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AUTOCOVARIANCE STRUCTURE OF POWERS
OF SWITCHING-REGIME ARMA PROCESSES

Christian Francq
1

and Jean-Michel Zaköıan
2

Abstract. In Francq and Zaköıan [4], we derived stationarity conditions for ARMA(p, q) models
subject to Markov switching. In this paper, we show that, under appropriate moment conditions, the
powers of the stationary solutions admit weak ARMA representations, which we are able to characterize
in terms of p, q, the coefficients of the model in each regime, and the transition probabilities of the
Markov chain. These representations are potentially useful for statistical applications.
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Introduction

Consider the following multivariate ARMA model with random coefficients

Xt = c(∆t) +
p∑

i=1

ai(∆t)Xt−i + εt +
q∑

j=1

bj(∆t)εt−j , (1)

where Xt is a random vector with values in R
K , (∆t) is an irreducible, aperiodic, Markov chain

with finite state-space E = {1, 2, ..., d} and stationary transition probabilities denoted p(i, j) := pr(∆t

= j|∆t−1 = i), the ai(∆t) and bj(∆t) are K × K real random matrices, c(∆t) is a K × 1 vector. It is as-
sumed that (∆t) is stationary, with stationary probabilities denoted π(i) := pr(∆1 = i), 1 ≤ i ≤ d. Write MT

for the transpose of any matrix M . We assume that

εt = εt(∆t) = σ(∆t)ηt

where σ(∆t) is a K × K random matrix and (ηt) is an independent and identically distributed sequence of
K-dimensional centered variables, with E(ηtη

T
t ) = Ω, the covariance matrix Ω being nonsingular. In addition,

assume that (ηt) is independent of (∆t). Hence (εt) is a white noise.
The model (1) is called Markov-switching ARMA(p, q) model. Markov switching models (MSM) can be

viewed as extensions of the hidden Markov models (HMM) introduced by Baum and Petrie [1]. By contrast
with the HMM’s, the observations of a MSM are not independent random variables conditional on the Markov
chain. These models have found a variety of applications in econometrics since the paper by Hamilton [5]. In
a recent paper, Francq and Zaköıan [4] have established necessary and sufficient conditions for the existence
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of strict and second-order stationary solutions to model (1). Extending the results of Karlsen [7], Poskitt and
Chung [9], and Zhang and Stine [12], obtained in the pure autoregressive case (q = 0), we showed that the
covariance structure of any second-order stationary solution (Xt) is that of a vector ARMA model.

The purpose of this paper is to extend these previous results to the powers (in the Kronecker sense) of
the (Xt) process. Such an extension is potentially useful for the statistical inference. In particular, identifying
the number d of regimes in a HMM or a MSM can be a formidable task. In the recent literature, papers dealing
with this problem use penalized-likelihood based information criteria (Leroux and Puterman [8], Rydèn [11]),
Lagrange multiplier tests (Hamilton [6]), Bayesian procedures (Robert et al. [10]). The ARMA representations
derived from model (1) should be useful for identifying d because, roughly speaking, their orders are increasing
with d. Such a strategy has been followed by Zhang and Stine [12] in the case of HMM (which corresponds to
p = q = 0 in (1)). However, for the general model, the orders of the ARMA representations also depend on p
and q. Therefore, several ARMA representations, obtained for different powers of Xt, are likely to be needed
to achieve complete identification of the orders of model (1).

In Section 2, we derive the autocovariance structure of (Xt) and its powers, under appropriate stationarity
conditions. In Section 3 we consider three generic examples aimed to illustrate the general results. Section 3
concludes.

1. Autocovariance structures of (Xt) and its powers

Before dealing with the solutions of model (1), we recall some basic results on the characterization of the
orders of a vector ARMA.

1.1. Characterization of an ARMA in terms of its vector autocovariance function

The autocovariance function of a K-multivariate second-order stationary process X = (Xt)t∈Z is defined by

ΓX(`) = E
{
(Xt − EXt) (Xt−` − EXt)

T
}
, ` ∈ Z.

It will be convenient to work with the vector autocovariance function defined by

GX(`) = E{Xt ⊗Xt−`} − EXt ⊗ EXt−`, ` ∈ Z,

where ⊗ denotes the matrix tensor product. The K × K identity matrix is denoted by IK . The following
result characterizes the existence of an ARMA representation through the vector autocovariance function of a
stationary process.

Lemma 1. Let (Xt) be a K-multivariate second-order stationary process with vector autocovariance function
GX(·). There exist K ×K matrices Λ1, . . . ,Λp0 such that

GX(`) =
p0∑

i=1

(Λi ⊗ IK)GX(`− i), ∀` > q0

if and only if (Xt) satisfies a (weak) ARMA(p0, q0) representation, that is

Xt = c+
p0∑

i=1

ΛiXt−i + ut +
q0∑

i=1

Θiut−i

where (ut) is a K-multivariate white noise process, which is not independent in general, p0, q0 are integers, c is
a K × 1 vector and Λ1, . . . ,Λp0 ,Θ1, . . . ,Θq0 are K ×K matrices.
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Proof. It is well known that a K-multivariate stationary process X = (Xt) follows an ARMA(p0, q0) equation if
and only if its autocovariance function satisfies a linear difference equation of order p0 from the rank q0−p0 +1:

ΓX(`) =
p0∑

i=1

ΛiΓX(`− i), ∀` > q0.

In the univariate case (K = 1), this result is proved by a straightforward adaptation of Brockwell and Davis
([3], Prop. 3.2.1 and remark, p. 90). In the general case (K ≥ 1), a detailed proof has been given by Berlinet
([2], Ths. 2 and 3). Using the elementary relation vec(BC) = (CT ⊗ I)vecB, provided the matrix product BC
is well defined, the conclusion follows because

GX(`) = vec
{
ΓX(`)T

}
and

vec



(

ΓX(`)−
p0∑

i=1

ΛiΓX(`− i)

)T

 = GX(`)−

p0∑
i=1

(Λi ⊗ IK)GX(`− i). �

1.2. Existence of a m-th order stationary solution to model (1)

We first introduce a few notations. Let M⊗m = M ⊗ . . . ⊗M be the m-th tensor power of any matrix M ,
where m ∈ {0, 1, . . .} (by convention M⊗0 = I and M⊗1 = M). If f(k) is a non random matrix, for k ∈ E , set

P(f) =




p(1, 1)f(1) · · · p(d, 1)f(1)
...

...
p(1, d)f(d) · · · p(d, d)f(d)


 ·

In particular we use P := P(1) = (p(j, i)) to denote the transpose of the transition matrix. Note that

P(f) = P⊗ f (2)

when f is constant (i.e. f(k) ≡ f, ∀k).
Now let A(k) be the Kp×Kp matrix

A(k) =




a1(k) · · · ap(k)
IK 0 · · · 0
0 IK · · · 0

...
. . . . . .

...

0 . . . IK 0




(3)

and let the function A⊗m : k ∈ E → A(k)⊗m.
The following result gives a sufficient condition for the existence of a strictly stationary process (Xt) belonging

to Lm and satisfying (1). We call nonanticipative any solution such that Xt is measurable with respect to the
σ-field generated by {ηu,∆u : u ≤ t}.
Theorem 1. Suppose that

ρ{P(A⊗m)} < 1 (4)
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and E‖ηt‖m <∞. Then there exists a unique nonanticipative strictly stationary solution of (1) and this solution
belongs to Lm.

Because the proof is quite similar to the one given in Francq and Zaköıan ([4], Th. 2) for the 2nd order
stationarity, we omit it here. It is worth noting that the condition of this theorem is only constraining the AR
part of the model. It is not always necessary, however, and it is possible to show, on particular cases, that
the MA part can have importance for the stationarity issues (see Ex. 6 in Francq and Zaköıan [4]).

1.3. ARMA representation for (X
m
t

)

Assuming that the condition for the existence of a 2m-th order stationary and nonanticipative solution (Xt)
is satisfied, we wish to show that the vector (X⊗m

t ) admits an ARMA representation.
From (1), it is clear that the following first-order autoregressive-type representation holds

zt = ωt + Φtzt−1 (5)

where ωt = ω(∆t, ηt) = ct + εt = ct + Σtηt,

ct =




c(∆t)
0
...
0
0
0
...
0



∈ R

K(p+q), zt =




Xt

Xt−1

...
Xt−p+1

εt
εt−1

...
εt−q+1



∈ R

K(p+q), Σt =




σ(∆t)
0
...
0

σ(∆t)
0
...
0




is a K(p+ q)×K matrix and

Φt = Φ(∆t) =




a1(∆t) · · · ap(∆t) b1(∆t) · · · bq(∆t)
IK 0 · · · 0 0 · · · 0
0 IK · · · 0 0 · · · 0

...
. . . . . .

...
...

. . . . . .
...

0 . . . IK 0 0 . . . 0 0

0 · · · 0 0 · · · 0

0 · · · 0 IK 0 · · · 0

0 · · · 0 0 IK · · · 0

...
. . . . . .

...
...

. . . . . .
...

0 . . . 0 0 0 . . . IK 0




is a K(p + q) ×K(p+ q) matrix. In this vector representation, we have implicitly assumed that p ≥ 1, q ≥ 1,
without loss of generality because ap(·) and bq(·) can be equal to zero in (1).
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We first establish the following basic result:

Lemma 2. The following representation holds

z⊗m
t =

m∑
i=0

Ψ(m)
i (∆t, ηt)z⊗i

t−1 (6)

where the Ψ(m)
i (∆t, ηt)’s are defined recursively by

Ψ(1)
0 (∆t, ηt) = ct + Σtηt, Ψ(1)

1 (∆t, ηt) = Φt, and for m > 0,

Ψ(m+1)
i (∆t, ηt) = ωt ⊗Ψ(m)

i (∆t, ηt) + Φt ⊗Ψ(m)
i−1(∆t, ηt) (7)

with, by convention, Ψ(m)
i (∆t, ηt) = 0 when i > m or i < 0, and z⊗0

t = Ψ(0)
0 (∆t, ηt) = 1.

Proof. Formula (6) for m = 1 is given by (5). Assuming that (6) holds for some m ≥ 1 we have

z
⊗(m+1)
t =

m∑
i=0

(ωt + Φtzt−1)⊗
{
Ψ(m)

i (∆t, ηt)z⊗i
t−1

}

=
m∑

i=0

ωt ⊗
{
Ψ(m)

i (∆t, ηt)z⊗i
t−1

}
+ (Φt ⊗Ψ(m)

i (∆t, ηt))(zt−1 ⊗ z⊗i
t−1)

=
m+1∑
i=0

{
ωt ⊗Ψ(m)

i (∆t, ηt)
}
z⊗i

t−1 +
{

Φt ⊗Ψ(m)
i−1(∆t, ηt)

}
z⊗i

t−1

and we get the stated result. �
If Xt ∈ L2m, then we have, for m′ ≤ m and ` ≥ 1

E[z⊗m′
t ⊗ z⊗m

t−` |∆t = k]π(k)

=
m′∑
i=0

E
[{

Ψ(m′)
i (∆t, ηt)z⊗i

t−1

}
⊗ z⊗m

t−` |∆t = k
]
π(k)

=
m′∑
i=0

E
[{

Ψ(m′)
i (∆t, ηt)⊗ I{K(p+q)}m

}(
z⊗i

t−1 ⊗ z⊗m
t−`

) |∆t = k
]
π(k)

=
m′∑
i=0

d∑
j=1

E
[{

Ψ(m′)
i (∆t, ηt)⊗ I{K(p+q)}m

}(
z⊗i

t−1 ⊗ z⊗m
t−`

) |∆t = k,∆t−1 = j
]
p(j, k)π(j)

=
m′∑
i=0

E
[
Ψ(m′)

i (k, ηt)⊗ I{K(p+q)}m

] d∑
j=1

E
[(
z⊗i

t−1 ⊗ z⊗m
t−`

) |∆t = k,∆t−1 = j
]
p(j, k)π(j)

=
m′∑
i=0

Υ(m′,m)
i (k)

d∑
j=1

E
[
z⊗i

t−1 ⊗ z⊗m
t−` |∆t−1 = j

]
p(j, k)π(j) (8)

where Υ(m′,m)
i (k) = E

[
Ψ(m′)

i (k, ηt)⊗ I{K(p+q)}m

]
.

A few comments can be made. The first equality in (8) comes straightforwardly from Lemma 2. The second
equality follows from a standard property of the Kronecker product (namely (E ⊗ B)(C ⊗ D) = EC ⊗ BD
provided that the sizes of the matrices are compatible). The third equality is obtained by a standard argument
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of the conditional expectation theory. The fourth equality comes from the independence between ηt and the
process (∆t). The last equality is the consequence of the Markov property of (∆t) and the independence
between (ηt) and (∆t): hence if X is any real random variable, measurable with respect to the σ-field generated
by {ηu,∆u : u ≤ t− 1}, we have pr (X < x|∆t = k,∆t−1 = j) = pr (X < x|∆t−1 = j) , ∀x.

To write (8) in vector form we now introduce, for m′ ≤ m, the vectors

U`(m′,m) :=
(
π(1)E[z⊗m′

t ⊗ z⊗m
t−` |∆t = 1]T , . . . , π(d)E[z⊗m′

t ⊗ z⊗m
t−` |∆t = d]T

)T

and
Wm(`) = (U`(m,m)T , . . . ,U`(0,m)T )T .

In view of (8), we then have for ` ≥ 1,

Wm(`) =




P(Υ(m,m)
m ) P(Υ(m,m)

m−1 ) · · · P(Υ(m,m)
0 )

0 P(Υ(m−1,m)
m−1 ) · · · P(Υ(m−1,m)

0 )
...

. . .
...

0 · · · 0 P(I{K(p+q)}m)


Wm(`− 1). (9)

:= AmWm(`− 1)

Now let λ be the (unique) K2m × d {K(p+ q)}m [1 +K(p+ q) + · · · + {K(p+ q)}m] matrix such that

GX⊗m(`) := E[X⊗m
t ⊗X⊗m

t−` ]− {E[X⊗m
t ]}⊗2 = λWm(`).

Examples of such a matrix λ will be given in the next section. To the matrix Am corresponds the set of pairs
of positive integers

N (Am) = {(n, n′)| ∃ Km ×Km matrices C1, . . . Cn, λAn+n′
m + (C1 ⊗ IKm)λAn+n′−1

m (10)

+ · · ·+ (Cn−1 ⊗ IKm)λAn′+1
m + (Cn ⊗ IKm)λAn′

m = 0}·

Let PAm(x) = an + an−1x+ · · · + a1x
n−1 + xn be an annihilating polynomial of Am. Then we see that (n, 0) ∈

N (Am) with Ci = aiIKm . We define a (not necessarily unique) smallest element of N (Am), (n(Am), n′(Am)),
as follows:
i) (n(Am), n′(Am)) ∈ N (Am) and
ii) ∀(n, n′) ∈ N (Am), (n, n′) 6= (n(Am), n′(Am)) , n > n(Am) or n′ > n′(Am).

In view of (9), we have for any ` > i− 1

GX⊗m(`) = λAmWm(`− 1) = λAi
mWm(`− i).

Hence we have, for ` > n(Am) + n′(Am)− 1 and suitable Km ×Km matrices C1, . . . , Cn(Am),

GX⊗m(`) + (C1 ⊗ IKm)GX⊗m(`− 1) + · · ·+ (Cn(Am) ⊗ IKm

)
GX⊗m(`− n(Am))

= {λAn(Am)+n′(Am)
m + (C1 ⊗ IKm)λAn(Am)+n′(Am)−1

m + · · ·
+
(
Cn(Am) ⊗ IKm

)
λAn′(Am)

m }Wm(`− n(Am)− n′(Am)) = 0.

From Lemma 1 we therefore have proved that the process (X⊗m
t ) admits an ARMA representation of or-

ders n(Am) (autoregressive part) and n(Am) + n′(Am)− 1 (moving-average part).
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We now may state the main result of this paper.

Theorem 2. Let m ∈ {1, 2, . . .} and assume that ρ{P(A⊗2m)} < 1 and E‖ηt‖2m < ∞. Let (Xt) be the
nonanticipative strictly stationary solution of (1). Let Am be the matrix defined in (9) and let (n(Am), n′(Am))
be a smallest element of the set N (Am) defined in (10). Then the process (X⊗m

t ) admits an ARMA(n(Am),
n(Am) + n′(Am)− 1) representation.

We now illustrate this general result on several important particular cases.

2. Generic examples

Three cases of particular interest are the HMM, the Markov switching pure AR and the Markov switching
pure MA. The first case has been studied in the seminal paper by Poskitt and Chung [9]. They have shown
that HMM’s satisfy ARMA representations, which can be used to solve the important problem of identifying
the number of regimes. The second case has been considered by Zhang and Stine [12]. Theorem 2 encompasses
and extends these previous results. The last case enjoys a remarkable property: under the assumption of a
symmetric distribution for ηt, the odd powers of Markov switching pure MA’s are simple MA’s, of the same
order, whereas the even powers have more complicated ARMA representations.

Example 1. The hidden Markov model. Poskitt and Chung ([9], Th. 2.1) have shown that in the particular
case when K = 1 and p = q = 0 in (1), Xt satisfies an ARMA(d − 1, d − 1) model. To derive (9), we have
implicitly assumed that p ≥ 1 and q ≥ 1. It is however easy to see that in the situation when K = 1, p = q = 0
and m = 1, setting zt = Xt, (9) holds with

A1 =


 0




c(1)p(1, 1) · · · c(1)p(d, 1)
...

...
c(d)p(1, d) · · · c(d)p(d, d)




0 P


 . (11)

Note that GX(h) = ΓX(h) = λW(`), where λ = (eT ,−E(Xt)eT ) and e = (1, . . . , 1)T ∈ R
d. Let PP(x) be the

characteristic polynomial of P. This polynomial is of degree d. Because

PP(A1) =
( PP(0)Id ×

0 PP(P)

)
=
( PP(0)Id ×

0 0

)
,

we have PP(A1)A1 = A1PP(A1) = 0. Theorem 2 entails that Xt follows an ARMA(d, d) model. Since P has
an eigenvalue equal to 1, the AR polynomial has a unit root. Because (Xt) is stationary, the MA polynomial
admits also a zero equal to one (see Brockwell and Davis [3], p. 86). The AR and MA parts can then be divided
by the lag polynomial 1−L. As in Poskitt and Chung [9], we conclude that Xt follows an ARMA(d− 1, d− 1)
representation.

This result can be extended to the multivariate case and to powers of Xt. Consider the general case K ≥ 1.
Let m be a positive integer. Assume the existence of a m-th order stationary and non anticipative solution (Xt)
of (1). Now we set zt = Xt ∈ R

K and

Am =




0 · · · 0 P

{
E (c(·) + σ(·)ηt)

⊗m ⊗ IKm

}
...
0 · · · 0 P (c⊗ IKm)
0 · · · 0 P (IKm)


 . (12)

We have GX⊗m(`) = λWm(`), where λ = (eT ⊗ IK2m , 0, . . . , 0,−eT ⊗ E(X⊗m
t ) ⊗ IKm). By (2), PP(P (IKm))

= PP(P ⊗ IKm) = {PP(P)} ⊗ IKm = 0. Arguing as in the case m = 1, we conclude that X⊗m
t follows an
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ARMA(d− 1, d− 1) representation, whatever the values of m and K. Moreover the coefficients of the AR part
are diagonal matrices with constant values on the diagonal. This implies that any linear combination of the
components of X⊗m

t also follows an ARMA(d− 1, d− 1) representation. The result extends that of Zhang and
Stine [12] obtained in the case m = 1. Note that the orders of the ARMA are not always minimal. Poskitt
and Chung [9] have however shown that, under some regularity conditions, these orders are minimal in the case
K = m = 1. The following corollary summarizes our results concerning the HMM.

Corollary 1. Suppose that Xt satisfies model (1) with p = q = 0, and that the assumptions of Theorem 2
are satisfied. Let N be an integer and let F be a N × Km real matrix. Then the process (FX⊗m

t )t has an
ARMA(d− 1, d− 1) representation.

Example 2. VAR(p) switching model. Consider a model of the form (1) with q = 0:

Xt = c(∆t) +
p∑

i=1

ai(∆t)Xt−i + σ(∆t)ηt. (13)

Zhang and Stine [12] considered the model (13) without intercept: c ≡ 0. In this case, they found that Xt

admits an ARMA(d(Kp)2, d(Kp)2 − 1) representation. In order to compare this result to ours, consider the
case m = 1. We have zt =

(
XT

t , . . . , X
T
t−p+1

)T ∈ R
Kp and

A1 =
(

P (Φ(·)⊗ IKp) P (c(·)⊗ IKp)
0 P (IKp)

)
, (14)

where Φ(k) = a1(k) when p = 1, Φ(k) = A(k) defined by (3) when p > 1, and c(k) =
(
c(k)T , 0

)T is a pK × 1
vector. With arguments and notations already employed,

PP(Φ(·)⊗IKp)(A1)PP(A1) =
(

0 ×
0 ×

)( × ×
0 0

)
= 0.

Since the degree of the polynomial PP(A1)PP(Φ(·)⊗IKp)(A1) is less than d + d(Kp)2, and 1 is an eigenvalue
of P, Theorem 2 shows that Xt follows an ARMA(d+ d(Kp)2 − 1, d+ d(Kp)2 − 2). In the particular situation
considered by Zhang and Stine [12], the process (Xt) is centred, so λ = (λ1, 0) where λ1 is a K2 × d(Kp)2

matrix and 0 denotes the K2 × d(Kp) null matrix, and

A1 =
(

P (Φ(·)⊗ IKp) 0
0 P (IKp)

)
· (15)

Then we have λPP(Φ(·)⊗IKp)(A1) = 0. Therefore, in the particular case when q = 0 and c ≡ 0, Theorem 2 leads
to the conclusion given by Zhang and Stine [12]. We have shown the following result:

Corollary 2. Assume that ρ{P(A⊗2)} < 1. Let (Xt) be the nonanticipative strictly stationary solution of (13).
The process (Xt) has an ARMA(d + d(Kp)2 − 1, d + d(Kp)2 − 2) representation. When c ≡ 0, (Xt) has an
ARMA(d(Kp)2, d(Kp)2 − 1) representation.

Example 3. VMA(q) switching model. Consider the pure MA Markov-switching model given by

Xt =
q∑

j=0

bj(∆t)σ(∆t−j)ηt−j (16)



AUTOCOVARIANCE STRUCTURE OF POWERS OF SWITCHING-REGIME ARMA PROCESSES 267

with b0(∆t) = 1. We will show the following result:

Corollary 3. Let (Xt) be the Markov-switching moving average defined by (16), where ηt admits a symmetric
law with moments up to the order 2m, for some m ∈ {1, 2, . . .}. When m is odd, the process (X⊗m

t ) admits
a MA(q) representation. When m is even, the process (X⊗m

t ) admits an ARMA(d−1, d−1+ q) representation.

Proof. The first part of the corollary can be shown directly. Indeed, X⊗m
t can be straightforwardly written

under the form

X⊗m
t =

q∑
j1,... ,jm=0

ψj1,... ,jm(∆t,∆t−j1 , . . . ,∆t−jm){ηt−j1 ⊗ . . .⊗ ηt−jm}·

From the independence between (ηt, . . . , ηt−q) and (ηt−k, . . . , ηt−k−q), for k > q, and the independence
between the processes (ηt) and (∆t), conditioning with respect to ∆t, . . . ,∆t−k−q yields Cov(X⊗m

t , X⊗m
t−k)

= E
(
X⊗m

t X⊗m
t−k

T
)

= 0 when m is odd. Hence (X⊗m
t ) is a MA(q). The argument is no longer valid when m is

even. In this case, a proof using Theorem 2 is given in the Appendix. �

Remark. It is worth noting that the ARMA representation, in the case when m is even, cannot (in general)
be reduced to an MA(q). Consider for instance the simple example of a MA(1) with 2 regimes:

Xt = ηt + b1{∆t=2}ηt−1,

with ηt ∼ N (0, 1) and b 6= 0. For simplicity the first regime is chosen to be a white noise (b(1) = 0) and the
second regime is a MA(1). The second-order structure of (X2

t ) is obtained as follows:

E(X2
t ) = 1 + b2π(2),

Var(X2
t ) = 2 + b4π(2)(3− π(2)) + 4b2π(2),

Cov(X2
t , X

2
t−1) = b2π(2)

{
2 + b2p(2, 2)− b2π(2)

}
,

Cov(X2
t , X

2
t−`) = b4π(2) {p(2, 2)− π(2)} {p(2, 2)− p(1, 2)}`−1 , for ` > 1.

Recall that the assumptions made on (∆t) imply that π(2) 6= 0. Thus, unless when p(2, 2) = p(1, 2) (or
equivalently p(2, 2) = π(2)), the process (X2

t ) is not a pure MA. More precisely (X2
t ) admits an ARMA(1,2)

representation (in accordance with Cor. 3) of the form

X2
t − 1− b2π(2) = {p(2, 2)− p(1, 2)}{X2

t−1 − 1− b2π(2)
}

+ ut + θ1ut−1 + θ2ut−2

where θ1, θ2 are constants.

3. Conclusion

In this paper we have established the existence of ARMA representations for any power of Markov-switching
ARMA processes. The orders of the ARMA representations are directly linked with the number of regimes
of the unobserved Markov chain. The results highlight the interest of considering different powers of Xt for
statistical purposes. For instance, in the particular case of a Markov switching MA(q), the identification of q
can be achieved, whatever the number of regimes, by simply considering the autocorrelation functions of odd
powers of Xt. On the other hand, the autocorrelation functions of even powers of Xt are informative concerning
both the number of regimes d and the order q of the MA regimes. Of course, the statistical analysis based on
these considerations is far beyond the scope of this paper, and is left for future research.
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Appendix: Proof of Corollary 3

We set zt =
(
XT

t , ε
T
t , . . . , ε

T
t−q+1

)T ∈ R
K(q+1). In view of (7) it is straightforward to show, by induction, that

EΨ(m′)
i (·, ηt) = 0 when i+m′ is odd. (17)

More precisely, Ψ(m′)
i (·, ηt) is the following sum of

(
m′

i

)
terms:

Ψ(m′)
i (∆t, ηt) = ω

⊗(m′−i)
t ⊗ Φ(∆t)⊗i + ωt ⊗ Φ(∆t)⊗ ω

⊗(m′−i−1)
t ⊗ Φ(∆t)⊗(i−1) + · · · + Φ(∆t)⊗i ⊗ ω

⊗(m′−i)
t .

(18)

In view of (17), (9) holds with

Am =




P(Υ(m,m)
m ) 0 P(Υ(m,m)

m−2 ) P(Υ(m,m)
0 )

0 P(Υ(m−1,m)
m−1 ) 0 P(Υ(m−1,m)

0 )

...
. . . . . .

0 · · · P(Υ(1,m)
1 ) 0

0 · · · 0 P(I{K(q+1)}m)



.

With obvious notations, the matrix Am can be partitioned into blocks Am(i, j) defined by

Am(i, j) =
{

0 when i > j or i+ j odd
P(Υ(m−i+1,m)

m−j+1 ) otherwise,

for i, j = 1, . . . ,m+ 1. Therefore the matrix A2
m can be similarly partitioned into blocks defined by

A2
m(i, j) =

m+1∑
k=1

Am(i, k)Am(k, j) =

{
0 when i > j or i+ j odd∑

k∈Si,j
P(Υ(m−i+1,m)

m−k+1 )P(Υ(m−k+1,m)
m−j+1 ) otherwise,

where Si,j denotes the set of indices Si,j = {i, i+ 2, . . . , j}. Similarly, the blocks of Aq+1
m are given by

Aq+1
m (i, j) =

∑
k1∈Si,j

∑
k2∈Sk1,j

· · ·
∑

kq∈Skq−1 ,j

P(Υ(m−i+1,m)
m−k1+1 )P(Υ(m−k1+1,m)

m−k2+1 ) · · ·P(Υ(m−kq−1+1,m)
m−j+1 ) (19)

when i ≤ j and i+ j even. Now note that, because

Φ(k) =




0 b1(k) · · · bq(k)
0 0 · · · 0

0 IK
. . .

...
. . .

0 · · · 0 IK 0



,

we have

q+1∏
`=1

Φ(kl) = 0, ∀k1, . . . , kq+1 ∈ {1, . . . , d} · (20)
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Each of the blocks defined by (19) can themselves be partitioned into blocks
[Aq+1

m (i, j)
]
(i′, j′) defined by

[Aq+1
m (i, j)

]
(i′, j′) =

∑
k1∈Si,j

∑
k2∈Sk1,j

· · ·
∑

kq∈Skq−1,j

d∑
k′1=1

· · ·
d∑

k′q=1

(21)

p(k′1, i
′)Υ(m−i+1,m)

m−k1+1 (i′)p(k′2, k
′
1)Υ

(m−k1+1,m)
m−k2+1 (k′1) · · · p(j′, k′q)Υ(m−kq−1+1,m)

m−j+1 (k′q)

for i′, j′ = 1, . . . , d. For a diagonal block such that i = j < m+ 1, k1 = k2 = · · · = kq = i and, using (20) and
Ψ(i)

i (·, ηt) = Φ(·)⊗i,

Υ(m−i+1,m)
m−k1+1 (i′)Υ(m−k1+1,m)

m−k2+1 (k′1) · · ·Υ(m−kq−1+1,m)
m−j+1 (k′q)

= Υ(m−i+1,m)
m−i+1 (i′)

q∏
`=1

Υ(m−i+1,m)
m−i+1 (k′`)

=
{
Φ(i′)⊗(m−i+1) ⊗ I{K(q+1)}m

} q∏
`=1

{
Φ(k′`)

⊗(m−i+1) ⊗ I{K(q+1)}m

}

=

{
Φ(i′)

q∏
`=1

Φ(k′`)

}⊗(m−i+1)

⊗ I{K(q+1)}m = 0.

We have shown that
[Aq+1

m (i, i)
]

= 0 for i < m + 1. Now, let us consider the term
[Aq+1

m (1, 3)
]

for m > 2.
In (21), consider for instance the term which corresponds to k1 = k2 = 1 and k3 = · · · = kq = 3. In this
situation, we have, using (18) and (20),

Υ
(m−i+1,m)
m−k1+1 (i′)Υ(m−k1+1,m)

m−k2+1 (k′1) · · ·Υ(m−kq−1+1,m)

m−j+1 (k′q)

= Υ(m,m)
m (i′)Υ(m,m)

m (k′1)Υ
(m,m)
m−2 (k′2)

qY
`=3

Υ
(m−2,m)
m−2 (k′`)

=
�
Φ(i′)⊗m ⊗ I{K(q+1)}m

	�
Φ(k′1)

⊗m ⊗ I{K(q+1)}m

	
×
n

E
�
ω⊗2

t ⊗ Φ(k′2)
⊗(m−2) + ωt ⊗ Φ(k′2)⊗ ωt ⊗ Φ(k′2)

⊗(m−3) + · · · + Φ(k′2)
⊗(m−2) ⊗ ω⊗2

t

�
⊗ I{K(q+1)}m

o

×
qY

`=3

n
Φ(k′`)

⊗(m−2) ⊗ I{K(q+1)}m

o

= E

2
4�Φ(i′)Φ(k′1)ωt

	⊗2 ⊗
(

Φ(i′)
qY

`=1

Φ(k′`)

)⊗(m−2)

⊗ I{K(q+1)}m

+
�
Φ(i′)Φ(k′1)ωt

	⊗
(

Φ(i′)
qY

`=1

Φ(k′`)

)
⊗
(

Φ(i′)⊗(m−2)Φ(k′1)
⊗(m−2)

�
ωt ⊗Φ(k′2)

⊗(m−3)
� qY

`=3

Φ(k′`)
⊗(m−3)

)

⊗I{K(q+1)}m + · · · +

(
Φ(i′)

qY
`=1

Φ(k′`)

)⊗(m−2)

⊗ �Φ(i′)Φ(k′1)ωt

	⊗2 ⊗ I{K(q+1)}m

3
5

= 0.

Continuing this way, we show that
[Aq+1

m (1, 3)
]

= 0 when m > 2. By the same arguments,
[Aq+1

m (i, j)
]

= 0 for
all j < m+ 1.

First consider the case when m is odd. We already saw in Section 2 that (X⊗m
t ) admits a weak MA(q)

representation. This is also obtained by Theorem 2 because Aq+1
m (1, ·) = 0 and λAq+1

m = 0.
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Now consider the case when m is even. The previous argument does not apply because Aq+1
m (1,m+ 1) 6= 0.

Let PP be any annihilating polynomial of P. Using (2), we have PP

{
P(I{K(q+1)}m)

}
= 0. Therefore we have

Aq+1
m =




0 0 ×
...

. . . . . .
0 · · · 0 0
0 · · · 0

{
P(I{K(q+1)}m)

}q+1


 and PP (Am) =




× 0 × ×
...

. . . . . .
0 · · · × 0
0 · · · 0 0


 .

It follows that PP (Am)Aq+1
m = Aq+1

m PP (Am) = 0. Then, choosing the characteristic polynomial of P for PP(·),
Theorem 2 shows that, when m is even, (X⊗m

t ) is an ARMA(d, d + q). Because one of the roots of PP(x) = 0
is equal to one, an argument already given shows that (X⊗m

t ) is an ARMA(d− 1, d− 1 + q).
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