
ESAIM: Probability and Statistics March 2003, Vol. 7, 251–277

DOI: 10.1051/ps:2003012

INTERACTING BROWNIAN PARTICLES AND GIBBS FIELDS
ON PATHSPACES

David Dereudre1

Abstract. In this paper, we prove that the laws of interacting Brownian particles are characterized
as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally,
we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some
applications to time reversal in the stationary and non stationary case are presented.
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1. Introduction and framework

1.1. Introduction

The Gibbsian nature of infinite-dimensional diffusions on the infinite product of pathspaces has been first
considered by Deuschel in 1987 [7]. Since this time, many papers developped this point of view (see for
example [3, 4, 25]). Cattiaux et al. proved in [3], using an integration by parts formula on the pathspace, that
the set of infinite-dimensional Brownian diffusions indexed by the lattice Zd and the set of Gibbs measures
on C([0, 1]; R)Z

d

are in one-to-one correspondance.
The generalization of these results to continuous models is our principal aim. In this paper, indistinguishable

particles diffuse in Rd and interact in a way which depends only on their relative positions. So, this infinite-
dimensional diffusion can be seen as a point process on C := C([0, 1]; Rd). Our principal result, in dimension
d ≤ 3, is the equivalence between the following two properties: to be a infinite-dimensional gradient diffusion
for a continuous model and to be a Gibbs field on C.

Now, we describe the structure of the paper.
In the first part, we show that an interacting Brownian particle system is a solution of the following stochastic

differential system:




dXi(t) = dWi(t)− 1
2
∑
j 6=i
∇ϕ(Xi(t)−Xj(t))dt, i ∈ N∗, t ∈ [0, 1],

Xi(0) = xi, i ∈ N∗,
(1)

Keywords and phrases. Point measure on pathspace, Gibbs field, interacting Brownian particles, integration by parts formula,
Campbell measure.
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where (Wi)i∈N∗ are independent Brownian motions with values in Rd, (xi)i∈N∗ is a locally finite sequence of
points in Rd and ϕ is a regular symmetric potential with compact support. We represent a solution to (1) by
the following point process on C: Γ =

∑
i∈N∗ δXi .

The system (1) has first been studied by Lang in his fundamental paper [21]. He proved the existence of a
unique strong solution in the stationary case. Since we also consider the non-stationary framework, we will use
here Fritz’s results, recalled in Theorem 1.1: he proved existence of a unique strong solution for the system (1)
for every deterministic initial condition γ =

∑
i δxi with finite logarithmic fluctuation energy E(γ) (see Def. 14).

In the second part, after establishing uniform bounds on weighted particle fluctuations, we prove in
Theorems 2.1 and 2.2 the equivalence between the following assertions:

– to be the law on M(C) of the solution of system (1), with initial law given by a Gibbs field on Rd

associated to the Hamiltonian h;
– to be a Gibbs field on C associated to the Hamiltonian h(X(0),Γ(0))+HΦ(X,Γ), sum of a term induced

by the initial law and a purely dynamic ones, the explicit form of HΦ being given in (26).
Definition of Gibbs fields on Rd and C, and Hamiltonians are given in Section 1.2.

In the third part, we prove in Theorem 3.1 that every Gibbs field P on C associated to a regular local
Hamiltonian H is the law of an infinite-dimensional diffusion – cf. (44) – with a drift (βt(X,Γ))t∈[0,1] of the
following explicit form:

βt = −C!
P (DtH |Ft),

whereD is the Malliavin derivation operator and C!
P the reduced Campbell measure associated to P (cf. Def. 8).

The principal tool used to prove this result is the integration by parts formula (37) under the reduced Campbell
measure.

Then, we present two applications of the above results. The first one is a proof that the tempered reversible
probability measures of system (1) are the canonical Gibbs fields on Rd associated to the Hamiltonian

hϕ(x, γ) =
∑
y∈γ

ϕ(x− y).

This was already proved in [22], but under much stronger assumptions than here. The second application is
an analysis of time reversal for a general Gibbs field P on C. We prove that the projection of P at time t ≥ 0 is
still a Gibbs fields on Rd for local Hamiltonian ht, and we present in Theorem 3.2 a relation between ht and the
forward and backward drifts associated to P . This formula is a generalization of results obtained by Föllmer
and Wakolbinger [10] (cf. [24] too).

1.2. Definitions and notations

1.2.1. State spaces and their probability measures

If X denotes a polish space endowed with the Borel σ-algebra σ(X), then B(X) and S(X) will denote subsets
of σ(X). M(X) is the subset of the integer-valued measures Γ on X such that, for every Λ ∈ B(X), Γ(Λ) ∈ N∗

and for every S ∈ S(X), Γ(S) ≤ 1; M(X) is endowed with the σ-algebra σ(M(X)) generated by the sets
{Γ ∈ M(X),Γ(Λ) = n}, n ∈ N∗, Λ ∈ B(X). A measure µ is called σ-finite if it is finite on the elements of B(X),
and we denote by P(M(X)) the set of probability measures on M(X).

For all Γ ∈ M(X), P ∈ P(M(X)) and Λ ∈ σ(X), we denote by ΓΛ the projection of Γ on Λ and PΛ the
projection of P on M(Λ). Πµ denotes the Poisson process on X with intensity µ, a σ-finite measure on X. In
the following, X will be either Rd or C, the set of continuous paths from [0, 1] to Rd endowed with the uniform
norm.

In the case X = Rd, we take B(Rd) (respectively S(Rd)) equal to the set of usual bounded of subsets of Rd

(respectively the set of single points of Rd). Thus, M(Rd) is the set of simple integer-valued measures on Rd.
Moreover, on Rd, we substitute the notations X,Γ,Π by x, γ, π and we denote by λ the Lebesgue measure on Rd.
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In the case X = C, B(C) and S(C) are defined by the following sets:

B(C) =
{
B ∈ σ(C) such that {X(0) : X ∈ B} ∈ B(Rd)

} ·
S(C) =

{
B ∈ σ(C) such that {X(0) : X ∈ B} ∈ S(Rd)

} ·
M(C) is the set of integer-valued measures on C such that their projection at time 0 belong to M(Rd). We note
$m the Wiener measure on C with initial law a σ-finite measure m on Rd and we substitute $δx by $x.

For X ∈ C and Γ ∈M(C), we note pr0(X) = X(0), pr0(Γ) = Γ(0) or pr0(X,Γ) = (X(0),Γ(0)) the projection
at time 0 of X ,Γ or (X,Γ) respectively on Rd, M(Rd) or Rd ×M(Rd). If for t ∈ [0, 1], Γ(t) ∈ M(Rd), this
allows to define a projection at time t denoted by prt. Finally, for P ∈ P(M(C)), we note P0 ∈ P(M(Rd))
(respectively Pγ ∈ P(M(C))) the probability measure P ◦ pr−1

0 (respectively P (|Γ(0) = γ)).
(Ft)t∈[0,1] denotes the canonical filtration respectively on C, M(C) or C×M(C) generated by the appropriate

projections at time t ∈ [0, 1].

1.2.2. Point numerotation

To identify integer-valued measures on Rd (respectively on C) and sequences of distinct points on Rd

(respectively on C), we introduce the maps (θi)i∈N∗ and (Θi)i∈N∗ . Let ≺ be the following total order on
Rd – compatible with the partial order induced by the Euclidean norm – defined by: x ≺ y if |x| < |y|; if
|x| = |y|, we compare x

|x| and y
|y| , which belong to the unit sphere in Rd. They might be represented by a sign

ε ∈ {−1,+1} and d− 1 angles α1, α2, . . . , αd−1 ∈ [0, π[; so x ≺ y, if the sign and the angles of x are lower than
the sign and the angles of y using the lexicographic order on {−1,+1} × [0, π[d−1.

This point numeration is a simple case of the numerotation introduced in [23] for general polish spaces. The
mesurability of such numerotation functions with respect to the natural σ-fields is dealt in [23] (Lem. 5.1.5). In
our case, there is no problem.

So, for all γ ∈M(Rd), there exists a unique sequence of points (θi(γ))i∈N∗ in Rd such that

γ =
∑
i∈N∗

δθi(γ) and
(
θi(γ)

)
i∈N∗ is increasing in Rd for the order ≺ .

In the same way, for Γ ∈ M(C), there exists a unique sequence (Θi(Γ))i∈N∗ in C such that

Γ =
∑
i∈N∗

δΘi(γ) and
(
Θi(Γ)(0)

)
i∈N∗ is increasing in Rd for the order ≺ .

We denote by θ the map from M(Rd) to (Rd)N
∗

θ : M(Rd) −→ (Rd)N
∗

γ 7−→ (θi(γ))i∈N∗ ,
(2)

and Θ the map from M(C) to CN
∗

Θ : M(C) −→ CN
∗

Γ 7−→ (Θi(Γ))i∈N∗ .
(3)

1.2.3. Gibbs fields and canonical Gibbs fields

Definition 1.1. A local Hamiltonian H is a map from X×M(X) to R which satisfies
i) for every X ∈ X, the map Γ → H(X,Γ) is σ(M(X))-measurable;
ii) ∀X1, X2 ∈ X, ∀ Γ ∈ M(X), H(X1,Γ) +H(X2,Γ + δX1) = H(X2,Γ) +H(X1,Γ + δX2).
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One often constructs local Hamiltonians by means of an interaction Ψ, which is defined as a measurable map
from F(X), the set of finite subsets of X, to R. When Ψ(K) = 0 for all K ∈ F(X) such that Card(K) 6= n,
then Ψ is called a n-body interaction. If the following series converges, we construct the local Hamiltonian HΨ

derived from Ψ by the following formula

HΨ(X,Γ) =
∑

K∈F(X)
K⊂Γ

Ψ(K ∪ {X}). (4)

We now define the finite volume Hamiltonian HΛ, for any Λ in B(X). For ΓΛ =
∑n

i=1 δXi , let

HΛ(ΓΛ,ΓΛc) = H(X1,ΓΛc) +H(X2,ΓΛc + δX1) + . . .+H(Xn,ΓΛc + δX1 + . . . δXn−1).

If µ is a σ-finite measure on X and H a local Hamiltonian on X, we define

MH,µ(X) =
⋂

Λ∈B(X)

{
Γ ∈ M(X),

∫
M(Λ)

e−HΛ(.,ΓΛc)dΠµ
Λ < +∞

}
· (5)

Now we are able to give the definition of Gibbs fields on X.

Definition 1.2. G(H,µ), the set of Gibbs fields for the local Hamiltonian H and the reference measure Πµ,
is the set of probability measures P ∈ P(M(X)) such that P (MH,µ(X)) = 1 and for all Λ ∈ B(X), for P -a.e.
ΓΛc ,

P
(
dΓΛ

∣∣∣ΓΛc

)
=

1
Z(Λ,ΓΛc)

exp
(−HΛ(ΓΛ,ΓΛc)

)
Πµ

Λ(dΓΛ),

where Z(Λ,ΓΛc) is a finite normalization constant.

It is often necessary to consider mixtures of Gibbs fields. For example in Part 3, we will need canonical
Gibbs fields, i.e. mixture of Gibbs fields obtained by randomizing their activity parameter. More precisely, a
canonical Gibbs field is a probability measure Q on M(X) verifying

Q =
∫

R+
P zν(dz), (6)

where P z is a Gibbs field element of G(H, zµ) and ν a probability measure on R+. We give another definition
of canonical Gibbs fields, which is equivalent to the one given here (see [27]).

First, we denote by MH,µ,c(X) the following configuration set:

MH,µ,c(X) =
⋂

Λ∈B(X)
n∈N

{
Γ ∈M(X),

∫
M(Λ)

e−HΛ(Γ′,ΓΛc)Πµ
Λ(dΓ′|Γ′(Λ) = n) < +∞

}
· (7)

Definition 1.3. Gc(H,µ), the set of canonical Gibbs fields for the local Hamiltonian H and the reference
measure Πµ, is the set of probability measures P ∈ P(M(X)) such that P (MH,µ,c(X)) = 1 and, for every
Λ ∈ B(X), n ∈ N∗, for P -a.e. ΓΛc ,

P
(
dΓΛ|ΓΛc ,Γ(Λ) = n

)
=

1
Z(Λ, n,ΓΛc)

e−HΛ(ΓΛ,ΓΛc ) Πµ
Λ(dΓΛ|Γ(Λ) = n),

where Z(Λ, n,ΓΛc) is a finite normalization constant.
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We refer to [16, 27] for more details about Gibbs fields and canonical Gibbs fields theory.
There exists in the literature many characterizations of Gibbs fields (see for example [1, 16, 28, 29]). In this

paper, we use a characterization based on the reduced Campbell measure. Let us recall that the reduced
Campbell measure C !

P associated to P ∈ P(M(X)) is the unique measure on X ×M(X) such that: for every
bounded measurable function from X×M(X) to R+

∫
X×M(X)

F (X,Γ)C!
P (dX, dΓ) =

∫
M(X)

∫
X

F (X,Γ− δX)Γ(dX)P (dΓ). (8)

We now generalize to canonical Gibbs fields the characterization of Gibbs fields given in [26].

Proposition 1.1. Let H be a local Hamiltonian on X and µ a σ-finite measure on X. Let P be a probability
measure in P(M(X)). If P (MH,µ(X)) = 1 then P ∈ G(H,µ) if and only if P satisfies

C !
P = exp(−H)µ⊗ P. (9)

More generally, if P (MH,µ,c(X)) = 1 then P ∈ Gc(H,µ) if and only if there exists a measure Q on M(X)
such that

C !
P = exp(−H)µ⊗Q. (10)

Moreover, if there exists a measurable map H̃ from X×M(X) to R such that P satisfies

C !
P = exp(−H̃)µ⊗ P,

then H̃ is µ⊗ P -a.s. equal to a local Hamiltonian and P ∈ G(H̃, µ).

Proof. The first equivalence is given in [26]. To prove the equivalence between P ∈ Gc(H,µ) and (10), we use
the representation (6) of canonical Gibbs Fields and the characterization of canonical Gibbs fields proved by
Georgii in [17] (Th. 1). Finally, the last implication is proved in [18]. �

1.3. Framework

In this paper, the dimension of the space where the particles are living is equal to d ≤ 3, except in Section 3.4
where we will present some remarks about the case d ≥ 4.

We consider interacting Brownian particles where the interaction is induced by a symmetric pair potential ϕ
with compact support, of class C3:

∀x ∈ Rd, ϕ(x) = ϕ(−x) and ∃R > 0 such that ϕ(x) = 0 for |x| > R.

Moreover, we suppose ϕ superstable in the following sense: there exist A ≥ 0, B > 0 such that, for each finite
sequence of points x1, x2, . . . , xn in Rd,

nA+
n∑
k=1

∑
j 6=k

ϕ(xk − xj) ≥ BN, (11)

where N is the number of pairs {j, k} such that |xk − xj | ≤ R.
The potential ϕ induces a two-body interaction φ({x, y}) = ϕ(x−y), and a local Hamiltonian denoted by hϕ

and defined by:
hϕ(x, γ) =: hφ(x, γ) =

∑
y∈γ,y 6=x

ϕ(x − y). (12)

Then, the interacting Brownian particle system we consider is the diffusion solution of the infinite-dimensional
stochastic differential equation (1).
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If we note Γ =
∑

i∈N∗ δXi and γ =
∑
i∈N∗ δxi , the system (1) can be written in the following way:

{
dΘi(Γ)(t) = dWi(t)− 1

2
∇xhϕ

(
Θi(Γ)(t),Γ(t)

)
dt, ∀i ∈ N∗

Γ(0) = γ.
(13)

Our paper is based on existence results proved in [12]. Fritz constructed a unique strong solution for the
system (13), when d ≤ 4 and the deterministic initial condition γ has a finite logarithmic fluctuation energy E(γ).
More precisely, let γ ∈M(Rd), l ∈ Zd, and ρ > 0. We introduce

E(γ, l, ρ) =
∑

x∈γ:|x−l|≤ρ


1 +A+

∑
y∈γ−δx:|y−l|≤ρ

ϕ(x − y)


 ,

where A is the superstability constant appearing in (11). Remark that E(γ, l, ρ) is non negative and it is an
upper bound of the sum of the number of points of γ in the ball B(l, ρ) and the energy of γ in this same ball.
Introducing the function g(x) = (1 + ln(1 + x))

1
d , we can define the logarithmic fluctuation energy E(γ), which

has been introduced for the first time by Dobrushin and Fritz in [8]:

E(γ) = sup
l∈Zd

sup
r∈N∗

[(
rg(|l|))−d E(γ, l, rg(|l|)) + 1

]
. (14)

We introduce following notations:

ME(Rd) =
{
γ ∈ M(Rd) such that E(γ) < +∞

}
,

ME(C) =

{
Γ ∈M(C) such that ‖Γ‖E = sup

t∈[0,1]

E(Γ(t)) < +∞
}
·

A probability measure µ in P(M(Rd)) (respectively P in P (M(C))) is called tempered if µ(ME(Rd)) = 1
(respectively P (ME(C)) = 1).

Theorem 1.1 ([12], Th. 2). If d ≤ 4, then for every configuration γ ∈ ME(Rd), there exists a unique strong
tempered solution to (13) with initial condition γ.

Let us denote by Qγ ∈ P(ME(C)) the law of this solution. Qγ is also the unique weak solution with initial
law δγ to the above system (15):

(
Θi(Γ)(t)−Θi(Γ)(0) +

∫ t

0

1
2
∇ϕ ∗ Γ(s)(Θi(Γ)(s))ds

)
i∈N∗

are independant Ft-Brownian motions in Rd under Qγ , (15)

where 1
2∇ϕ ∗ Γ(s)(Θi(Γ)(s)) denotes the convolution of the function 1

2∇ϕ by the measure Γ(s), evaluated at
the point Θi(Γ)(s).

Obviously, the solution of the above system (15) is Markovian so that the probability measure Qµ =∫
ME (Rd)

Qγµ(dγ) is the unique solution of system (15) with initial law µ.
Systems with more general interaction ϕ have been considered for exemple in [11,33], but their construction

is always done in a stationary context.
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2. Interacting Brownian particle system and associated Gibbs fields on C
In the following proposition, we recall an estimate due to Fritz on the logarithmic fluctuation of any solution

of system (15).

Proposition 2.1 ([12], Prop. 2). Let d ≤ 3; then, for all ε ∈]0, 1[, there exist two strictly positive constants a
and b such that, for every γ ∈ ME(Rd) and u > 0, the following inequality holds:

Qγ(‖Γ‖E > u) ≤ a exp
(
− b

E(γ)2
u1−ε

)
.

2.1. Regularity results for interacting Brownian particles

2.1.1. Uniform bound ζ of the weighted fluctuation of each particle around its initial position

For Γ ∈ M(C), we denote Xi = Θi(Γ) and xi = θi(γ). Let η ∈]0, 1[ be fixed in this Section 2.1. We study
the following random variable

ζ(Γ) = sup
k∈N∗

sup
0≤t≤1

|Xk(t)−Xk(0)|
(1 + |Xk(0)|)η ·

In [14], the author proved that Qγ-a.s., ζ < +∞. We need here a more precise estimate of the law of ζ.

Proposition 2.2. For all ε > 0, there exist two strictly positive constants a1 and b1 such that, for every
γ ∈ME(Rd) and u > 0, the following inequality holds:

Qγ (ζ ≥ u) ≤ a1E(γ)2 exp
(
− b1
E(γ)2

u1−ε
)
. (16)

In particular, ζ is finite Qγ-almost surely and admits moments of all orders under Qγ .

Proof. To begin, we enounce some easy properties of any point measures in ME(C).

Lemma 2.1. Let Γ ∈ME(C); Γ satisfies both following inequalities:

∀n ∈ N∗, sup
t∈[0,1]

Γ(t)
(
B(0, n)

) ≤ nd‖Γ‖E ,

∀t ∈ [0, 1], ∀k ≥ 2, θk(Γ(t)) ≥
(
k − 1
E(Γ(t))

) 1
d

·

For all t ∈ [0, 1] and k ∈ N∗, we denote by N(t, k)(Γ) the random variable Γ(t)
(
B(Xk(t), R)

)
, that is the

cardinality of particles which are at time t in the ball centered at Xk(t) with radius R; let also define

N(Γ) = 1 + sup
k∈N∗

sup
0≤t≤1

N(t, k)
(1 + |Xk(t)|)η ·

Lemma 2.2. For all ε ∈]0, 1[, there exists two strictly positive constants a2 and b2 such that for all γ ∈ ME(Rd)
and u > 0, we have

Qγ(N ≥ u) ≤ a2 exp
(
− b2
E(γ)2

u1−ε
)
.

In particular, N is finite Qγ-almost surely.

Proof. Let R′ = e((R+
√

2)d−1) − 1; so, for all x ∈ Rd such that |x| ≥ R′,

there exists l ∈ Zd such that |x− l| <
√

2 and B(x,R) ⊂ B (l, g(|l|)) . (17)
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Let t ∈ [0, 1] and k ∈ N∗.
If |Xk(t)| ≤ R′, then B(Xk(t), R) ⊂ B(0, R′ +R). Using Lemma 2.1 we obtain

N(t, k) ≤ ‖Γ‖E(R′ +R+ 1)d.

If |Xk(t)| > R′, then by (17) there exists a point l in Zd such that B(Xk(t), R) ⊂ B(l, g(|l|)) and, due to
Lemma 2.1, we deduce

N(t, k) ≤ g(|l|)d‖Γ‖E ≤ g(|Xk(t)|+
√

2)d‖Γ‖E .
So,

N ≤ 1 + ‖Γ‖E sup
k∈N∗

sup
0≤t≤1

max

(
g(|Xk(t)|+

√
2)d

(1 + |Xk(t)|)η , (R′ +R+ 1)d
)

;

the function g(x+
√

2)d

(1+x)η being bounded, and using also Proposition 2.1, we easily obtain the desired estimate for
the tail of the law of N under Qγ . �

We denote by (Bk)k∈N∗ the processes defined by

Bk(t) = Xk(t)−Xk(0) +
1
2

∫ t

0

∑
i6=k

∇ϕ(Xk(s)−Xi(s))ds.

It is a family of independent Brownian motions under Qγ .
For k ∈ N∗, we have

|Xk(t)−Xk(0)| ≤
∫ t

0

∑
i6=k

1
2
|∇ϕ(Xk(s)−Xi(s))|ds+ |Bk(t)|.

So,

|Xk(t)−Xk(0)| ≤
(

1
2
‖∇ϕ‖∞ + 1

)
N

∫ t

0

(1 +Xk(s))ηds+ |Bk(t)|.
Let us define Xk = sup0≤t≤1 |Xk(t)−Xk(0)|; then

Xk ≤ ξ

((
1 + |Xk(0)|)η +

(
1 +Xk

)η)
, (18)

where ξ is the following random variable

ξ =
(1

2
‖∇ϕ‖∞ + 1

)(
N + sup

k∈N∗
sup

0≤t≤1

|Bk(t)|
(1 + |Xk(0)|)η

)
·

Lemma 2.3. For all ε > 0, there exists two strictly positive constants a3 and b3, such that for all γ ∈ ME(Rd)
and u > 0, the following inequality holds:

Qγ(ξ ≥ u) ≤ a3E(γ)2 exp
(
− b3
E(γ)2

u1−ε
)

;

in particular, ξ is finite Qγ−almost surely.

Proof. Due to Lemma 2.2, it is sufficient to control the tail of the law of the random variable

sup
k∈N∗

sup
0≤t≤1

|Bk(t)|
(1 + |Xk(0)|)η ·
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Let ε > 0 and γ ∈ME(Rd); since one knows explicitely the law of the supremum of the Brownian motion, there
exists a constant C1 > 0 such that, for all u ≥ 1,

Qγ
(

sup
0≤t≤1

|Bk(t)| ≥ u(1 + |Xk(0)|)η
)
≤ C1e−u

2/4 exp
(
− 1

4
(1 + |Xk(0)|)2η

)
.

Remark that
∑
k∈N∗ exp(− 1

4 (1 + |Xk(0)|)2η) is finite and let us compute an upper bound of this sum as a
function of E(γ): there exists a constant C2 > 0 such that, for all x ≥ C2, (1 + x)2η ≥ 8d ln(x). So, using
Lemma 2.1, we obtain for k ≥ k0 = E(γ)Cd2 + 1

exp
(
− 1

4
(1 + |Xk(0)|)2η

)
≤
(
k − 1
E(γ)

)−2

·

Thus, there exists a constant C3 > 0 such that

∑
k≥1

exp
(
− 1

4
(1 + |Xk(0)|)2η

)
≤ E(γ)Cd2 +

∑
k≥k0

exp
(
− 1

4
(1 + |Xk(0)|)2η

)

≤ C3E(γ)2. (19)

So, there exists a constant C4 > 0 such that for all u > 0,

Qγ
(

sup
k∈N∗

sup
0≤t≤1

|Bk(t)|
(1 + |Xk(0)|)η ≥ u

)
≤ C4E(γ)2e−

1
4u. �

We can now complete the proof of Proposition 2.2. Consider the inequality (18)

Xk − ξ
(
1 +Xk

)η ≤ ξ
(
1 + |Xk(0)|)η.

To solve this inequality, we introduce the functions (hτ )τ∈R+ defined by hτ (x) = x − τ(1 + x)η. A elementary
study of the function hτ (x)− 1

2x proves that for all x > 0

hτ (x) ≥ 1
2
x− 1− C5(η) τ

1
1−η , (20)

where C5(η) is a positive constant which depends only on η. We deduce from (18) and (20) that there exists a
constant C6(η) such that

Xk ≤ C6(η)ξ
1

1−η (1 + |Xk(0)|)η. (21)

Therefore, let ε > 0, γ ∈ ME(Rd) and η′ a positive constant such that η′ < min(ε, η); on account of (21)
we have

Qγ
(

sup
k∈N∗

sup
0≤t≤1

|Xk(t)−Xk(0)|
(1 + |Xk(0)|)η ≥ u

)
≤ Qγ

(
sup
k∈N∗

sup
0≤t≤1

|Xk(t)−Xk(0)|
(1 + |Xk(0)|)η′ ≥ u

)

≤ Qγ
(
ξ ≥

( u

C6(η′)

)1−η′)

≤ a′3E(γ)2 exp
(
− b′3
E(γ)2C6(η′)(1−η

′)(1−ε′)u
(1−η′)(1−ε′)

)
,

where ε′ > 0 is chosen such that (1 − η′)(1 − ε′) = (1 − ε) and a′3, b
′
3 are the constants associated to ε′ in

Lemma 2.3. Inequality (16) is thus proven. �
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2.1.2. Estimate of the number of particles interacting with a fixed particle

We first give an estimate of the initial position of particles which, at some time t ∈ [0, 1], may come into the
ball B(Xi0 (t), 2R), where i0 is a integer, fixed along Section 2.1.2.

Lemma 2.4. One can construct two non decreasing functions K1 and K2 from R+ to R+ such that, for every
Γ satisfying ζ(Γ) < +∞, as soon as there exists i ∈ N∗ and t ∈ [0, 1] such that |Xi(t)−Xi0(t)| ≤ 2R, then

|Xi(0)| ≤ K1(|Xi0 |) +K2(|Xi0 |)ζ
1

1−η . (22)

Proof. Let i ∈ N∗ and t ∈ [0, 1] such that |Xi(t)−Xi0(t)| ≤ 2R; then

|xi| ≤ |Xi(t)− xi|+ |Xi(t)−Xi0(t)|+ |Xi0(t)− xi0 |+ |xi0 |
≤ ζ(1 + |xi|)η + 2R+ ζ(1 + |xi0 |)η + |xi0 |,

which implies that
|xi| − ζ(1 + |xi|)η ≤ ζ(1 + |xi0 |)η + 2R+ |xi0 |. (23)

Using inequality (20), it is easy to deduce (22). �
Let β be the map from R+ ×M(Rd)× N∗ to N defined by

β
(
z, γ, i

)
= γ

(
B
(
0,K1(|xi|) +K2(|xi|)z 1

1−η

))
.

For every Γ such that ζ(Γ) < +∞ and Γ(0) = γ, β(ζ, γ, i0) is an upper bound of the number of particles
which could come at some time t ∈ [0, 1] at distance smaller than 2R from the particle i0. We now prove some
estimates for the random variable β.

Lemma 2.5. There exists two functions K3 and K4 from ME(Rd)× N∗ to R+ such that

∀z ∈ R+, ∀γ ∈ ME(Rd), ∀i ∈ N∗, β(z, γ, i) ≤ K3(γ, i) +K4(γ, i)z
d

1−η .

Moreover, for all γ, γ′ ∈ ME(Rd) such that E(γ) ≤ E(γ′) and for some i ∈ R+,|θi(γ)| ≤ |θi(γ′)| then

K3(γ, i) ≤ K3(γ′, i) and K4(γ, i) ≤ K4(γ′, i).

Proof. By Lemma 2.1, for every γ ∈ME(Rd), the number of particles in the ball B
(
0,K1(|xi|)+K2(|xi|)z 1

1−η

)
is bounded by (K1(|xi|) +K2(|xi|)z 1

1−η )dE(γ). So, using Lemma 2.4, we easily prove the estimates for β. �

2.2. Interacting Brownian particles as Gibbs fields on C
The aim of this section is to prove that solutions of system (15) with a tempered Gibbs field as initial law,

are Gibbs fields on C (cf. Th. 2.1). In the following proposition, we exhibit a large set of tempered Gibbs fields
on Rd by providing an estimate for the law of the logarithmic fluctuation energy under these Gibbs fields. For
a related result, see [13] too. It will be used in Section 2.3.

Proposition 2.3. Let µ be a Gibbs field in G(hψ , λ) where ψ is a multi-body superstable and lower regular
interaction. Then there exists two strictly positive constants a4 and b4 such that for all u > 0

µ
(
E(γ) ≥ u

)
≤ a4e−b4u.

In particular, µ is tempered.

For the exact definition of multi-body superstable and lower regular interaction, we refer to [32] (p. 128).
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Proof. For k = (k1, . . . , kd) ∈ Zd, we denote by Dk the following cube in Rd, ]k1− 1
2 , k1 + 1

2 ]× . . .]kd− 1
2 , kd+ 1

2 ].
For every l ∈ Zd and ρ ≥ 1, El,ρ is the minimal subset of Zd such that

B(l, ρ) ⊂
⋃

k∈El,ρ

Dk.

By definition of E(γ, l, ρ) and using the fact that ϕ has a compact support, we deduce that there exists a
constant C0 such that

E(γ, l, ρ) ≤ C0

∑
k∈El,ρ

γ(Dk)2.

By Corollary 2.8 in [32], there exists two constants C1 and C2 such that, for all u ≥ 0,

µ

(E(γ, l, ρ)
ρd

≥ u

)
≤ eρ

d(C2−C1u). (24)

Now, let us analyse the tail of the law of E(γ).

E(γ) = sup
l∈Zd

sup
r∈N∗

((
rg(|l|))−d E(γ, l, rg(|l|)) + 1

)

= sup
n∈N∗

(
ρ−dn E(γ, ln, ρn) + 1

)

where the sequence (ln, ρn)n∈N∗ is constructed in such a way that the following sets coincide

{
B(l, rg(|l|)), l ∈ Zd, r ∈ N∗

}
=
{
B(ln, ρn), n ∈ N∗

}

and (ρn)n∈N∗ is increasing.
Let us compute a lower bound for ρn. Let n ∈ N∗, we have

{
B(l, rg(|l|)), l ∈ Zd r ∈ N∗ such that rg(|l|) ≤ ρn

}
⊂

⋃
1≤r≤ρn

{
B(l, rg(|l|)), l ∈ Zd such that |l| ≤ g∗(ρn)

}
,

where g∗ is the inverse function of g. So there exists C3 > 0 such that, for every n ∈ N∗

Card
{
B(l, rg(|l|)), l ∈ Zd r ∈ N∗ such that rg(|l|) ≤ ρn

}
≤ C3g

∗(ρn)d+1.

Since C3g
∗(ρn)d+1 is greater than n there exists some constants C4 > 0 and C5 > 0 such that

ρn ≥ C4 ln(C5n)
1
d . (25)
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From (24) and (25), we deduce that for u ≥ C2
C1

+ 2
C1Cd

4

∑
n≥1

µ
(E(γ, ln, ρn)

ρdn
≥ u

)
≤

∑
1≤n≤ 1

C5

eC2−C1u +
∑

n≥
[

1
C5

]
+1

eC
d
4 ln(C5n)(C2−C1u)

≤ eC2

C5
e−C1u +

∑
n≥
[

1
C5

]
+1

(C5n)C
d
4 (C2−C1u)

≤ eC2

C5
e−C1u +

(
C5

([ 1
C5

]
+ 1
))Cd

4 (C2−C1u) ∑
n≥
[

1
C5

]
+1

(
n[

1
C5

]
+ 1

)−2

≤ a4e−b4u,

where a4 > 0 and b4 > 0 are constants. Therefore, for u sufficiently large, µ(E(γ) ≥ u) ≤ a4e−b4u; adjusting
the constants a4 and b4 this inequality holds also for all u > 0. �

Coming back to the aim of this section, let us define a functional which will be the local dynamical Hamiltonian
on the pathspace in the main Theorem 2.1. For X ∈ C and Γ ∈M(C),

HΦ(X,Γ) =
1
2

∑
Y ∈Γ\X

(
ϕ(X(1)− Y (1))− ϕ(X(0)− Y (0))

−
∫ 1

0

(
∆ϕ− 1

2
|∇ϕ|2

)
(X(s)− Y (s)) ds

)

+
1
4

∑
{Y,Z}⊂Γ\X

∫ 1

0

(
∇ϕ(X(s)− Y (s)).∇ϕ(X(s) − Z(s))

+∇ϕ(Y (s)−X(s)).∇ϕ(Y (s)− Z(s))

+∇ϕ(Z(s)−X(s)).∇ϕ(Z(s)− Y (s))
)

ds. (26)

Remark that HΦ is associated to the following two-body and three-body interaction Φ:

Φ({X,Y }) =
1
2

(
ϕ(X(1)− Y (1))− ϕ(X(0)− Y (0))

−
∫ 1

0

(∆ϕ− 1
2
|∇ϕ|2)(X(s)− Y (s))ds

)

Φ({X,Y, Z}) =
1
4

∫ 1

0

[
∇ϕ(X(s)− Y (s)).∇ϕ(X(s) − Z(s))

+∇ϕ(Y (s)−X(s)).∇ϕ(Y (s)− Z(s))

+∇ϕ(Z(s)−X(s)).∇ϕ(Z(s) − Y (s))
]
ds.

Φ(K) = 0 if Card(K) /∈ {2, 3}·
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Furthermore, HΦ(X,Γ) is not defined for all X ∈ C and Γ ∈M(C), but due to Lemma 2.4 the formula (26) has
a sense Qγ-almost surely (the sums are finite Qγ-a.s.).

Theorem 2.1. Let h be a local Hamiltonian on Rd and m a σ-finite measure on Rd; then the following
assertions hold:

for each tempered µ ∈ G(h,m), Qµ ∈ G(h ◦ pr0 +HΦ, $m),

for each tempered µ ∈ Gc(h,m), Qµ ∈ Gc(h ◦ pr0 +HΦ, $m).

Before giving the proof of the above theorem, let us show that in the following sense:

Lemma 2.6. Let γ ∈ ME(Rd); for any i0 ∈ N∗ and all measurable bounded functional F from C ×M(C) to R

we have

∫
M(C)

exp
(
HΦ(Θi0(Γ),Γ)

)
F (Θi0(Γ),Γ− δΘi0 (Γ))Qγ(dΓ) =

∫
M(C)

∫
C
F (X,Γ)Qγ−δθi0 (γ) ⊗$θi0 (γ)(dΓ, dX).

Proof. Another way to write HΦ is the following:

HΦ(Xi0 ,Γ) =
1
2

∑
i6=i0

(
ϕ(Xi0(1)−Xi(1))− ϕ(Xi0 (0)−Xi(0))−

∫ 1

0

∆ϕ(Xi0(s)−Xi(s))ds
)

−
∑
i6=i0

1
2

∫ 1

0

∇ϕ(Xi0 (s)−Xi(s)).
∑
j 6=i

1
2
∇ϕ(Xi(s)−Xj(s))ds

+
1
2

∫ 1

0

1
4

∣∣∣∣∣∣
∑
i6=i0

∇ϕ(Xi0 (s)−Xi(s))

∣∣∣∣∣∣
2

ds

−1
2

∑
i6=i0

∫ 1

0

1
4

∣∣∣∇ϕ(Xi0(s)−Xi(s))
∣∣∣2ds. (27)

Since the process

(
Xi(t)−Xi(0) +

∫ t

0

1
2

∑
j 6=i

∇ϕ(Xi(s)−Xj(s))ds
)
i∈N∗

which we denote by (Bi)i∈N∗ is an infinite family of independent Brownian motions under Qγ , we can use Ito’s
formula to obtain for each i 6= i0

ϕ(Xi0(1)−Xi(1))− ϕ(Xi0 (0)−Xi(0))

=
∫ 1

0

∇ϕ(Xi0 (s)−Xi(s)).(dXi0 (s)− dXi(s)) +
∫ 1

0

∆ϕ(Xi0(s)−Xi(s))ds.
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Thus, together with Lemma 2.5 this implies that

HΦ(Xi0 ,Γ) =
∫ 1

0

1
2

∑
i6=i0

1≤i≤β(ζ,γ,i0)

∇ϕ(Xi0 (s)−Xi(s))dBi0 (s)

−1
2

∫ 1

0

∣∣∣∣∣12
∑
i6=i0

1≤i≤β(ζ,γ,i0)

∇ϕ(Xi0 (s)−Xi(s))

∣∣∣∣∣
2

ds

+
∑
i6=i0

1≤i≤β(ζ,γ,i0)

∫ 1

0

−1
2
∇ϕ(Xi0 (s)−Xi(s))dBi(s)

−1
2

∑
i6=i0

1≤i≤β(ζ,γ,i0)

∫ 1

0

∣∣∣∣12∇ϕ(Xi0 (s)−Xi(s))
∣∣∣∣
2

ds.

Therefore exp
(
HΦ(Xi0 ,Γ)

)
is equal to an exponential local martingale evaluated at time 1:

exp
(
HΦ(Xi0 ,Γ)

)
= exp

(
+∞∑
i=1

∫ 1

0

Ai(s)dBi(s)− 1
2

∫ 1

0

|Ai(s)|2ds
)
,

where

Ai(s) =




1
2

∑
j 6=i0

1≤j≤β(ζ,γ,i0)

∇ϕ(Xi0(s)−Xj(s)) si i = i0

1
2
∇ϕ(Xi(s)−Xi0(s)) si i 6= i0.

(28)

Thanks to Proposition 2.2, ζ is Qγ-almost surely finite and then it is Qγ−δxi0 ⊗$xi0 -almost surely finite too;
this implies

∑
i

∫ 1

0

|Ai(t)|2dt < +∞ Q
γ−δxi0 ⊗$xi0 − p.s.

From the uniqueness of tempered solutions of system (15) for µ = δγ and µ = δγ−δxi0
we deduce the absolute

continuity ofQγ−δxi0⊗$xi0 with respect toQγ (it is a consequence of aninfinite-dimensional version of Ths. 12.57
and 12.73 in [20]); the density process is equal to the martingale

exp

(
+∞∑
i=1

∫ 1

0

Ai(s)dBi(s)− 1
2

∫ 1

0

|Ai(s)|2ds
)
.

This proves the lemma. �
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Coming back to the proof of Theorem 2.1, let µ ∈ G(h,m); for all bounded positive measurable function F
from C ×M(C) to R we have

C !
Qµ

(
exp

(
h(X(0),Γ(0)) +HΦ(X,Γ)

)
F (X,Γ)

)

=
∫
M(Rd)×M(C)×C

eh(X(0),γ)+HΦ(X,Γ)F (X,Γ− δX)Γ(dX)Qγ(dΓ)µ(dγ)

=
∫
M(Rd)

∑
i∈N∗

eh(θi(γ),γ)

∫
M(C)

eH
Φ(Θi(Γ),Γ)F (Θi(Γ),Γ− δΘi(Γ))Qγ(dΓ)µ(dγ).

By Lemma 2.6, this is also equal to

∫
M(Rd)

∑
i∈N∗

eh(θi(γ),γ)

∫
M(C)×C

F (X,Γ)Qγ−δθi(γ)(dΓ)⊗$θi(γ)(dX)µ(dγ)

= C!
µ

(
eh(x,γ)

∫
M(C)

∫
C
F (X,Γ)Qγ(dΓ)⊗$x(dX)

)
.

Using Proposition 1.1, it is also equal to

∫
M(Rd)

∫
Rd

(∫
M(C)

∫
C
F (X,Γ)Qγ(dΓ) ⊗ $x(dX)

)
µ(dγ) ⊗ m(dx) =

∫
M(C)

∫
C
F (X,Γ)Qµ(dΓ) ⊗ $m(dX).

Therefore, thanks to the last implication of Proposition 1.1, we obtain that Qµ is a Gibbs field in G(h ◦ pr0
+H,$m).

When µ is no more Gibbs but only canonical Gibbs, i.e. µ ∈ Gc(h,m), then µ is a mixture of Gibbs fields in
(G(h, zm))z∈R+ (6). So, Qµ is a mixture of elements in (G(h ◦ pr0 +H, z$m))z∈R+ which means exactly that
Qµ ∈ Gc(h ◦ pr0 +H,$m). �

In the following lemma we prove that the projection at time t of a Gibbs field on C is a Gibbs field on Rd.

Lemma 2.7. Let m be a σ-finite reference measure on Rd, H a local Hamiltonian on C, P a Gibbs field in
G(H,$m) and t ∈ [0, 1]. Let us assume that the measure mt = $m ◦ pr−1

t is σ-finite; if we denote by ht(x, γ)
the following expression:

ht(x, γ) = logC!
P

(
eH(X,Γ)

∣∣∣X(t) = x,Γ(t) = γ
)

= − log
∫
C

∫
M(C)

e−H(X,Γ)$m
(
dX
∣∣X(t) = x

)⊗ P
(
dΓ
∣∣Γ(t) = γ

)
(29)

then the probability measure P ◦ pr−1
t is a Gibbs field which belongs to G(ht,mt).

Proof. Let P ∈ G(H,$m); using the characterization of Gibbs fields of Proposition 1.1, by projection at time
t ∈ [0, 1], we obtain

C !
P

(
eH(X,Γ)

∣∣∣X(t) = x,Γ(t) = γ
)
C!
Pt

(
d(x, γ)

)
= mt ⊗ Pt

(
d(x, γ)

)
,

where Pt := P ◦ pr−1
t . Thanks to the last implication of Proposition 1.1, this proves that Pt is a Gibbs field

in G(ht,mt). �
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Remark. Let µ be a Gibbs field on Rd with respect to any reference measure m. Then, for each t ∈]0, 1],
Qµ ◦ prt is a Gibbs field on Rd with respect to the reference measure mt, which is absolutely continuous with
respect to the Lebesgue measure. This is a regularization property for the solution of system (13).

The above lemma has the following consequence for finite volume:

Lemma 2.8. Let µ be in P(ME(Rd)); then, for all t ∈]0, 1] and Λ ∈ B(Rd),

Qµt
(
dγΛ

∣∣γΛc

)� πλΛ
(
dγΛ

)
Qµt -a.s.

Proof. It is sufficient to prove this lemma for µ = δγ′ , since the absolute continuity property remains true by
randomizing the initial condition. Let γ′ ∈ME(Rd), t ∈]0, 1], Λ ∈ B(Rd) and A ⊂M(Λ) such that πλΛ(A) = 0.
For Qγ

′
t -almost every γΛc ,

Qγ
′
t

(
γΛ ∈ A

∣∣∣γΛc

)
=
∑
n∈N

∑
{i1,i2,...,in}⊂N∗

Qγ
′(

Γ(t)(Λ) = n,Xi1(t), . . . , Xin(t) ∈ Λ
∣∣∣Γ(t)Λc = γΛc

)

×Qγ
′(
δXi1 (t) + . . .+ δXin (t) ∈ A

∣∣∣Γ(t)Λc = γΛc , Γ(t)(Λ) = n, Xi1(t), . . . , Xin(t) ∈ Λ
)
.

But by Lemma 2.6,
Qγ

′ � Q
γ′−δθi1 (γ′)−...−δθin

(γ′) ⊗$θi1(γ′) ⊗ . . .⊗$θin (γ′);
so, the law of (Xi1(t), . . . , Xin(t)) is absolutely continuous with respect to λ⊗n under Qγ

′
(|Γ(t)Λc = γΛc ,

Γ(t)(Λ) = n,Xi1(t), . . . , Xin(t) ∈ Λ) which implies that

Qγ
′
t

(
γΛ ∈ A

∣∣∣γΛc

)
= 0. �

2.3. Gibbs fields on C as laws of interacting Brownian particles

In the following theorem we prove that Gibbs fields associated to the local Hamiltonian h ◦ pr0 + HΦ are
weak solutions of system (13) with initial law a h-Gibbs field.

Theorem 2.2. Let m be a σ-finite reference measure on Rd and P a tempered canonical Gibbs field
in Gc

(
h ◦ pr0 + HΦ, $m

)
, where h is any local Hamiltonian on Rd; if there exists η ∈]0, 1[ such that the

random variable

ζ = sup
X∈Γ

sup
0≤t≤1

|X(t)−X(0)|
(1 + |X(0)|)η (30)

has a moment of order 2d
1−η under P , then P is equal to the law Qµ of the weak solution of (15), with an initial dis-

tribution µ = P0 being a canonical Gibbs field in Gc(h,m). Moreover, if P ∈ G(HΦ(X,Γ)+h(X(0),Γ(0)), $m
)
,

then P0 ∈ G(h,m).

The following lemma explains why we choose a moment assumption on ζ in the Theorem 2.2.

Lemma 2.9. Let ψ be a multibody superstable and lower regular interaction, and µ ∈ Gc(hψ ,m) be a Gibbs
field on Rd for the local Hamiltonian hψ; then, for every η ∈]0, 1[, the variable ζ defined in (30) admits finite
moments of any order under Qµ.

Proof. To prove this lemma, let us show an estimate for the tail of the law of ζ under Qµ. Using Propositions 2.2
and 2.3 with ε = 1

2 , we obtain

Qµ
(
ζ ≥ u

)
≤ Qµ

(
ζ ≥ u, E(Γ(0)) ≤ u

1
5

)
+Qµ

(
ζ ≥ u, E(Γ(0)) ≥ u

1
5

)
≤ a1u

2
5 exp

(
− b1u

1
10

)
+ a4 exp(−b4u 1

5 ). �
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Proof of Theorem 2.2. Let P be a tempered canonical Gibbs field; we write P γ = P ( .|Γ(0) = γ) and P̃ γ =

P γ ◦ Θ−1, where Θ is defined in (3). Since we would like to use known results about the lattice case, we are
now studying the probability measure P̃ γ on CN

∗
.

Lemma 2.10. For P0-almost all γ, P̃ γ is a Gibbs measure on CN
∗

associated to the Hamiltonian H̃ defined,
for every i ∈ N∗, by

H̃{i}(w) =
1
2

∑
j 6=i

(
ϕ(wi(1)− wj(1))− ϕ(wi(0)− wj(0))

−
∫ 1

0

(∆ϕ +
1
2
|∇ϕ|2)(wi(s)− wj(s))ds

)

+
∑

j<k,j 6=i,k 6=i

1
4

∫ 1

0

[
∇ϕ(wi(s)− wj(s)).∇ϕ(wi(s)− wk(s))

+∇ϕ(wj(s)− wi(s)).∇ϕ(wj(s)− wk(s))

+∇ϕ(wk(s)− wi(s)).∇ϕ(wk(s)− wj(s))
]
ds, (31)

where w = (wj)j∈N∗ is the canonical variable on CN
∗

and the reference measure is the infinite product of Wiener
measures ⊗i∈N∗$

θi(γ) on CN
∗
.

Proof. Since the measure P on M(C) satisfies the equations given in Definition 1.2, it is easy to see that the
so-called DLR equations are satisfied by P γ on CN

∗
. �

Now, we would like to use Theorem 4.9 in [3], which proves that every Gibbs measure on CN
∗

associated to
the Hamiltonian (H̃{i})i∈N∗ is a gradient diffusion as soon as certain assumptions are fullfilled. Let us verify
that these assumptions are indeed satisfied in our situation.

Lemma 2.11. For P -almost all γ, P̃ γ satisfies

∀t ∈ [0, 1], ∀i ∈ N∗, EP̃γ (|wi(t)|) < +∞, (32)

and

EP̃γ


∑
j∈N∗

∫ 1

0

|∇j∇ih̃i(w(t))|2dt

 < +∞, (33)

where
h̃i((xj)j) =

∑
j 6=i

ϕ(xi − xj), (xj)j ∈ (Rd)N
∗
,

and ∇j∇ih̃i is the second derivative of h̃i with respect to the variables xi and xj. Moreover, the function H̃{i}
is L2(⊗i∈N∗$

θi(γ))-differentiable and we have

EP̃γ

(∫ 1

0

|Di
rH̃{i}|dr

)
< +∞. (34)

Proof. Remark that (32) (respectively (33)) corresponds to the property (2.12) (respectively (4.10)) in [3].
We denote by ζ̃ the following function from CN

∗
to R

ζ̃(w) = sup
i∈N∗

sup
0≤t≤1

|wi(t)− wi(0)|
(1 + |wi(0)|)η ·
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For all i ∈ N∗ and all t ∈ [0, 1]

|wi(t)| ≤ |wi(0)|+ ζ̃(w)(1 + |wi(0)|)η,

implies

∑
j∈N∗

∫ 1

0

|∇j∇ih̃i(w(t))|2dt =
∑

j≤β(ζ̃,γ,i)

∫ 1

0

|∇∇ϕ(wi(t)− wj(t))|2dt

≤ ‖∇∇ϕ‖2∞ β(ζ̃ , γ, i)

≤ ‖∇∇ϕ‖2∞
(
K3(γ, i) +K4(γ, i)ζ̃

d
1−η

)
,

where K3 and K4 are the functions introduced in Lemma 2.5. Since ζ̃ admits a moment of order 2d
1−η > 1

under P̃ γ , equations (32) and (33) are proved.
H̃{i} is obviously L2(⊗i∈N∗$

θi(γ))-differentiable, and there exists a constant C1 such that

∫ 1

0

|Di
rH̃{i}|dr ≤ C1β(ζ̃ , γ, i) ≤ C1

(
K3(γ, i) +K4(γ, i)ζ̃

d
1−η

)2

. �

Thanks to (32–34), we can apply Theorem 4.9 in [3] to conclude that P γ is a weak solution of system (15) with
initial condition µ = δγ . Therefore, P is a weak solution at (15) with initial law µ = P0 which we have to
identify.

If P is a Gibbs field on C, then by Lemma 2.7, P0 is a Gibbs field on Rd with reference measure m and local
Hamiltonian h given by: ∀x ∈ Rd, γ ∈ M(Rd) such that γ(x) = 0,

h(x, γ) = logC!
P

(
exp

(
h ◦ pr0 +HΦ

)∣∣∣Γ(0) = γ,X(0) = x

)
.

Let i ∈ N∗ such that x = θi(γ + δx), then

h(x, γ) = logEP

(
exp

(
HΦ(Θi(Γ),Γ− δΘi(Γ)) + h(x, γ)

)∣∣∣Γ(0) = γ

)

= h(x, γ) + logEPγ

(
exp

(
HΦ(Θi(Γ),Γ\Θi(Γ))

))
.

As in the proof of Lemma 2.6, exp
(
HΦ(Θi(Γ),Γ\Θi(Γ)

)
is a Qγ-exponential martingale evaluated at time 1.

Since P γ = Qγ , h(x, γ) = h(x, γ) and P0 ∈ G(h,m).
Now, if P is not Gibbs but only canonical Gibbs, i.e. a mixture of Gibbs fields, we can easily deduce that

P0 ∈ Gc(h,m). �

3. Some applications and generalizations

We now apply our results to the problem of time reversal. We also generalize Theorem 2.2 to general Gibbs
fields. To this end, we need some new tools presented in the following Section 3.1.

3.1. Integration by parts formulae under Campbell measures

Let E denote the set of step-functions from [0, 1] to Rd and Fb the set of bounded functions from Rd×M(Rd)
to R which vanish for |x| and E(γ) sufficiently large and with bounded derivatives with respect to the vari-
able x. W denotes the set of following functionals from C to R: f(X(0), X(t1), . . . , X(tn)), where f is a
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continuously differentiable function with compact support. Similarly, W is the set of following function-
als from C × M(C) to R: f(X(0), X(t1), . . . , X(tn),Γ) where f is a bounded function which vanishes for
|X(0)|, |X(t1)|, . . . , |X(tn)|, E(Γ(0)) sufficiently large and with bounded derivatives with respect to the n + 1
first variables. D is the Malliavin derivation operator on C and Dg the derivation in the direction g ∈ E.

We now exhibit in the next Propositions 3.1 and 3.2 an integration by parts formula for canonical Gibbs
fields on Rd and C. For the proofs, we refer to [5].

Proposition 3.1. Let h be a local Hamiltonian on Rd which is differentiable with respect the first variable for
each (x, γ) such that E(γ) < +∞. Let µ ∈ P(ME(Rd)) satisfying µ(Mh,λ,c(Rd)) = 1 and, such that for every
M > 0,

C !
µ

((
1 + eh(x,γ)

)(
1 + |∇xh(x, γ)|

)
1I[0,M ]2(|x|, E(γ))

)
< +∞;

then µ ∈ Gc(h, λ) if and only if

∀f ∈ Fb, C!
µ(∇xf) = C!

µ(f∇xh). (35)

Proposition 3.2. Let H be a local Hamiltonian on C and P a tempered canonical Gibbs field in G(H,$λ);
we suppose H D-differentiable with respect the first variable for P -almost all Γ; if the following integrability
property holds: ∀M > 0, ∀t ∈ [0, 1]

C !
P

((|X(t)|+
∫ 1

0

|DsH |ds
)
1I[0,M ]2(|X(0)|, E(Γ(0)))

)
< +∞, (36)

then P satisfies the following equation: ∀g ∈ E, ∀F ∈ W,

C !
P

(
F (X,Γ)

∫ 1

0

g(s)dX(s)
)

= C!
P

(
DgF (X,Γ)− F (X,Γ)DgH(X,Γ)

)
. (37)

Remark. The duality equation (37) is based on the famous integration by parts formula on C which characterizes
the Wiener measure, cf. [15]. Later, it has been generalize in [30] to characterize the Gibbs fields on C. The
Proposition 3.2 is another generalization to canonical Gibbs fields on C. Equation (37) is in fact satisfied for
a larger class of probability measures on M(C). For example, in the following proposition we prove that it is
satisfied for H = HΦ and P = Qµ, where µ is any probability measure on ME(Rd) (not necessarily a Gibbs
field).

Proposition 3.3. Let µ ∈ P(ME(Rd)); then for every g ∈ E and F ∈ W, the following duality equation holds:

C !
Qµ

(
F (X,Γ)

∫ 1

0

g(s)dX(s)
)

= C!
Qµ

(
DgF (X,Γ)− F (X,Γ)DgH

Φ(X,Γ)
)
. (38)

Proof. Let g ∈ E and F ∈ W :

g(s) = u11I[0,t1[(s) + u21I[t1,t2[(s) + . . . un1I[tn−1,tn[(s),

F (X,Γ) = F̃ (X(0), X(t1), . . . , X(tn),Γ)1I[0,M ](E(Γ(0))).

We note Xi = Θi(Γ), xi = Xi(0). First, let us prove that all the terms in (38) are well defined.
Choose l ∈ R such that F (X,Γ) = 0 as soon as |X(0)| ≥ l; then, for all t ∈ [0, 1] and i ∈ N∗ such that

Xi(0) ∈ B(0, l), we have |X(i)(t)| ≤ l+ ζ(1+ l)
1
2 , where ζ is defined in (30) and η = 1

2 . From Lemma 2.1 which
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controls the number of points of Γ in B(0, l) we deduce

C !
Qµ

(
|F (X,Γ)

∫ 1

0

g(s)dX(s)|
)
≤
∫
M(C)

∫
C

(
|u1||X(t1)−X(0)|+ · · ·+ |un||X(tn)−X(tn−1)|

)
×|F̃ (X,Γ− δX)|1I[0,M ](E(Γ(0)))Γ(dX)Qµ(dΓ)

≤
∫
M(C)

2‖F̃‖∞max(|u1|, . . . , |un|)(l + ζ(1 + l)
1
2 )Mld1I[0,M ](E(Γ(0)))Qµ(dΓ).

Thanks to Proposition 2.2 the variable ζ1I[0,M ](E(Γ(0))) has a finite Qµ-moment, so that the left term in
equation (38) is well defined. There is no problem for the term C!

Qµ(DX
g F (X,Γ)) because DX

g F (X,Γ) is
bounded. About the last term, we remarked in Lemma 2.11, that DgH

Φ(Xi,Γ) is well defined and that there
exists a constant C1 such that

|DgH
Φ(Xi,Γ)| ≤ C1β(ζ, γ, i)2.

By Lemma 2.5, there exists two constants C2, C3 such that

C !
Qµ

(
|DgH

Φ(X,Γ)F (X,Γ)|
)
≤
∫
M(C)

MLdC1(C2 + C3ζ
4d)‖F‖∞1I[0,M ](E(Γ(0)))Qµ(dΓ)

which is also finite since ζ1I[0,M ](E(Γ(0))) has a finite moment of order 4d under Qµ. Now, we can do the
following computations: due to Lemma 2.6, we have

C !
Qµ

(
F (X,Γ)

∫ 1

0

g(s)dX(s)
)

=
∫
M(Rd)

∑
i

∫
M(C)

(
F (Xi,Γ− δXi)

∫ 1

0

g(s)dXi(s)
)
Qγ(dΓ)µ(dγ).

=
∫
M(Rd)

∑
i

∫
M(C)

(
exp

(−HΦ(X,Γ)
)
F (X,Γ− δX)

∫ 1

0

g(s)dX(s)
)

×$xi ⊗Qγ−δxi (dX, dΓ)µ(dγ).

Using the integration by parts formula under $xi and localizing the L2-derivation, the last expression equals∫
M(Rd)

∑
i

∫
M(C)

(
−DgH

Φ(X,Γ) exp
(−HΦ(X,Γ)

)
F (X,Γ− δX)

+DgF (X,Γ− δX) exp
(−HΦ(X,Γ)

))
$xi ⊗Qγ−δxi (dX, dΓ)µ(dγ)

=
∫
M(Rd)

∑
i

∫
M(C)

(
−DgH

Φ(Xi,Γ)F (Xi,Γ− δXi) +DgF (Xi,Γ− δXi)
)
Qγ(dΓ)µ(dγ)

= C !
Qµ

(
−DgH

Φ(X,Γ)F (X,Γ) +DgF (X,Γ)
)
. �

3.2. Application to reversible measures

A probability measure µ ∈ P(ME(Rd)) is called reversible under the dynamics of system (13) if for every
t ∈ [0, 1], the processes (Γ(s))s∈[0,t] and (Γ(t− s))s∈[0,t] have the same law under Qµ.

In [22], Lang proved under strong assumptions that the reversible measures of system (13) are the canonical
Gibbs fields in Gc(hϕ, λ), where hϕ is defined in (12). We give here another proof of this result under much
weaker assumptions on the reversible measures. More precisely, Lang considered only tempered reversible
measures which are locally absolutely continuous with respect to the Poisson process with regular integrable
densities. In our context, we consider reversible measures which are only tempered a priori.
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Proposition 3.4. A probability measure µ ∈ P(ME(Rd)) is reversible for the dynamical system (13) if and
only if µ ∈ Gc(hϕ, λ).
Proof. First, we introduce the following notations: for X ∈ C, Γ ∈ M(C) and P ∈ P(M(C)) we denote by X̂ ,
respectively Γ̂, the process (X̂(t))t∈[0,1] ≡ (X(1− t))t∈[0,1], respectively Γ̂(.) = Γ(1 − .), and by P̂ the law of Γ̂
under P .

We now prove that µ is reversible if µ ∈ Gc(hϕ, λ).
Let µ ∈ Gc(hϕ, λ). By Proposition 2.3, µ is tempered. Therefore, using Theorem 2.1, Qµ ∈ Gc

(
hϕ ◦ pr0

+HΦ, $λ
)
. The local Hamiltonian hϕ ◦ pr0 +HΦ is invariant for time reversal, so Q̂µ is a canonical Gibbs field

in Gc
(
hϕ ◦ pr0 +HΦ, $λ

)
too. Thanks to Theorem 2.2, Q̂µ is a weak solution of system (15) with initial law

Qµ ◦ pr−1
1 . By uniqueness of the solutions of (15), it is then sufficient to prove that Qµ ◦ pr−1

1 = µ to conclude
that Qµ = Q̂µ. Let us denote by ν the following probability measure:

ν = Qµ ◦ pr−1
1
2

= Q̂µ ◦ pr−1
1
2
.

Qµ and Q̂µ are Markovian solutions of (15), so Qµ◦pr−1
1 is the law of Γ(1

2 ) under Qν and, similarly, µ = Q̂µ◦pr−1
1

is the law of Γ(1
2 ) under Qν . Therefore, µ = Qµ ◦ pr−1

1 and Qµ = Q̂µ. Applying the same argument on each
interval [0, t] instead of [0, 1], we prove that µ is reversible.

We now prove that any tempered reversible measure µ is a canonical Gibbs field. Let ~u be a vector in Rd

and f a function in Fb. Writing equality (38) for g(s) = −~u and F (X,Γ) = f(X(0),Γ(0)), we obtain

C!
Qµ

(
~u.(X(0)−X(1))f(X(0),Γ(0))

)
= C!

Qµ

(
D~uH

Φ(X,Γ)f(X(0),Γ(0))
)
. (39)

Similarly, let us write (38) for g(s) = ~u and F (X,Γ) = k(X(0))f(X(1),Γ(1))1I[0,M ](E(Γ(0))), where k is regular
bounded function from Rd to R with compact support:

C !
Qµ

(
~u.(X(1)−X(0))f(X(1),Γ(1))k(X(0))1I[0,M ](E(Γ(0)))

)
= C !

Qµ

(
−D~uH

Φ(X,Γ)f(X(1),Γ(1))k(X(0))1I[0,M ](E(Γ(0)))

+ ~u.∇xf(X(1),Γ(1))k(X(0))1I[0,M ](E(Γ(0)))
)
. (40)

Now, by time reversal, letting K (respectively M) converge to 1 (respectively to +∞), we obtain a new equality
which, together with (39), gives

C !
Qµ

(
(D~uH

Φ(X,Γ) +DX
~u H(X̂, Γ̂))f(X(0),Γ(0))

)
= C!

Qµ

(
~u.∇xf(X(0),Γ(0))

)
. (41)

Let i0 be a fixed positive integer; using the expression (27) of HΦ(Xi0 ,Γ), we compute the term D~uH
Φ(Xi0 ,Γ)

under Qγ :

D~uH
Φ(Xi0 ,Γ) =

1
2

∑
i6=i0

(
~u.∇ϕ(Xi0 (1)−Xi(1))−

∫ 1

0

s~u.∇∆ϕ(Xi0 (s)−Xi(s))ds
)

−1
4

∑
i6=i0

∫ 1

0

s
(
~u.∇∇ϕ(Xi0 (s)−Xi(s))

)
.
∑
j 6=i

∇ϕ(Xi(s)−Xj(s))ds

+
1
4

∫ 1

0

s


∑
i6=i0

∇ϕ(Xio(s)−Xi(s))


 .


∑
i6=i0

~u.∇∇ϕ(Xio (s)−Xi(s))


 ds.
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This implies that:

D~uH
Φ(Xi0 ,Γ) +D~uH

Φ(X̂i0 , Γ̂) =
1
2

∑
i6=i0

(
~u.∇ϕ(Xi0 (1)−Xi(1)) + ~u.∇ϕ(Xi0 (0)−Xi(0))

)

−1
2

∑
i6=i0

∫ 1

0

~u.∇∆ϕ(Xi0 (s)−Xi(s))ds
)

−1
4

∑
i6=i0

∫ 1

0

(
~u.∇∇ϕ(Xi0 (s)−Xi(s))

)
.
∑
j 6=i

∇ϕ(Xi(s)−Xj(s))ds

+
1
4

∫ 1

0


∑
i6=i0

∇ϕ(Xio (s)−Xi(s))


.

∑
i6=i0

~u.∇∇ϕ(Xio (s)−Xi(s))


ds. (42)

But, for all i ∈ N∗, the process Xi(t) −Xi(0) + 1
2

∫ t
0

∑
j 6=i∇ϕ(Xi(s) −Xj(s))ds is a Qγ-Brownian motion; so,

by Ito formula, we obtain

EQγ

(
f(Xi0(0),Γ(0))

(
D~uH

Φ(Xi0 ,Γ) +D~uH
Φ(X̂i0 , Γ̂)

))

= EQγ

(
f(Xi0(0),Γ(0))

(
~u.
∑
i6=i0

∇ϕ(Xi0 (0)−Xi(0))

−1
2

∑
i6=i0

∫ 1

0

~u.∇∇ϕ(Xi0 (s)−Xi(s))
(
dXi(s) +

1
2

∑
j 6=i

∇ϕ(Xi(s)−Xj(s))ds
)

+
1
2

∑
i6=i0

∫ 1

0

~u.∇∇ϕ(Xi0 (s)−Xi(s))
(
dXi0(s) +

1
2

∑
j 6=i0

∇ϕ(Xio (s)−Xj(s))ds
)))

= EQγ

((
~u.∇xhϕ(Xi0 (0),Γ(0))

)
f(Xi0(0),Γ(0))

)
.

This computation, together with (41), implies that

C !
Qµ

(
~u.∇xhϕ(X(0),Γ(0))f(X(0),Γ(0))

)
= C!

Qµ

(
~u.∇xf(X(0),Γ(0))

)
.

Using Proposition 3.1, we conclude that µ is a canonical Gibbs field associated to the local Hamiltonian hϕ. �

Remark. To prove that a reversible measure is a canonical Gibbs fields, we use only Qµ = Q̂µ which is weaker
than the reversibility.

3.3. General Gibbs fields on C as Brownian diffusions; application to time reversal
in the non stationary case

Theorem 3.1 is a generalization of Theorem 2.2 when the local Hamiltonian H is general. First, we prove a
lemma which we will use later to identify diffusions.
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Lemma 3.1. Let (bt)t∈[0,1] a family of Ft-adapted functionals from C⊗M(C) to R and P a probability measure
on M(C) such that C !

P is σ-finite; then the following assertions are equivalent:
i) the process

Wi,t =: Θi(Γ)(t)−Θi(Γ)(0)−
∫ t

0

bs(Θi(Γ),Γ− δΘi(Γ))ds, for i ∈ N∗, t ∈ [0, 1]

is an infinite family of (P,Ft)-Brownian motions starting from 0;
ii) the process

Wt := X(t)−X(0)−
∫ t

0

bs(X,Γ)ds, for t ∈ [0, 1]

is, for all M > 0, a (1I[0,M ](X(0))C !
P ,Ft)-Brownian motion starting from 0.

Proof. Let us first prove that i) implies ii). For every s ∈ [0, 1], every Fs-measurable functional Fs in W , we
have for t ≥ s

C !
P

(
Fs(X,Γ)(Wt −Ws)

)
=
∫
M(Rd)

∑
i∈N∗

∫
M(C)

Fs(Θi(Γ),Γ− δΘi(Γ))(Wi,t −Wi,s)P γ(dΓ)P0(dγ). (43)

Since for all i ∈ N∗, Wi is a (P,Ft)-Brownian motion under P , Wi is independent from the σ-algebra F0 and it
is a (P γ ,Ft-Brownian motion too). Therefore,

C!
P

(
Fs(X,Γ)(Wt −Ws)

)
= 0,

and Wt is an Ft-martingale under 1I[0,M ](X(0))C !
P . Similarly, we can prove that W 2

t − t is an Ft-martingale
under 1I[0,M ](X(0))C !

P which implies ii).
Now let us prove that ii) implies i): let γ ∈ M(Rd) and i ∈ N∗. W is an Ft-Brownian motion under

1I[0,M ](X(0))C !
P and independent from F0. Thus, W is also an Ft-Brownian motion under C!

P

( |X(0) =
θi(γ),Γ(0) = γ − δθi(γ)

)
. By the identification

C !
P

(
(dX, dΓ)

∣∣∣X(0) = θi(γ),Γ(0) = γ − δθi(γ)

)
= P γ

(
(dΘi(Γ), d(Γ− δΘi(Γ)))

)
,

we deduce that Wi is an Ft-Brownian motion under P γ and also under P . �
Remark. In the proposition i) the family of Brownian motions is not supposed to be independent.

Theorem 3.1. Let P be a canonical Gibbs field on C in Gc(H,$m), where m is σ-finite measure on Rd and H a
local Hamiltonian which is L2-differentiable with respect to the first variable and which satisfies the integrability
condition (36); then, denoting by Xi(i ∈ N∗) the random variable Θi(Γ), the process


Xi(t)−Xi(0)−

∫ t

0

bs
(
Xi,

∑
j 6=i

δXj

)
ds



i∈N∗,t∈[0,1]

(44)

is a family of independent P -Brownian motions in Rd, where (bt(X,Γ))t∈[0,1] is the adapted process from C ×
M(C) to R defined for λ-almost all t by

bt(X,Γ) = −C!
P

(
DtH(X,Γ)

∣∣∣Ft).
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Proof. P is a canonical Gibbs field on C; therefore Proposition 1.1 implies that there exists a measure P̃ ∈
P(M(C)) such that C!

P is absolutely continuous with respect to $m ⊗ P̃ . Consequently, the finite measure
1I[0,M ](X(0))C !

P is absolutely continuous with respect to $m ⊗ P̃ too; this implies the existence of a process
(bt)t∈[0,1] on C ⊗M(C) such that

X(t)−X(0)−
∫ t

0

bs(X,Γ)ds

is a Ft Brownian motion starting from 0 under 1I[0,M ](|X(0)|)C !
P , for every M ≥ 0. From Lemma 3.1, we deduce

that, for each i ∈ N∗,

Bi(.) =: Xi(.)−Xi(0)−
∫ .

0

bs


Xi,

∑
j 6=i

δXj


ds

is an Ft-Brownian motion with values in Rd under P . We now prove that these Brownian motions are inde-
pendent, when i varies. Using the same argument as in Lemma 2.10, we know that, for all finite subset Λ
in N∗, P γ ◦Θ−1 is absolutely continuous with respect to

(⊗
i∈Λ$

θi(γ)
)⊗

(P γ ◦Θ−1)Λc on CN
∗
. So there exists

a process (bΛi,t)i∈Λ such that (
wi(.)− wi(0)−

∫ .

0

bΛi,s(w)ds
)
i∈Λ

is a family of independent P γ◦Θ−1-Brownian motions, where w = (wj)j∈N∗ is the canonical variable in CN
∗
. Us-

ing the uniqueness of the semi-martingale decomposition of w, we deduce that (Bi)i∈Λ is a family of independent
Brownian motions under P γ .

Next we identify the process (bt(X,Γ))t∈[0,1]. Since X(t)−X(0)− ∫ t0 bs(X,Γ)ds is a Brownian motion, it is
an Ft-martingale under 1I[0,K](|X(0)|)C !

Q; therefore the following equality holds:

C !
Q

(
Fs(X,Γ)

(
X(t)−X(s)−

∫ t

s

br(X,Γ)dr
))

= 0, (45)

for every 0 ≤ s ≤ t ≤ 1, and every Fs-measurable functional Fs in W . This equation together with the
integration by parts formula (37) applied to g = 1I]s,t] and Fs, implies that

C !
P

(
Fs(X,Γ)

(∫ t

s

br(X,Γ) +DrH(X,Γ)
))

= 0.

By classical approximation methods, we deduce easily that, for s ∈ Q ∩ [0, 1] and for λ-almost every r ∈ [0, 1]

C !
P

(
1Is≤rFs(X,Γ)

(
br(X,Γ) +DrH(X,Γ)

))
= 0.

Letting s converge to r, this implies that, for λ-almost every r ∈ [0, 1],

br(X,Γ) = −C!
Q

(
DrH(X,Γ)

∣∣∣Fr). �

In Theorem 3.2 which follows, we give an application to the time reversal in the non stationary case.
For simplicity, we denote by Ĥ(X,Γ) the local Hamiltonian H(X̂, Γ̂).

Theorem 3.2. Let P be a Gibbs field on C in G(H,$λ), where H is a local Hamiltonian such that H and Ĥ
are L2-differentiable with respect to the first variable and that they satisfy the following integrability condition:
∀M > 0, ∀t ∈ [0, 1]

C!
P

((
|X(t)|+

∫ 1

0

(|DsH |2 + |DsĤ |2)ds
)

1I[0,M ]2(|X(0)|, E(Γ(0)))
)
< +∞; (46)
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then, if for every i ∈ N∗ we denote by Xi the variable Θi(Γ), there exist two adapted processes (bs)s∈[0,1] and
(b̂s)s∈[0,1] from C ×M(C) to R such that


Xi(t)−Xi(0)−

∫ t

0

bs


Xi,

∑
j 6=i

δXj


 ds



i∈N∗, t∈[0,1]

(47)

is a family of independent P -Brownian motions and
Xi(t)−Xi(0)−

∫ t

0

b̂s


Xi,

∑
j 6=i

δXj


 ds



i∈N∗ t∈[0,1]

(48)

is a family of independent P̂ -Brownian motions too.
The processes b and b̂ are called forward and backward drifts associated to P ; if we denote by ht the local

Hamiltonian associated to the Gibbs field Pt = P ◦ pr−1
t , we have for λ-a.s. every t ∈ [0, 1], and Pt-almost

every γ,

−∇̃xht(x, γ) = C!
P

(
bt(X,Γ) + b̂1−t(X̂, Γ̂)

∣∣∣X(t) = x, Γ(t) = γ
)
λ− a.s., (49)

where ∇̃ is the weak gradient operator in H1,2(Rd, λ). In the case d = 1, the equation (49) remains true by
substituting the weak gradient operator ∇̃ by the ordinary gradient operator ∇.

Proof. Since P is a Gibbs field in G(H,$λ) and $̂λ = $λ it is clear that P̂ ∈ G(Ĥ,$λ). By Theorem 3.1, bt
and b̂t exist and satisfy (47) and (48).

On the other hand, Lemma 2.7 proves that Pt is a Gibbs field in G(ht, λ), where ht is explicit.
Equality (37) applied to g = 1I[s,t] and F (X,Γ) = f(X(t),Γ(t)) implies

C !
P̂

(
f(X(1− t),Γ(1− t))

(
X(1− t)−X(1− s)

))
= (t− s)C!

P

(
∇xf(X(t),Γ(t)

)
− C!

P

(
f(X(t),Γ(t)))D1I[s,t]

H(X,Γ)
)
.

Let us divide both sides by t− s and let t converge to s; in this way, we obtain for λ-almost every t ∈ [0, 1],

−C !
P̂

(
f(X(1− t),Γ(1− t))b̂1−t(X,Γ)

)
= C!

P

(
∇xf(X(t),Γ(t))

)
+ C!

P

(
f(X(t),Γ(t))bt(X,Γ)

)
,

which can be written as

−C !
Pt

(
∇xf(x, γ)

)
= C!

Pt

(
f(x, γ)qt(x, γ)

)
, (50)

where qt(x, γ) = C!
P

(
b̂1−t(X̂, Γ̂) + bt(X,Γ)

∣∣X(t) = x, Γ(t) = γ
)
. By Lemma 9, C!

Pt
= e−htλ ⊗ Pt; therefore,

equation (50) becomes for Pt-almost every γ∫
Rd

∇xf(x, γ)e−ht(x,γ)λ(dx) = −
∫

Rd

f(x, γ)qt(x, γ)e−ht(x,γ)λ(dx). (51)

Thanks to (46), the function qt(., γ) is locally, for Pt-almost every γ,
in L2(e−ht(x,γ)λ(dx)) and is equal to the logarithmic derivative of the measure e−ht(x,γ)λ(dx) (cf. [2]). Therefore,
−ht(x, γ) is for Pt-almost every γ in H1,2(Rd, λ) with derivative qt(x, γ).
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If d = 1, equation (51) implies that, for Pt-almost every γ, −ht(x, γ) is differentiable for λ-almost every x
and admit q(x, γ) as gradient function. �
Example. If b is a Markovian drift, then b̂ is Markovian too:

bt(X,Γ) = bt(X(t),Γ(t)), b̂t(X,Γ) = b̂t(X(t),Γ(t))

and formula (49) becomes

−∇̃xht(x, γ) = bt(x, γ) + b̂1−t(x, γ). (52)

In particular the assumptions of Theorem 3.2 are satisfied for the Gibbs field Qµ in G(h◦pr0+HΦ, $λ) solutions
of system (15) with µ a tempered Gibbs field associated to the local Hamiltonian h.

3.4. The case d ≥ 4

Some results of this paper remain true in the case d ≥ 4.
If d = 4, Theorems 2.1 and 2.2 are still true (cf. [6] for the detailed proofs). But, we do not know how to

prove Lemma 2.9. So the moment assumption on ζ in Theorem 2.2 remains unjustified. Similarly, the proof of
Proposition 3.4 is no more valid, because it uses moments of the function ζ.

If d > 4, there does not exist any proof for the existence of weak solution of system (15) except in the
stationary case dealt by Lang. In this case where h = hϕ, Theorems 2.1 and 2.2 are still true. Nevertheless, the
proof of Lemma 2.9 is not correct in the stationary case.

Theorems 3.1 and 3.2 are obviously true for any d ∈ N∗; nevertheless the application to the system (13) is
no more possible since the assumptions of these theorems are satisfied by the law of system (13) only if d ≤ 3.

The results presented in this paper are contained in my Ph.D. Thesis [6] written under the direction of Sylvie Rœlly whom
the author thanks warmly for many advises and for her permanent support. The author also thanks the Laboratoire de
Statistique et Probabilités of University of Lille 1 for its welcome.
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