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MODEL SELECTION FOR REGRESSION ON A RANDOM DESIGN ∗

Yannick Baraud
1

Abstract. We consider the problem of estimating an unknown regression function when the design
is random with values in �k . Our estimation procedure is based on model selection and does not rely
on any prior information on the target function. We start with a collection of linear functional spaces
and build, on a data selected space among this collection, the least-squares estimator. We study the
performance of an estimator which is obtained by modifying this least-squares estimator on a set of
small probability. For the so-defined estimator, we establish nonasymptotic risk bounds that can be
related to oracle inequalities. As a consequence of these, we show that our estimator possesses adaptive
properties in the minimax sense over large families of Besov balls Bα,l,∞(R) with R > 0, l ≥ 1 and
α > αl where αl is a positive number satisfying 1/l − 1/2 ≤ αl < 1/l. We also study the particular
case where the regression function is additive and then obtain an additive estimator which converges
at the same rate as it does when k = 1.
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Introduction

Let A be some subset of R
k. We consider the problem of estimating on A the unknown function s mapping

R
k into R in the following regression framework:

Yi = s(Xi) + ξi i = 1, · · · , n. (1)

The Xi’s are independent random variables with values in A and the ξi’s are i.i.d. zero mean random variables
admitting a finite variance denoted by σ2. For simplicity, we assume all along that σ2 is known. However, the
results contained in this paper would only be slightly modified by replacing σ2 by some suitable estimator as,
for example, the one proposed in Baraud [1] (Sect. 6). Throughout this paper, we assume that the sequences
of Xi’s and ξi’s are independent. For each i ∈ {1, · · · , n} we denote by µi the distribution of Xi and set
µ = n−1

∑n
i=1 µi. By assuming that the Xi’s are not necessarily identically distributed we have in mind to

handle the particular case of deterministic Xi’s for which µi = δXi . Throughout the paper we fix some refer-
ence measure ν supported on A. Unlike µ, we suppose that ν is known and our assumptions concern ν. We equip
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the Hilbert space L
2(A, ν) with its usual norm, ‖ ‖ν , and assume that s belongs to L

2(A, ν). Our aim is to
establish risk bounds for our estimator with respect to ‖ ‖ν .

We build our estimator of s as follows. We start with a collection of finite-dimensional linear spaces {Sm,
m ∈ Mn}, such that for all m ∈ Mn, Sm �= {0}. We call the Sm’s models. The cardinality of the collection
and the dimensions of the models are allowed to depend on n. The unknown function s may or may not belong
to one of the models. For each m ∈ Mn, we denote by Dm the dimension of Sm and by ŝm the least-squares
estimator of s in Sm. Let pen(.) be some function from Mn into R+ = [0,+∞[. We select m̂ in Mn from the
data as

m̂ = arg min
m∈Mn

[
1
n

n∑
i=1

(Yi − ŝm(Xi))
2 + pen(m)

]
, (2)

and define s̃ as the least-squares estimator ŝm̂. The estimator s̃∗ we propose is defined as follows: let kn

= 2 exp
(
ln2(n)

)
,

s̃∗ = s̃ if ‖s̃‖ν ≤ kn and s̃ = 0 otherwise. (3)

Other choices of kn are possible, the one proposed here will be convenient in the proofs.

The penalty function in (2) is chosen to be of the form Cmσ
2Dm/n for all m ∈ Mn. This way of penalizing

is known as “complexity regularization” and was introduced by Barron and Cover [3] in density estimation. A
suitable calibration of the quantity Cm in view of statistical inference is one of the main concerns of this paper.
In order to explain the basic ideas underlying our approach, let us assume for a short time that the design is
deterministic, that the collection {Sm, m ∈ Mn} is totally ordered for the inclusion and that the dimension of
the linear subspace of R

n, {(t(X1), ..., t(Xn))′, t ∈ Sm}, is Dm for each m ∈ Mn. In the sequel, we set

‖t‖2
n =

1
n

n∑
i=1

t2(Xi), ∀t ∈ L
2(A, ν).

For deterministic Xi’s, the quadratic risk of the least-squares estimator ŝm with respect to ‖ ‖2
n is given by

Rm = E[‖s− ŝm‖2
n] = inf

t∈Sm

‖s− t‖2
n +

Dm

n
σ2. (4)

The quantities inft∈Sm ‖s − t‖2
n and σ2Dm/n are respectively called the bias and the variance term and are

monotone functions of Dm (the former decreases as the latter increases). Consequently, the estimator which
achieves the smallest risk among the family of estimators {ŝm,m ∈ Mn} is the one which realizes the best
trade-off between those two terms. Since the bias depends on the unknown function s, the computation of the
index m which minimizes Rm is impossible. The aim of model selection procedures is to determine, solely from
the data, some m̂ among Mn in such a way that the risk of s̃ = ŝm̂ is as close as possible to the minimal one,
i.e. infm∈Mn Rm. Results in this direction have been obtained in Baraud [1] (Cor. 3.1) under weak moment
assumptions on the ξi’s and Birgé and Massart [6] under Gaussian assumptions. In these two papers, it is shown
that for a suitable choice of the penalty function pen(.) in (2), the estimator ŝm̂ satisfies for some constant C

E
[‖s− s̃‖2

n

] ≤ C inf
m∈Mn

[
inf

t∈Sm

‖s− t‖2
n + pen(m)

]
+

Σn

n
, (5)
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where Σn denotes a positive number. When pen(m) is of order σ2Dm/n for all m ∈ Mn and Σn remains
bounded for all values of n simultaneously, we derive from (4) and (5) that for some constant C′,

E
[‖s− s̃‖2

n

] ≤ C′ inf
m∈Mn

E
[‖s− ŝm‖2

n

]
(6)

= C′ inf
m∈Mn

[
inf

t∈Sm

‖s− t‖2
n +

Dm

n
σ2

]
. (7)

Inequality (6) shows that the selected estimator achieves, up to a constant, the infimum of the risks among
the collection of estimators ŝm’s. This inequality is usually called an oracle inequality as introduced in Donoho
and Johnstone [13]. An interesting feature of (7) is that the constant C′ does not depend on s and n. This
makes it possible to derive adaptation properties in the minimax sense for s̃ when the collection of models is
suitably chosen. Such properties are obtained by balancing the bias and variance term in the right-hand side
of (7) under the a posteriori assumption that s belongs to some class of smooth functions.

In the regression framework given by (1) with random design points, inequalities such as (5) (note that ‖ ‖n

is now random) can be deduced from Yang [20], Baraud [1] and Birgé and Massart [6] by deconditioning on the
Xi’s. In the present paper, our aim is to obtain an analogue of (5) with ‖ ‖ν in place of ‖ ‖n.

In the literature, the problem of building an estimator which achieves (up to a constant) the minimal risk
among a family F of estimators given beforehand was addressed by several authors. In our regression setting
with random design points, when the risk is measured with respect to an integral L

2-norm, we mention the work
of Barron et al. [2], Kohler [15], Wegkamp [19], Yang [21] and Catoni [9]. In the first three papers, the authors
built their estimators by selecting one among the family of estimators F . In Barron et al. [2] and Kohler [15]
(see also Kohler [16]), the proposed selection rule was based on a penalized criterion which was related to ours.
In the paper by Wegkamp, the data were split in two parts: one part was used to generate the collections of
estimators, the other part to select one among the collection. In the two other papers, the estimator was based
on a progressive mixture of those lying in F . In all these papers, strong integrability conditions on the errors
are required. Besides, the proposed estimators are depending on a known upper bound B on the sup-norm of
the regression function ‖s‖∞. Consequently, the risk bounds established for these estimators involve constants
that are increasing functions of B and hence, these constants become large if one chooses B large enough to
satisfy the condition ‖s‖∞ ≤ B.

Under suitable assumptions on the collection of models and on the distribution of the design points, we do
not assume that an upper bound on ‖s‖∞ is known. Besides, we do not exclude the case where the errors have
only few finite moments. The risk bounds we establish are similar to Inequality (5) except that the loss ‖ ‖2

n is
replaced by the loss ‖ ‖2

ν . In the case where A = [0, 1] and ν = dx, we derive from these bounds uniform risk
bounds over families of Besov balls Bα,l,∞(R) with R > 0 and l, α in suitable intervals. These bounds allow to
establish the rate optimality of our estimation procedure in the minimax sense. More precisely, by considering a
collection of linear spaces based on piecewise polynomials of degree less than r ≥ 1, we show that our estimator
is adaptive in the minimax sense over the family of Besov balls Bα,l,∞(R) for which l ≥ 2 and α ∈]0, r[. This
result is obtained under weak moment assumptions on the errors. We also consider the case of inhomogeneous
Besov balls (l < 2). Then, we deal with a collection of linear spaces generated by wavelets of regularity r and
show that our estimator achieves the rate n−2α/(1+2α) over each Besov ball Bα,l,∞(R) with R > 0, l ≥ 1 and
α ∈]αl, r[ where αl is some positive number satisfying

max
{

0,
1
l
− 1

2

}
≤ αl <

1
l
·

To our knowledge, in the regression framework with random design points, the minimax rate of estimation over
the Besov ball Bα,l,∞(R) with l ≥ 1 and α ∈]αl, 1/l] had never been described. Only the lower bound n−2α/(1+2α)
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was available in the literature, see for example Korostelev and Tsybakov [17] or Yang and Barron [22]. By
combining this lower bound with our risk bound, we deduce that the (quadratic) minimax rate of estimation
over this Besov ball is of order n−2α/(1+2α). Moreover, in the regression context considered here, our procedure
is the first one to provide an adaptive estimator over classes of Besov balls of the form Bα,l,∞(R) with l ≥ 1,
R > 0 and α ∈]α, ᾱ[ where α, ᾱ are positive numbers satisfying αl ≤ α < ᾱ < +∞. As R is allowed to become
large, these classes are not uniformly bounded in sup-norm for any choices of α and ᾱ. Consequently, the
procedures proposed by Barron et al. [2], Kohler [15], Wegkamp [19], Yang [21] and Catoni [9] fail to provide
an adaptive estimator over such classes.

We also give some perspective on the case where s is an additive regression function (i.e. s of the form
s(x1, . . . , xk) = s(1)(x1) + . . . + s(k)(xk)). This problem was also addressed in Yang [21] under a Gaussian
assumption on the errors. Stone [18] showed that the optimal rate of convergence when n tends to infinity
is then independent of k. For appropriate collections of models and under weak moment assumptions on the
errors, we show that a model selection procedure can provide additive estimators that converge at a rate which
is free of k.

The paper is organized as follows. The main result can be found in Section 1. The adaptation properties of
the estimator in the one dimensional case are presented in Section 2. In Section 3, we study the case where the
regression function is additive. Sections 4 and 5 are devoted to the proofs. Throughout the paper, C denotes a
constant that may vary from line to line.

1. Presentation of the results

1.1. The main assumptions

In this section, we present our main assumptions. We classify them into three groups. The first group consists
of two basic assumptions that we always assume to hold. The former concerns the distribution of the Xi’s and
the latter the collection of models.

(HBas):

(i) The measure µ admits a density with respect to ν that is bounded from below by h0 > 0 and from
above by h1 < +∞.

(ii) The collection of models {Sm, m ∈ Mn} is finite and consists of linear subspaces of some larger linear
space Sn ⊂ L

2(A, ν) ∩ L
∞(A, ν) satisfying

dim(Sn) = Nn < n.

In addition, Sm �= {0} for all m ∈ Mn.
The space Sn may or may not belong to the collection. The quantities h1 and h0 need not be known when µ �= ν.

The second group of assumptions is concerned with the distribution of the errors.
(HMom(a0)): Let a0 > 0. There exists some p > 2(2 + a0) such that τp = E[|ξ1|p] < +∞.

(HGaus): The ξi’s are i.i.d. Gaussian random variables.
By assuming (HGaus), we extend the result established under (HMom(a0)) to more general collections of models.

The third group of assumptions deals with the structure of the L
2(A, ν)-orthonormal bases of Sn. Hereafter,

if X is a finite set, |X | denotes its cardinality.
(HCon): There exists some constant K ≥ 1 such that for all t ∈ Sn

sup
x∈A

|t(x)| = ‖t‖∞ ≤ K
√
Nn‖t‖ν. (8)



MODEL SELECTION FOR REGRESSION ON A RANDOM DESIGN 131

(HLoc): There exist a L
2(A, ν)-orthonormal basis of Sn, (ϕλ)λ∈Λn

(where Λn is an index set satisfying
|Λn| = Nn) and a constant K ≥ 1 such that
(i) for all λ ∈ Λn, |{λ′ ∈ Λn, ϕλϕλ′ �≡ 0}| ≤ K;
(ii) supλ∈Λn

‖ϕλ‖2
∞ ≤ KNn.

Condition (HCon) is related to the structure of the orthonormal bases of Sn. It is shown in Birgé and
Massart [5] (Lem. 1) that Sn satisfies this condition if and only if there exists an orthogonal basis (ϕλ)λ∈Λn

that satisfies ∥∥∥∥∥
∑

λ∈Λn

ϕ2
λ

∥∥∥∥∥
∞

≤ K2Nn. (9)

Moreover if (8) is fulfilled then any orthonormal basis satisfies (9). If Sn satisfies (HLoc) then it satisfies (HCon)
with the same constant K. Indeed, if (HLoc) is fulfilled then for all x ∈ A

∑
λ∈Λn

ϕ2
λ(x) ≤ K sup

λ∈Λn

‖ϕλ‖2
∞ (10)

≤ K2Nn, (11)

which leads to (9) and (HCon). Therefore, Condition (HLoc) is more restrictive than (HCon). Condition (HLoc)
is satisfied when Sn consists of piecewise polynomials or wavelets with compact supports for example. This
condition allows us to weaken the constraint on the dimension of Sn in our main theorem. Finally, let us mention
that the assumption that the basis (ϕλ)λ∈Λn is orthonormal in (HLoc) can be weakened by assuming that it is
a Riesz basis which means that there exist two positive constants C1 and C2 such that

C1

∑
λ∈Λn

β2
λ ≤

∥∥∥∥∥
∑

λ∈Λn

βλϕλ

∥∥∥∥∥
2

ν

≤ C2

∑
λ∈Λn

β2
λ.

This allows to handle the case where Sn is generated by splines.

1.2. The main theorem

In this section, we establish risk bounds for the estimator s̃∗ defined by (3). We distinguish between two
settings. For each of these we introduce specific penalty functions and notations.

In our first setting, we only assume that the errors satisfy some moment condition. When the collection is
not too “rich”, we shall see in the comment following the theorem that the existence of few finite moments is
enough to obtain an oracle inequality similar to (7).

(K1): (HMom(a0)) holds. Given some θ > 0, we define the penalty term as

pen(m) = (1 + θ)
Dm

n
σ2 for all m ∈ Mn.

We set

Σn =
∑

m∈Mn

D−a0
m . (12)

In the second setting, we assume that the errors are Gaussian.
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(K2): (HGaus) holds. Given some θ > 0 and a sequence of nonnegative numbers {Lm, m ∈ Mn} we define the
penalty term as

pen(m) = (1 + θ)(1 +
√

2Lm)2
Dm

n
σ2 for all m ∈ Mn.

We set

Σn =
∑

m∈Mn

exp (−LmDm) . (13)

We have the following result:

Theorem 1.1. Let s be some function in L
2(A, ν). Assume that (HBas) holds. Assume that either (HLoc)

holds and that dim(Sn) = Nn ≤ K−3n/ ln3(n) or that only (HCon) holds and that Nn ≤ K−1
√
n/ ln3(n). Under

either (K1) or (K2), the estimator s̃∗ defined by (3) satisfies

E
[‖s− s̃∗‖2

ν

] ≤ C

[
inf

m∈Mn

(
inf

t∈Sm

‖s− t‖2
ν + pen(m)

)
+ εn(s)

]
(14)

where
εn(s) =

Σn

n
+
(‖s‖2

ν + 1
)
exp
(−2 ln2(n)

)
.

The constant C depends on h0, h1, θ,K and also on a0, p, τp under (K1).

The aim of Inequality (14) is to provide some perspective on the way the risk bound of s̃∗ depends on the
penalty term and the collection of models. Note that the dependency of the risk bound with respect to the
collection (via Σn) depends on the integrability properties of the errors. Inequality (14) also allows to derive an
inequality which relates to the oracle one (7) established in the case of deterministic design points. To obtain
it, some additional assumptions will be used:
(O1) there exists some finite constant ζ > 0 such that

sup
n≥1

sup
m∈Mn

pen(m)
σ2Dm/n

≤ ζ;

(O2) there exists some finite constant Σ > 0 such that

sup
n≥1

Σn ≤ Σ;

(O3) the function s satisfies

‖s‖2
ν ≤ K ′ exp

(
2 ln2(n)

) σ2

n
,

for some positive constant K ′.
Then, under (O1), (O2), (O3) we deduce from (14) that

E
[‖s− s̃∗‖2

ν

] ≤ C′ inf
m∈Mn

[
inf

t∈Sm

‖s− t‖2
ν +

Dm

n
σ2

]
, (15)

for some constant C′ independent from n and s. We call such an inequality an oracle-type inequality by analogy
with Inequality (7).

In the setting given by (K1), (O1) is satisfied with ζ = 1+θ. Condition (O2) is fulfilled when the collection of
models is not too “rich”, that is, when it does not contain too many models with the same dimension. Typically,
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when the collection contains one model per dimension D and when the errors admit a moment of order p > 6,
(O2) is satisfied by taking Σ =

∑
D≥1D

−a for any a ∈]1, p/2 − 2[.

In the setting given by (K2), (O1) is satisfied if one takes all the Lm’s equal to some positive constant L.
Then, take ζ = (1 + θ)(1 +

√
2L)2. For this choice of Lm’s, (O2) is fulfilled if for some constant L′ < L, the

collection contains at most eL′D models for each dimension D. Then, the choice

Σ =
∑
D≥1

e−(L−L′)D < +∞

is suitable. Note that the Gaussian assumption of the errors allows to obtain an oracle-type inequality for more
general collection of models. We shall take advantage of this property in our Section 2.4.

Under (HLoc), the constraint on Nn is mild. When k = 1, i.e. when s is defined on the real line, Condi-
tion (HLoc) is fulfilled by many spaces Sn of interest. This makes it possible to obtain adaptation properties
for our estimator over large classes of functions (see our Sect. 2). In contrast, Condition (HLoc) is no longer
satisfied in the additive setting described in Section 3. Nevertheless, for a suitable choice of the collection of
models, Condition (HCon) still holds. Although the dimensions of the models of the collection are not allowed
to be larger than

√
n, our estimator is proven to achieve the rate n−2α/(2α+1) over the set of additive functions

s whose additive components belong to Besov balls Bα,2,∞(R) with α > 1/2 (see Sect. 3.2). Let us recall that
the constraint α > 1/2 ensures that the functions belonging to Bα,2,∞ are continuous.

The result of Theorem 1.1 holds for any choice of the positive number θ in the penalty term. From a
nonasymptotic point of view, the computations do not allow to determine some “best” choice of θ (one for
which the constant C in (14) is minimum for example). However, it can be shown by computations that a
choice of θ close to 0 makes the constant C blow up and therefore should not be recommended. When the errors
are Gaussian, some theoretical results in this direction were obtained in Birgé and Massart [7]. By replacing σ2

in the penalty function by some suitable estimator (for example the one proposed in Baraud [1]), some good
choice of θ for practical issues can be obtained by carrying out a simulation study in the same way as Birgé and
Rozenholc [8] did in the density estimation framework.

2. Uniform risk bounds over Besov balls

Throughout this section, we take A as the interval [0, 1] and ν as the Lebesgue measure on [0, 1]. The aim
of this section is to establish uniform risk bounds over Besov balls for our estimator and to compare them with
the minimax ones. In the sequel, we shall say that an estimator is minimax over a set if it reaches up to a
constant the minimax rate of estimation over this set.

2.1. Besov balls

In this section, we recall what a Besov space and a Besov ball are. We restrict ourself to the case of functions
on [0, 1]. For a more general definition of those spaces, we refer to the book by DeVore and Lorentz [12].

Let us start with some definitions. Let d be a positive integer and h a positive number, the d-th order
difference of a function f on [0, 1] is defined by

∆d
h(f, x) =

d∑
k=1

(
d
k

)
(−1)d−kf(x+ kh),
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where x and x + dh belong to [0, 1]. A real valued function f on [0, 1] belongs to the Besov space Bα,l,∞ if f
belongs to L

l([0, 1], dx) and if for d = [α] + 1 ([α] denotes the integer part of α)

|f |α,l = sup
y>0

y−αwd(f, y)l < +∞

where

(wd(f, y)l)
l = sup

0<h≤y

∫ 1−dh

0

∣∣∆d
h(f, x)

∣∣l dx.

For f ∈ Bα,l,∞, the quantity

‖f‖α,l =
(∫ 1

0

|f(u)|ldu
)1/l

+ |f |α,l

is the Besov norm associated to this Besov space and for R > 0 the Besov ball Bα,l,∞(R) is defined as

Bα,l,∞(R) = {f ∈ Bα,l,∞, ‖f‖α,l ≤ R} ·

2.2. The collections of models

In this section, we present three particular collections of models. Let us start with a collection consisting of
piecewise polynomials on regular grids. In the sequel, 1I {X} denotes the indicator of the set X .
(P) For some positive integer Jn, let Mn be the set of integers {0, · · · , Jn} and Sm the linear space consisting

of the functions t on [0, 1] of the form

t(x) =
2m∑
j=1

Pj(x)1I
{
(j − 1)2−m ≤ x < j2−m

}
,

where the Pj ’s are polynomials of degree less than r. We set Sn = SJn .
For each m ∈ Mn, the dimension of Sm is Dm = r2m. In particular, Nn and Jn are related by the equality
Nn = r2Jn . One can verify that the linear space Sn satisfies (HLoc).

The two other collections are based on wavelets. Hereafter, for all integers j ≥ 0, we denote by Λ(j) the set
{(j, k), k = 1, · · · , 2j} and consider an L

2([0, 1], dx)-orthonormal system of compactly supported wavelets

{φJ0,k, (J0, k) ∈ Λ(J0)} ∪
{
ψj,k, (j, k) ∈

+∞⋃
J=J0

Λ(J)

}

of regularity r built by Cohen et al. [10] (J0 denotes some integer). Those wavelets are derived from Daubechies’
wavelets [11] at the interior of [0, 1] and are boundary corrected at the endpoints. For both collections and for
some integer Jn ≥ 1, we take Sn as the linear span generated by the φJ0,k’s for (J0, k) ∈ Λ(J0) together with
ψj,k’s for (j, k) ∈ ⋃Jn−1

J=J0
Λ(J). We have that Nn = dim(Sn) = 2Jn . Besides, it follows from the construction of

these wavelets that the linear space Sn satisfies (HLoc). Indeed, according to Cohen et al. [10] (Sect. 4), there
exists a family of orthonormal wavelets φJn,k’s for (Jn, k) ∈ Λ(Jn) which generates Sn and satisfies (HLoc). This
family is derived from that of the φJ0,k’s by rescaling.

Let us now introduce the second collection of models.
(W) Let Mn = {J0, ..., Jn − 1} and for each m ∈ Mn, let Sm be the linear space generated by the φJ0,k’s for

(J0, k) ∈ Λ(J0) together with ψj,k’s for (j, k) ∈ ⋃m
J=J0

Λ(J).
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Note that for each m ∈ Mn, dim(Sm) = 2J0 +
∑m

j=J0
2j = 2m+1.

In order to define our third collection, let us introduce some additional notations. For a > 2, x ∈]0, 1[ and
integers j, J such that j ≥ J , we set

Kj,J = [L(2J−j)2J ] and L(x) =
(

1 − lnx
ln 2

)−a

, (16)

where [x] denotes the integer part of x. We define our collection of models as follows.
(W’) For all J ∈ {J0, ..., Jn}, we set

MJ
n =




J−1⋃
j=J0

Λ(j)
Jn−1⋃
j=J

mj , mj ⊂ Λ(j), |mj | = Kj,J


 ,

and Mn =
⋃Jn−1

J=J0
MJ

n. For each m ∈ Mn, we define Sm as the linear span generated by the φJ0,k’s for
(J0, k) ∈ Λ(J0) together with the ψj,k’s for (j, k) ∈ m.

In words, choosing a model among this collection amounts to choosing some integer J among {J0, · · · , Jn} and
a sequence of subsets mj ⊂ Λ(j) with j ∈ {J, · · · , Jn − 1} such that for each j, the cardinality of mj is Kj,J .
As the sequence of integers Kj,J is nonincreasing with j, the cardinality of those sets decreases as j increases.
For each J ∈ {J0, · · · , Jn} and m ∈ MJ

n, the dimension of Sm satisfies

2J = 2J0 +
J−1∑
j=J0

2j ≤ Dm ≤ 2J +
Jn−1∑
j=J

Kj ≤ 2J


1 +

∑
j≥1

j−a


 .

Therefore, for those m ∈ MJ
n, the dimension of Sm is of order 2J .

2.3. Convergence rates over Besov balls Bα,2,∞(R)

Obtaining a minimax estimator over one of these balls is easy. For each α ∈]0, 1[, by modifying, as we
did for s̃, the least-squares estimator over some suitable model Sm of the collection (P) (or (W)) one gets a
minimax estimator. By suitable we mean that the dimension of the space must be chosen of order n1/(2α+1) and
therefore this choice unfortunately depends on the unknown parameter α. The advantage of model selection
procedures is to provide a data driven choice of the index m for which one does almost as well as the optimal
one. Consequently, by using those collections, the so-defined estimator is simultaneously minimax (up to a
constant in the rate) over the whole range of α’s in ]0, r[. This property is usually called adaptation in the
minimax sense.

Theorem 2.1. Assume that (HBas)(i) holds and that E[|ξ1|4+δ] < ∞ for some δ > 0. Consider the collection
(P) or (W) with

Jn =
[
log
(
n/(r log4(n))

)
/ log(2)

]
, (17)

and let s̃∗ be the estimator defined by (3) with pen(m) = 2σ2Dm/n. Then for all R > 0 and α ∈]0, r[, s̃∗
satisfies

sup
s∈Bα,2,∞(R)

E
[‖s− s̃∗‖2

ν

] ≤ C(α,R)n−2α/(1+2α).

Proof. The arguments of the proof are similar to those given in Baraud [1] (Sect. 4) and details can be found
there. We restrict to the case of the collection (P), the arguments being similar for the collection (W). The
choice of Jn ensures that Nn = dim(Sn) is or order n/ ln4(n). We apply Theorem 1.1 with the collection (P) and
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take a0 = δ/4, θ = 1. One can check that (K1) holds true, that the quantity Σn remains bounded independently
of n and that the constraint on Nn is fulfilled as (HLoc) is satisfied. Moreover, for all s ∈ Bα,2,∞(R) we have
‖s‖ν ≤ R and thus it remains to check that for some constant C that does not depend on n,

inf
m∈Mn

(
inf

t∈Sm

‖s− t‖2
ν +

Dm

n
σ2

)
≤ Cn−2α/(2α+1).

Thanks to the approximation properties of the linear spaces Sm’s defined in (P) (see Birgé and Massart [4],
Th. 1) we have that for all s ∈ Bα,2,∞(R), inft∈Sm ‖s− t‖2

ν ≤ C(α,R)D−2α
m for all m ∈ Mn. By choosing Dm

of order n1/(2α+1) we get the result.

2.4. Convergence rates over Besov balls Bα,l,∞(R) with l ≥ 1

In order to obtain a minimax estimator over those balls, we consider the collections of models (W’). We
have the following result:

Theorem 2.2. Assume that (HBas)(i) and (HGaus) hold. Consider the collection (W’) with Jn defined by (17)
and let us set

L(a) = 1 +
+∞∑
j=0

1 + (a+ ln(2))j
(1 + j)a

·

For all l ≥ 1, let us define

αl =




1
2

(
1
l
− 1

2

)[
1 +

√
2 + 3l
2 − l

]
if l ∈ [1, 2[

0 if l ≥ 2.

The estimator defined by (3) with

pen(m) = 2(1 +
√

2L(a))2σ2Dm/n, ∀m ∈ Mn

satisfies
sup

s∈Bα,l,∞(R)

E
[‖s− s̃∗‖2

ν

] ≤ C(α,R, a, r)n−2α/(1+2α),

for all l ≥ 1, R > 0 and α ∈]αl, r[.

It can be checked that for all l ≥ 1,

max
{

1
l
− 1

2
, 0
}

≤ αl <
1
l
·

Besides the adaptation properties of s̃∗, we deduce from this result that the minimax rate of estimation over
each Besov ball Bα,l,∞(R) with l ≥ 1 and α ∈]αl, 1/l[ is of order n−2α/(2α+1). Indeed, this result provides
an upper bound for the minimax rate, the corresponding lower bound can be easily obtained from that on the
Hölder class Bα,∞,∞(R) given in Korostelev and Tsybakov [17] (Th. 2.8.4, p. 85) (see also Yang and Barron [22],
Sect. 6).

Proof. By using the inequality

Ck
N =

N !
k!(N − k)!

≤ exp [k (1 + ln(N/k))] ,
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we have that for all J ∈ {J0, · · · , Jn},

ln
(|MJ

n|
) ≤

∑
j≥J

ln
(
C

Kj

2j

)
≤
∑
j≥J

2J

(1 + j − J)a
[1 + (j − J) ln(2) + a ln(1 + j − J)]

≤
∑
j≥J

2J

(1 + j − J)a
[1 + (a+ ln(2))(j − J)] = 2J(L(a) − 1),

and as for all m ∈ MJ
n, Dm ≥ 2J , we derive

Σn =
∑

m∈Mn

e−L(a)Dm ≤
+∞∑
J=0

∑
m∈MJ

n

e−L(a)Dm ≤
∑
J≥0

e2J (L(a)−1)−L(a)2J

=
∑
J≥0

e−2J

= Σ < +∞.

We now argue as in the proof of Theorem 2.1. Condition (HLoc) and the corresponding constraint on Nn are
fulfilled. Besides, (K2) is satisfied with Lm = L(a) for all m ∈ Mn and θ = 1. The Besov ball Bα,l,∞(R) being
compact in

(
L

2([0, 1], dx), ‖ ‖ν

)
for α > 1/l− 1/2 (αl > 1/l− 1/2) we get that the quantities

{‖s‖ν, s ∈ Bα,l,∞(R)}

are uniformly bounded. In addition, we know from Birgé and Massart [4] that there exists some model Sm

among the collection which satisfies both that Dm is of order n1/(2α+1) and

‖s− πms‖2
ν ≤ C(α,R)[D−2α

m +N−2(α+(1/l−1/2)+)
n ],

where (x)+ denotes the positive part of x. If l ≥ 2 then N−2α
n is smaller than n−2α/(2α+1) at least for n large

enough whatever α > 0. If l ∈ [1, 2[ then for n large enough N
−2(α+1/2−1/l)
n is smaller than n−2α/(2α+1) for

α > αl. This concludes the proof.

3. The additive regression framework

In this section we study the case where the regression function s is additive, that is of the form

s(x) = s(1)(x1) + · · · + s(k)(xk) ∀x ∈ R
k (18)

for some real valued functions s(1), · · · , s(k). In order to ensure that such a decomposition is unique we add
the constraint that for i = 2, · · · , k, ∫ s(i) dν = 0. We assume that A takes the form A = A1 × · · · × Ak for
measurable sets Ai ⊂ R and that the measure ν is a product measure of the form ν = ν1 ⊗ · · · ⊗ νk where for
each i = 1, · · · , k, νi is supported on Ai. We set for i = 1, · · · , k

L
(i)(A) =

{
s ∈ L

2(A, ν), ∃s(i) ∈ L
2(Ai, νi) ∀x ∈ A, s(x) = s(i)(xi)

}
,

and

L
(i)
0 (A) =

{
s ∈ L

(i)(A),
∫
Ai

s(i)(x)dν(i)(x) = 0
}
·

It is easy to see that the spaces L
(1) and L

(i)
0 for i = 2, · · · , k are pairwise orthogonal in L

2(A, ν).
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3.1. The models

The collections of models are obtained by proceeding as follows. We consider k collections {S(i)
mi , mi ∈ M(i)

n }
(i = 1, · · · , k) that satisfy the following conditions:

• for all i = 1, · · · , k, the collection {S(i)
mi, mi ∈ M(i)

n } satisfies condition (HBas)(ii) for some functional
space S(i)

n ⊂ L
2(A, ν) with dim(S(i)

n )< n/k;
• the space S(1)

n is a subset of L
(1)(A) and for all i = 2, · · · , k, S(i)

n ⊂ L
(i)
0 (A).

Then, we take Mn = M(1)
n ×· · ·×M(k)

n (or a subset of this set), define the collections of models {Sm, m ∈ Mn}
for m = (m1, · · · ,mk) ∈ Mn by

Sm = S(1)
m1

+ · · · + S(k)
mk

(19)

and set

Sn = S(1)
n + · · · + S(k)

n . (20)

The sums in (19) and (20) involve linear spaces that are pairwise orthogonal in L
2(A, ν). As a function

mapping R into R can be extended in an obvious way to a function mapping R × R
k−1 into R, the collections

of models described in Section 2.2 can be used as possible examples of collections {S(i)
mi , mi ∈ M(i)

n }’s. Finally,
we note that if the {S(i)

mi, mi ∈ M(i)
n }’s satisfy (HCon) then the same does for {Sm, m ∈ Mn}:

Lemma 3.1. Let S(1), · · · , S(k) be a sequence of k pairwise orthogonal subspaces of L
2(A, ν) such that

∀i ∈ {1, · · · , k}, ∀ti ∈ S(i), ‖ti‖∞ ≤ K
√
Di‖ti‖ν

with Di = dim(S(i)). Then for all t ∈ S = S(1) ⊕ · · · ⊕ S(k), ‖t‖∞ ≤ K
√
D‖t‖ν with D = dim(S).

Proof. For all (t1, · · · , tk) ∈ S(1) × · · · × S(k),

‖
k∑

i=1

ti‖∞ ≤
k∑

i=1

‖ti‖∞ ≤ K

k∑
i=1

√
Di‖ti‖ν ≤ K

(
k∑

i=1

Di

)1/2( k∑
i=1

‖ti‖2
ν

)1/2

= K
√
D‖

k∑
i=1

ti‖ν .

3.2. Uniform risk bounds

Let us take A = [0, 1]k. For α,R > 0, let us denote by B(k)
α,2,∞(R) the set of additive functions s given by (18)

such that for all i = 1, · · · , k, s(i) belongs to the Besov ball Bαi,2,∞(Ri) with αi ≥ α and Ri ≤ R. By assuming
that s is additive it is known from Stone [18] that one can avoid the “curse of dimensionality” in the estimation
rate. More precisely, it is possible to achieve a rate which does not depend on k and is optimal when k = 1.
The dependency on k appears in the constant factor only. This result is presented below.

Theorem 3.1. Assume that (HBas)(i) holds and that for some δ > 0, E[|ξ1|4+δ] < ∞. Consider k collections
of models {S(i)

mi , mi ∈ M(i)
n } (i = 1, · · · , k) such that for each i = 1, · · · , k, {S(i)

mi , mi ∈ M(i)
n } is given either

by (P) or (W) with
Jn =

[
log
(√
n/(rk log2(n))

)
/ log(2)

]
.

Let s̃∗ be the estimator defined by (3) with pen(m) = 2σ2Dm/n. Then for all R > 0, α ∈]1/2, r[ the estimator
ŝ satisfies

sup
s∈B(k)

α,2,∞(R)

E
[‖s− s̃∗‖2

ν

] ≤ C(α,R, k)n−2α/(1+2α).
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When α is an integer, similar rates have been obtained in Yang [20] on Sobolev classes. His results hold without
any restriction on α but require some information on R.

Proof. With our choice of Jn, for all i = 1, · · · , k dim(Sn
(i)) is of order

√
n/(k log2(n)). Thus, we know from

Lemma 3.1 that Sn satisfies (HCon) since the Sn
(i)’s do. Let us take a0 = δ/2. Whatever the choice of S(i)

mi

among the collections described by (P) or (W) we have that Dmi ≥ 2mi , we derive that

Σn =
∑

(m1,··· ,mk)∈Mn
(1)×···×Mn

(k)

(Dm1 + · · · +Dmk
)−a0 ≤

+∞∑
m1=0

· · ·
+∞∑

mk=0

(2m1 + · · · + 2mk)−a0

≤ k−a0

+∞∑
m1=0

· · ·
+∞∑

mk=0

2−a0(m1+···+mk)/k

the last line being true by convexity of the function x→ 2x. Consequently, Σn can by bounded by some constant
which is free from n. We conclude the proof by using similar arguments as in the proof of Theorem 2.1. As for
all m = (m1, · · · ,mk) ∈ Mn

‖s− πms‖2
ν =

k∑
i=1

‖s(i) − πmis
(i)‖2

ν(i) ,

by choosing Dmi of order n1/(2α+1) for all i ∈ {1, · · · , k} we get to the result. Note that these choices of Dmi ’s
are possible indeed as for α > 1/2, n1/(2α+1) ≤ Nn at least for n large enough.

4. Proof of Theorem 1.1

The proof relies on the following propositions the proofs of which are deferred to the next section. In the
sequel, 1I {X} denotes the indicator of the set X and

ρ̃n = sup
t∈Sn\{0}

‖t‖2
ν

‖t‖2
n

· (21)

Proposition 4.1. Assume that (K1) or (K2) holds. Then s̃ = ŝm̂ for m̂ defined by (2) satisfies for all ρ0 > 0,

E
[‖s− s̃‖2

ν1I {ρ̃n ≤ ρ0}
] ≤ C inf

m∈Mn

(
inf

t∈Sm

‖s− t‖2
ν + pen(m)

)
+

Σn

n
(22)

where the constant C depends on ρ0 but neither on s nor n.

Proposition 4.2. Assume that (HBas) holds and that either (HCon) or (HLoc) is satisfied. If (HLoc) holds, let
cn = n/(K3Nn ln(n)) and let cn = n/(N2

nK
2 ln(n)) otherwise. Then for all ρ0 > h−1

0 we have

P (ρ̃n > ρ0) ≤ N2
n exp

(
− (h0 − ρ−1

0 )2

4h1
cn ln(n)

)
. (23)

Let us now turn to the proof of the theorem. Let ρ0 = 2h−1
0 and set

E1 = E
[‖s− s̃∗‖2

ν1I
{
ρ̃n ≤ ρ0, ‖s̃‖2

ν ≤ kn

}]
,

E2 = E
[‖s− s̃∗‖2

ν1I
{
ρ̃n ≤ ρ0, ‖s̃‖2

ν > kn

}]
and

E3 = E
[‖s− s̃∗‖2

ν1I {ρ̃n > ρ0}
] ·
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We have
E
[‖s− s̃∗‖2

ν

]
= E1 + E2 + E3,

and it remains to bound from above the three quantities E1,E2 and E3.

Upper bound for E1: We have

E1 = E
[‖s− s̃‖2

ν1I
{
ρ̃n ≤ ρ0, ‖s̃‖2

ν ≤ kn

}] ≤ E
[‖s− s̃‖2

ν1I {ρ̃n ≤ ρ0}
]
,

and by Proposition 4.1

E1 ≤ C inf
m∈Mn

(
inf

t∈Sm

‖s− t‖2
ν + pen(m)

)
+

Σn

n

for some constant C not depending on s nor n.

Upper bound for E2: We have
E2 = ‖s‖2

νP (‖s̃‖ν > kn, ρ̃n ≤ ρ0) .

On the set {ρ̃n ≤ ρ0} we know that

‖s̃‖ν ≤ ρ
1/2
0 ‖s̃‖n ≤ ρ

1/2
0


‖s‖n +

(
n−1

n∑
i=1

ξ2i

)1/2



and therefore by Markov’s inequality

P (‖s̃‖ν > kn, ρ̃n ≤ ρ0) ≤ P
(
ρ0‖s‖2

n > exp(2 ln2(n))
)

+ P

(
ρ0

n∑
i=1

ξ2i > n exp(2 ln2(n))

)

≤ ρ0

(‖s‖2
µ + σ2

)
exp(−2 ln2(n)) ≤ 2h−1

0

(
h1‖s‖2

ν + σ2
)
exp(−2 ln2(n))

≤ C
(‖s‖2

ν + 1
)
exp(−2 ln2(n))

for some constant C depending on h0, h1 and σ.

Upper bound for E3: We have
E3 ≤ 2

(‖s‖2
ν + k2

n

)
P (ρ̃n > ρ0) .

Under the assumptions of Theorem 1.1, we can apply Proposition 4.2 for which we know that cn ≥ ln2(n). As
Nn < n we get

P (ρ̃n > ρ0) ≤ n2 exp
(
− h2

0

16h1
ln3(n)

)
and therefore

E3 ≤ 2
[‖s‖2

ν + 4 exp
(
2 ln2(n)

)]
exp
(
− h2

0

16h1
ln3(n) + 2 ln(n)

)
≤ C

(‖s‖2
ν + 1

)
exp(−2 ln2(n))

for some constant C depending on h0 and h1.

The result follows by gathering these bounds.
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5. Proofs of the Propositions 4.1 and 4.2

5.1. Proof of Proposition 4.1

Let Eξ denotes the conditional expectation on the Xi’s. Let us first establish some preliminary result.

Lemma 5.1. Let s̃ be some estimator of s belonging to Sn and satisfying

Eξ[‖s− s̃‖2
n] ≤ R2

n. (24)

Then under (HBas)(i), for any ρ0 > 0

E
[‖s− s̃‖2

ν1I {ρ̃n ≤ ρ0}
] ≤ (1 + 2h1ρ0) inf

t∈Sn

‖s− t‖2
ν + 2ρ0E[R2

n]. (25)

Proof. Let us set s̄n the L
2(A, ν)-projection of s onto Sn. By Pythagoras’ theorem we have ‖s − s̃‖2

ν

= ‖s− s̄n‖2
ν + ‖s̄n − s̃‖2

ν . On the set where

ρ̃n = sup
t∈Sn\{0}

‖t‖2
ν

‖t‖2
n

≤ ρ0,

we have that ‖s̄n − s̃‖2
ν ≤ ρ0‖s̄n − s̃‖2

n and thus

‖s̄n − s̃‖2
ν ≤ 2ρ0

(‖s− s̄n‖2
n + ‖s− s̃‖2

n

)
.

We derive that
‖s− s̃‖2

ν1I {ρ̃n ≤ ρ0} ≤ ‖s− s̄n‖2
ν + 2ρ0

(‖s− s̄n‖2
n + ‖s− s̃‖2

n

)
,

and by taking the expectation with respect to the ξi’s and using (24) we deduce that

Eξ

[‖s− s̃‖2
ν1I {ρ̃n ≤ ρ0}

] ≤ ‖s− s̄n‖2
ν + 2ρ0

(‖s− s̄n‖2
n +R2

n

)
.

By averaging now over the Xi’s (note that E[‖t‖2
n] = ‖t‖2

µ) we obtain that

E
[‖s− s̃‖2

ν1I {ρ̃n ≤ ρ0}
] ≤ ‖s− s̄n‖2

ν + 2ρ0‖s− s̄n‖2
µ + 2ρ0E[R2

n]

and it remains to use (HBas)(i), namely that ‖s− s̄n‖2
µ ≤ h1‖s− s̄n‖2

ν , to get the result.

5.1.1. Proof of (22) under (K1)

We condition on the Xi’s. Under (HMom(a0)), we know from Corollary 3.1 in Baraud [1]

Eξ

[‖s− s̃‖2
n

] ≤ R2
n = C

[
inf

m∈Mn

(
inf

t∈Sm

‖s− t‖2
n + pen(m)

)
+

Σn

n

]
,

with a constant C depending on p, a0, θ, q, σ. By applying Lemma 5.1 with R2
n the result follows as under (HBas)

E[R2
n] ≤ C

[
inf

m∈Mn

(
inf

t∈Sm

E[‖s− t‖2
n] + pen(m)

)
+

Σn

n

]

≤ C

[
inf

m∈Mn

(
h1 inf

t∈Sm

‖s− t‖2
ν + pen(m)

)
+

Σn

n

]
·
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5.1.2. Proof of (22) under (K2)

We condition on the Xi’s and apply Theorem 2 in Birgé and Massart [6] with H = R
n, 〈t, u〉 = n−1

∑n
i=1 tiui

(we identify the function t with the R
n vector (t(X1), ..., t(Xn))′), K = 1 + θ and ε2 = σ2. Under (HGaus) we

obtain that

Eξ

[‖s− s̃‖2
n

] ≤ C

[
inf

m∈Mn

(
inf

t∈Sm

‖s− t‖2
n + pen(m)

)
+

Σn

n

]
,

for some constant C depending on θ, σ. By arguing as in the Section 5.1.1 we derive the desired result from
Lemma 5.1.

5.2. Proof of Proposition 4.2

The proof of (23) relies on the lemma below. In the sequel, S denotes some finite dimensional linear subspace
of L

2(A, ν) ∩ L
∞(A, ν). We shall denote by (ϕλ)λ∈Λ one of its orthonormal basis and set

V =

(√∫
ϕ2

λϕ
2
λ′ dν

)
(λ,λ′)∈Λ×Λ

and B = (‖ϕλϕλ′‖∞)(λ,λ′)∈Λ×Λ .

For a symmetric matrix A, ρ̄(A) denotes the quantity

sup
∑
λ,λ′

|aλ||aλ′ ||Aλλ′ |

where the supremum is taken over the sequences (aλ)λ∈Λ satisfying
∑

λ a
2
λ = 1. We now define the quantity

L(ϕ) by

L(ϕ) = max{ρ̄2 (V ) , ρ̄ (B)} · (26)

Under the previous notations the following result holds.

Lemma 5.2. Under Condition (HBas)(i), for all ρ0 > h−1
0 ,

P

(
sup

t∈S\{0}

‖t‖2
ν

‖t‖2
n

> ρ0

)
≤ |Λ|2 exp

(
−n (h0 − ρ−1

0 )2

4h1L(ϕ)

)
· (27)

Proof. Let (ψλ)λ∈Λ an orthonormal basis of S with respect to the inner product of L
2(A, µ). Let us introduce

the Gram matrices

Φ(X) =

(
1
n

n∑
i=1

ϕλ(Xi)ϕλ′ (Xi)

)
(λ,λ′)∈Λ×Λ

and

Ψ(X) =

(
1
n

n∑
i=1

ψλ(Xi)ψλ′(Xi)

)
(λ,λ′)∈Λ×Λ

.

In the sequel, ρ(A) denotes the spectral radius of a symmetric matrix A and B(µ) and B(ν) respectively denote
the unit ball of S with respect to the measure µ respectively ν. The proof of the lemma is divided into consec-
utive claims.
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Claim 1: The following identities hold:

ρ(Ψ(X) − I) = sup
t∈B(µ)

|νn(t2)| and ρ
(
Ψ−1(X)

)
= sup

t∈S\{0}

‖t‖2
µ

‖t‖2
n

· (28)

This result is derived from classical algebra, for the details of the proof we refer to Baraud [1] (proof of Lem. 3.1,
Sect. 7.5).

Claim 2: Under (HBas)(i),

ρ(Φ−1(X)) = sup
t∈S\{0}

‖t‖2
ν

‖t‖2
n

≤ h−1
0 ρ(Ψ−1(X)) (29)

and

ρ (Ψ(X) − I) = sup
t∈B(µ)

|νn(t2)| ≤ h−1
0 sup

t∈B(ν)

|νn(t2)|. (30)

Since under (HBas)(i), for all t ∈ S, h0‖t‖2
ν ≤ ‖t‖2

µ, Claim 2 is a straightforward consequence of Claim 1.

Claim 3: For all ρ0 > h−1
0 , on the set {supt∈B(ν) |νn(t2)| ≤ h0 − ρ−1

0 }, we have that {ρ(Φ−1(X)) ≤ ρ0}.

On the set {supt∈B(ν) |νn(t2)| ≤ h0 − ρ−1
0 }, we derive from (30) that

ρ (Ψ(X) − I) ≤ 1 − (h0ρ0)−1.

Since h0ρ0 > 1, on this set we can ensure that Ψ−1
n (X) exists and satisfies

ρ
(
Ψ−1(X)

)
= sup

t∈S\{0}

‖t‖2
µ

‖t‖2
n

≤ h0ρ0. (31)

The result then follows from (29).

Claim 4: For all x > 0

P

(
∃(λ, λ′) ∈ Λ2/|νn(ϕλϕλ′)| > Vλ,λ′

√
2h1x+Bλ,λ′x

)
≤ |Λ|2 exp (−nx) . (32)

From Bernstein’s inequality (see Birgé and Massart [5] for this particular form of the inequality) we know that
for all x > 0

P

(
|νn(ϕλϕλ′)| ≥ E

1/2
µ

[
ϕ2

λϕ
2
λ′
]√

2x+ ‖ϕλϕλ′‖∞x
)
≤ exp (−nx) .

Under condition (HBas)(i), Eµ

[
ϕ2

λϕ
2
λ′
] ≤ h1V

2
λ,λ′ and thus

P

(
∃(λ, λ′) ∈ Λ2/|νn(ϕλϕλ′ )| > Vλ,λ′

√
2h1x+Bλ,λ′x

)
≤

∑
(λ,λ′)∈Λ2

P

(
|νn(ϕλϕλ′)| ≥ Vλ,λ′

√
2h1x+Bλ,λ′x

)

≤ |Λ|2 exp (−nx)

which ends the proof of the claim.
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By using the claims we are now able to prove the lemma. We derive from Claim 3 that for all ρ0 > h−1
0

P
(
ρ(Φ−1(X)) > ρ0

)
= P

(
sup

t∈S\{0}

‖t‖2
ν

‖t‖2
n

> ρ0

)
≤ P

(
sup

t∈B(ν)

|νn(t2)| > h0 − ρ−1
0

)
.

Now, for all t ∈ B(ν) we write t =
∑

λ∈Λ aλϕλ with
∑

λ∈Λ aλ
2 ≤ 1 and obtain that

sup
t∈B(ν)

∣∣νn(t2)
∣∣ ≤ sup

|a|2≤1

∣∣∣∣∣
∑
λ∈Λ

∑
λ′∈Λ

aλaλ′νn(ϕλϕλ′)

∣∣∣∣∣ ≤ sup
|a|2≤1

∑
λ∈Λ

∑
λ′∈Λ

|aλ||aλ′ ||νn(ϕλϕλ′)|.

For x = (h0 − ρ−1
0 )2/(4h1L(ϕ)) on the set {∀(λ, λ′) ∈ Λ2, |νn(ϕλϕλ′)| ≤ Vλ,λ′

√
2h1x+Bλ,λ′x} we have

sup
|a|2≤1

∑
λ∈Λ

∑
λ′∈Λ

|aλ||aλ′ ||νn(ϕλϕλ′ )| ≤
√

2h1xρ̄ (V ) + xρ̄ (B)

= (h0 − ρ−1
0 )

(
1√
2

(
ρ̄2 (V )
L(ϕ)

)1/2

+
h0 − ρ−1

0

4h1

ρ̄ (B)
L(ϕ)

)
≤ (h0 − ρ−1

0 )
(

1√
2

+
1
4

)
≤ h0 − ρ−1

0

and therefore for such x,

P

(
sup

t∈S\{0}

‖t‖2
ν

‖t‖2
n

> ρ0

)
≤ P

(
∃(λ, λ′) ∈ Λ2, |νn(ϕλϕλ′)| > Vλ,λ′

√
2h1x+Bλ,λ′x

)

and then the result follows from Claim 4.

5.2.1. Proof of (23): Part I

In the sequel, we prove (23) under (HCon) with cn = n/(N2
nK

2 ln(n)). We use the notations introduced
in Section 5.1.2 and take S = Sn. From Lemma 5.2, to obtain the result it is enough to show that for some
orthonormal basis of Sn,

L(ϕ) = max{ρ̄2 (V ) , ρ̄ (B)} ≤ n/(cn ln(n)).

Under (HCon), for any L
2(A, ν)-orthonormal basis of Sn, (ϕλ)λ∈Λn , we know from (9) and (8) (applying it with

t = ϕλ) that ‖∑λ∈Λn
ϕ2

λ‖∞ ≤ K2Nn and that maxλ∈Λn ‖ϕλ‖∞ ≤ K
√
Nn. Thus, we derive from Cauchy–

Schwarz’s inequality that

ρ̄2 (V ) ≤
∑

λ,λ′∈Λn

∫
ϕ2

λϕ
2
λ′ dν ≤ |Λn| ‖

∑
λ∈Λn

ϕ2
λ‖∞ ≤ K2N2

n

and

ρ̄ (B) ≤

 ∑

λ,λ′∈Λn

‖ϕλ‖2
∞‖ϕλ′‖2

∞




1/2

≤ K2N2
n.

Finally, under the assumption that Nn ≤ √n/(K2cn ln(n)) we get that L(ϕ) ≤ K2N2
n ≤ n/(cn ln(n)) which

leads to the result.
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5.2.2. Proof of (23): Part II

In this section, we prove (23) under (HLoc) with cn = n/(K3Nn ln(n)). We argue as in Section 5.2.1 and
use the notations introduced in Section 5.1.2. In the sequel, we take S = Sn. Let (ϕλ)λ∈Λn be an orthonormal
basis of Sn satisfying (HLoc) and let us set for each λ ∈ Λn

∆(λ) = {λ′ ∈ Λn, ϕλϕλ′ �≡ 0} ·

Under (HLoc)(i), for all λ ∈ Λn, ∆(λ) ≤ K. On the one hand, under (HLoc)(ii) for all λ ∈ Λn and λ′ ∈ ∆(λ)
we have

∫
ϕ2

λϕ
2
λ′dν ≤ KNn and thus,

ρ̄ (V ) = sup
|a|2≤1

∑
λ,λ′∈Λn

|aλ||aλ′ |
(∫

ϕ2
λϕ

2
λ′

)1/2

≤
√
KNn sup

|a|2≤1

∑
λ∈Λn

|aλ|
∑

λ′∈∆(λ)

|aλ′ | =
√
KNnWn, (33)

where
Wn = sup

|a|2≤1

∑
λ∈Λn

|aλ|
∑

λ′∈∆(λ)

|aλ′ |.

On the other hand, for λ ∈ Λn and λ′ ∈ ∆(λ) ‖ϕλϕλ′‖∞ ≤ KNn and thus,

ρ̄ (B) = sup
|a|2≤1

∑
λ,λ′∈Λn

|aλ||aλ′ |‖ϕλϕλ′‖∞ ≤ KNnWn. (34)

Let us now show that Wn ≤ K. Indeed we have

W 2
n ≤ sup

|a|2≤1

∑
λ∈Λn


 ∑

λ′∈∆(λ)

|aλ′ |



2

≤ K sup
|a|2≤1

∑
λ∈Λn

∑
λ′∈∆(λ)

a2
λ′ = K sup

|a|2≤1

∑
λ′∈Λn

a2
λ′ |∆(λ′)| ≤ K2. (35)

By gathering (33, 34) and (35) we derive that L(ϕ) ≤ K3Nn (since K ≥ 1). Under the assumption that
Nn ≤ n/(K3cn ln(n)) we have that L(ϕ) ≤ n/(cn ln(n)) and the result follows from Lemma 5.2.
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