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LONG MEMORY PROPERTIES AND COVARIANCE STRUCTURE
OF THE EGARCH MODEL
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Abstract. The EGARCH model of Nelson [29] is one of the most successful ARCH models which
may exhibit characteristic asymmetries of financial time series, as well as long memory. The paper
studies the covariance structure and dependence properties of the EGARCH and some related stochastic
volatility models. We show that the large time behavior of the covariance of powers of the (observed)
ARCH process is determined by the behavior of the covariance of the (linear) log-volatility process; in
particular, a hyperbolic decay of the later covariance implies a similar hyperbolic decay of the former
covariances. We show, in this case, that normalized partial sums of powers of the observed process
tend to fractional Brownian motion. The paper also obtains a (functional) CLT for the corresponding
partial sums’ processes of the EGARCH model with short and moderate memory. These results are
applied to study asymptotic behavior of tests for long memory using the R/S statistic.

Mathematics Subject Classification. 60F17, 62M10, 91B70, 91B84.

1. Introduction

Autoregressive Conditionally Heteroskedastic (ARCH) models of Engle [10] are widely recognized as being
instrumental for modeling temporal variation in financial market volatility. Generally, by ARCH model one
means a strictly stationary time series Xt, t ∈ Z = {. . . ,−1, 0, 1, . . .} of the form

Xt = ζtVt, (1)

where ζt, t ∈ Z is an i.i.d. sequence with zero mean and unit variance, and Vt (“volatility”) is a general function
of the “past information” up to time t− 1. Among various forms and parametrizations of volatility, one of the
most successful has been the Exponential Generalized ARCH (EGARCH) model proposed by Nelson [29]. In
the EGARCH model, the volatility is given by

Vt = exp


a+

∞∑
j=1

bjg (ζt−j)


 , (2)
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where a ∈ R is a constant, bj, j = 1, 2, . . . are deterministic weights satisfying
∑∞

j=1 b
2
j <∞, and

g(z) = θz + γ [|z| − E|ζ|] , (3)

where θ, γ ∈ R are parameters which account for certain asymmetries observed in financial data (see Nelson [29]).
In the particular case of the EGARCH(p, q) model, logVt satisfies the ARMA equation

φ(L) logVt = ψ(L)g(ζt), (4)

where L is the lag operator and φ(z), ψ(z) are autoregressive polynomials of order p and q, respectively, satisfying
the usual root requirements for the existence of a stationary solution of (4).

An important stylized fact of asset returns and some other financial data is the presence of long mem-
ory, or long-range persistence (Bollerslev and Mikkelsen [4], Baillie [2], Ding and Granger [9], Lobato and
Savin [23]). To model this phenomenon, Bollerslev and Mikkelsen [4] introduced the Fractionally Integrated
Exponential GARCH (FIEGARCH) model. The FIEGARCH(p, d, q) model is defined by (1, 2), where bj , j ≥ 1
are ARFIMA(p, d, q) weights, p, q are nonnegative integers, and −1/2 < d < 1/2. In the FIEGARCH model,
logVt satisfies the equation

φ(L)(1 − L)d (logVt − a) = ψ(L)g (ζt) ,

where (1− L)d is the fractional differencing operator, see e.g. Hosking [19]. In particular, for 0 < d < 1/2 one
has

∑∞
j=1 |bj| = ∞,

∑∞
j=1 b

2
j <∞, and

bj ∼ c0j
d−1, j →∞, (5)

where c0 = |ψ(1)|/(|φ(1)|Γ(d)) and ∼ denotes the fact that the ratio of both sides tends to 1 as j →∞.
The aim of the present paper is to study the covariance structure and dependence properties of a general

stochastic volatility model which includes the EGARCH and the FIEGARCH models. Let (ζs, ξs), s ∈ Z be an
i.i.d. sequence of random vectors with values in R

2, with zero means Eζ = Eξ = 0 and finite variances (here
and below (ξ, ζ) stands for a generic vector). We do not assume any particular form of dependence between ζ
and ξ. Let

Xt = ζtVt, Vt = exp


a+

∞∑
j=1

bjξt−j


 , (6)

where a ∈ R and
∑∞

j=1 b
2
j <∞. In the special case ξ = g(ζ), equation (6) becomes the EGARCH model (1–2),

while in the case when ζ, ξ are independent and bj are ARFIMA weights, equation (6) is known as the long
memory stochastic volatility (LMSV) model, introduced in Breidt et al. [5] and Harvey [16]. Related stochastic
volatility models were studied by Robinson and Zaffaroni [32], Robinson [31], Ghysels et al. [11].

Let us briefly describe the main results of the paper. Theorem 1 obtains long memory asymptotic of
covariances cov(|X0|u, |Xt|u), cov(V u0 , V

u
t ), for arbitrary u > 0, under the regular decay condition (5) with

0 < d < 1/2, and assuming finiteness of all moments of |ζ| and e|ξ|. Namely, we show that the above covariances
decay as t2d−1 with an asymptotic proportionality constant depending on u. Theorem 2 states that, under
the same conditions, suitably normalized partial sums’ processes

∑[Nt]
s=1 |Xs|u and

∑[Nt]
s=1 V

u
s tend as N → ∞,

in the Skorohod space D[0, 1], to a (d + 1/2)-fractional Brownian motion. These results are contrasted in
Theorem 3 which refers to the short memory case

∑∞
j=1 |bj | < ∞: in the latter case, the above covariances

are summable, for any u > 0, and the corresponding partial sums’ processes converge in D[0, 1] to a standard
Brownian motion. The proof of Theorem 2.6 is based on Lemma 2.8 which says that, in the short memory case,
cumulants cum(|X0|u, |Xt2 |u, . . . , |Xtn |u) and cum(V u0 , V ut2 , . . . , V

u
tn) are absolutely summable in t2, . . . , tn ∈ Z,
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for any n = 2, 3, . . . Corollary 3.1 obtains the asymptotic distribution of the modified R/S statistic of Lo [22]
for the stochastic volatility model (6) under short and long memory alternatives.

The paper is organized as follows. In Section 2 we formulate the main results, see Theorems 2.1, 2.2 and 2.6.
Section 3 discusses the R/S statistic. Sections 4 and 5 are devoted to proofs; in particular, Section 5 contains
the proof of Lemma 2.8 and the cumulant analysis of the model (6).

2. Main results

Let Xt, Vt be given by (6). We shall assume in the rest of the paper that
∑∞

j=1 b
2
j <∞ and, for each u > 0,

E|ζ|u <∞, Eeu|ξ| <∞. (7)

Moreover, we assume that Eξ = Eζ = 0 and Eζ2 = Eξ2 = 1. Put Yt = logVt, then

Yt = a+
∞∑
j=1

bjξt−j (8)

is a strictly stationary linear process with mean a and covariance

rt = cov (Y0, Yt) =
∞∑
j=1

bjbt+j.

Theorem 2.1. Let bj satisfy condition (5), where c0 ∈ R, c0 6= 0 and 0 < d < 1/2. Then for any u1, u2 > 0,
as t→∞,

cov (|X0|u1 , |Xt|u2) = u1u2|µ|u1 |µ|u2rt
(
1 +O

(
t−λ
))
, (9)

cov (V u1
0 , V u2

t ) = u1u2νu1νu2rt
(
1 +O

(
t−λ
))
, (10)

where |µ|u = E|X0|u, νu = EV u0 (u > 0) and λ = min(d, 1 − 2d) > 0.

It is well-known that (5) implies the hyperbolic decay

rt ∼ c21t
2d−1, t→∞, (11)

where c1 = c0B
1/2(d, 1 − 2d) and B(·, ·) is the beta-function. Theorem 2.1 together with (11) implies that for

each u > 0

cov(|X0|u, |Xt|u) ∼ (u|µ|uc1)2t2d−1, cov(V u0 , V
u
t ) ∼ (uνuc1)2t2d−1.

In other words, the autocovariances of |Xt|u and V ut exhibit the characteristic long memory decay which is
asymptotically proportional to the decay of the autocovariance rt of the linear process Yt (8). In the case
when ζ and ξ are independent, and ξ is normally distributed, one can find the covariances in (9), (10) explicitly,
e.g.

cov (|X0|u, |Xt|u) = |µ|2u
(
eu

2rt − 1
)
∼ (u|µ|u)2 rt, t→∞,

which agrees with (9). The autocorrelation function corr(|X0|u, |Xt|u) for the above case was found by
Harvey [16], who also discusses its shape and other features.
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The relation between long memory properties of (6) and (8) extends to the limit distributions of the corre-
sponding partial sums’ processes. Let BH(t), t ∈ [0, 1] be a fractional Brownian motion, i.e. a Gaussian process
with zero mean and the covariance

cov (BH(s), BH(t)) = (1/2)
(
t2H + s2H − |t− s|2H) , t, s ∈ [0, 1].

Write =⇒ for weak convergence of stochastic processes in the Skorohod space D[0, 1] (see e.g. Billingsley [3] for
the definition).

Theorem 2.2. Let conditions of Theorem 2.1 be fulfilled. Then for any u > 0, as N →∞,

N−d−1/2

[Nt]∑
s=1

(|Xs|u − |µ|u) =⇒ c2u|µ|uBd+1/2(t), (12)

N−d−1/2

[Nt]∑
s=1

(V us − νu) =⇒ c2uνuBd+1/2(t), (13)

where c2 = c1/d(2d+ 1).

Remark 2.3. The rather restrictive moment conditions (7) can be weakened; in fact, the statements of
Theorems 2.1 and 2.2 remain valid for u, ui < ū, if assumption (7) is replaced by

E|ζ|2ū <∞, Ee2ū‖b‖∞|ξ| <∞, (14)

where ‖b‖∞ = supj≥1 |bj |. Note (14) is close to E|X0|2ū < ∞. The proofs of the corresponding statements
under condition (14) use the same ideas but are technically more involved.

Remark 2.4. A more general class of log volatility processes Yt (9) corresponds to weights of the form

bj = L(j)jd−1, j ≥ 1, (15)

where L(s), s ∈ [1,∞) is a function slowly varying at infinity. We expect that for bj of (15), Theorems 2.1
and 2.2 continue to hold, with N−d−1/2 in (12, 13) replaced by (L(N))−1N−d−1/2, and with c2 = B1/2(d, 1 −
2d)/(d(2d + 1)). The question of what happens when L(j) in (15) is not slowly varying (e.g., is an oscillating
function as in seasonal ARIMA) is open.

Remark 2.5. A notable aspect of Theorems 2.1 and 2.2, as well as of Theorem 2.6 below, is to avoid distribu-
tional assumptions on the innovations (ξt, ζt), which can be largely explained by the exponential nonlinearity of
the volatility. In contrast, Robinson [31] established the long memory, in the sense of the asymptotic behavior
of the autocovariance function, for a class of stochastic volatility models of an arbitrary form of the model
nonlinearity, but imposing Gaussianity of the innovations. Under certain distributional assumptions, exact
expressions of the autocovariance function of |Xt|u were obtained by Demos [8] and He et al. [19].

Let us also note that results similar to Theorems 2.1 and 2.2 were recently obtained by Giraitis et al. [15]
for a different ARCH (called Linear ARCH (LARCH) model, first introduced by Robinson [30]). However, the
last results refer to integer powers u = 2, 3, . . . only.

Theorems 2.1 and 2.2 refer to the long memory case
∑∞
j=1 |bj | = ∞. In the case

∑∞
j=1 |bj | < ∞, the linear

process Yt (8) has short memory in the sense that
∑∞

t=−∞ |rt| < ∞. If, in addition, σ2 :=
∑∞

t=−∞ rt 6= 0,
it is well-known that N−1/2

∑[Nt]
s=1 Ys converge to σB(t), where B(t) is a standard Brownian motion with

cov(B(s), B(t)) = min(t, s). (In the case when σ = 0 as in ARFIMA(p, d, q) with d ∈ (−1/2, 0), the partial
sums converge to a fractional Brownian motion under a normalization which grows slower than N1/2; see
Davydov [7].) A similar result holds also for the stochastic volatility model (6).
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Theorem 2.6. Let

∞∑
j=1

|bj | <∞. (16)

Then for any u1, u2 > 0

∞∑
t=−∞

|cov (|X0|u1 , |Xt|u2) | < ∞, (17)

∞∑
t=−∞

|cov (V u1
0 , V u2

t ) | < ∞. (18)

Moreover, for any u > 0,

N−1/2

[Nt]∑
s=1

(|Xs|u − |µ|u) =⇒ σu,XB(t), (19)

N−1/2

[Nt]∑
s=1

(V us − νu) =⇒ σu,VB(t), (20)

where σ2
u,X =

∑∞
t=−∞ cov(|X0|u, |Xt|u) and σ2

u,V =
∑∞
t=−∞ cov(V u0 , V

u
t ).

Remark 2.7. Some of the results of Theorems 2.2 and 2.6 referring to the volatility process Vt follow from Ho
and Hsing [18], who studied limit theorems for sums of general instantenous functionals of moving averages.
However, their paper does not discuss functional convergence nor the asymptotics of covariance functions as
in Theorem 2.1. The proofs of the present paper (with the exception of Lem. 2.8) are also much simpler than
those of Ho and Hsing [18].

Note Theorem 2.6 does not rely on any mixing conditions which are usually required to prove functional
central limit theorems for dependent sequences. The proof of Theorem 2.6, including the verification of the
tightness condition, is based on the following lemma:

Lemma 2.8. Let condition (16) hold. Then for any u > 0 and any n = 2, 3, . . .

∞∑
t2,...,tn=−∞

|cum (|X0|u, |Xt2 |u, . . . , |Xtn |u) | < ∞, (21)

∞∑
t2,...,tn=−∞

|cum
(
V u0 , V

u
t2 , . . . , V

u
tn

) | < ∞. (22)

Conditions (21, 22) play important role in time series analysis; see Anderson [1] and Brillinger [6]. In Section 3
we use them to obtain the limit distribution of the modified R/S statistic of Lo [22].

As mentioned above, the specific form ξs = g(ζs) with g(z) of (3) allows for certain asymmetries observed
in financial data. One of such asymmetries known as leverage effect is the observation that Xt and Vs, s > t
(“present returns and future volatilities”) are negatively correlated. Although the leverage effect has been
discussed for the EGARCH model (Nelson [29], Bollerslev and Mikkelsen [4]), we have not found a mathematical
proof. The leverage effect in the LARCH model is studied in Giraitis et al. [14].
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Proposition 2.9. Consider the EGARCH model given by (1–3). Assume that the distribution of ζ is symmetric:

P (ζ ∈ dx) = P (ζ ∈ −dx) , x > 0. (23)

Then for any t = 1, 2, . . . , u > 0, cov(X0, V
u
t ) has the sign of the product θbt and cov(X0, V

u
t ) = 0 if θbt = 0.

3. Asymptotic behavior of R/S statistic

Let Zt, t ∈ Z be a strictly stationary time series. The classical R/S statistic of Hurst [20] is defined as

QN = RN/SN , (24)

where

RN = max
1≤t≤N

t∑
s=1

(
Zs − Z̄N

)− min
1≤t≤N

t∑
s=1

(
Zs − Z̄N

)

is the “adjusted range” of the observations Z1, . . . , ZN , Z̄N = N−1
∑N
t=1 Zt, and

S2
N = N−1

N∑
t=1

(
Zt − Z̄

)2
is the sample variance. The R/S statistic provides one of the oldest techniques for detecting long memory and
measuring its intensity. The R/S analysis was developped by Mandelbrot and his collaborators, see Mandelbrot
and Wallis [28], Mandelbrot [25, 26] and Mandelbrot and Taqqu [27].

Lo [22] introduced the modified R/S statistic

QN (q) = RN/SN (q),

where

S2
N (q) = N−1

N∑
t=1

(
Zt − Z̄N

)2 + 2
q∑
j=1

ωj(q)γ̂j

is an estimator of
∑∞

t=−∞ cov(Z0, Zt). Here, ωj(q) = 1− j
q+1 are Bartlett’s weights, and

γ̂j = N−1

N−j∑
t=1

(
Zt − Z̄N

) (
Zt+j − Z̄N

)
, 0 ≤ j < N

are the sample covariances. The classical R/S statistic corresponds to q = 0. Contrary to the classical R/S
statistic, the modified R/S statistic is asymptotically distribution free provided q increases slowly with the
sample size, and can be used to test statistical hypotheses about the presence of long memory (Lo [22]). Further
modifications of the classical R/S statistics were proposed in Kwiatkowski et al. [21] (the KPSS statistic) and
Giraitis et al. [12] (the V/S statistic).

In the remaining part of this section, RN , SN (q), QN (q) will denote the corresponding statistics based on
observations Zt = |Xt|u, t = 1, . . . , N , where Xt is given by our stochastic volatility model (6), with ζ, ξ
satisfying (7), and u > 0 is a fixed number. Put

γj = cov (|X0|u, |Xj |u) , σ2 =
∞∑

j=−∞
γj .
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Corollary 3.1. (i) (“short memory”) Assume
∑∞
j=1 |bj | <∞ and σ 6= 0. Then, as q →∞ and q/N → 0,

N−1/2QN(q) ⇒ max
0≤t≤1

B0(t)− min
0≤t≤1

B0(t), (25)

where B0(t) = B(t)− tB(1), t ∈ [0, 1] is a Brownian bridge, and ⇒ denotes the convergence in distribution.

(ii) (“long memory”) Assume condition (5), with 0 < d < 1/2, and let q →∞, q/N → 0. Then

N−1/2|QN (q)| → ∞ (26)

in probability.

Proof. (i) According to Anderson [1] (Th. 9.3.4), relations (21) for n = 2, 4 imply

S2
N(q) → σ2,

in probability. This, together with Theorem 2.6 implies (25), see Lo [22], also Giraitis et al. [12].

(ii) Rewrite N−1/2QN (q) = N−d−1/2RN/(N−dSN (q)). By Theorem 2.2, N−d−1/2RN tends in distribution to
a non-degenerate limit, while N−dSN (q) → 0 in probability; see the references right above for details. Hence
(26) holds.

In a similar way, one can obtain from Theorems 2.1, 2.2 and 2.6 the limit distribution of the original R/S
statistic QN (24), as well as of the KPSS statistic and the V/S statistic mentioned above.

4. Proofs of Theorems 2.1, 2.2, 2.6 and of Proposition 2.9

Without loss of generality, we put below a = 0. Let L2(Z) be the space of all real sequences f = f(s), s ∈ Z

with finite norm ‖f‖2 =
(∑

s f
2(s)

)1/2. Let

hi =
∑
s∈Z

fi(s)ξs, (27)

where fi ∈ L2(Z), i = 1, 2. Note that cov(h1, h2) =
∑

s f1(s)f2(s). Given hi of (27) and a set A ⊂ Z, define hi,A
as hi,A =

∑
s∈A fi(s)ξs, i = 1, 2, and let FA be the σ-field generated by (ζs, ξs) : s ∈ A.

Lemma 4.1. (i) For any C1 <∞ there exists a constant C <∞, independent of fi, i = 1, 2, such that for all
fi ∈ L2(Z), ‖fi‖2 ≤ C1, i = 1, 2

|cov (eh1 , eh2
)− cov (h1, h2)Eeh1Eeh2 | ≤ C

(
cov2 (h1, h2) +

∑
s

(
f2
1 (s)|f2(s)|+ |f1(s)|f2

2 (s)
))

. (28)

(ii) Let Ai ⊂ Z, i = 1, 2, A1 ∩A2 = ∅ be arbitrary disjoint subsets, and Fi be FAi-measurable random variables,
i = 1, 2, with finite variance. Let fi(s) = 0, s ∈ Ai (i = 1, 2). Then

|cov (F1eh1 , F2eh2
) | ≤ C

(∑
s

|f1(s)f2(s)|+
∑
s∈A2

|f1(s)|+
∑
s∈A1

|f2(s)|
)
. (29)

The constant C < ∞ in (29) depends on C1 and does not depend on fi, Ai, Fi, i = 1, 2 provided ‖fi‖2 ≤
C1, EF

2
i ≤ C1, i = 1, 2, for any fixed C1 <∞. In particular,

|cov (eh1 , eh2
) | ≤ C

∑
s

|f1(s)f2(s)|. (30)
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Proof. (i) By independence of ξs, s ∈ Z,

cov
(
eh1 , eh2

)
=
∏
s

φ (f1(s) + f2(s)) −
∏
s

φ (f1(s))φ (f2(s)) ,

where the function

φ(u) = Eeuξ, u ∈ R

is well-defined and infinitely differentiable on R, according to assumption (7). Then

cov
(
eh1 , eh2

)− cov (h1, h2)Eeh1Eeh2 = Eeh1Eeh2

(
e
P

s ψ(f1(s),f2(s)) − 1− cov (h1, h2)
)
, (31)

where

ψ (u1, u2) = logφ (u1 + u2)− logφ (u1)− logφ(u2).

The function ψ(u1, u2) is infinitely differentiable on R
2, which follows from (7) and the fact that φ is bounded

from below by a strictly positive constant on each bounded subset of R. Furthermore, note ψ(u1, 0) = ψ(0, u2) =
0, ∂2ψ(u1, u2)/∂u1∂u2 = (log φ)′′(u1 + u2) so that

ψ (u1, u2) =
∫ u1

0

∫ u2

0

(logφ)′′ (v1 + v2) dv1dv2.

By expanding the last integral in a neighborhood of u1 = u2 = 0, similarly as in Giraitis et al. [13] we obtain

ψ (u1, u2) =
∫ u1

0

∫ u2

0

[
(logφ)′′ (0) + (v1 + v2) (logφ)(3) (z)

]
dv1dv2 = u1u2 + ε (u1, u2) ,

where |ε(u1, u2)| ≤ C(u2
1|u2|+ |u1|u2

2) for all |ui| ≤ C1, i = 1, 2. Moreover, Eehi ≤ C, i = 1, 2, where C depends
on ‖fi‖ only. Therefore from (31) we obtain

∣∣cov (eh1 , eh2
)− cov (h1, h2)Eeh1Eeh2

∣∣
= Eeh1Eeh2

∣∣∣∣∣exp

{
cov (h1, h2) +

∑
s

ε (f1(s), f2(s))

}
− 1− cov (h1, h2)

∣∣∣∣∣
≤ C

(
cov2 (h1, h2) +

∑
s

|ε (f1(s), f2(s))|
)
,

thereby proving part (i) by the above bound on |ε(u1, u2)|.

(ii) Note (30) follows from (28), as the right hand side of (28) is bounded by C
∑

s |f1(s)f2(s)|. Let us prove (29).
Using the independence of FA1 and FA2 , one has

cov
(
F1eh1 , F2eh2

)
= E

[
F1eh2,A1

]
E
[
F2eh1,A2

]
E
[
eh

′
1+h

′
2

]
− E [F1]E [F2]E

[
eh1,A2

]
E
[
eh2,A1

]
E
[
eh

′
1

]
E
[
eh

′
2

]
,
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where h′1 = h1,Ac
2
, h′2 = h2,Ac

1
, Aci = Z\Ai, i = 1, 2. Therefore,

∣∣cov (F1eh1 , F2eh2
)∣∣ ≤ |α1|

∣∣∣Eeh
′
1+h

′
2 − Eeh

′
1Eeh

′
2

∣∣∣+ α2|β|,

where

α1 = E
[
F1eh2,A1

]
E
[
F2eh1,A2

]
, α2 = E

[
eh

′
1

]
E
[
eh

′
2

]
,

and

β = E
[
F1eh2,A1

]
E
[
F2eh1,A2

]− E [F1]E [F2]E
[
eh1,A2

]
E
[
eh2,A1

]
.

By (30), |Eeh
′
1+h

′
2−Eeh

′
1Eeh

′
2 | ≤ C

∑
s |f1(s)f2(s)|, and, by Cauchy–Schwarz, the constants α1, α2 depend only

on C1 < ∞ provided ‖fi‖2 ≤ C1, EF
2
i ≤ C1, i = 1, 2. To bound β, write β = β1β2 + α3β2 + α4β1, where

β1 = E[F1(eh2,A1 − Eeh2,A1 )], β2 = E[F2(eh1,A2 − Eeh1,A2 )], α3 = EF1Eeh2,A1 , α4 = EF2Eeh1,A2 . Then

|β1| ≤
(
EF 2

1

)1/2 (
var
(
eh2,A1

))1/2 ≤ C

(∑
s∈A2

f2
1 (s)

)1/2

≤ C
∑
s∈A2

|f1(s)| ,

according to (30). By estimating β2 in a similar way, we obtain

|β| ≤ C

(∑
s∈A1

|f2(s)|+
∑
s∈A2

|f1(s)|
)
.

Together with the argument above, this proves (ii) and the lemma, too.

Lemma 4.2. Under conditions and notation of Theorem 2.1, for any u1, u2 > 0, as t→∞,

cov (V u1
0 − u1νu1Y0, V

u2
t − u2νu2Yt) = O

(|rt| t−λ) , (32)

cov
(|X0|u1 − u1 |µ|u1

Y0, |Xt|u2 − u2 |µ|u2
Yt
)

= O
(|rt| t−λ) . (33)

Proof. To verify (32), it suffices to show

cov (V u1
0 , V u2

t ) = u1u2νu1νu2rt
(
1 + O

(
t−λ
))
, (34)

cov (V u1
0 , Yt) = u1νu1rt

(
1 +O

(
t−λ
))
, (35)

cov (Y0, V
u2
t ) = u2νu2rt

(
1 +O

(
t−λ
))
, (36)

and use the fact that rt = cov(Y0, Yt).
Let us first show the bound

|cov (V u1
0 , V u2

t )− u1u2νu1νu2rt| ≤ Cu1u2 |rt| t−λ, (37)

where the constant C does not depend on t, u1, u2 for 0 ≤ u1, u2 ≤ C1 and C1 <∞ fixed.
To show (37), let us apply Lemma 4.1(i), with f1(s) = u1b−s, f2(s) = u2bt−s. According to (28), with

h1 = u1Y0, h2 = u2Yt, cov(h1, h2) = u1u2rt, Eehi = νui , i = 1, 2, one obtains

|cov (V u1
0 , V u2

t )− u1u2νu1νu2rt| ≤ C

(
u2

1u
2
2r

2
t + u1u2

∑
s

(
b2s |bt+s|+ |bs| b2t+s

))
.
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From (11) we have r2t = O(|rt|t2d−1) = O(|rt|t−λ). Relation (5) also implies

∑
s

b2s |bt+s| = O
(
td−1

)
= O

(|rt| t−d) = O
(|rt| t−λ) .

This proves (37) and (34), too. Let us prove (35). We have

cov (V u1
0 , Yt) = lim

u2→0
u−1

2 cov (V u1
0 , V u2

t ) ,

so that

cov (V u1 , Yt)− u1νu1rt

= lim
u2→0

u−1
2 [cov (V u1

0 , V u2
t )− u1u2νu1νu2rt] + rtu1νu1 lim

u2→0
[νu2 − 1]

= lim
u2→0

u−1
2 [cov (V u1

0 , V u2
t )− u1u2νu1νu2rt] .

Hence (35) follows in view of the bound (37). The proof of (36) is completely analogous. This proves (32).
Let us turn to the proof of (33), which follows from the relations

cov (|X0|u1 , |Xt|u2) = u1u2|µ|u1 |µ|u2rt
(
1 +O

(
t−λ
))
, (38)

cov (|X0|u1 , Yt) = u1|µ|u1rt
(
1 +O

(
t−λ
))
, (39)

cov (Y0, |Xt|u2) = u2|µ|u2rt
(
1 +O

(
t−λ
))
. (40)

Consider (38). Write

|Xt|u = |ζt|u V ut = |z|uV ut +Qt,u,

where |z|u = E|ζ|u and Qt,u = (|ζt|u − |z|u)V ut . Note Qt,u, t = 0, 1, . . . is a martingale difference sequence:
E[Qt,u|Ft−1] = 0, where Ft = σ{(ζs, ξs) : s ≤ t}, hence also uncorrelated. Therefore

cov (|X0|u1 , |Xt|u2) = |z|u1 |z|u2 cov (V u1
0 , V u2

t )

+|z|u2 cov (Q0,u1 , V
u2
t ) + |z|u1 cov (Q0,u2 , V

u1
t ) .

Hence (38) follows from (37), |µ|u = |z|uνu, and

|cov (Q0,u1 , V
u2
t )| ≤ Cu2 |rt| t−λ, (41)

which we show right below. Similarly as in the proof of Lemma 4.1, one obtains

|cov (Q0,u1 , V
u2
t )| =

∞∏
j=1

φ (u1bj + u2bt+j)
t−1∏
j=1

φ (u2bj)
∣∣E [|ζ0|u1

(
eu2btξ0 − Eeu2btξ0

)]∣∣
≤ C

(
E
[|ζ|u1

∣∣eu2btξ − Eeu2btξ
∣∣]

≤ C
(
E|ζ|2u1

)1/2 (
φ (2u2bt)− φ2 (u2bt)

)1/2 ≤ Cu2 |bt| ,

where the last inequality follows from |φ(u)− 1| = O(u2). As bt = O(|rt|t−λ), this proves (41), hence also (38).
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To show (39), write cov(|X0|u1 , Yt) = cov(Q0,u1 , Yt) + |z|u1cov(V u1
0 , Yt). Then (40) follows from (35)

and (41), as

|cov (Q0,u1 , Yt)| =
∣∣∣∣ lim
u2→0

u−1
2 cov (Q0,u1 , V

u2
t )
∣∣∣∣ ≤ lim sup

u2→0
u−1

2 |cov (Q0,u1 , V
u2
t )| ≤ C |rt| t−λ.

Relation (40) is immediate from (36), as cov(Qu1,t, Yt) = 0.

Proof of Theorem 2.1. Relations (9, 10) were proved in (38, 34), respectively. �
Proof of Theorem 2.2. We shall prove (12) only, as the proof of (13) is completely analogous. Write Ht =
|Xt|u − |µ|u − u|µ|uYt. By (9), as N →∞,

var

(
N∑
t=1

(|Xt|u − |µ|u)
)
∼ (u|µ|u)2

N∑
t,s=1

rt−s
(
1 +O

(|t− s|−λ)) ∼ (c2u|µ|u)2N1+2d, (42)

and, by (33), var
(∑N

t=1Ht

)
= O(N1+2d−λ). Therefore

N−d−1/2

[Nt]∑
s=1

(|Xs|u − |µ|u) = u|µ|uN−d−1/2

[Nt]∑
s=1

Ys + oP (1). (43)

It is well-known (Davydov [7]) that

N−d−1/2

[Nt]∑
s=1

Ys =⇒ c2Bd+1/2(t). (44)

From (42) it also follows that the sequence of processes N−d−1/2
∑[Nt]

s=1 (|Xs|u − |µ|u), t ∈ [0, 1], N = 1, 2, . . . is
tight in D[0, 1]. Together with (43, 44), this proves (12). �
Proof of Theorem 2.6. Relations (17, 18) (for u1 = u2) and (19, 20) follow from Lemma 2.8, see e.g. Brillinger [6]
(Th. 4.4.1). In particular, the tightness of the corresponding sequences of random elements with values in
D[0, 1] follows from the bounds E(

∑N
t=1(|Xt|u − |µ|u))4 ≤ CN2, E(

∑N
t=1(Vt − νu))4 ≤ CN2, both of which

are easy consequences of Lemma 2.8. Lemma 2.8 can be generalized so as to include the case different powers
ui, i = 1, . . . , n; however, its proof is rather involved. The convergences (17, 18) easily follow from Lemma 2
whose proof is more simpler. Let us prove (17) (the proof of (18) is analogous). To that end, use Lemma 4.1(ii)
with f1(s) = u1b−s, f2(s) = u2bt−s, A1 = {0}, A2 = {t}, F1 = |ζ0|u1 , F2 = |ζt|u2 . Then h1 = u1Y0, h2 = u2Yt
and, from (28) we obtain

|cov (|X0|u1 , |Xt|u2)| = ∣∣cov (F1eh1 , F2eh2
)∣∣ ≤ C

(∑
s

|bsbt+s|+ |bt|
)
, (45)

where the constant C does not depend on t, due to E(F2eh2)2 = E|ζ0|2u2Ee2u2Y0 , which follows from stationarity
and the independence of ζt and Yt. Clearly, equations (45) and (16) imply (17). �
Proof of Proposition 2.9. We have

cov (X0, V
u
t ) =

t−1∏
i=1

φ (ubi)
∞∏
j=1

φ (bj + ubt+j)× E
[
ζ0eubtg(ζ0)

]
,
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so that the proposition follows from

sgn(D) = sgn (θbt) , (46)

where D = E[ζ exp{ubtg(ζ)}]. By the symmetry (23),

D =
∫
{x>0}

(x exp {ubt (θx+ γ (x− |z|1)} − x exp {ubt (−θx+ γ (x− |z|1)})P (ζ ∈ dx)

=
∫
{x>0}

x exp {ubtγ (x− |z|1)} (exp {uθbtx} − exp {−uθbtx})P (ζ ∈ dx) .

As sgn(exp{uθbtx} − exp{−uθbtx}) = sgn(θbt) for any x, u > 0, this proves (46). �

5. Cumulants (proof of Lem. 2.8)

Let us introduce some definitions. Let I be a finite set, |I| <∞ the number of points in I, and let {ηi, i ∈ I}
be a system of random variables indexed by elements of I, such that E|ηi||I| <∞, ∀i ∈ I. The joint cumulant
cum(ηi : i ∈ I) is the partial derivative

cum (ηi : i ∈ I) =
(−√−1

)|I|
∂|I| logE exp

{√−1
∑
i∈I

ziηi

}
/
∏
i∈I

∂zi

∣∣∣
zi=0,i∈I

.

We shall use the notation 〈ηi : i ∈ I〉 = cum(ηi : i ∈ I), ηI =
∏
i∈I ηi. Let us mention some basic properties of

cumulants.

(c.1) 〈ηi : i ∈ I〉 =
∑

{W1,...,Wr}
(−1)r(r − 1)!EηW1 . . . EηWr ,

(c.2) EηI =
∑

{W1,...,Wr}
〈ηi : i ∈W1〉 . . . 〈ηi : i ∈Wr〉·

In (c.1, c.2), the sums are taken over all partitions {W1, . . . ,Wr}, r = 1, 2, . . . of I by nonempty subsets Wi ⊂ I.

(c.3) Let I = I ′ ∪ I ′′ be a partition of I, and let {ηi, i ∈ I ′}, {η′′i , i ∈ I ′′} be independent. Then 〈ηi : i ∈ I〉 = 0.

Let now {U1, . . . , Up}, p = 1, 2, . . . be a system of subsets of I such that ∪pi=1Ui = I (the Ui’s need not be
disjoint). Any such system can be identified with a graphG whose vertices are U1, . . . , Up. A pair (Ui, Uj) (i 6= j)
forms an edge of G if and only if Ui∩Uj 6= ∅. Call the system {U1, . . . , Up} connected if the graphG is connected;
in other words, {U1, . . . , Up} is connected if for any partition I = I ′ ∪ I ′′, I ′ ∩ I ′′ = ∅ there exists U`, 1 ≤ ` ≤ p
such that U` ∩ I ′ 6= ∅, U` ∩ I ′′ 6= ∅.
(c.4) Let ηi = η′i · η′′i , i ∈ I, where the systems {η′i, i ∈ I}, {η′′i , i ∈ I} of random variables are mutually
independent. Then

〈ηi : i ∈ I〉 =
∑

{W ′
1,...,W

′
r′}

∑
{W ′′

1 ,...,W
′′
r′′}

p∏
j=1

〈η′i : i ∈W ′
j〉

r′′∏
`=1

〈η′′i : i ∈W ′′
` 〉,

where the double sum is taken over all partitions {W ′
1, . . . ,W

′
r′}, {W ′′

1 . . . . ,W
′′
r′′}, r′, r′′ = 1, 2, . . . of I such that

the system {W ′
1, . . . ,W

′
r′ ,W

′′
1 , . . . ,W

′′
r′′} is connected.
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Properties (c.1–c.4) are well-known and can be found e.g. in Brillinger [6] (Chap. 2.3) or Malyshev and
Minlos [24]. We shall also need

Lemma 5.1. Let 0 ≤ χW ≡ χW (ti, i ∈ W ), W ⊂ I be a system of functions, ti ∈ Z, such that for any
W ⊂ I, |W | ≥ 2, and any j ∈ W ,

sup
tj∈Z

∑
ti∈Z:i6=j

χW (ti : i ∈ W ) < ∞. (47)

Let {U1, . . . , Up}, p ≥ 1 be a connected system of subsets Uq ⊂ I,∪pq=1Uq = I, and let j ∈ I. Then

∑
ti∈Z:i∈I,i6=j

χU1 (ti : i ∈ U1) . . . χUp (ti : i ∈ Up) < ∞. (48)

Proof. For p = 1 (48) follows from (47). Let p > 1. Without loss of generality, we may assume j ∈ U1, and
Uq∩Uq+1 6= ∅, q = 1, . . . , p−1. Put Ũp = Up\∪p−1

q=1Uq, Ĩ = I\Ũp = ∪p−1
q=1Uq. Then {U1, . . . , Up−1} is a connected

system of subsets of Ĩ. According to (47),∑
ti∈Z:i∈Ũp

χUp (ti : i ∈ Up) ≤ C,

where C <∞ does not depend on ti, i ∈ Up\Ũp. Hence

∑
ti∈Z:i∈I,i6=j

p∏
q=1

χUq ≤ C
∑

ti∈Z:i∈Ĩ,i6=j

p−1∏
q=1

χUq ,

and (48) follows by induction on p.

Next we derive a combinatorial formula for joint cumulants of exponents of linear sequences, which might
also present an independent interest. Let

hi =
∑
s

fi(s)ξs, i ∈ I (49)

be a finite system of linear random variables, I = {1, 2, . . . , n}; i.e., each hi is a linear combination of i.i.d.
random variables ξs, s ∈ Z having zero mean and finite exponential moments, as in Section 2. We shall assume
moreover that all sums (49) are finite, i.e., that all fi(s) vanish for all sufficiently large |s|. As in Section 4, put

φ(u) = Eeuξ, u ∈ R.

For any W ⊂ I, |W | ≥ 2 put

ψW (ui : i ∈ W ) =
∑
U⊂W

(−1)|W\U| log φ

(∑
i∈U

ui

)
, (50)

where ui ∈ R, ∀i. In particular,

ψ12 (u1, u2) = logφ (u1 + u2)− logφ (u1)− logφ (u2) ,

ψ123 (u1, u2, u3) = logφ (u1 + u2 + u3)− logφ (u1 + u2)− logφ (u1 + u3)

− logφ (u2 + u3) + logφ (u1) + logφ (u2) + logφ (u3) .
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Also put, for U ⊂ I,

∆U = exp

{∑
s

ψU (fi(s) : i ∈ U)

}
− 1,

cU =
∏
i∈U

EeYi = exp

{∑
s

∑
i∈U

logφ (fi(s))

}
·

Lemma 5.2. For any finite set I, |I| ≥ 2,

〈ehi : i ∈ I〉 = cI
∑

{U1,...,Up}
∆U1 . . .∆Up , (51)

where the sum is taken over all connected systems {U1, . . . , Up}, p = 1, 2, . . . of subsets of I. Moreover 〈ehi : i ∈
I〉 = cI if |I| = 1.

In the Gaussian case ξ ∼ N(0, 1), we have φ(u) = eu
2/2, and the function

ψW (ui : i ∈W ) =
1
2

∑
U⊂W

(−1)|W\U|
(∑
i∈U

ui

)2

vanishes unless |W | = 2. In this case,

∆W =

{
erij − 1, W = {i, j}, |W | = 2,

0, otherwise,

where rij =
∑
s fi(s)fj(s) = cov(Yi, Yj). This leads to the following

Corollary 5.3. Let (hi, i ∈ I) ∼ N(0, (rij)) be a Gaussian vector. Then

〈ehi : i ∈ I〉 = cI
∑
G

∏
(i,j)∈E(G)

(erij − 1) ,

where cI = exp{(1/2)
∑
i∈I rii}, the sum

∑
G is taken over all connected graphs G whose set of vertices is the

set I, and the product is taken over the set E(G) of edges of G.

Proof of Lemma 5.2. Observe that

logφ

(∑
i∈I

ui

)
=
∑
i∈I

logφ(ui) +
∑

U⊂I,|U|≥2

ψU (ui : i ∈ U) .

Therefore

E
∏
i∈I

ehi = exp

{∑
s

logφ

(∑
i∈I

fi(s)

)}

= cI
∏
U⊂I

(1 + ∆U )

= cI
∑

{U1,...,Up}
∆U1 . . .∆Up , (52)
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where the last sum is taken over all systems {U1, . . . , Up}, p = 1, 2, . . . of subsets Ui ⊂ I, |Ui| ≥ 2, including
the empty system (in the latter case, we put ∆U1 . . .∆Up = 1 by definition). As such systems {U1, . . . , Up}
are not necessarily connected, the last sum in (52) can be rewritten by considering, first, all possible partitions
{W1, . . . ,Wr} of I, and then, summing up over all connected subsystems {U ′1, . . . , U ′p′} within each Wj (j =
1, . . . , r). This yields

E
∏
i∈I

ehi =
∑

{W1,...,Wr}
ΓW1 . . .ΓWr , (53)

where the sum is taken over all partitions {W1, . . . ,Wr}, r = 1, 2, . . . of I, and where

ΓW = cW
∑

{U1,...,Up}
∆U1 . . .∆Up , |W | ≥ 2, (54)

the sum in (54) being taken over all connected systems {U1, . . . , Up}, p = 1, 2, . . . of subsets of W , and ΓW = cW
when |W | = 1. A similar representation (with ΓW ’s replaced by cumulants 〈ehi : i ∈ W 〉) holds by virtue of
property (c.2) for the expectation E

∏
i∈I ehi . It is well-known (see e.g. Malyshev and Minlos [24]) that (53)

determines ΓW ’s uniquely. Therefore, ΓW = 〈ehi : i ∈ W 〉 for each W ⊂ I, thereby proving (51). �

Proof of Lemma 2.8. Let us prove (19). To simplify the notation, we put u = 1. Let I = {1, 2, . . . , n}. According
to Lemma 5.2,

〈eYti : i = 1, . . . , n〉 = cI
∑

{U1,...,Up}
∆U1 . . .∆Up ,

where

∆W ≡ ∆W (ti : i ∈W ) = exp

{∑
s

ψW (bti−s : i ∈ W )

}
− 1,

W ⊂ I, |W | ≥ 2. The functions ψW (50) satisfy the following inequality. For any C1 <∞ there exists a constant
C <∞ such that for all |ui| ≤ C1, i ∈ W

|ψW (ui : i ∈W )| ≤ C
∏
i∈W

|ui|. (55)

The bound (55) follows from

ψW (u1, . . . , uq) =
∫ u1

0

· · ·
∫ uq

0

∂qψW (x1, . . . , xq)
∂x1 . . . ∂xq

dx1 . . . dxq, (56)

where W = {1, . . . , q} and

∂qψW (u1, . . . , uq)
∂u1 . . . ∂uq

= (logφ)(q) (u1 + · · ·+ uq) , (57)

and the fact that the derivative (logφ)(q)(u) = dq log φ(u)/duq is bounded on each compact set {u ∈ R : |u| ≤
C1}. Both (56) and (57) easily follow from the definition of ψW (50), similarly to the case |W | = 2 discussed in
Section 4. In particular, (56) is a consequence of the fact that ψW vanishes on each hyperplane {ui = 0}, i ∈ W .
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Inequality (55) implies the bound

|∆W (ti : i ∈ W )| ≤ C
∑
s

∏
i∈W

|bti−s| , (58)

where the constant C <∞ does not depend on ti ∈ Z, i ∈ W . But (58) and (14) imply that ∆W (ti : i ∈ W ) is
summable with respect to ti ∈ Z, i ∈ W\{i∗}, for arbitrary i∗ ∈ W . Indeed, let W = {1, 2, . . . , q}, i∗ = 1, then

∑
t2,...,tq

∑
s

∣∣bt1−sbt2−s . . . btq−s∣∣ ≤
(∑

s

|bs|
)q

<∞,

where the right hand side does not depend on t1. Therefore the functions |∆W (ti : i ∈ W )| = χW (ti : i ∈ W )
satisfy condition (47) of Lemma 5.1. As the cumulant 〈eYti : i ∈ I〉 admits the representation (51), from
Lemma 5.1 we obtain that for any i∗ ∈ I ∑

ti∈Z:i∈I\{i∗}

∣∣〈eYti : i ∈ I〉∣∣ < ∞,

thereby proving the statement (22) of Lemma 2.8.
Next we turn to the proof of (21). To simplify the notation, we shall again consider the case u = 1 only, and,

moreover, we shall restrict ourselves to the proof of the convergence of the “off-diagonal” part; more precisely,
to the proof of ∑

t2,...,tn

′|〈|Xti | : i = 1, 2, . . . , n〉| < ∞, (59)

where the sum is taken over all ti ∈ Z, 2 ≤ i ≤ n such that ti 6= tj (i 6= j), i, j = 1, . . . , n. Put I =
{1, 2, . . . , n}, T = {t1, . . . , tn} = {ti : i ∈ I}, and write

|Xti | = |ζti |eYti = Fiehi ,

where

hi =
∑
s6∈T

bti−sξs, Fi = |ζti |
∏
s∈T

ebti−sξs .

As {Fi, i ∈ I} and {hi, i ∈ I} are independent collections of random variables, by property (c.4) we obtain

〈|Xti | : i ∈ I〉| =
∑

{W ′
1,...,W

′
r′}

∑
{W ′′

1 ,...,W
′′
r′′}

r′∏
j=1

〈Fi : i ∈W ′
j〉

r′′∏
`=1

〈ehi : i ∈W ′′
` 〉, (60)

where the double sum is taken over all partitions {W ′
1, . . . ,W

′
r′}, {W ′′

1 , . . . ,W
′′
r′′}, r′, r′′ = 1, 2, . . . of I, such that

the system {W ′
1, . . . ,W

′
r′ ,W

′′
1 , . . . ,W

′′
r′′} is connected. We claim that for each W ⊂ I there exists a constant

C <∞ such that, for any i∗ ∈W , ∑
ti∈Z:i∈W\{i∗}

|〈Fi : i ∈ W 〉| ≤ C, (61)

∑
ti∈Z:i∈W\{i∗}

|〈ehi : i ∈ W 〉| ≤ C. (62)

From (60–62) the desired convergence (59) follows by Lemma 5.1.



LONG MEMORY PROPERTIES AND COVARIANCE STRUCTURE OF THE EGARCH MODEL 327

As hi’s are linear variables, relation (62) follows similarly to the proof of (22) given above. It remains to
show (61). We shall consider the case W = I only. Put Yij = bti−tjξtj , i, j ∈ I, then Yii = 0 by b0 = 0, and∑

j∈I Yij = Yti − hi =
∑
s∈T bti−sξs. Now write

Fi = |ζti |
∏
j∈I

(
1 +

(
eYij − 1

))
=
∑
U⊂I

Fi,U , (63)

where

Fi,U = |ζti |
∏

j∈U\{i}

(
eYij − 1

)
,

and the sum in (63) is taken over all subsets U ⊂ I, i ∈ U (for U = {i}, we put Fi,U = |ζti | by definition). Thus,
by multilinearity of joint cumulant, we obtain

〈Fi : i ∈ I〉 =
∑

{Ui:i∈I}
〈Fi,Ui : i ∈ I〉, (64)

where the sum is taken over all collections {Ui : i ∈ I} = {U1, . . . , Un} of subsets Ui ∈ I, i ∈ Ui. Moreover, as for
any partition I ′ ∪ I ′′ = I, I ′ ∩ I ′′ = ∅ the families {ζti , Yij , i, j ∈ I ′} and {ζti , Yij , i, j ∈ I ′′} are independent, by
property (c.3) we see that the cumulant 〈Fi,Ui : i ∈ I〉 = 0 unless {Ui : i ∈ I} is connected. Thus, equation (61)
will follow from (64) by Lemma 5.1, provided we can show that

|〈Fi,Ui : i ∈ I〉| ≤
∏
i∈I

χUi , (65)

where functions χU = χU (ti : i ∈ U), U ⊂ I satisfy condition (47).
This last step of the proof of Lemma 2.8 can be obtained as follows. Observe, for any subset W ⊂ I, |W | = q

E
∏
i∈W

|Fi,Ui | ≤ E
∏
i∈W

|ζti |
∏

j∈Ui\{i}

∣∣eYij − 1
∣∣ ≤ ∏

i∈W
E1/q


|ζti |q ∏

j∈Ui\{i}

∣∣eYij − 1
∣∣q



=
∏
i∈W

‖ζti‖q
∏

j∈Ui\{i}

∥∥eYij − 1
∥∥
q
,

where ‖ ·‖q stands for the Lq-norm, and where we used the independence of random variables ζti , Yij , j ∈ I\{i},
for each i ∈ I. Next, observe the bound

∥∥eYij − 1
∥∥
q

= E1/q
∣∣∣ebti−tj

ξtj − 1
∣∣∣q ≤ C

∣∣bti−tj ∣∣ ,
with C <∞ independent of ti, tj . Hence we obtain

E

[∏
i∈W

|Fi,Ui |
]
≤ C

∏
i∈W

∏
j∈Ui\{i}

∣∣bti−tj ∣∣ .
Let now {W1, . . . ,Wr} be any partition of I, then from the above inequality we obtain

r∏
q=1

E


 ∏
i∈Wq

|Fi,Ui |

 ≤ C

r∏
q=1

∏
i∈Wq

∏
j∈Ui\{i}

∣∣bti−tj ∣∣ = C
∏
i∈I

∏
j∈Ui\{i}

∣∣bti−tj ∣∣ .
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According to property (c.1), a similar bound (with a possibly different constant C) follows for the cumulant
〈Fi,Ui : i ∈ I〉:

|〈Fi,Ui : i ∈ I〉| ≤ C
∏
i∈I

∏
j∈Ui\{i}

∣∣bti−tj ∣∣ .
Hence we obtain (65) with

χUi ≡ χUi (tj : j ∈ Ui) = C
∏

j∈Ui\{i}

∣∣bti−tj ∣∣ , i ∈ I.

It is easy to check that the above functions χUi satisfy condition (47). Indeed, let e.g. U1 = {1, 2, . . . , q}, i∗ = 1,
then, uniformly in t1,

∑
t2,...,tq

χU1 (t1, . . . , tq) ≤ C
∑

t2,...,tq

∣∣bt1−t2 . . . bt1−tq ∣∣ ≤ C

(∑
s

|bs|
)q

<∞.

This proves (65) and Lemma 2.8, too. �

The authors are grateful to the referees for valuable comments.
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