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THE LAW OF THE ITERATED LOGARITHM
FOR THE MULTIVARIATE KERNEL MODE ESTIMATOR

Abdelkader Mokkadem1 and Mariane Pelletier1

Abstract. Let θ be the mode of a probability density and θn its kernel estimator. In the case θ is
nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator
by stating the central limit theorem for θn − θ. Then, we obtain a multivariate law of the iterated
logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the
sequence θn− θ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the
lp norms, p ∈ [1,∞], of θn − θ. Finally, we consider the case θ is degenerate and give the exact weak
and strong convergence rate of θn − θ in the univariate framework.
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1. Introduction

Let X1, . . . , Xn be a sequence of independent and identically distributed R
d-valued random variables with

unknown probability density f . We assume f has a unique mode θ, that is, we suppose that there exists θ ∈ R
d

such that f(x) < f(θ) for any x 6= θ.
A natural approach to mode estimation is to locate the absolute maximum of a corresponding empirical

density function; Parzen [19] gives consistency and asymptotic normality for such estimates based on kernel
method. His results have been extended mainly by Chernoff [3], Nadaraya [17], Van Ryzin [28], Rüschendorf [23],
Eddy [5, 6], Romano [22] and Grund and Hall [10]. An approach based on order statistics is introduced by
Grenander [9] and Venter [29], and developed by Sager [24] and Hall [12]. A recursive method is proposed by
Tsybakov [27]. A question closely related to the mode estimation is the estimation of the conditional mode
developed by Collomb et al [4], and extended by Samanta and Thavaneswaran [26], Ould–Said [18], Quintela–
Del–Rio and Vieu [21], Berlinet et al. [2] and Louani and Ould–Said [15].

The present paper deals with the classical Parzen mode estimator. Let (hn)n≥1 be a sequence of positive
real numbers such that limn→∞ hn = 0, limn→∞ nhd

n = ∞, and let K be a continuous function satisfying∫
Rd K(x)dx = 1, lim‖x‖→∞K(x) = 0 (where ‖.‖ is an arbitrary norm on R

d). The well-known Parzen–
Rosenblatt kernel estimator of the density f is defined by

fn(x) =
1
nhd

n

n∑
k=1

K

(
x−Xk

hn

)
for any x ∈ R

d
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2 A. MOKKADEM AND M. PELLETIER

and the kernel mode estimator is any random variable θn satisfying

fn (θn) = sup
x∈Rd

fn(x). (1)

Since K is continuous and vanishing at infinity, the choice of θn as a random variable satisfying (1) can be
made with the help of an order on R

d. For example, one can consider the following lexicographic order: x ≤ y
if x = y or if the first nonzero coordinate of x− y is negative. The definition

θn = inf
{
y ∈ R

d such that fn(y) = sup
x∈Rd

fn(x)
}

where the infimum is taken with respect to the lexicographic order on R
d, ensures the measurability of the

kernel mode estimator.
The weak consistency of θn was established by Parzen [19] and Yamato [31], its strong consistency by

Nadaraya [17], Van Ryzin [28], Rüschendorf [23] and Romano [22]. In the univariate framework, that is when
d = 1, Romano [22] proves the almost sure convergence of θn to θ under the optimal assumption on the
bandwidth limn→∞ nhn[lnn]−1 = ∞. We first give a straightforward extension of his Theorem 1.1 to the
multivariate case and obtain the strong consistency of θn under the condition limn→∞ nhd

n[lnn]−1 = ∞, which
weakens the assumptions on the bandwidth made in Van Ryzin [28] and Rüschendorf [23].

Let us now assume θ is nondegenerate, that is, D2f(θ) (the second order differential at the point θ) is
nonsingular.

The weak convergence rate of θn to θ was first studied in the univariate framework by Parzen [19] who proved
that, if hn is chosen such that limn→∞ nh6

n = ∞ and limn→∞ nh7
n = 0, then, under appropriate smoothness

assumptions,

√
nh3

n (θn − θ) D→N
(

0 ,
f(θ)

[f ′′(θ)]2

∫
R

K ′2(x)dx

)

where D→ denotes the convergence in distribution and N the Gaussian-distribution. Eddy [5,6] and Romano [22]
then proved that this central limit theorem still holds when the condition limn→∞ nh6

n = ∞ is weakened to
limn→∞ nh5

n[lnn]−1 = ∞.
The study of the weak convergence rate of θn to θ was extended by Konakov [13] and Samanta [25] to the

multivariate framework. The key idea to establish the convergence rate of θn to θ is to note that, as soon asD2fn

converges almost surely uniformly to D2f in a neighborhood of θ, the asymptotic behaviour of θn−θ is given by
that of −[D2f(θ)

]−1∇fn (θ), where ∇fn denotes the gradient of fn. The condition on the bandwidth required
by Konakov [13] and Samanta [25] to ensure the strong uniform convergence of D2fn is limn→∞ nh2d+4

n = ∞.
Although this condition is equivalent to the one of Parzen [19] when d = 1, it is too strong to establish a central
limit theorem as soon as d ≥ 2. The reason is the following.

The weak convergence rate of ∇fn (θ) to zero is governed by the weak convergence rate of the variance term
∇fn (θ) − E (∇fn (θ)) on one hand and by the deterministic convergence rate of the bias term E (∇fn (θ)) on
the other hand. Since the variance term converges at the rate

√
nhd+2

n and the bias term at the rate h−2
n , the

condition limn→∞ nhd+6
n = 0 is necessary to make the bias term negligible in front of the variance term, and

thus to establish a central limit theorem for ∇fn (θ). The incompatibility of this last condition with the one
required by Konakov [13] and Samanta [25] for the strong uniform convergence of D2fn prevents the transfer of
a central limit theorem established for ∇fn (θ) to one which would hold for θn− θ. By weakening the condition
limn→∞ nh2d+4

n = ∞ of Konakov [13] and Samanta [25] to limn→∞ nhd+4
n [lnn]−1 = ∞, we make possible the

choice of a bandwidth for which D2fn converges a.s. uniformly to D2f and for which the bias of ∇fn (θ) is



THE LAW OF THE ITERATED LOGARITHM FOR THE MULTIVARIATE KERNEL MODE ESTIMATOR 3

negligible in front of its variance term. This allows us to state the following central limit theorem:

√
nhd+2

n (θn − θ) D→N
(
0 , f(θ)

[
D2f(θ)

]−1
G
[
D2f(θ)

]−1
)

where G is the d× d matrix defined by

Gi,j =
∫

Rd

∂K

∂xi
(x)

∂K

∂xj
(x)dx.

We now come to our main objective, which is to prove the law of the iterated logarithm for the multivariate
kernel mode estimator.

In the univariate framework, upper bounds of the almost sure convergence rate of θn are given in Eddy [5],
Vieu [30] and Leclerc and Pierre–Loti–Viaud [14]. The exact strong convergence rate of the univariate kernel
mode estimator is given in Mokkadem and Pelletier [16] who proved the following law of the iterated logarithm:

lim sup
n→∞

√
nh3

n

2 ln lnn
(θn − θ) = − lim inf

n→∞

√
nh3

n

2 ln lnn
(θn − θ) =

√
f(θ)

∫
R
K ′2(x)dx

|f ′′(θ)| a.s. (2)

Our main result in the present paper is the following multivariate law of the iterated logarithm: with probability
one, the sequence √

nhd+2
n

2 ln lnn
(θn − θ)

is relatively compact and its limit set is the ellipsoid

{
ν ∈ R

d such that
1

f(θ)
νt
[
D2f(θ)

]
G−1

[
D2f(θ)

]
ν ≤ 1

}
·

Note that the unidimensional version of this result can be written as: with probability one, the sequence

√
nh3

n

2 ln lnn
(θn − θ)

is relatively compact and its limit set is the interval


−
√
f(θ)

∫
R
K ′2(x)dx

|f ′′(θ)| ;
+
√
f(θ)

∫
R
K ′2(x)dx

|f ′′(θ)|




and thus extends the univariate result (2).
We also establish a law of the iterated logarithm for the lp norms, p ∈ [1,∞], of the vector (θn − θ). For sake

of simplicity, we state here our results in the two striking cases, that is, for p = 2 and p = ∞. For any vector

x = (x1, . . . , xd)
t ∈ R

d, set ‖x‖2 =
[∑d

i=1 x
2
i

]1/2

and ‖x‖∞ = max1≤i≤d |xi|. We prove that, with probability
one, the sequence √

nhd+2
n

2 ln lnn
‖θn − θ‖2
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is relatively compact and its limit set is the interval [0, δ2
√
f(θ)] where δ2 is the spectral radius, i.e. the largest

eigenvalue, of the matrix −G1/2
[
D2f(θ)

]−1. We also establish that, with probability one, the sequence

√
nhd+2

n

2 ln lnn
‖θn − θ‖∞

is relatively compact and its limit set is the interval
[
0 , δ∞

√
f(θ)

]
where δ∞ is the square root of the largest

diagonal term of the matrix
[
D2f(θ)

]−1
G
[
D2f(θ)

]−1.
These different versions of the law of the iterated logarithm for the multivariate kernel mode estimator are

proved by relating the strong behaviour of (θn − θ) to the one of
[
D2f(θ)

]−1∇fn(θ) and by applying a result
of Arcones [1].

Let us finally consider the case θ is degenerate. To our knowledge, the only result in this framework is
an upper bound of the complete (and thus almost sure) convergence rate of θn − θ stated in Vieu [30] in the
univariate case. We specify this by establishing the exact weak and strong convergence rate of θn − θ in the
case d = 1. The degenerate multivariate case seems very intricate and the convergence rate of the kernel mode
estimator in this framework remains an open question.

Our assumptions and results are stated in Section 2, whereas Section 3 is devoted to the proofs.

2. Assumptions and results

Before stating our assumptions, let us first define the covering number condition. Let Q be a probability
on R

d and let F ⊂ Ls(Q), s ∈ {1, 2}, be a class of Q-integrable functions. The Ls-covering number (see
Pollard [20]) is the smallest value Ns(ε,Q,F) of m for which there exist m functions g1, . . . , gm ∈ Ls(Q) such
that

min
i∈{1,... ,m}

‖f − gi‖Ls(Q) ≤ ε ∀f ∈ F (3)

(if no such m exists, Ns(ε,Q,F) = ∞). Now, let Λ be a R-valued function defined on R
d, and let F(Λ) be the

class of functions defined by

F(Λ) =
{
z 7→ Λ

(
x− z

h

)
, h > 0, x ∈ R

d

}
·

Λ is said to satisfy the Ls-covering number condition if Λ is bounded and integrable on R
d, and if there exist

A > 0 and w > 0 such that, for any probability Q on R
d and any ε ∈]0, 1[,

Ns(ε,Q,F(Λ)) ≤ Aε−w. (4)

In the case F is uniformly bounded by a constantM , one can consider in (3) only the approximating functions gi

such that ‖gi‖∞ ≤ M (see Pollard [20]). In this case, simple inequalities show that the L1-covering number
condition is equivalent to the L2-covering number condition. Since the only classes we consider are F(Λ) classes
with Λ bounded, we shall only refer to the “covering number condition” without distinction.

The classes which satisfy (4) are often called VC classes. When d = 1, the real-valued kernels with bounded
variations satisfy the covering number condition (see Pollard [20]). Some examples of multivariate kernels
satisfying the covering number condition are the following:

– the kernels defined as K(x) = ψ(‖x‖), where ψ is a real-valued function with bounded variations (see
Pollard [20]);
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– the kernels defined as K(x) =
∏d

i=1Ki (xi) where the Ki, 1 ≤ i ≤ d, are real-valued functions with
bounded variations (this follows from Lem. A1 in Einmahl and Mason [7]);

– the kernels satisfying the assumption (K1) of Giné and Guillou [8].
The assumptions we require for the strong consistency of θn are the following:
(A1) i) lim‖x‖→∞K(x) = 0 and

∫
Rd K(x)dx = 1;

ii) K is continuous on R
d;

iii) K satisfies the covering number condition.

(A2) i) limn→∞ hn = 0;
ii) limn→∞ nhd

n[lnn]−1 = ∞.

(A3) i) there exists θ ∈ R
d such that f(x) < f(θ) for all x 6= θ;

ii) f is continuous in a neighbourhood V of θ;
iii) supx/∈V f(x) < f(θ).

Theorem 2.1 (Strong consistency). Assume (A1–A3) hold. Moreover, assume either that K is nonnegative
or that f is uniformly continuous on R

d. Then,

lim
n→∞ θn = θ a.s.

Remarks.
1) In the case f is uniformly continuous on R

d, (A3) iii) is a straightforward consequence of the unicity of the
mode of f .
2) Theorem 2.1 is a straightforward extension of Theorem 1.1 of Romano [22] to the multivariate framework; it
weakens the assumptions on the bandwidth made by Van Ryzin [28] and Rüschendorf [23] in the case d ≥ 2.

In order to state the central limit theorem, we need the following additional assumptions:

(A4) limn→∞ nhd+4
n [lnn]−1 = ∞.

(A5) i) K is twice differentiable on R
d and, for any (i, j) ∈ {1, . . . , d}2, ∂2K/∂xi∂xj satisfies the covering

number condition;

ii) for any i ∈ {1, . . . , d}, ∫
Rd

(
∂K
∂xi

(x)
)2

dx <∞ and
∫

Rd

∣∣∣ ∂K
∂xi

(x)
∣∣∣2+δ

dx <∞ for some δ > 0;
iii) there exists q ≥ 2 such that for any s ∈ {1, . . . , q − 1} and any j ∈ {1, . . . , d},∫

R

ys
jK(y)dyj = 0 and

∫
Rd

∣∣yq
jK(y)

∣∣dy <∞.

(A6) i) f is twice differentiable on R
d, D2f is continuous in a neighborhood of θ, and D2f(θ) is nonsingular;

ii) D2f is bounded on R
d;

iii) for any i ∈ {1, . . . , d}, ∂f/∂xi is bounded on R
d;

iv) f is q + 1 times differentiable at the point θ (q is defined in (A5)).

Remarks.
1) Some conditions in (A4–A6) clearly imply some other conditions already required in (A1–A3). For instance,
since limn→∞ hn = 0, (A2) ii) is included in (A4).
2) Since θ is assumed to be the unique mode of f , (A6) i) implies that D2f(θ) is negative definite.
3) Note that (A6) iii) implies the uniform continuity of f on R

d.
4) Let us finally mention that the condition (A6) ii) is useless as soon as the support of K is bounded.
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Let us set Bq(θ) the vector

Bq(θ)=
(−1)q+1

q!
[
D2f(θ)

]−1∇

 d∑

j=1

µq
j

∂qf

∂xq
j

(θ)


 with µq

j =
∫

Rd

yq
jK(y)dy

where ∇ denotes the gradient and recall that

G = (Gi,j)1≤i,j≤d with Gi,j =
∫

Rd

∂K

∂xi
(x)

∂K

∂xj
(x)dx.

Theorem 2.2 (Central limit theorem). Let assumptions (A1–A6) hold.

i) If limn→∞ nhd+2q+2
n = 0, then

√
nhd+2

n (θn − θ) D→N
(
0 , f(θ)

[
D2f(θ)

]−1
G
[
D2f(θ)

]−1
)
.

ii) If there exists c > 0 such that limn→∞ nhd+2q+2
n = c, then

√
nhd+2

n (θn − θ) D→N
(√

cBq(θ) , f(θ)
[
D2f(θ)

]−1
G
[
D2f(θ)

]−1
)
.

iii) If limn→∞ nhd+2q+2
n = ∞, then

1
hq

n
(θn − θ) P→Bq(θ).

As mentioned in the introduction, the weak convergence rate of the kernel mode estimator is given by that of[
D2f(θ)

]−1∇fn(θ), which depends itself on the convergence rate of the variance term ∇fn (θ)−E(∇fn (θ)) and
of the bias term E (∇fn (θ)). Part i) of Theorem 2.2 corresponds to the case the bias term does not interfer,
Part ii) holds when (hn) is chosen such that the bias and the variance terms are balanced and Part iii) describes
the case when the variance term does not interfer. Let us note that, in their study of the weak convergence rate
of (θn − θ), Konakov [13] and Samanta [25] consider kernels of order q = 2. Their condition on the bandwidth
limn→∞ nh2d+4

n = ∞ required to ensure the strong uniform convergence of D2fn implies limn→∞ nhd+6
n = ∞

and leads to the weak convergence of h−2
n (θn − θ) to a degenerate distribution. Let us finally mention that the

higher order of weak convergence is attained for hn ∼ n−1/(d+2q+2).
The limit laws in Parts i) and ii) of Theorem 2.2 are nondegenerate. As a matter of fact, we shall prove the

following proposition:

Proposition 2.3. If K 6≡ 0 is continuously differentiable and vanishing at infinity, then the matrix G is positive
definite.

In order to prove the law of the iterated logarithm for the kernel mode estimator, we require the following
additional assumption:

(A7) There exists M > 0 such that K(x) = 0 if ‖x‖ > M .
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Theorem 2.4 (Law of the iterated logarithm for the full vector). Let assumptions (A1–A7) hold.
i) If limn→∞ nhd+2q+2

n / ln lnn = 0, then, with probability one, the sequence

√
nhd+2

n

2 ln lnn
(θn − θ)

is relatively compact and its limit set is the ellipsoid

C=
{
ν ∈ R

d such that
1

f(θ)
νt
[
D2f(θ)

]
G−1

[
D2f(θ)

]
ν ≤ 1

}
·

ii) If there exists c > 0 such that limn→∞ nhd+2q+2
n / ln lnn = c, then, with probability one, the sequence

√
nhd+2

n

2 ln lnn
(θn − θ)

is relatively compact and its limit set is the ellipsoid

C=

{
ν ∈ R

d such that
1

f(θ)

(
ν −

√
c

2
Bq(θ)

)t [
D2f(θ)

]
G−1

[
D2f(θ)

] (
ν −

√
c

2
Bq(θ)

)
≤ 1

}
·

iii) If limn→∞ nhd+2q+2
n / ln lnn = ∞, then

lim
n→∞

1
hq

n
(θn − θ)=Bq(θ) a.s.

The strong convergence rate of θn − θ is deduced from that of
[
D2f(θ)

]−1∇fn(θ). Similarly to the study of
its weak convergence rate, three cases have to be considered according to the choice of the bandwidth. Part i)
of Theorem 2.4 corresponds to the case the bias term does not interfer, Part ii) to the case the bias and the
variance terms are balanced and Part iii) to the case the variance term does not interfer. Let us underline that
the conditions on the bandwidth which differentiate the three possible a.s. behaviours of the sequence (θn − θ)
are slightly different from those which determine the weak convergence rate of the kernel mode estimator. So, the
choice of hn which gives the optimal a.s. rate of convergence of θn, that is, hn ∼ [ln lnn]1/(d+2q+2)n−1/(d+2q+2),
is not the choice of the bandwidth which ensures the optimal weak convergence rate of θn.

For sake of simplicity, we shall state the next versions of the law of the iterated logarithm for the multivariate
kernel mode estimator only in the case the bias term is negligible; the two other cases can be easily deduced.

Theorem 2.5 (Law of the iterated logarithm for the linear forms). Let assumptions (A1–A7) hold, assume that
limn→∞ nhd+2q+2

n / ln lnn = 0, and set u ∈ R
d. Then, with probability one, the sequence

√
nhd+2

n

2 ln lnn
ut (θn − θ)

is relatively compact and its limit set is

I(u)=
[
−
√
f(θ)ut[D2f(θ)]−1

G[D2f(θ)]−1
u ; +

√
f(θ)ut[D2f(θ)]−1

G[D2f(θ)]−1
u

]
.
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Note that the application of Theorem 2.5 to the i-th vector of the canonical basis of R
d gives the limit set of

the sequence √
nhd+2

n

2 ln lnn
(θn,i − θi)

that is, the law of the iterated logarithm for the i-th coordinate of θn.
To conclude our study on the multivariate kernel mode estimator in the case θ is nondegenerate, we finally

state the law of the iterated logarithm for the lp norms of (θn − θ). To this end, for any matrix A and any
p ∈ [1,∞], we denote by |||A|||2,p the matrix norm defined by

|||A|||2,p = sup
||x||2≤1

||Ax||p

where ||x||p is the lp vector norm: ‖x‖p =
[∑d

i=1 |xi|p
]1/p

for p ∈ [1,∞[ and ‖x‖∞ = max1≤i≤d |xi|.

Theorem 2.6 (Law of the iterated logarithm for the lp norms). Let assumptions (A1–A7) hold and assume
that limn→∞ nhd+2q+2

n / ln lnn = 0. Set p ∈ [1,∞]; with probability one, the sequence

√
nhd+2

n

2 ln lnn
‖θn − θ‖p

is relatively compact and its limit set is the interval [0, δp
√
f(θ)] with

δp =
∣∣∣∣∣∣∣∣∣G1/2

[
D2f(θ)

]−1
∣∣∣∣∣∣∣∣∣

2,p
.

In particular, for p = 2, δ2 is the spectral radius of the matrix −G1/2
[
D2f(θ)

]−1 and, for p = ∞, δ∞ is the
square root of the largest diagonal term of the matrix

[
D2f(θ)

]−1
G
[
D2f(θ)

]−1.

Let us finally consider the case θ may be degenerate. For that purpose, we set d = 1 and require the following
assumptions:

(A’4) i) There exists p ≥ 2 such that f is p-times differentiable on R, f (j)(θ) = 0 for any j ∈ {1, . . . , p − 1},
and f (p)(θ) 6= 0;

ii) for any j ∈ {1, . . . , p}, f (j) is bounded on R.

(A’5) i) K is p-times differentiable on R;
ii) for any j ∈ {1, . . . , p}, K(j) satisfies the covering number condition;
iii) there exists q ≥ p such that

∫
R
yjK(y)dy = 0 for any j ∈ {p− 1, . . . , q − 1} and

∫
R
|yqK(y)| dy <∞;

iv) f is q + 1 times differentiable on R and f (q+1) is bounded on R.

(A’6) i) limn→∞ nh2p+1
n [ln(1/hn)]−p = ∞;

ii) (hn) is a decreasing sequence and limn→∞ ln(1/hn)[ln lnn]−1 = ∞;
iii) either (nhn) is an increasing sequence or there exists c such that hn ≤ ch2n.

Remarks.
1) Since f(θ) is a maximum of f , the integer p defined in (A’4) i) is even.
2) Note that the case f (p)(θ) = 0 for all p is not covered by (A’4).
3) Any even kernel with a finite moment of order p satisfies the assumption (A’5) iii) with q = p.
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4) Note that (A’5) iv) implies the continuity of f (p).
Set

Bp,q(θ)= (−1)q+1 (p− 1)! f (q+1)(θ)
q! f (p)(θ)

∫
R

yqK(y)dy.

Theorem 2.7 (Weak convergence rate of the univariate kernel mode estimator in the degenerate case). Let
assumptions (A1–A3) and (A’4–A’6) hold.

i) If there exists c ≥ 0 such that limn→∞ nh2q+3
n = c, then

(
nh3

n

)1/2(p−1)
(θn − θ) D→Z

where the random variable Zp−1 is N
(√

cBp,q(θ) ,
[(p−1)!]2f(θ)

[f(p)(θ)]2
∫

R
K ′2(x)dx

)
– distributed.

ii) If limn→∞ nh2q+3
n = ∞, then

1

h
q/(p−1)
n

(θn − θ) P→ [Bp,q(θ)]
1/(p−1)

.

Theorem 2.8 (Strong convergence rate of the univariate kernel mode estimator in the degenerate case). Let as-
sumptions (A1–A3, A’4–A’6) and (A7) hold.
i) If there exists c ≥ 0 such that limn→∞ nh2q+3

n / ln lnn = c, then, with probability one, the sequence

(
nh3

n

2 ln lnn

)1/2(p−1)

(θn − θ)

is relatively compact and its limit set is the interval

I=




√ c

2
Bp,q −

(p− 1)!
√
f(θ)

∫
R
K ′2(x)dx

|f (p)(θ)|




1/(p−1)

;


√ c

2
Bp,q +

(p− 1)!
√
f(θ)

∫
R
K ′2(x)dx

|f (p)(θ)|




1/(p−1) ·

ii) If limn→∞ nh2q+3
n / ln lnn = ∞, then

lim
n→∞

1

h
q/(p−1)
n

(θn − θ)= [Bp,q(θ)]
1/(p−1) a.s.
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Remark. Part i) of Theorem 2.8 implies that




lim inf
n→∞

(
nh3

n

2 ln lnn

)1/2(p−1)

(θn − θ) =


√ c

2
Bp,q −

(p− 1)!
√
f(θ)

∫
R
K ′2(x)dx

|f (p)(θ)|




1/(p−1)

lim sup
n→∞

(
nh3

n

2 ln lnn

)1/2(p−1)

(θn − θ)=


√ c

2
Bp,q +

(p− 1)!
√
f(θ)

∫
R
K ′2(x)dx

|f (p)(θ)|




1/(p−1)

·

This particular result has been obtained in Mokkadem and Pelletier [16] in the nondegenerate case (i.e. when
p = 2) by applying a result of Hall [?] and without the assumption (A7) on the boundedness of the support
of K.

3. Proofs

3.1. Consistency of the mode estimator

We first note that, following the proof of Theorem 1.1 in Romano [22], the application of Theorem 37 (p. 34)
in Pollard [20] gives the following lemma:

Lemma 3.1. Let Λ be a function on R
d satisfying the covering number condition. If there exists j ≥ 0 such

that limn→∞ nhd+2j
n [lnn]−1 = ∞, then

lim
n→∞ sup

x∈Rd

1

nhd+j
n

∣∣∣∣∣
n∑

i=1

Λ
(
x−Xi

hn

)
− E

[
Λ
(
x−Xi

hn

)]∣∣∣∣∣ = 0 a.s.

The application of Lemma 3.1 with Λ = K ensures that, under the assumption limn→∞ nhd
n[lnn]−1 = ∞,

lim
n→∞ sup

x∈Rd

|fn(x)− E (fn(x))| = 0 a.s. (5)

Now, set δ > 0 such that B(θ, δ) =
{
x ∈ R

d / ‖θ − x‖ < δ
} ⊂ V and set mδ = supx/∈B(θ,δ) f(x); by assumption,

we have mδ < f(θ). Then, set ε ∈]0, f(θ)−mδ[; for n large enough, we have

sup
x/∈B(θ,δ)

E (fn(x)) < f(θ)− ε (6)

this last inequality being either proved by following Romano [22] in the case K is nonnegative or being deduced
from the uniform convergence of E (fn) to f in the case f is uniformly continuous on R

d. The combination
of (5) and (6) then ensures that almost surely, for n large enough,

sup
x/∈B(θ,δ)

fn(x) < f(θ)− ε

2
· (7)

Since limn→∞ fn(θ) = f(θ) a.s., we have a.s., for n large enough, fn(θ) > f(θ)−ε/2 and thus fn (θn) > f(θ)−ε/2.
In view of (7), it follows that θn ∈ B(θ, δ) a.s. for n large enough, which proves Theorem 2.1.
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3.2. Connection between the convergence rate of the mode estimator
and that of the variance term of the derivative density estimator

By definition of θn, we have ∇fn (θn) = 0 so that

∇fn (θn)−∇fn (θ) = −∇fn (θ) . (8)

For each i ∈ {1, . . . , d}, Taylor’s expansion applied to the real-valued application ∂fn

∂xi
implies the existence of

ξn(i) = (ξn,1(i), . . . , ξn,d(i))
t such that

∂fn

∂xi
(θn)− ∂fn

∂xi
(θ) =

d∑
j=1

∂2fn

∂xi∂xj
(ξn(i)) (θn,j − θj)

|ξn,j(i)− θj | ≤ |θn,j(i)− θj | ∀j ∈ {1, . . . , d}·
Define the d× d matrix Hn = (Hn,i,j)1≤i,j≤d by setting

Hn,i,j =
∂2fn

∂xi∂xj
(ξn(i)) .

Equation (8) can then be rewritten as

Hn (θn − θ)=−∇fn (θ) . (9)

Now, under the assumption limn→∞ nhd+4
n [lnn]−1 = ∞, the application of Lemma 3.1 with Λ = ∂2K/∂xi∂xj

ensures that

lim
n→∞ sup

x∈Rd

∣∣∣∣ ∂2fn

∂xi∂xj
(x) − E

(
∂2fn

∂xi∂xj
(x)
)∣∣∣∣ = 0 a.s.

Moreover, classical computations give the uniform convergence of E
(
∂2fn/∂xi∂xj

)
to ∂2f/∂xi∂xj in a neigh-

borhood of θ. Since limn→∞ θn = θ a.s., we thus obtain

lim
n→∞Hn = D2f(θ) a.s.

In view of (9), it follows that the convergence rate of θn−θ is given by that of −[D2f(θ)
]−1∇fn (θ); Sections 3.3

and 3.4 are devoted to the study of the weak and almost sure asymptotic behaviour of the variance term
of ∇fn (θ). The asymptotic behaviour of the bias term is given by the following lemma:

Lemma 3.2.

lim
n→∞

1
hq

n
E (∇fn (θ))=

(−1)q

q!
∇

 d∑

j=1

µq
j

∂qf

∂xq
j

(θ)


 .

Proof of Lemma 3.2. Let us set fi = ∂f
∂xi

(i ∈ {1, . . . , d}), and Djfi (j ∈ {1, . . . , p}) the j-th differential of

fi. For x = (x1, . . . , xd)t ∈ R
d, set x(j) = (x, . . . , x) ∈ (Rd

)j ; with these notations, the j-linear application
Djfi(θ) satisfies

Djfi(θ)
(
x(j)

)
=

∑
1 ≤ i1 ≤ . . . ≤ ik ≤ d
αi1 + . . . + αik

= j

∂jfi

∂xα1
i1
. . . ∂xαk

ik

(θ) xα1
i1
. . . xαk

ik
. (10)



12 A. MOKKADEM AND M. PELLETIER

For i ∈ {1, . . . , d}, we have

E
(
∂fn

∂xi
(θ)
)

=
1

hd+1
n

∫
Rd

∂K

∂xi

(
θ − x

hn

)
f(x)dx =

1
hd

n

∫
Rd

K

(
θ − x

hn

)
∂f

∂xi
(x)dx =

∫
Rd

K(y)fi (θ − hny) dy

so that

E
(
∂fn

∂xi
(θ)
)
− ∂f

∂xi
(θ) =

∫
Rd

K(y) [fi (θ − hny)− fi(θ)] dy.

It follows from (10) and (A5) iii) that

E
(
∂fn

∂xi
(θ)
)
− ∂f

∂xi
(θ) = hq

n

∫
Rd

‖y‖qK(y)


fi (θ − hny)− fi(θ)−

∑q−1
j=1

(−1)jhj
n

j! Djfi(θ)
(
y(j)
)

hq
n‖y‖q


 dy. (11)

The bracketed term in the last integral is bounded for all values of hn and y,
∫

Rd ‖y‖q|K(y)|dy < ∞ and, for
any y 6= 0,

lim
n→∞


fi (θ − hny)− fi(θ)−

∑q−1
j=1

(−1)jhj
n

j! Djfi(θ)
(
y(j)
)

hq
n‖y‖q


 =

(−1)q

q!‖y‖q
Dqfi(θ)

(
y(q)

)
.

Thus, we have

lim
n→∞

1
hq

n

[
E

(
∂fn

∂xi
(θ)
)
− ∂f

∂xi
(θ)
]

=
(−1)q

q!

∫
Rd

Dqfi(θ)
(
y(q)

)
K(y)dy.

In view of (10) and (A5) iii), it comes:

lim
n→∞

1
hq

n

[
E

(
∂fn

∂xi
(θ)
)
− ∂f

∂xi
(θ)
]

=
(−1)q

q!

d∑
j=1

∫
Rd

∂qfi

∂xq
j

(θ)yq
jK(y)dy =

(−1)q

q!

d∑
j=1

µq
j

∂q+1f

∂xi∂x
q
j

(θ)

=
(−1)q

q!
∂

∂xi


 d∑

j=1

µq
j

∂qf

∂xq
j

(θ)




so that

lim
n→∞

1
hq

n
[E (∇fn(θ)) −∇f(θ)]=

(−1)q

q!
∇

 d∑

j=1

µq
j

∂qf

∂xq
j

(θ)




which concludes the proof of Lemma 3.2. �

3.3. Central limit theorem for the kernel mode estimator

A straightforward application of Lyapounov’s theorem gives the following central limit theorem fulfilled by
the variance term of the kernel estimator of the density derivative:√

nhd+2
n (∇fn (θ)− E (∇fn (θ))) D→N (0 , f(θ)G) . (12)

In view of the previous section, Theorem 2.2 follows.



THE LAW OF THE ITERATED LOGARITHM FOR THE MULTIVARIATE KERNEL MODE ESTIMATOR 13

In order to justify that the limit laws in Parts i) and ii) of Theorem 2.2 are nondegenerate, we now prove
Proposition 2.3 (which is straightforward in the case d = 1).

Proof of Proposition 2.3. Let u = (u1, . . . , ud)
t ∈ R

d; we have

utGu =
∫

Rd

(
d∑

i=1

ui
∂K

∂xi
(x)

)2

dx ≥ 0. (13)

Assume there exists u 6= 0 such that utGu = 0. In view of (13), we then have
∑d

i=1 ui∂K/∂xi ≡ 0. Without
loss of generality, assume that, for some h ∈ {1, . . . , d}, u1 6= 0, . . . , uh 6= 0 and uh+1 = . . . = ud = 0. Then,

u1
∂K

∂x1
+ . . .+ uh

∂K

∂xh
≡ 0.

The general solution of this first order linear partial differential equation is

φ (u2x1 − u1x2, . . . , uhx1 − u1xh, xh+1, . . . , xd)

where φ is an arbitrary real-valued differentiable function on R
d−1. We thus have K = φ ◦M where M : R

d →
R

d−1 is a linear application. The rank of M is d− 1 and kerM = span{v} where v = (u1, u2, . . . , uh, 0, . . . , 0)t.
Set z ∈ R

d−1 and x0 ∈M−1(z); we have

K (x0 + λv) = φ(z) ∀λ ∈ R.

Since limλ→∞K (x0 + λv) = 0, it follows that φ(z) = 0 for all z ∈ R
d−1 and thus K ≡ 0, which is impossible.

Thus, utGu > 0 for any u 6= 0, which proves Proposition 2.3.

3.4. Law of the iterated logarithm for the kernel mode estimator

Let A = (Ai,j)1≤i≤d′,1≤j≤d be a given d′ × d matrix, and set

Rn =−[D2f(θ)
]−1

(∇fn (θ)− E (∇fn (θ)))

Vn =

√
nhd+2

n

2 ln lnn
ARn.

From now on, we set ∆ = −[D2f(θ)
]−1. For i ∈ {1, . . . , d}, we have

Rn,i =
d∑

j=1

∆i,j
∂fn

∂xj
(θ)− E


 d∑

j=1

∆i,j
∂fn

∂xj
(θ)




Vn,i =

√
nhd+2

n

2 ln lnn


 d∑

j=1

d∑
l=1

Ai,j∆j,l
∂fn

∂xl
(θ) − E


 d∑

j=1

d∑
l=1

Ai,j∆j,l
∂fn

∂xl
(θ)






=
1√

2nhd
n ln lnn

n∑
k=1




 d∑

j=1

d∑
l=1

Ai,j∆j,l
∂K

∂xl


(θ −Xk

hn

)
− E




 d∑

j=1

d∑
l=1

Ai,j∆j,l
∂K

∂xl


(θ −Xk

hn

)

 ·

Theorem 4.1 in Arcones [1] applies and gives the following result:
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Lemma 3.3. With probability one, the sequence (Vn) is relatively compact and its limit set is

C=




√f(θ)

∫
Rd


 d∑

j=1

d∑
l=1

Ai,j∆j,l
∂K

∂xl
(x)


 α(x) dx




i∈{1,... ,d′}

:
∫

Rd

α2(x) dx ≤ 1


 ·

Note that C is the image of the closed unit ball of L2(Rd) by the linear continuous applicationH : L2(Rd) → R
d′

defined by

H(α) =


√f(θ)

∫
Rd


 d∑

j=1

d∑
l=1

Ai,j∆j,l
∂K

∂xl
(x)


 α(x) dx




i∈{1,... ,d′}

.

We now show how Theorems 2.4, 2.5 and 2.6 are deduced from Lemma 3.3.

3.4.1. Law of the iterated logarithm for the full vector

Let A be the identity matrix; in view of Lemma 3.3, the limit set of the sequence



√

nhd+2
n

2 ln lnn
∆ [∇fn (θ)− E (∇fn (θ))]




is, with probability one,

C=




√f(θ)

∫
Rd


 d∑

j=1

∆i,j
∂K

∂xj
(x)


 α(x) dx




i∈{1,... ,d}

:
∫

Rd

α2(x) dx ≤ 1


 ·

Now, let U be the vector subspace of L2(Rd) spanned by
(

∂K
∂xi

)
i∈{1,... ,d}

. For any α ∈ L2
(
R

d
)
, there exists

γ = (γ1, . . . , γd)
t and α ∈ U⊥ such that

α(x) =
d∑

k=1

γk
∂K

∂xk
(x) + α(x)

and C can be rewritten as

C=




√f(θ)

∫
Rd


 d∑

j=1

∆i,j
∂K

∂xj
(x)


 α(x) dx




i∈{1,... ,d}

: α ∈ U and
∫

Rd

α2(x) dx ≤ 1


 ·

However, for any α ∈ U , α =
d∑

k=1

γk
∂K

∂xk
, we have

∫
Rd

α2(x) dx =
d∑

k=1

d∑
j=1

γkγj

∫
Rd

∂K

∂xk
(x)

∂K

∂xj
(x)dx = γtGγ
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and

∫
Rd


 d∑

j=1

∆i,j
∂K

∂xj
(x)


 α(x) dx=

∫
Rd

d∑
j=1

d∑
k=1

∆i,jγk
∂K

∂xj
(x)

∂K

∂xk
(x)dx

=
d∑

j=1

∆i,j

(
d∑

k=1

γk

∫
Rd

∂K

∂xj
(x)

∂K

∂xk
(x)dx

)
=

d∑
j=1

∆i,j(Gγ)j = (∆Gγ)i.

Thus, we obtain

C=
{(√

f(θ) (∆Gγ)i

)
i∈{1,... ,d}

: γ ∈ R
d , γtGγ ≤ 1

}
·

Finally, set Z(γ) =
√
f(θ) ∆Gγ. We then have γ = [f(θ)]−1/2G−1∆−1Z(γ) and

Z(γ) ∈ C⇔ γtGγ ≤ 1
⇔ [f(θ)]−1Z(γ)t∆−1G−1∆−1Z(γ) ≤ 1.

Thus, C is the ellipsoid

C =
{
ν ∈ R

d such that
1

f(θ)
νt
[
D2f(θ)

]
G−1

[
D2f(θ)

]
ν ≤ 1

}
·

Theorem 2.4 follows then from the considerations made in Section 3.2.

3.4.2. Law of the iterated logarithm for the linear forms

Set u ∈ R
d and A = ut. In view of Lemma 3.3, the limit set of the sequence


√

nhd+2
n

2 ln lnn
ut∆(∇fn (θ)− E (∇fn (θ)))




is, with probability one,

C=
{(√

f(θ)
∫

Rd

J(x) α(x) dx
)

:
∫

Rd

α2(x) dx ≤ 1
}

with

J(x)=
d∑

i=1

d∑
j=1

ui∆i,j
∂K

∂xj
(x).

Note that C is the image of the closed unit ball of L2(Rd) by the linear continuous form

H : α 7→
√
f(θ)

∫
Rd

J(x) α(x) dx.

Since the unit ball of L2(Rd) is connected and symmetric with respect to 0, it follows that C is a symmetric
interval. Now, for any α such that

∫
Rd α

2(x) dx ≤ 1, we have

∣∣∣∣
∫

Rd

J(x) α(x) dx
∣∣∣∣≤
(∫

Rd

J2(x) dx
)1/2
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so that C is bounded by
(
f(θ)

∫
Rd J

2(x) dx
)1/2. But, setting α(x) =

(∫
Rd J

2(x) dx
)−1/2

J(x), we have
∫

Rd α
2(x)

dx = 1 and

∫
Rd

J(x) α(x) dx=
(∫

Rd

J2(x)dx
)1/2

so that

C=

[
−
√
f(θ)

∫
Rd

J2(x)dx ; +

√
f(θ)

∫
Rd

J2(x)dx

]
.

Finally, noting that∫
Rd

J2(x)dx =
∑

i,j,k,l

uiul∆i,j∆l,k

∫
Rd

∂K

∂xj
(x)

∂K

∂xk
(x)dx =

∑
i,j,k,l

uiul∆i,j∆l,kGj,k = ut∆G∆u

we obtain

C=
[
−
√
f(θ)ut∆G∆u ; +

√
f(θ)ut∆G∆u

]
.

3.4.3. Law of the iterated logarithm for the lp norms

Let Np: z 7→ ‖z‖p be the lp norm application on R
d, and set

C =
{
ν / νtΣν ≤ 1

}
with Σ =

[
D2f(θ)

]
G−1

[
D2f(θ)

]
/f(θ).

Since Np is continuous, Theorem 2.4 implies that, with probability one, the sequence

√
nhd+2

n

2 ln lnn
‖θn − θ‖p

is relatively compact and its limit set is Np(C). Moreover, since C is a compact and connected subset of R
d,

Np(C) is also compact and connected. Noting that 0 ∈ Np(C), it follows that Np(C) = [0, δ′p] with δ′p =
supν∈C ‖ν‖p. In view of the definition of C, we then have

δ′p = sup
‖µ‖2≤1

‖Σ−1/2µ‖p = |||Σ−1/2|||2,p = |||
√
f(θ)G1/2

[
D2f(θ)

]−1|||2,p =
√
f(θ) δp.

In particular, δ2 = |||G1/2
[
D2f(θ)

]−1|||2,2; since G1/2
[
D2f(θ)

]−1 is definite negative, δ2 is thus the spectral
radius of the matrix −G1/2

[
D2f(θ)

]−1.
Now, for i ∈ {1, . . . , d}, set ki(x) =

∑d
j=1 ∆i,j

∂K
∂xj

(x); we have

∫
Rd

k2
i (x) dx =

∑
j,k

∆i,j∆i,k

∫
Rd

∂K

∂xj
(x)

∂K

∂xk
(x) dx =

∑
j,k

∆i,j∆i,kGj,k = (∆G∆)i,i.

The application of Lemma 3.3 when A is the identity matrix ensures that

C=

{(√
f(θ)

∫
Rd

ki(x) α(x) dx
)

i∈{1,... ,d}
:
∫

Rd

α2(x) dx ≤ 1

}
·
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It thus follows that

δ′2∞≤ f(θ) max
1≤i≤d

∫
Rd

k2
i (x) dx ≤ f(θ) max

1≤i≤d
(∆G∆)i,i.

Finally, let i0 ∈ {1, . . . , d} be the integer satisfying (∆G∆)i0,i0 = max1≤i≤d(∆G∆)i,i. For

α(x) =
[∫

Rd

k2
i0 (x) dx

]−1/2

ki0(x)

we have

∫
Rd

ki0 (x) α(x) dx=
[∫

Rd

k2
i0 (x) dx

]1/2

= [(∆G∆)i0,i0 ]
1/2

which ensures that δ∞ = [max1≤i≤d(∆G∆)i,i]
1/2.

3.5. Convergence rate of the univariate kernel mode estimator in the case θ is degenerate

The key idea to prove Theorems 2.7 and 2.8 is to relate the weak and strong convergence rate of (θn − θ)p−1

to that of −(p− 1)!f ′n (θ) /f (p) (θ). For that purpose, we first note that a Taylor expansion of f ′n at the point θ
ensures the existence of ξn such that



f ′n (θn)− f ′n (θ) =

p−1∑
j=2

f
(j)
n (θ)

(j − 1)!
(θn − θ)j−1 +

f
(p)
n (ξn)
(p− 1)!

(θn − θ)p−1

|ξn − θ| ≤ |θn − θ|.

(If p = 2, that is, in the case θ is nondegenerate,
∑p−1

j=2 f
(j)
n (θ)(θn − θ)j−1

/(j − 1)! = 0.) Since f ′n (θn) = 0 it
follows that

f
(p)
n (ξn)
(p− 1)!

(θn − θ)p−1 =−f ′n (θ)−
p−1∑
j=2

f
(j)
n (θ)

(j − 1)!
(θn − θ)j−1

.

Now, the a.s. uniform convergence of f (p)
n to f (p) in a neighborhood of θ and the strong consistency of θn

ensure that limn→∞ f
(p)
n (ξn) = f (p) (θ) a.s.; the weak and strong convergence rate of (θn − θ)p−1 is thus given

by that of

− (p− 1)!
f (p) (θ)


f ′n (θ) +

p−1∑
j=2

f
(j)
n (θ)

(j − 1)!
(θn − θ)j−1


 .

To prove Theorems 2.7 and 2.8, it remains to establish the convergence rate of f ′n (θ) on one hand, and, on the
other hand, to prove that the term

∑p−1
j=2 f

(j)
n (θ)(θn − θ)j−1

/(j − 1)! is negligible in front of f ′n (θ).

We first note that

lim
n→∞

1
hq

n
E (f ′n (θ))=

(−1)q

q!
f (q+1) (θ)

∫
R

yqK(y)dy. (14)

As a matter of fact, we have f (j+1)(θ) = 0 ∀j ∈ {1, . . . , p− 2} and
∫

R
yjK(y)dy = 0 ∀j ∈ {p− 1, . . . , q − 1}; it

follows that equation (11) still holds and (14) is obtained by following the proof of Lemma 3.2. Moreover, when
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‖f (q+1)‖∞ < ∞, the bracketed term in (11) in bounded by ‖f (q+1)‖∞/q! uniformly with respect to θ. In this
case, we have:

‖E (f ′n)‖∞=O (hq
n) . (15)

Now, the weak convergence rate of f ′n (θ) is given by the application of the univariate version of the central
limit theorem (12):

√
nh3

n (f ′n (θ)− E (f ′n (θ))) D→N
(

0 , f(θ)
∫

R

K ′2(x) dx
)
.

For the strong convergence rate of f ′n (θ), we note that the application of Theorem 4.1 in Arcones [1] ensures
that the sequence (√

nh3
n

2 ln lnn
(f ′n (θ) − E [f ′n (θ)])

)

is relatively compact and its limit set is

C=
{√

f(θ)
∫

R

K ′(x)α(x) dx :
∫

R

α2(x) dx ≤ 1
}

=

[
−
√
f(θ)

∫
R

K ′2(x) dx ; +

√
f(θ)

∫
R

K ′2(x) dx

]
.

where the last equality is obtained by following the proof of Section 3.4.2.
It remains to prove that the term

∑p−1
j=2 f

(j)
n (θ)(θn − θ)j−1

/(j − 1)! is negligible. This is given by the following
lemma:

Lemma 3.4. i) If there exists c ∈ [0,∞[ such that limn→∞ nh2q+3
n = c, then

lim
n→∞

√
nh3

n

p−1∑
j=2

f
(j)
n (θ)

(j − 1)!
(θn − θ)j−1 = 0 a.s.

ii) If limn→∞ nh2q+3
n = ∞, then

lim
n→∞

1
hq

n

p−1∑
j=2

f
(j)
n (θ)

(j − 1)!
(θn − θ)j−1 = 0 a.s.

Proof of Lemma 3.4. To prove Lemma 3.4, we need an a.s. convergence rate upper bound of the sequences(∣∣∣f (j)
n (θ)

∣∣∣), j ∈ {2, . . . , p− 1}, as well as a preliminary upper bound of the a.s. convergence rate of (θn − θ).

At first, note that the application of Theorem 2.3 in Giné and Guillou [8] to the kernel K(j) ensures that

∥∥∥f (j)
n − E

(
f (j)

n

)∥∥∥
∞

=O

(√
ln[1/hn]
nh2j+1

n

)
a.s. (16)

Now, arguing as for the proof of (14), we have
∣∣∣E (f (j)

n (θ)
)∣∣∣ = O

(
hq+1−j

n

)
and thus

∣∣∣f (j)
n (θ)

∣∣∣=O

(√
ln[1/hn]
nh2j+1

n

+ hq+1−j
n

)
a.s. (17)



THE LAW OF THE ITERATED LOGARITHM FOR THE MULTIVARIATE KERNEL MODE ESTIMATOR 19

To obtain the preliminary upper bound of the strong convergence rate of (θn − θ), we first note that a Taylor
expansion of f ′ at the point θ ensures the existence of ζn such that


f

′ (θn) =
f (p) (ζn)
(p− 1)!

(θn − θ)p−1

|ζn − θ| ≤ |θn − θ|.

Since f ′n (θn) = 0, it follows that

f ′n (θn)− f ′ (θn)=
−f (p) (ζn)
(p− 1)!

(θn − θ)p−1
.

The strong consistency of θn, the continuity of f (p) and the fact that f (p)(θ) 6= 0 imply that

|θn − θ|p−1 =O (‖f ′n − f ′‖∞) a.s.

In view of (15) and (16), we obtain:

|θn − θ|p−1 =O

(√
ln[1/hn]
nh3

n

+ hq
n

)
a.s. (18)

For any j ∈ {2, . . . , p− 1}, the combination of (17) and (18) gives

[∣∣∣f (j) (θ)
∣∣∣ |θn − θ|j−1

]2
=O

([
ln[1/hn]
nh2j+1

n

+ h2(q+1−j)
n

] [(
ln[1/hn]
nh3

n

) j−1
p−1

+ h
2q(j−1)

p−1
n

])
a.s. (19)

• Let us at first assume that there exists c ∈ [0,∞[ such that limn→∞ nh2q+3
n = c. In this case, we note that,

for any j ≥ 2,

h2(q+1−j)
n = o

(
ln[1/hn]
nh2j+1

n

)
and h2q

n = o

(
ln[1/hn]
nh3

n

)
·

In view of (19), it follows that

nh3
n

[∣∣∣f (j) (θ)
∣∣∣ |θn − θ|j−1

]2
=O

(
nh3

n

[
ln[1/hn]
nh2j+1

n

](
ln[1/hn]
nh3

n

) j−1
p−1
)

a.s.

=O


[ [ln[1/hn]]1+

p−1
j−1

nh2p+1
n

] j−1
p−1

 a.s.

= o (1) a.s.
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• Let us now assume that limn→∞ nh2q+3
n = ∞. In view of (19), we have

1
h2q

n

[∣∣∣f (j) (θ)
∣∣∣ |θn − θ|j−1

]2

=O

([
ln[1/hn]
nh2q+2j+1

n

+ h−2(j−1)
n

][(
ln[1/hn]
nh3

n

) j−1
p−1

+ h
2q(j−1)

p−1
n

])
a.s.

=O




 (ln[1/hn])p+j−2(

nh2q+2j+1
n

)p−1

(nh3
n)j−1




1
p−1

+


(ln[1/hn])p−1h

2q(j−1)
n(

nh2q+2j+1
n

)p−1




1
p−1

+
[

ln[1/hn]

nh
3+2(p−1)
n

] j−1
p−1

+
[
h−(p−1)+q

n

] 2(j−1)
p−1

)
a.s.

=O


 1
nh2q+3

n

[
(ln[1/hn])1+

p−1
j−1

nh2p+1
n

] j−1
p−1

+


 (ln[1/hn])p−1(

nh2q+3
n

)p−1

h
2(j−1)(p−q−1)
n




1
p−1

+
[
ln[1/hn]
nh2p+1

n

] j−1
p−1

+
[
hq−p+1

n

] 2(j−1)
p−1

)
a.s.

= o (1) a.s.

which concludes the proof of Lemma 3.4. �

We would like to thank the referees and the Associate Editor for their carefully reading and their helpful comments and

suggestions.
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Paris Sér. I Math. 331 (2000) 637-640.
[15] D. Louani and E. Ould–Said, Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypoth-

esis. J. Nonparametr. Statist. 11 (1999) 413-442.



THE LAW OF THE ITERATED LOGARITHM FOR THE MULTIVARIATE KERNEL MODE ESTIMATOR 21

[16] A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted).
[17] E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965)

186-190.
[18] E. Ould–Said, A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat. 24

(1997) 231-239.
[19] E. Parzen, On estimating probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076.
[20] D. Pollard, Convergence of Stochastic Processes. Springer, New York (1984).
[21] A. Quintela–Del–Rio and P. Vieu, A nonparametric conditional mode estimate. J. Nonparametr. Statist. 8 (1997) 253-266.
[22] J. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647.
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