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REPLICANT COMPRESSION CODING IN BESOV SPACES

Gérard Kerkyacharian1, 2 and Dominique Picard1

Abstract. We present here a new proof of the theorem of Birman and Solomyak on the metric entropy
of the unit ball of a Besov space Bs

π,q on a regular domain of R
d. The result is: if s − d(1/π − 1/p)+

> 0, then the Kolmogorov metric entropy satisfies H(ε) ∼ ε−d/s. This proof takes advantage of the
representation of such spaces on wavelet type bases and extends the result to more general spaces.
The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the
upper bound, we provide a new universal coding based on a thresholding-quantizing procedure using
replication.
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Introduction

The evaluation of the entropy of the balls in Besov spaces is a very important point in modern nonparametric
statistics.

Entropy is a measure of the complexity of a parameter space which early proved to be especially appropriate
for approximation –see Lorentz [22]– but also for statistical estimation. LeCam was the first to obtain general
bounds depending on the metric structure of the parameter space for the risk of estimators –see LeCam [20]
and [21]–. After this seminal work, Assouad [1] and Birgé [2] pointed out the link between the metric structure
and the minimax rates. Nowadays, entropy or construction of ε-nets is a very common approach to obtain lower
bounds in minimax evaluations.

Moreover, entropy is also a very powerful tool to derive exponential bounds for the supremum of processes, in
particular empirical processes. This has especially important consequences: for instance in many situations, the
rate of convergence of the classical MLE or LSE directly follows from entropy calculations. An important tool
in modern nonparametric estimation is penalized methods. Here, again exponential bounds on the supremum
of the empirical process on a class of functions is a key argument to calibrate the penalties –see for instance,
van de Geer [25], for a review–.

On the other hand, Besov spaces among other spaces of regularity appear to be especially suited for ap-
proximation and statistical applications: for instance, balls of Besov spaces appear to be maximal sets for
linear approximation methods (see for instance Nikolskii [23]). They also appear to be maximal sets –i.e. the
set of all functions such that a given procedure has a risk bounded by a specified rate of convergence– for general
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linear smoothing methods under fairly large conditions (see Kerkyacharian and Picard [18], also Härdle et al.,
Chap. 10 [14]). Moreover weak modifications of the Besov spaces also appear to be maximal sets for a large
class of nonlinear methods including thresholding algorithms (see Kerkyacharian and Picard [16]). Hence these
spaces, more than Sobolev or Hölder spaces –which are often used as a grid for regularity– appear to be more
authentically linked with statistical problems, giving a “natural” way of measuring the sparsity.

If Besov spaces are very important, Besov bodies are also essential. They very well reflect the properties
of thresholding algorithms with respect to more general bases than wavelet bases. For this reason, we set
our results in the enlarged context of the multiscale type Besov bodies. This enables us to have very general
examples such as multidimensional functions with anisotropic regularity –as images– or oscillatory functions
–as chirps–.

The evaluation of the entropy of Besov balls goes back to 1967. It follows using interpolation theory from
the result of Birman and Solomyak [4]. However, the proof presented there is rather long and difficult.

Moreover, taking advantage of the nice properties of the representation of functions of Besov spaces in wavelet
expansion, it was legitimate to hope that entropy evaluation could be recovered using thresholding or m-term
approximation methods. More than that these types of methods would hopefully provide in addition an optimal
universal compression coding.

These nice ideas are developed in Donoho [12] using a coding deriving from a plain thresholding algorithm.
However, the result is not completely optimal because of a logarithmic term appearing in the upper bound.

Birgé and Massart [3] suggested that the default of the method was in the plain thresholding and provided a
new coding using a level-dependent thresholding taking advantage of an idea developed in Delyon and Juditski [8]
to remove additional logarithmic terms in statistical applications.

Cohen et al. [6] provide a beautiful universal coding using tree structures. In particular, they use this specific
method to encode the smallest tree containing the m-largest wavelet coefficients. They also recover the right
upper bound without additional log-term.

In this short paper we prove that there is no need to modify the thresholding algorithm nor is it necessary
to use a tree algorithm. To avoid the difficulty of the logarithmic term we use a replicant code which allows to
send the addresses as well as the coefficients without losing length. This code has also the advantage of being
easily protected. This ability is important since it is generally a weakness of wavelet codings to be very sensitive
to errors in the first bits code.

To achieve this goal we put the problem in a setting which allows to treat the case of Lp-norms as well as
Hp-norms for 0 < p < 1. This setting also enables us, using exponential type inequalities, to obtain the lower
bounds in a very elementary way and in less than one page. It also notably enlarges the class of spaces for
which the theorem is valid: if the classical Besov spaces are the prime example one can also consider spaces of
“chirps” or multidimensional anisotropic regularity spaces.

The paper is organized in the following way: Section 2 quickly recalls the definitions of entropy and coding.
Section 3 presents the analytical setting where we settle the problem. Section 4 contains the entropy result and
the proof of the lower bound. Section 5 contains the replicant compression coding and the proof of the upper
bound.

1. Metric entropy and coding

1.1. Metric entropy

Let us recall the following definitions: let (K, d) be a metric space. For every ε > 0, we define N(ε,K, d)
as the minimum number of balls of radius ε, covering K. We define the metric entropy of K as H(ε,K, d)
= log2(N(ε,K, d)).

For (X, d) a metric space and K included in X , for every ε > 0, we define N(ε,K,X, d) as the mini-
mum number of balls of radius ε, centered in X , covering K. We define the metric entropy relative to X as
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H(ε,K,X, d) = log2(N(ε,K,X, d)). If K is considered with the induced metric, we obviously have:

H(ε,K, d) ≥ H(ε,K,X, d) ≥ H(2ε,K, d).

Because of the inequalities above, in the sequel we shall generally not distinguish between the two entropies.

1.2. Coding

Let (X, d) be a metric space and K be a subset of X . An ε-coding of K of length l is given by two functions:

C : K −→ {0, 1}l (the “encoding” function) and
D : {0, 1}l −→ X (the “decoding” function), such that

d(DC(x), x) ≤ ε.

Let us define L(ε,K,X, d) as the minimum length l of an ε-coding of K.
It is obvious that:

H(ε,K,X, d) ≤ L(ε,K,X, d) ≤ H(ε,K,X, d) + 1.

2. Multiscale type Besov bodies

Let us now describe the type of function spaces that we are going to consider. As will become obvious, our
framework will take classical Besov spaces as a model but leads to a much wider setting.

2.1. Multiscale setting

The framework is the following. Let X be a Banach space, or a τ−Banach space, with 0 < τ ≤ 1. (This
means that instead of the usual triangular inequality we have ‖f + g‖τ ≤ ‖f‖τ + ‖g‖τ .) Typical examples are
X = L

p for 1 ≤ p ≤ ∞ and for 0 < p < 1, X = Hp (the Hardy space, and then τ = p).
Let E = {ψj,k, j ∈ N, k ∈ Λj} be a family in X with the following properties:
• for each j ∈ N, Λj is a set of cardinality of order 2jd. i.e. there exist two constants c1, c2 –not

depending on j– such that c12jd ≤ Card(Λj) ≤ c22jd (d will be a dimension index);
• there exist a real number 0 < p ≤ ∞ and a constant 0 < C <∞, such that

∀j ∈ N,
1
C


∑

k∈Λj

|βj,k|p



1/p

≤
∥∥∥∥∥∥
∑
k∈Λj

βj,kψj,k

∥∥∥∥∥∥
X

≤ C


∑

k∈Λj

|βj,k|p



1/p

. (1)

We substitute the usual modification for p = ∞. The real number p will be of major importance in
some cases. When necessary we shall precise that the setting is a p-multiscale setting.

Remarks. These properties obviously are verified for instance when E is a multiscale analysis associated to a
compactly supported wavelet basis and X = Lp for 1 ≤ p ≤ ∞, normalized in such a way that for all (j, k) we
have ‖ψj,k‖X = 1.

However this condition is not necessary. Particularly we do not need that E is an unconditional basis of X
not even a topological basis.

For instance the following family on [0, 1]:

ψjk(x) = 2
2j+1

p I

{[
k − 1
22j+1

,
k

22j+1

]}
(x), j ∈ N, k ∈ N, 1 + 22j+1 − 2j+1 ≤ k ≤ 1 + 22j+1 − 2j

can be used to describe a phenomena on the unit interval which is more and more oscillating, like a “chirp”. It
satisfies the properties of a p-multiscale setting when the space X is L

p for 1 ≤ p ≤ ∞. (I{B} is the indicator
function of the set B).
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In the multidimensional framework, we can also proceed to build families of functions taking into account
local anisotropy: let ψ be a wavelet function supported on [0, 1]. Let ψj,k(x) = 2

j
pψ(2jx−k) be the p-normalized

family at the level j. Let us form the product

ψj1,k1(x1) . . . ψjd,kd
(xd) = ΨI(x1, . . . , xd)

and let us index this product by its support: I = [ k1
2j1 ,

k1+1
2j1 ]× . . .× [ kd

2jd
, kd+1

2jd
]. For each j ∈ N, let us select Λj

as a choice of hyperectangles I1, . . . , IN , such that j1 + . . .+ jd is always equal to j (all rectangles have the same
surface), Il ∩ Ii = ∅ unless i = l, and ∪N

i=1Ii = [0, 1]d (the hyperectangles are forming a partition of [0, 1]d). Of
course, N = 2jd and it is not difficult to prove that such a family {ψI , I ∈ Λj , j ∈ N} will again satisfy the
conditions above. Of course the uniform choice j1 = . . . = jd = j

d corresponds to the isotropic case, but a choice
introducing long and thin hyperectangles will be more suitable to handle anisotropic situations.

2.2. Multiscale Besov bodies

Our next step is to formulate the definition of Besov bodies associated to the previous multiscale setting:

Definition 1. For 0 < s <∞, 0 < π ≤ ∞, 0 < r ≤ ∞, d ≥ 1 we define the following “multiscale Besov body”
associated to the p-multiscale setting introduced above:

Bs
π,r =


f =

∞∑
j=0

∑
k∈Λj

βj,kψj,k;


 ∞∑

j=0


2j(s+d(1/p−1/π))


∑

k∈Λj

|βj,k|π



1/π



r


1/r

:= ‖f‖Bs
π,r


 <∞.

We substitute the obvious modifications for r = ∞, π = ∞, p = ∞.

Remarks.
(1) The following definition exactly corresponds to the usual characterization of standard Besov spaces

Bsπr when the multiscale setting is such that X = Lp([0, 1]d) and the family E is a multiscale analysis
associated to a compactly supported wavelet basis normalized in Lp –see DeVore [10], DeVore et al. [9],
Cohen et al. [5]–.

(2) As usual we have the standard embeddings:

for 0 < s′ ≤ s, 0 < π′ ≤ π ≤ ∞, 0 < r ≤ r′, ‖f‖Bs′
π′,r′

≤ ‖f‖Bs
π,r

;

for 0 < s′ ≤ s, 0 < π ≤ π′ ≤ ∞, s− d/π = s′ − d/π′ ‖f‖Bs′
π′,r

≤ ‖f‖Bs
π,r
.

Let us now observe that there is generally no reasons for Bs
π,r defined as above to be included in X . However,

the following proposition proves that this occurs under the following condition:

Proposition 1. If δ := s− d(1/π − 1/p)+ > 0, then Bs
π,r ⊂ X.

Proof of Proposition. It is enough to prove that
∑

j ‖
∑

k∈Λj
βj,kψj,k‖X <∞ (or

∑
j ‖
∑

k∈Λj
βj,kψj,k‖τ

X <∞
in the case of a τ−Banach).

Our assumption implies ‖βj,.‖lπ = εj2−j(s+d(1/p−1/π)) with ε. ∈ lq.
(1) 0 < π ≤ p ≤ ∞.

∥∥∥∥∥∥
∑
k∈Λj

βj,kψj,k

∥∥∥∥∥∥
X

≤ C‖βj,.‖lp ≤ C‖βj,.‖lπ ≤ Cεj2−j(s+d(1/p−1/π)) = Cεj2−jδ.
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(2) 0 < p ≤ π ≤ ∞. Using Hölder inequality, as card(Λj) is of order 2jd:∥∥∥∥∥∥
∑
k∈Λj

βj,kψj,k

∥∥∥∥∥∥
X

≤ C‖βj,.‖lp ≤ C′‖βj,.‖lπ2jd(1/p−1/π) ≤ C′εj2−js = C′εj2−jδ.

3. Main entropy result

The following theorem is the main result of this paper. It concerns the evaluations of the entropies for balls
of the Besov bodies introduced above.

Theorem 1 (Birman and Solomyak). For 0 < p ≤ ∞, 0 < s < ∞, 0 < π ≤ ∞, 0 < r ≤ ∞, if δ =
s− d(1/π − 1/p)+ > 0, then the unit ball Us

π,r of Bs
π,r is such that there exist two constants c(s, π, p) > 0 and

C(s, π, p) such that
c(s, π, p)ε−d/s ≤ H(ε, Us

π,r, X) ≤ C(s, π, p)ε−d/s.

Remark. We deduce from our proof the following values of the constants:

c(s, π, p) =
1

8 log 2
2d(1−2s/p)C−d/s2−d

C(s, π, p) = 10
[

2d

2d − 1
+

2δq

1− 2−dπ

]
+

2(δπ + d)2−δπ

(1− 2−δπ)2
+

4
2d − 1

+
2

1− 2−d

(
d2−d

q(1 − 2−d)
+

1
π

)

q =
d

s+ d/p
·

However, they are in no way to be considered as optimal so it is difficult to draw conclusions upon them.

3.1. Lower bound

Proposition 2. There exists a constant c(s, π, r) > 0 such that: ∀ε > 0, H(ε, Us
π,r, X) ≥ c(s, π, r)ε−d/s.

Proof of Proposition 2. As H(ε, Us
π,r, X) is a non decreasing function of ε, it is enough to find a non increasing

sequence of non negative numbers (εj)j∈N, such that lim εj = 0, εj

εj+1
≤ A <∞ and H(εj , Us

π,r, X) ≥ Kε
−d/s
j .

Let us consider the following set:

Aj =


2−j(s+d/p)

∑
k∈Λj

δkψj,k, δk ∈ {0, 1}

 ·

Obviously, for any j in N, Aj ⊂ Us
π,q, so H(ε, Us

π,r, X) ≥ H(ε,Aj , X).

Proposition 3. The set Ωn = {0, 1}n, with the l1 distance: ‖ω − ω′‖ =
∑n

i=1 |ωi − ω′i| satisfies:

H(n/4,Ωn, l1) ≥ n

8 log(2)
·

Proof of Proposition 3. This proposition is well known (Varshamov–Gilbert lemma, see [7]). We give here a
sketch of proof for the reader’s convenience.

Let P be the uniform probability on Ωn. The coordinate functions Xi(ω) = ωi are then independent Bernoulli
random variables. Let us consider a covering of Ωn, by N balls Bj of radius n/4. We have

1 = P (Ωn) ≤
N∑

j=1

P (Bj) = N P (B(0, n/4)),



244 G. KERKYACHARIAN AND D. PICARD

as obviously all the balls Bj have the same probability. But,

P (B(0, n/4)) = P

(
n∑

i=1

Xi ≤ n/4

)
= P

(
n∑

i=1

(1/2−Xi) ≥ n/4

)
≤ exp(−n/8),

using Hoeffding inequality (see [13] or [24]). This ends the proof of Proposition 3.

Proof of Proposition 2 (continuing). Let us prove that: for every ε > 0, we have

H(ε,Aj, X) ≥ H((Cε)p2j(sp+d),Ω2jd , l1). (2)

Let us consider a covering of Aj by N balls of radius ε centered on Aj . As we have

∥∥∥∥∥∥2−j(s+ d
p )
∑
k∈Λj

δkψj,k − 2−j(s+ d
p )
∑
k∈Λj

δ′kψj,k

∥∥∥∥∥∥
X

≥ 1
C

2−j(s+ d
p )


∑

k∈Λj

|δk − δ′k|p



1/p

,

it is clear that this covering corresponds to a covering of {0, 1}Λj by N balls of radius less then (Cε)p2j(sp+d),
with the l1 distance. This implies (2).

Let us now choose εj such that (Cεj)p2j(sp+d) = 2jd

4 . Using the previous proposition we get:

H(εj,Aj , X) ≥ 2jd

8 log(2)
≥ Kε

−d/s
j .

(Implicitly we took here 0 < p <∞. The case p = ∞ is simpler and can be handled directly.)
We deduce from our proof the following values of the constants: c(s, π, p) = 1

8 log 22d(1−2s/p)C−d/s2−d if we
notice that we can take the constant A defined above as equal to 2s.

4. Replicant coding and upper bound

As was mentioned above, the upper bound will follow from the construction of a coding procedure. Moreover,
as Us

π,r is included in Us
π,∞, it is enough to consider the problem for Us

π,∞.

4.1. Quantization algorithm

Let us introduce the following quantization procedures:

Definition 2. For 0 < λ <∞, β ∈ R, we define Qλ(β) = sign(β)
[
|β|
λ

]
λ, where [x] denotes the integer part of

x ∈ R
+.

For f =
∑∞

j=0

∑
k∈Λj

βj,kψj,k, we define:

Qλ(f) =
∞∑

j=0

∑
k∈Λj

Qλ(βj,k)ψj,k

QJ
λ(f) =

J∑
j=0

∑
k∈Λj

Qλ(βj,k)ψj,k.
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The following theorem describes the rates of approximation of the procedures described above when the object
has a Bs

π,∞ regularity:

Theorem 2. For 0 < p ≤ ∞, 0 < s <∞, 0 < π ≤ ∞, 0 < r ≤ ∞, d ≥ 1, and δ = s− d(1/π − 1/p)+ > 0, let
us define q by:

s+
d

p
=
d

q
·

There exists a constant D depending only on p, π, and s, such that if ‖f‖Bs
π,∞ ≤ 1 then, for any λ > 0,

card{(j, k), Qλ(βj,k) 6= 0} = card{(j, k), |βj,k| ≥ λ} ≤ D1λ
−q. (3)

Moreover, we have:

‖f −Qλ(f)‖X ≤ D2λ
sq
d (4)

‖f −QJ
λ(f)‖X ≤ D2

(
λ

sq
d + 2−Jδ

)
. (5)

Proof of Theorem 2. It is enough to give the proof in the case 0 ≤ π ≤ p ≤ ∞. Since, for π > p
we have ‖f‖Bs

p,∞ ≤ ‖f‖Bs
π,∞ and we can take π = p. The case π = p = ∞ is easy to verify directly.

Hence, we shall assume in the sequel that 0 ≤ π ≤ p ≤ ∞, π < ∞. So δ = s − d(1/π − 1/p) > 0 and
using the hypothesis (

∑
k∈Λj

|βj,k|π)1/π ≤ 2−j(s+d(1/p−1/π)) = 2−jδ, we have:

(1)

card{k ∈ Λj , |βj,k| ≥ λ} ≤ 2jd ∧ 2−jδπ

λπ

and, card{(j, k), |βj,k| ≥ λ} ≤
∑
j≥0

2jd ∧ 2−jδπ

λπ
·

Let J0 such that 2J0d ∼ 2−J0δπ

λπ (i.e. 2J0d ≤ 2−J0δπ

λπ ≤ λ
−π

d+δπ 2(J0+1)d)

card{(j, k), |βj,k| ≥ λ} ≤
∑

0≤j≤J0

2jd +
∑
J0<j

2−jδπ

λπ
≤ D1λ

−dπ
d+δπ

with D1 = 2d

2d−1
+ 2δq

1−2−dπ since one easily verifies that dπ
d+δπ = q.
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(2) Let us suppose that X is a Banach space. (The τ -Banach case does not lead to additional difficulty.)
Let us also suppose that p is finite: the case p = ∞ is let to the reader.

‖f −Qλ(f)‖X ≤
∑
j≥0

∥∥∥∥∥∥
∑
k∈Λj

(Qλ(βj,k)− βj,k)ψj,k

∥∥∥∥∥∥
X

≤ C
∑
j≥0


∑

k∈Λj

|Qλ(βj,k)− βj,k|p



1/p

≤ C
∑
j≥0


 ∑

k∈Λj ,|βj,k|<λ

|βj,k|p + λpcard{k ∈ Λj , |βj,k| ≥ λ}



1/p

≤ C
∑
j≥0


 ∑

k∈Λj ,|βj,k|<λ

|βj,k|p



1/p

+ Cλ
∑
j≥0

[card{k ∈ Λj, |βj,k| ≥ λ}]1/p ·

As π ≤ p, we have:


 ∑

k∈Λj ,|βj,k|<λ

|βj,k|p



1/p

=


 ∑

k∈Λj ,|βj,k|<λ

|βj,k|p−π|βj,k|π



1/p

≤ λ2jd/p ∧ λ1−p/π2−jδπ/p.

Using (3), we get:

‖f −Qλ(f)‖X ≤ C
∑
j≥0

λ2jd/p ∧ λ1−p/π2−jδπ/p + Cλ
∑
j≥0

[
2jd ∧ 2−jδπ

λπ

]1/p

= 2Cλ
∑
j≥0

[
2jd ∧ 2−jδπ

λπ

]1/p

≤ 2Cλ


 ∑

0≤j≤J0

2jd/p +
1
λπp

∑
J0<j

2−jδπ/p




where as previously, we have chosen 2J0d ∼ 2−J0δπ

λπ . So

‖f −Qλ(f)‖X ≤ D2λ
p−q

p = D2λ
sq

with D2 = [2C( 2d/p

2d/p−1
+ 2δq/p

1−2δπ/p )].
(3)

‖f −QJ
λ(f)‖X ≤ ‖f −Qλ(f)‖X + ‖Qλ(f)−QJ

λ(f)‖X

‖Qλ(f)−QJ
λ(f)‖X ≤

∑
j>J

∥∥∥∥∥∥
∑
k∈Λj

Qλ(βj,k)ψj,k

∥∥∥∥∥∥
X

≤ C
∑
j>J


∑

k∈Λj

|Qλ(βj,k)|p



1/p

≤ C
∑
j>J


∑

k∈Λj

|βj,k|p



1/p

.
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But as s− d/π = δ − d/p and π ≤ p, we have ‖f‖Bδ
p,∞ ≤ ‖f‖Bs

π,∞ ≤ 1, so

∑
j>J


∑

k∈Λj

|βj,k|p



1/p

≤
∑
j>J

2−jδ ≤ 1
1− 2−δ

2−Jδ·

4.2. Replicant universal coding

We use a procedure inspired by [12] and which has been improved in [17]. Let us consider:

QJ
λ(f) =

J∑
j=0

∑
k∈Λj

Qλ(βj,k)ψj,k

with the tuning constants J and λ defined by: ε
2D = 2−Jδ = λ

sq
d . This choice ensures that:

‖f −QJ
λ(f)‖X ≤ ε.

Now we need to encode QJ
λ(f) and compute the length of this ε-coding.

Let us first explain why, it is needed to improve the procedure in [12]: if we use a binary representation of
[ |βj,k|

λ ], this will cost for each (j, k) such that |βj,k| ≥ λ, 1 + log2([
|βj,k|

λ ]) bits. But for each 0 ≤ j:

sup
k∈Λj

|βj,k| ≤

∑

k∈Λj

|βj,k|π



1/π

≤ 2−jδ.

So we obtain a bound of order log2([
1
λ ]) ∼ log2([

1
ε ]). Using Theorem 2, we know that we have of order λ−q ∼ ε−d/s

of such terms (|βj,k| ≥ λ). We have in addition to encode the signs and the addresses of such β’s. This will have
a cost of the order of Jd ∼ log2([

1
ε ]) bits. So if we keep in advance a fixed number of bits to encode the addresses

and the Qλ(βj,k)’s we shall use up to constants, ε−d/s log2([
1
ε ]) bits. This obviously gives an undesirable extra

logarithmic term.
So instead of keeping in advance each time a fixed allocation for the addresses, and the Qλ(βj,k)’s, we

shall encode them dynamically: first the sign, then the binary representation of [ |βj,k|
λ ] and then the difference

between two successive adresses. To do this, we first suppose that (j, k) is the number 2jd + k. Then, we
obviously need a separator between each of the triples (sign, [ |βj,k|

λ ], address). For this purpose, we use 01 as
separator, and we replicate each bit in the binary expansion of the triple. (For instance, the expansion 0110100
becomes 00111100110000). This obviously gives us an injective coding which also has the advantage of being
easily protected. For instance, using 0101 as separator instead of 01 even increases the protection.

Let us now be more precise about the way of encoding the addresses: let

Λ′j = {k ∈ Λj , |βj,k| ≥ λ} = {k1,j, . . . , knj ,j}; 0 ≤ ki,j < 2jd; nj = Card(Λ′j) ≤ 2jd ∧ 2−jδπ

λπ
·

Let us define the representation α[(j, kl,j)] for kl,j ∈ Λ′j –assuming then that Λ′j 6= ∅–. Because we encode the
difference between two successive addresses, there will be a difference between the cases l = 1 and l > 1.

For l = 1, j 6= 0, let us introduce the previous –non void– level to be encoded: j′ = sup{i < j /Λ′i 6= ∅}.
Then,

α[(j, k1,j)] = 2j + k1,j − (2j′ + knj′ ,j′).
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For l = 1, j = 0,
α[(0, k1,0)] = k1,0.

For l > 1, we stay on the same level and put α[(j, kl,j)] = 2j + kl,j − (2j + kl−1,j) = kl,j − kl−1,j .
Let us now calculate the length of the coding. It is obviously less than:

6card{(j, k), |βj,k| ≥ λ}+ 2
J∑

j=0

∑
k∈Λ′j

{
log2

[ |βj,k|
λ

]
+ 1
}

+ 2
J∑

j=0

nj∑
l=1

{log2 α[(j, kl,j)] + 1}

= 10card{(j, k), |βj,k| ≥ λ}+ 2
J∑

j=0

∑
k∈Λ′j

log2

([ |βj,k|
λ

])
+ 2

J∑
j=0

nj∑
l=1

log2(α[(j, kl))].

As using Theorem 2, we have card{(j, k), |βj,k| ≥ λ} ≤ D1λ
−q = D1ε

−d/s, we now need to prove the two
following bounds:

J∑
j=0

∑
k∈Λ′j

log2

[ |βj,k|
λ

]
≤ D4ε

−d/s (6)

J∑
j=0

nj∑
l=1

log2 α[(j, kl,j)] ≤ D7ε
−d/s. (7)

Inequality (6):

∑
k∈Λ′j

log2

[ |βj,k|
λ

]
≤
∑
k∈Λ′j

log2

|βj,k|
λ

≤ 1
π

Card(Λ′j)
1

card(Λ′j)

∑
k∈Λ′j

log2

|βj,k|π
λπ

·

Using Jensen inequality, and the fact that log2 is concave, we can bound the last quantity by:

≤ 1
π

Card(Λ′j) log2


 1

Card(Λ′j)

∑
k∈A′j

[ |βj,k|π
λπ

] ≤ 1
π

Card(Λ′j) log2

(
2−jδπ

Card(Λ′j) λπ

)
·

Let us recall that

Card(Λ′j) ≤ 2jd ∧ 2−jδπ

λπ
(8)

and sup
0≤x≤a∧K

x log2

K

x
= 1ae≤K a log2

K

a
+ 1ae≥K

log2 e

e
K ≤ log2 e

e
K. (9)

Let us choose J0 as before (2J0d ∼ 2−J0δπ

λπ ). We have:

J∑
j=0

∑
k∈Λ′j

log2

([ |βj,k|
λ

])
≤

∑
0≤j<J0

1
π

2jd log2

(
2−jδπ

2jd λπ

)
+

J∑
j=J0

1
π

log2 e

e

2−jδπ

λπ

≤ 1
π


 ∑

0≤j<J0

2jd(J0 − j)(δπ + d) + 2J0d
J∑

j=J0

2−(j−J0)δπ




≤ 1
π

[
2J0d

(
(δπ + d)

∞∑
0

j2−jd +
∞∑
0

2−jδπ

)]
≤ D4ε

−d/s.
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If we recall that we have s+ d
p = δ + d

π , and denote:

D4 =
1

1− 2−d

(
d2−d

q(1 − 2−d)
+

1
π

)
·

Inequality (7): Again, we shall see that it is necessary to separate the first term (l = 1) and the other ones.
More precisely:

J∑
j=0

log2{α[(j, k1,j)]} ≤ KJ2 = O(log(ε)2).

This term is obviously not significant. Whereas,

nj∑
l=2

log2{α[(j, kl,j)]} = nj
1
nj

nj∑
l=2

log2{α[(j, kl,j)]}

≤ nj log2

{
1
nj

nj∑
l=2

α[(j, kl,j)]

}
≤ nj log2

2jd

nj
·

Using (8) and (9), we have: for 0 ≤ j ≤ J0, nj log2(
2jd

nj
) ≤ log2 e

e 2jd

so
∑

0≤j≤J0

nj log2

(
2jd

nj

)
≤

∑
0≤j≤J0

log2 e

e
2jd ≤ D5ε

−d/s,

with

D5 ≤ 2
2d − 1

and for J0 < j ≤ J ,

nj log2

(
2jd

nj

)
≤ 2−jδπ

λπ
log2

(
2jd λπ

2−jδπ

)
≤ 2J0d2−(j−J0)δπ (j − J0)(δπ + d)

≤ ε−d/s2−(j−J0)δπ (j − J0)(δπ + d)

so
∑

J0<j≤J,

nj log2

(
2jd

nj

)
≤

∑
J0<j≤J,

ε−d/s2−(j−J0)δπ (j − J0)(δπ + d) ≤ D6ε
−d/s,

with,

D6 = (δπ + d)
2−δπ

(1− 2−δπ)2
·

So:
J∑

j=0

∑
k∈Λ′j

log2{α[(j, k)]} ≤
∑

0≤j≤J

nj log2

(
2jd

nj

)
+

J∑
j=0

log2{α[(j, k1)]} ≤ D7ε
−d/s,

with D7 = D5 +D6.
Finally, we get,

H(ε,X, d) ≤ L(ε,X, d) ≤ C(s, π, p)ε−d/s,
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with,

C(s, π, p) ≤ 10D1 + 2D7 + 2D4

= 10
[

2d

2d − 1
+

2δq

1− 2−dπ

]
+

2(δπ + d)2−δπ

(1− 2−δπ)2
+

4
2d − 1

+
2

1− 2−d

(
d2−d

q(1− 2−d)
+

1
π

)
·

�
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[14] W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelet, Approximation and Statistical Applications. Springer

Verlag, New York, Lecture Notes in Statist. 129 (1998).
[15] G. Kerkyacharian and D. Picard, Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test 9

(2000) 283-345.
[16] G. Kerkyacharian and D. Picard, Minimax or maxisets? Bernoulli 8 (2002) 219-253.
[17] G. Kerkyacharian and D. Picard, Entropy, Universal coding, Approximation and bases properties. Technical Report (2001).
[18] G. Kerkyacharian and D. Picard, Density Estimation by Kernel and Wavelets methods – Optimality of Besov spaces. Statist.

Probab. Lett. 18 (1993) 327-336.
[19] A.N. Kolmogorov and V.M. Tikhomirov, ε-entropy and ε-capacity. Uspekhi Mat. Nauk 14 (1959) 3-86. (Engl. Translation:

Amer. Math. Soc. Transl. Ser. 2 17, 277-364.)
[20] L. Le Cam, Convergence of estimator under dimensionality restrictions. Ann. Statist. 1 (1973) 38-53.
[21] L. Le Cam, Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM’s 25 years. Montreal,

PQ (1994) 303-311.
[22] G.G. Lorentz, Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966) 903-937.
[23] S.M. Nikolskii, Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka

(1977). English translation of the first Ed., Berlin (1975).

[24] V.V. Petrov, Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press
(1995).

[25] S.A. van de Geer, Empirical processes in M-estimation. Cambridge University Press (2000).


