

ϕ2
λ(V̄k∆)Z2

k∆

)
+

2

n2

∑
j<k

E
[
ϕλ(V̄k∆)ϕλ(V̄j∆)Zk∆Zj∆

]
.

We first bound the square terms:

E
(
ϕ2
λ(V̄k∆)Z2

k∆

)
= E

(
ϕ2
λ(V̄k∆)E

(
Z2
k∆|F(k+1)∆

))
≤ 2

3

σ2
0 + ξ2

0

∆
‖ϕλ‖2π =

2

3

σ2
0 + ξ2

0

∆
.

If |j − k| ≥ 2, then Zj∆ ∈ F(j+3)∆ ⊆ F(k+1)∆ and the expectation of the product is null:

E
(
ϕλ(V̄k∆)ϕλ(V̄j∆)Zk∆Zj∆

)
= E

(
ϕλ(V̄k∆)ϕλ(V̄j∆)Zj∆E

(
Zk∆|F(k+1)∆

))
= 0

and if j = k − 1, by the Cauchy-Schwarz inequality,

E
(
ϕλ(V̄k∆)ϕλ(V̄j∆)Zj∆Zk∆

)
≤
(
E
(
ϕ2
λ(V̄k∆)Z2

k∆

)
E
(
ϕ2
λ(V̄j∆)Z2

j∆

))1/2 ≤ 2

3

σ2
0 + ξ2

0

∆
.

Therefore:

E
(

sup
s∈Bm

ν2
n(s)

)
≤ 2

σ2
0 + ξ2

0

n∆

and by (6.5),

E
(∥∥∥b− b̂m∥∥∥1Ωn) ≤ 8

3
‖b− bm‖2π + C∆ + 48(σ2

0 + ξ2
0)
Dm

n∆
.

It remains to bound the risk on Ωcn. We can remark that (b̂m(V̄∆), b̂m(V̄2∆), . . . , b̂m(V̄n∆)) is the orthogonal
projection for the ‖.‖n-norm of (Y∆, . . . , Yn∆). We denote this projection by Πm and define Y := (Y∆, . . . , Yn∆),
R := (R∆, . . . , Rn∆) and Z := (Z∆, . . . , Zn∆).

We have that Yk∆ = b(V̄k∆) +Rk∆ + Zk∆ and

∥∥∥b− b̂m∥∥∥2

n
= ‖b−ΠmY‖2n = ‖b−Πmb‖2n + ‖ΠmR +ΠmZ‖2n

and, hence, by the Cauchy-Schwarz inequality

E
[∥∥∥b− b̂m∥∥∥2

n
1Ωcn

]
.

(
1

n

n∑
k=1

E
(
b4(V̄k∆)1V̄k∆∈K

)
P(Ωcn)

)1/2

+

(
1

n

n∑
k=1

(E
[
R4
k∆

]
+ E

[
Z4
k∆

]
)

)1/2

(P(Ωcn))1/2.
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By Lemmas 2.4 and 6.3 we finally conclude that

E
[∥∥∥b− b̂m∥∥∥2

n
1Ωcn

]
.

1

n
,

which ends the proof.

6.4. Proof of Theorem 4.4

As previously, we decompose the risk on Ωn and Ωcn. On Ωcn, we obtain the same bound as for the non-adaptive
estimator. We bound the risk on Ωn. We have, for any m, like in (6.5):

E
[∥∥∥b̂m̂ − b∥∥∥2

n
1Ωn

]
≤ 8

3
‖b− bm‖2π + 2pen(m)− 2pen(m̂) + C∆ + 24E

[
sup

s∈Bm,m̂

ν2
n(s)

]
,

where Bm,m′ is the unit ball of the set Sm + Sm′ . Let us introduce the function p(m,m′) as follows:

12p(m,m′) := pen(m) + pen(m′).

Then

E
[∥∥∥b̂m̂ − b∥∥∥2

n
1Ωn

]
≤ 8

3
‖b− bm‖2π + 4pen(m) + C∆ + 24E

[
sup

s∈Bm,m̂

ν2
n(s)− p(m, m̂)

]
.

The problem is to bound ν2
n(s) on a random ball. We have:

E

[
sup

s∈Bm,m̂

ν2
n(s)− p(m, m̂)

]
≤
∑
m′

E

[
sup

s∈Bm,m′

ν2
n(s)− p(m,m′)

]
.

We follow straightly the proof of Theorem 2 in Schmisser [21]. To bound this term, we use a Bernstein inequality
and, moreover, we need to apply a Markov inequality on the term exp(νn(s)). The following proposition is exactly
Corollary 5.2.2 of Applebaum [2].

Proposition 6.4. Let Ft and Kt be two locally integrable and previsible processes and let

Yt :=

∫ t

0

FudWu +

∫ t

0

KudLu −
∫ t

0

[
F 2
u

2
+

∫
R

(
eKuz − 1−Kuz

)
ν(dz)

]
du.

If

∀t > 0, E

(∫ t

0

∫
|z|>1

∣∣eKuz − 1
∣∣ ν(dz)du

)
<∞,

then eYt is a Ft-local martingale.

We set

Fu :=
1

∆

n∑
k=1

s(V̄k∆)σ(Vu)ψk+1(u), Ku :=
1

∆

n∑
k=0

s(V̄k∆)ξ(Vu−)ψk+1(u),
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Aε,t :=
ε2

2

∫ t

0

F 2
udu, Bε,t :=

∫ t

0

∫
R

(
eεKuz − εKuz − 1

)
ν(dz)du

and consider

Mt :=

∫ t

0

FudWu +

∫ t

0

KudLu, and Yε,t = εMt −Aε,t −Bε,t.

As ψk+1(u) ≤ ∆, |Ku| ≤ n ‖s‖∞ ξ0 and for ε ≤ ε1 := (λ ∧ 1)/(2n ‖s‖∞ ξ0), by Assumption A5,

E

(∫ t

0

∫
|z|>1

∣∣eεKuz − 1
∣∣ ν(dz)

)
<∞.

Then, by Proposition 6.4, eYε,t is a local martingale for ε ≤ ε1. It remains to compute its expectation.
We can remark that ∫ t

0

ψ2
k(u)du =

2∆3

3
,

∫ t

0

ψk(u)ψk+1(u)du =
∆3

6

and the function ψkψj is identically null if |k − j| ≥ 2. Then

Aε,t ≤
ε2

2∆2
σ2

0

∑
0≤k,j≤n

s(V̄k∆)s(V̄j∆)

∫ t

0

ψk+1(u)ψj+1(u)du

≤ ε2

2∆2
σ2

0 ‖s‖
2
n

n∑
k=0

(
2∆3

3
+ 2

∆3

6

)
=
ε2

2
∆n ‖s‖2n σ

2
0 .

Moreover, if α ≤ 1 ∧ λ, ∫
R
(eαz − αz − 1)ν(dz) ≤ Cα2.

Then, if ε ≤ ε1,

Bε,t .
∫ t

0

ε2K2
udu .

ε2

∆2
ξ2
0

∑
k,j

s(V̄j∆)s(V̄k∆)

∫ t

0

ψk+1(u)ψj+1(u)du . ε2∆n ‖s‖2n ξ
2
0 .

Hence, there exists a c > 0, such that for any ε ≤ ε1,

Aε,t +Bε,t ≤ cn∆ε2(σ2
0 + ξ2

0) ‖s‖2n .

Using the fact that νn(s) = 1
n∆Mn∆, we conclude for ε ≤ ε1:

P
(
νn(s) ≥ η, ‖s‖2n ≤ ζ

2
)
≤ P

(
eεMn∆ ≥ eεn∆η, Aε,n∆ +Bε,n∆ ≤ cn∆ε2(σ2

0 + ξ2
0)ζ2

)
≤ P

(
eYε,n∆ ≥ exp

(
n∆ηε− cn∆ε2(σ2

0 + ξ2
0)ζ2

))
.
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We choose

ε =
η

2c(σ2
0 + ξ2

0)ζ2 + η/ε1

such that ε ≤ ε1 as well as

n∆ηε− cn∆ε2(σ2
0 + ξ2

0)ζ2 ≤ − η2n∆

4c((σ2
0 + ξ2

0)ζ2 + c′ηξ0 ‖s‖∞
.

Let us consider a sequence {τN} of increasing stopping times such that limN→∞ τN = ∞. Then, as eYε,t is a
local martingale, the following equality for the corresponding expectation holds:

E
(
eYε,t∧τN

)
= E

(
eYε,0

)
= 1.

Moreover, we have that:

P
(
eYε,t∧τN ≥ a

)
≤ e−a.

Letting N →∞, we obtain P
(
eYε,t ≥ a

)
≤ e−a such that

P
(
νn(s) ≥ η, ‖s‖2n ≤ ζ

2
)
≤ exp

(
− η2n∆

4c ((σ2
0 + ξ2

0)ζ2 + c′ηξ0 ‖s‖∞)

)
.

To conclude the proof, we use a L2
π − L∞ chaining technique (see [21], Prop. 20).

Let Dm,m′ := dim(Sm + Sm′). We finally obtain that

E

(
sup

s∈Bm,m′

ν2
n(s)− p(m,m′)

)
. (ξ2

0 + σ2
0)
D

3/2
m,m′

n∆
e−
√
Dm,m′

and, therefore, as
∑
m′ D

3/2
m,m′e

−
√
Dm,m′ = O(1),

E

(
sup

t∈Bm,m̂

ν2
n(s)− p(m, m̂)

)
≤
∑
m′

E

(
sup

s∈Bm,m′

ν2
n(s)− p(m,m′)

)
.
ξ2
0 + σ2

0

n∆
,

which concludes the proof.
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