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PENULTIMATE APPROXIMATION FOR THE DISTRIBUTION
OF THE EXCESSES

Rym Worms
1

Abstract. Let F be a distribution function (d.f) in the domain of attraction of an extreme value
distribution Hγ ; it is well-known that Fu(x), where Fu is the d.f of the excesses over u, converges,
when u tends to s+(F ), the end-point of F , to Gγ( x

σ(u)
), where Gγ is the d.f. of the Generalized

Pareto Distribution. We provide conditions that ensure that there exists, for γ > −1, a function Λ
which verifies limu→s+(F ) Λ(u) = γ and is such that ∆(u) = supx∈[0,s+(F )−u[ |F̄u(x)− ḠΛ(u)(x/σ(u))|
converges to 0 faster than d(u) = supx∈[0,s+(F )−u[ |F̄u(x)− Ḡγ(x/σ(u))|.

Mathematics Subject Classification. 60G70, 62G20.

Received February 26, 2001. Revised October 5, 2001.

Introduction

Let F be a distribution function in the domain of attraction of an extreme value distribution Hγ , where

Hγ(x) = exp(−(1 + γx)−1/γ) for x such that 1 + γx > 0, if γ 6= 0,
= exp(−e−x) for x ∈ R if γ = 0,

which means there exist sequences (αn) and (σn) such that

d̂n = sup
x∈R

∣∣∣∣Fn(x)−Hγ

(
x− αn
σn

)∣∣∣∣ −→ 0, as n→ +∞. (1)

It is well-known (see [8] and [1]) that this is equivalent to the existence of σ(u) > 0 such that

d(u) = sup
x∈[0,s+(F )−u[

∣∣∣∣F̄u(x) − Ḡγ
(

x

σ(u)

)∣∣∣∣ −→ 0, as u→ s+(F ), (2)

where s+(F ) = sup{x, F (x) < 1} is the upper endpoint of F (and s−(F ) = inf{x, F (x) > 0} its lower endpoint),
F̄u(x) (= F̄ (x+ u)/F̄ (u) = (1− F (x+ u))/(1− F (u))) is the survival function of the excess over u and Ḡγ the
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survival function of the Generalized Pareto Distribution, with

Ḡγ(x) = (1 + γx)−1/γ for x ≥ 0 such that 1 + γx > 0, if γ 6= 0,
= e−x for x ∈ R+ if γ = 0.

Hγ will be called in this paper the “ultimate” approximation of Fn and, similarly, Ḡγ the “ultimate” approxi-
mation of F̄u. In 1928, Fisher and Tippet [4] showed empirically, for the normal distribution (for which γ = 0),
that there exists a sequence of extreme value distributions Hγn of Weibull type (γn < 0 and γn → 0), which is a
better approximation of Fn than its limiting distribution Hγ . They called Hγn a “penultimate” approximation
of Fn.

Cohen, in [3], studied the case of the Gumbel domain of attraction (γ = 0). He exhibited a penultimate
approximation of Fn, for distributions in a sub-class of this domain and compared the rates of convergence to
0 of

d̂n = sup
x∈R
|Fn(σnx+ αn)−Hγ(x)|

and

∆̂n = sup
x∈R
|Fn(σnx+ αn)−Hγn(x)|,

for appropriate normalizing sequences αn and σn.
In [5] and [7], Gomes studied the rates of convergence of d̂n and ∆̂n, in the case γ = 0 and then in the other

cases (γ > 0 and γ < 0).
More recently, Gomes and de Haan, in [6], gave a necessary condition for the existence of a penultimate

approximation for Fn. In other words, they provided a condition for the existence of a sequence γn tending
to γ such that the rate of convergence to 0 of ∆̂n is better than the rate of d̂n.

Now, regarding the Generalized Pareto approximation for the distribution of the excesses, we have studied,
in [9], the rate of convergence to 0 of

d(u) = sup
x∈[0,s+(F )−u[

∣∣∣∣F̄u(x)− Ḡγ
(
x+ u− α(u)

σ(u)

) ∣∣∣∣,
for appropriate normalizing functions α and σ.

The aim of this paper is to study the existence of a penultimate approximation for this distribution of the
excesses. In other words, we look for conditions under which there exists a function Λ such that Λ(u) −→ γ, as
u→ s+(F ), and the rate of convergence to 0 of

∆(u) = sup
x∈[0,s+(F )−u[

∣∣∣∣F̄u(x) − ḠΛ(u)

(
x+ u− α(u)

σ(u)

) ∣∣∣∣
is better than the rate of d(u), for appropriate normalizing functions α and σ.

In Section 1, we present the framework. In Section 2, we provide a necessary condition for the existence of a
penultimate approximation, with the appropriate normalizing functions. In Section 3, we state our results. In
Section 4, we prove the main result.

1. Assumptions and preliminary properties

In the sequel, we suppose that F is four times differentiable and that its inverse F−1 exists. We define the
mapping V from R∗+ onto ]s−(F ), s+(F )[, by V (t) = F̄−1(e−t) = F̄−1(Ḡ0(t)) and we note A(t) = V ′′(ln t)

V ′(ln t) − γ.
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We have established, in [9] (and [10]), the rate of convergence to 0 of d(u), under the following first and
second order conditions:

lim
t→+∞

A(t) = 0, (3)

and

A is of constant sign at +∞ and there exists ρ ≤ 0 such that |A| ∈ RVρ.2 (4)

Here, we use a second order condition which (see [2]) is stronger than (4):

A is of constant sign at +∞ and there exists ρ ≤ 0 such that lim
t→+∞

tA′(t)
A(t)

= ρ. (5)

We shall see in the following section that, under assumptions (3) and (4), a necessary condition for the existence
of a penultimate approximation for the distribution of the excesses is ρ = 0. In order to compute the rate of
convergence of ∆(u), we introduce the following condition:

A′ is of constant sign at +∞ and lim
t→+∞

tA′′(t)
A′(t)

= −1, (6)

which, by an immediate application of the l’Hospital rule, implies ρ = 0.

Remark 1. Gomes and de Haan, in [6], make use of conditions (3), (5) and (6), where A is replaced by
Â(t) = V̂ ′′(ln t)

V̂ ′(ln t)
− γ, with V̂ (t) = F−1(exp(−e−t)).

The results stated in the following proposition using functions V and A are stated in [6] (see 1.14 and
Lem. 2.1) using functions V̂ and Â. This proposition has to be compared with Proposition 1 in [9] (or Prop. 1
in [10]).

Proposition 1. Under conditions (3), (5) and (6), for γ ∈ R,
(i)

lim
t→+∞

[
V (t+ x) − V (t)

V ′(t)
− eλ(t)x − 1

λ(t)

]/
λ′(t) = Mγ(x),

where

Mγ(x) =
1
2

∫ x

0

u2eγudu.

(ii) ∀ε > 0, ∃t0 ≥ 0, ∀t ≥ t0,∀x ≥ t0 − t,
• if x ≥ 0,

(1− ε)e−εxMγ(x) <
V (t+x)−V (t)

V ′(t) − eλ(t)x−1
λ(t)

λ′(t)
< (1 + ε)eεxMγ(x),

• if x ≤ 0,

(1 + ε)e−εxMγ(x) <
V (t+x)−V (t)

V ′(t) − eλ(t)x−1
λ(t)

λ′(t)
< (1− ε)eεxMγ(x).

2f ∈ RVα (i.e. f is regularly varying with index α) means that for all x > 0, limt→+∞
f(tx)
f(t)

= xα (see [2]).
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Proof. We prove only (i) (for (ii), see Lem. 2.1 in [6]).

V (t+ x)− V (t)
V ′(t)

− eλ(t)x − 1
λ(t)

=
∫ x

0

V ′(t+ s)
V ′(t)

ds−
∫ x

0

exp(s
V ′′(t)
V ′(t)

)ds,

=
∫ x

0

exp(s
V ′′(t)
V ′(t)

)
[
exp

(
lnV ′(t+ s)− ln V ′(t)− sV

′′(t)
V ′(t)

)
− 1
]

ds,

=
∫ x

0

exp(s
V ′′(t)
V ′(t)

)
[
exp

(∫ s

0

(
V ′′(t+ z)
V ′(t+ z)

− V ′′(t)
V ′(t)

)
dz
)
− 1
]

ds.

Now V ′′(t)
V ′(t) = λ(t) and V ′′(t+z)

V ′(t+z) −
V ′′(t)
V ′(t) =

∫ z
0 λ
′(t+ q)dq, hence

[
V (t+ x)− V (t)

V ′(t)
− eλ(t)x − 1

λ(t)

]
/λ′(t) =

∫ x

0

exp(sλ(t))

 exp
(
λ′(t)

∫ s
0

∫ z
0
λ′(t+q)
λ′(t) dqdz

)
− 1

λ′(t)

ds.

When t→ +∞, λ(t) −→ γ (from (3)), λ′(t) −→ 0 (from (5)), and λ′(t+q)
λ′(t) −→ 1 uniformly on every interval [0, X ]

(from Lem. 1). Hence, for all x ∈ R,[
V (t+ x)− V (t)

V ′(t)
− eλ(t)x − 1

λ(t)

]
/λ′(t) −→

∫ x

0

eγs
s2

2
ds = Mγ(x).

�

Remark 2. Note that Mγ(0) = 0, Mγ is positive on R∗+ and negative on R∗− .

2. Necessary condition for penultimate approximation

Our aim is to find conditions under which there exists a function Λ such that Λ(u) −→ γ, as u → s+(F ),
and the rate of convergence to 0 of

∆(u) = sup
(∣∣∣∣F̄u(x) − ḠΛ(u)

(
x+ u− α(u)

σ(u)

)∣∣∣∣ ;x ∈ [0, s+(F )− u[
)

(7)

= sup
(∣∣F̄u(σ(u)x− u+ α(u))− ḠΛ(u)(x)

∣∣ ;x ∈
[
u− α(u)
σ(u)

,
s+(F )− α(u)

σ(u)

[)
(8)

is faster than A(eV
−1(u)), which was the rate in the ultimate case (see [9] or [10]). A method for this is to

express3 F̄u(x) − ḠΛ(u)(
x+u−α(u)

σ(u) ) using Ḡ0 (i.e. x 7→ I]−∞,0[(x) + I[0,+∞[(x)e−x ).
For this purpose, we introduce the function φu, defined from [0, s+(F )− u[ onto R+, by

φu(x) = V −1(x+ u)− V −1(u).

We obtain

F̄u(x) = Ḡ0(φu(x)).

3As we did in [9] or [10] in order to study d(u).
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We note that, for γ 6= 0 and x ∈ R+,

Ḡγ(x) = Ḡ0

(
1
γ

ln(1 + γx)
)
. (9)

If Λ(u) 6= 0, for u sufficiently large4, it follows that, for all x ∈ [0, s+(F )− u[,

F̄u(x)− ḠΛ(u)

(
x+ u− α(u)

σ(u)

)
= Ḡ0(φu(x)) − Ḡ0

(
1

Λ(u)
ln
(

1 + Λ(u)
V (φu(x) + V −1(u))− α(u)

σ(u)

))
·

Then we can write

∆(u) = sup
s∈R+

|Bu(s)|, (10)

where

Bu(s) = Ḡ0(s)− Ḡ0(s+ qu(s)),

and

qu(s) =
1

Λ(u)
ln
(

1 + Λ(u)
V (s+ V −1(u))− α(u)

σ(u)

)
− s. (11)

Now, let us choose

σ(u) = V ′(V −1(u)) and α(u) = V (V −1(u)) = u. (12)

These are the normalizing functions used in the ultimate case for γ > −1 (see [9] or [10]).

Theorem 1. Under (3) and (4), if α(u) and σ(u) are as in (12), a necessary condition to have, for all γ ∈ R
and all s ∈ R+,

Bu(s) = Ḡ0(s)− Ḡ0

(
1

Λ(u)
ln
{

1 + Λ(u)
V (s+ V −1(u))− α(u)

σ(u)

})
= o(A(eV

−1(u)))

is: ρ = 0 and Λ(u) = γ +A(eV
−1(u)).

Proof. The idea of the proof is due to Gomes and de Haan (see [6]).
Let Ḡ′0(0) be the right derivative of Ḡ0 at 0. As 1

Λ(u) ln
{

1 + Λ(u)V (s+V −1(u))−u
V ′(V −1(u))

}
≥ 0, for all s ∈ R+,

Ḡ0(s)− Ḡ0

(
1

Λ(u)
ln
{

1 + Λ(u)
V (s+ V −1(u))− α(u)

σ(u)

})
= Ḡ′0(s) (s− Ju(s)) +O(s− Ju(s))2,

4If γ 6= 0, this is obvious because Λ(u) tends to γ, but if γ = 0, we have to suppose that Λ(u) is of constant sign for u sufficiently
large.
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where

Ju(s) =
1

γ + zu
ln(1 +Ku(zu)),

with zu = Λ(u)− γ and Ku(zu) = (γ + zu)V (s+V −1(u))−u
V ′(V −1(u)) .

We know from [9] (or [10]) that conditions (3) and (4) imply that for all γ ∈ R and all x ∈ R,[
V (t+ s)− V (t)

V ′(t)
−
∫ s

0

eγxdx
]/

A(et) t→+∞−→
∫ s

0

eγx
∫ x

0

eρzdz dx = Iγ,ρ(s). (13)

From now on, we treat only the case γ 6= 0 (the case γ = 0 is similar).

1 +Ku(zu) = 1 + (γ + zu)
(

eγs − 1
γ

+A(eV
−1(u))Iγ,ρ(s) + o(A(eV

−1(u)))
)

= eγs +
eγs − 1
γ

zu + γA(eV
−1(u))Iγ,ρ(s) + o(A(eV

−1(u))).

Then

ln
(
1 +Ku(zu)

)
= γs+

1− e−γs

γ
zu + γA(eV

−1(u))e−γsIγ,ρ(s) + o(zu) + o(A(eV
−1(u)))

and

Ju(s) =
1
γ

(1− zu/γ + o(zu))
(
γs+

1− e−γs

γ
zu + γA(eV

−1(u))e−γsIγ,ρ(s) + o(zu) + o(A(eV
−1(u)))

)
,

whence

s− Ju(s) =
1
γ2

(γs− 1 + e−γs)zu −A(eV
−1(u))e−γsIγ,ρ(s) + o(zu) + o(A(eV

−1(u))).

The rate of convergence of Bu(s) will be better than O(A(eV
−1(u))) (the rate in the ultimate case), for all

s ∈ R+, if we can choose zu tending to 0 as u→ s+(F ), such that, for all s ∈ R+,

1
γ2

(−γs+ 1− e−γs)zu +A(eV
−1(u)))e−γsIγ,ρ(s) = 0

and zu = O(A(eV
−1(u))).

This is possible only if ρ = 0. Indeed, Iγ,0(s) =
∫ s

0
yeγydy = − eγs

γ2 (−γs + 1 + e−γs) and then it suffices to

choose zu = A(eV
−1(u)) . �

Remark 3. We know from [9] (or [10]) that another choice of normalizing functions (α∗(u), σ∗(u)) is possible
for γ < 0. However, one can check that the same kind of computations as above shows that this choice does
not lead to a penultimate approximation.

3. Rates of convergence

In order to determine the rate of convergence to 0 of

∆(u) = sup
(∣∣∣∣F̄u(x)− ḠΛ(u)(

x+ u− α(u)
σ(u)

)
∣∣∣∣ ;x ∈ [0, s+(F )− u[

)
= sups∈R+

|Bu(s)|,
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where Bu(s) is defined in (10), we begin (Th. 2, whose proof is given in Sect. 4) by giving the rate of uniform
convergence to 0 of Bu(s), as u tends to s+(F ), where the normalizing functions are chosen as in (12) and Λ is
defined by Λ(u) = γ +A(eV

−1(u)), as in Theorem 1.

Theorem 2. Let F be a distribution function satisfying (3), (5) and (6). Define Cγ by

Cγ(s) = e−γs|Ḡ′0(s)|Mγ(s) = exp[−(1 + γ)s]Mγ(s).

Then, for γ > −1, Bu
eV−1(u)A′(eV−1(u))

converges to Cγ , uniformly on R+, as u tends to s+(F ).

The rate of convergence of ∆(u) to 0 follows straightforwardly:

Corollary 1. Under the same hypothesis and notations as Theorem 2, if γ > −1, as u tends to s+(F ),

∆(u) = sup
x∈[0,s+(F )−u[

∣∣∣∣F̄u(x)− ḠΛ(u)

(
x+ u− α(u)

σ(u)

) ∣∣∣∣ = O
(

eV
−1(u)A′(eV

−1(u))
)
.

Remark 4. Note that eV
−1(u) = 1/F̄ (u).

Remark 5. The condition limt→+∞
tA′(t)
A(t) = 0 (see (5)) ensures that the rate of convergence to 0 of ∆(u) is

better than the rate of d(u), which is of order A(eV
−1(u)) (see Cor. 1 in [9]). However, it follows from Lemma 1

below that the rate of convergence in the penultimate case remains a slowly varying function (∈ RV0).

Lemma 1. If we note

λ(t) =
V ′′(t)
V ′(t)

= A(et) + γ,

then, under (6), for all q in R,

lim
t→+∞

λ′(t+ q)
λ′(t)

= 1.

In other words, t 7→ |λ′(ln t)| = |tA′(t)| is RV0. This convergence is uniform on every compact set of the
form [0, T ].

Proof. For q in R and t ≥ max(0,−q),

ln
λ′(t+ q)
λ′(t)

= ln |λ′(t+ q)| − ln |λ′(t)| =
∫ t+q

t

λ′′(r)
λ′(r)

dr.

Condition (6) implies that λ′′(t)
λ′(t) −→ 0, as u → s+(F ). It follows that ln λ′(t+q)

λ′(t) tends to 0 uniformly on every

compact set [0, T ]. Hence λ′(t+q)
λ′(t) tends to 1 uniformly on [0, T ]. �

As a consequence of Theorem 2, we can also give the uniform rate of convergence to 0 of F̄u(σ(u)y)− ḠΛ(u):

Theorem 3. Under the same hypothesis and notations as in Theorem 2, if γ > −1,

F̄u(V ′(V −1(u))y)− ḠΛ(u)(y)
eV −1(u)A′(eV −1(u))

,
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converges, when u→ s+(F ), to

Dγ(y) = Cγ

(
1
γ

ln(1 + γy)
)

if γ 6= 0,

D0(y) = C0(y) if γ = 0.

This convergence is uniform:
- on R+ if s+(F ) = +∞ (particularly if γ > 0);
- [0, X ] (where X > 0) if γ = 0 and s+(F ) < +∞;
- [0, X ] (where 0 < X < − 1

γ ), if γ < 0.

The proof of this theorem is similar to the proof of theorem 3 in [9] (or Th. 4 in [10]). The only difference is
that, if we define ψu by s = ψu(y) = V −1(σ(u)y + α(u)) − V −1(u), an important step is to prove the uniform
convergence to 0 of Ḡ0(ψu(y))− Ḡγ(y), on [0, s+,γ [ (where s+,γ is the upper end point of Ḡγ); here, Theorem 2
ensures the uniform convergence to 0 of Ḡ0(ψu(y)) − ḠΛ(u)(y). Besides, using the fact that Ḡγ is decreasing
and that limy→s+(F ) Ḡγ(y) = 0, we prove that ḠΛ(u)(y)− Ḡγ(y) converges to 0, uniformly on [0, s+,γ[.

Example 1. Distribution functions defined by

1− F (x) = exp(−xβ l̃(x)),

where β > 0 and l̃ is a smooth slowly varying function5, are called of Weibull type. They are in the Gumbel
domain of attraction. For these distributions, if β 6∈ { 1

2 , 1},

A(t) =
V ′′(ln t)
V ′(ln t)

∼
(

1
β
− 1
)

1
ln t

, and tA′(t) ∼
(

1− 1
β

)
1

(ln t)2
, as t→ +∞. (14)

Assumptions of Theorem 2 are satisfied. It follows that we can get a penultimate approximation for this type of
distributions, as the Normal distribution (β = 2) and the Weibull distribution (β > 0 and l̃ = 1).

We deduce from (14) that the rate of convergence is of order 1
− ln(1−F (u)) in the ultimate case and 1

(− ln(1−F (u)))2

in the penultimate one.

4. Proof of Theorem 2

The proof of Theorem 2 follows the same lines as the proof of Theorem 1 in [9] (the ultimate case). Here are
the two main steps of the proof:
(i) We find a positive function S satisfying S(u)→ +∞ and such that, when u→ s+(F ),

Bu
eV −1(u)A′(eV −1(u))

converges to Cγ

uniformly on [0, S(u)], and

1
eV −1(u)A′(eV −1(u))

Ḡ0(S(u)) converges to 0.

(ii) We extend the convergence established in (i) to R+.

5This means that l̃ is C∞ and is slowly varying.
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• We begin by showing how (ii) is derived from (i). As limx→+∞Cγ(x) = 0, for γ > −1, it is sufficient to
show that sups≥S(u)

Bu(s)

eV−1(u)A′(eV−1(u))
tends to 0 when u tends to s+(F ). As Ḡ0 is a decreasing function and

s 7→ s+ qu(s) is an increasing one, we get

sup
s≥S(u)

|Bu(s)| ≤ Ḡ0(S(u)) + Ḡ0(S(u) + qu(S(u))) ≤ 2Ḡ0(S(u)) + |Bu(S(u))|.

It follows from (i) that Ḡ0(S(u))

eV−1(u)A′(eV−1(u))
→ 0 and Bu(S(u))

eV−1(u)A′(eV−1(u))
→ 0.

• In order to prove (i), we give the following lemmas:

Lemma 2. Let a be equal to 2 or 3.
For all ε > 0, we define on R+ f̃γ,ε and g̃γ,ε by

f̃γ,ε(x) = ((1 + ε)ae2εx − 1)Mγ(x)e−(γ+1)x,

g̃γ,ε(x) = ((1− ε)ae−2εx − 1)Mγ(x)e−(γ+1)x.

If γ > −1,

lim
ε→0

sup
x≥0
|f̃γ,ε(x)| = 0 and lim

ε→0
sup
x≥0
|g̃γ,ε(x)| = 0.

The proof of this lemma uses Lemma 3 and follows the same lines as the proof of Lemma 4 in [9] (or Lem. 4
in [10]).

Lemma 3. For any ε > 0,
if s tends to +∞, then, if γ ≥ 0, Mγ(s) = o(e(γ+ε)s) and, if γ < 0, Mγ(s)→ − 1

γ3 ;
if s tends to −∞, then, if γ ≥ 0, Mγ(s)→ − 1

γ3 and, if γ < 0, Mγ(s) = o(e(γ−ε)s).

If we let

pu(s) =
V (s+ V −1(u))− α(u)

σ(u)
− eλ(V −1(u))s − 1

λ(V −1(u))
, (15)

we derive the following “Potter-type” bounds, consequences of Proposition 1.

Lemma 4. For all γ ∈ R,
(i) ∀ε > 0,∃u0,∀u ≥ u0,∀s ∈ R+,

(1− ε)e−εsMγ(s) ≤ pu(s)
λ′(V −1(u))

≤ (1 + ε)eεsMγ(s).

(ii) limu→s+(F ) pu(s) = 0.

Remark 6. This lemma establishes that, for u sufficiently large, pu(s) has the same sign as λ′(V −1(u)) for all
s > 0.
qu (see (11)) and pu (see (15)) are linked in the following way:
• if γ = 0, qu(s) = pu(s),
• if γ 6= 0 and 1+Λ(u)V (s+V −1(u))−α(u)

σ(u) > 0 ( which is true for u sufficiently large) there exists θ = θ(u, s) ∈
[0, 1] such that

qu(s) = e−Λ(u)spu(s)(1 + θΛ(u)e−Λ(u)spu(s))−1. (16)
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The proof of the following lemma is similar to the proof of Lemma 6 in [9] (or Lem. 8 in [10]), the only difference
being that γ is replaced by Λ(u), which tends to γ as u tends to s+(F ).

Lemma 5. Let S be a positive function defined on R+ and satisfying limu→s+(F ) S(u) = +∞.
(i) If γ ≥ 0 and there exists ε > 0 such that

lim
u→s+(F )

ln |λ′(V −1(u))|+ 3ε S(u) = −∞, (17)

for u sufficiently large, qu(s) and pu(s) have the same sign and, as u tends to s+(F ),

sup
s∈[0,S(u)]

e−Λ(u)s|pu(s)| −→ 0 and sup
s∈[0,S(u)]

|qu(s)| −→ 0.

(ii) If γ < 0 and there exists ε > 0 such that

lim
u→s+(F )

ln |λ′(V −1(u))|+ (2ε− γ)S(u) = −∞, (18)

for u sufficiently large, qu(s) and pu(s) have the same sign and, as u tends to s+(F ),

sup
s∈[0,S(u)]

e−Λ(u)s|pu(s)| −→ 0 and sup
s∈[0,S(u)]

|qu(s)| −→ 0.

(iii) Condition (17) is fulfilled with S(u) = −α ln |λ′(V −1(u))|, for α > 0 and condition (18) is fulfilled with
S(u) = −α ln |λ′(V −1(u))|, for 0 < α < − 1

γ .

• Here are the main steps of the proof of (i):
It is easy to check that if we choose (see Lem. 5 (iii))

S(u) = −α ln |eV −1(u)A′(eV
−1(u))|,

with α > 1, then

1
eV −1(u)A′(eV −1(u))

Ḡ0(S(u)) −→ 0, as u→ s+(F ).

Now, relation (16) and Lemma 5 yield bounds for qu(s) and then we deduce that there exists u0 ∈ [0, s+(F )[
such that, for u ∈ [u0, s+(F )[ and s ∈ R+,

(1− ε)2 e−γspu(s)|Ḡ′0(s+ ε)|
eV −1(u)A′(eV −1(u))

≤ Bu(s)
eV −1(u)A′(eV −1(u))

≤ (1 + ε)
e−γspu(s)|Ḡ′0(s)|

eV −1(u)A′(eV −1(u))
· (19)

According to Lemma 4, there exists u1 ≥ u0 such that, for u ∈ [u1, s+(F )[ and s ∈ R+,

(1− ε)e−εsMγ(s) ≤ pu(s)
exp(V −1(u))A′(exp(V −1(u)))

≤ (1 + ε)eεsMγ(s). (20)

It follows from (19) and (20) that, for u ∈ [u1, s+(F )[ and s ∈ [0, S(u)],

[(1− ε)3e−εs − 1]e−γsMγ(s)|Ḡ′0(s)| ≤ Bu(s)
eV −1(u)A(eV −1(u))

− Cγ(s) ≤ [(1 + ε)2eεs − 1]e−γsMγ(s)|Ḡ′0(s)|. (21)
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The bounds in (21) being continuous functions tending to 0 when ε tends to 0, the convergence of Bu(s)

eV−1(u)A′(eV−1(u))

towards Cγ(s) is established on every compact set [0, T ] (T > 0).
We extend the convergence to [0, S(u)] using Lemma 2.
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