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INTERACTING BROWNIAN PARTICLES AND GIBBS FIELDS
ON PATHSPACES

DavID DEREUDRE!

Abstract. In this paper, we prove that the laws of interacting Brownian particles are characterized
as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally,
we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some
applications to time reversal in the stationary and non stationary case are presented.
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1. INTRODUCTION AND FRAMEWORK

1.1. Introduction

The Gibbsian nature of infinite-dimensional diffusions on the infinite product of pathspaces has been first
considered by Deuschel in 1987 [7]. Since this time, many papers developped this point of view (see for
example [3,4,25]). Cattiaux et al. proved in [3], using an integration by parts formula on the pathspace, that
the set of infinite-dimensional Brownian diffusions indexed by the lattice Z¢ and the set of Gibbs measures
on C([0,1]; R)Zd are in one-to-one correspondance.

The generalization of these results to continuous models is our principal aim. In this paper, indistinguishable
particles diffuse in R? and interact in a way which depends only on their relative positions. So, this infinite-
dimensional diffusion can be seen as a point process on C := C([0, 1]; R?). Our principal result, in dimension
d < 3, is the equivalence between the following two properties: to be a infinite-dimensional gradient diffusion
for a continuous model and to be a Gibbs field on C.

Now, we describe the structure of the paper.

In the first part, we show that an interacting Brownian particle system is a solution of the following stochastic
differential system:

1
— 5 ZVQD(XIL(t) — X](t))dt, xS N*,t S [0, 1],
J#i (1)
Xi(o):xi7 i € N¥,

dX;(t) = dWi(t)

Keywords and phrases. Point measure on pathspace, Gibbs field, interacting Brownian particles, integration by parts formula,
Campbell measure.
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where (W;);en- are independent Brownian motions with values in R?, (x;);en- is a locally finite sequence of
points in R? and ¢ is a regular symmetric potential with compact support. We represent a solution to (1) by
the following point process on C: I' = 3, . dx;,.

The system (1) has first been studied by Lang in his fundamental paper [21]. He proved the existence of a
unique strong solution in the stationary case. Since we also consider the non-stationary framework, we will use
here Fritz’s results, recalled in Theorem 1.1: he proved existence of a unique strong solution for the system (1)
for every deterministic initial condition v = ), d,, with finite logarithmic fluctuation energy £(7y) (see Def. 14).

In the second part, after establishing uniform bounds on weighted particle fluctuations, we prove in
Theorems 2.1 and 2.2 the equivalence between the following assertions:

~ to be the law on M(C) of the solution of system (1), with initial law given by a Gibbs field on R?
associated to the Hamiltonian h;

— to be a Gibbs field on C associated to the Hamiltonian (X (0),T'(0))+H®(X,T'), sum of a term induced
by the initial law and a purely dynamic ones, the explicit form of H® being given in (26).
Definition of Gibbs fields on R? and C, and Hamiltonians are given in Section 1.2.

In the third part, we prove in Theorem 3.1 that every Gibbs field P on C associated to a regular local
Hamiltonian H is the law of an infinite-dimensional diffusion — cf. (44) — with a drift (3;(X,T))ep0,1] of the
following explicit form:

By = —Cu(D.H|Fy),

where D is the Malliavin derivation operator and C’}; the reduced Campbell measure associated to P (cf. Def. 8).
The principal tool used to prove this result is the integration by parts formula (37) under the reduced Campbell
measure.

Then, we present two applications of the above results. The first one is a proof that the tempered reversible
probability measures of system (1) are the canonical Gibbs fields on R¢ associated to the Hamiltonian

he(x,y) =Y ez —y).

yeyY

This was already proved in [22], but under much stronger assumptions than here. The second application is
an analysis of time reversal for a general Gibbs field P on C. We prove that the projection of P at time t > 0 is
still a Gibbs fields on R for local Hamiltonian A, and we present in Theorem 3.2 a relation between h; and the
forward and backward drifts associated to P. This formula is a generalization of results obtained by Follmer
and Wakolbinger [10] (¢f. [24] too).

1.2. Definitions and notations

1.2.1. State spaces and their probability measures

If X denotes a polish space endowed with the Borel o-algebra o(X), then B(X) and S(X) will denote subsets
of 0(X). M(X) is the subset of the integer-valued measures I' on X such that, for every A € B(X), I'(A) € N*
and for every S € S(X), I'(S) < 1; M(X) is endowed with the o-algebra o(M(X)) generated by the sets
{ e M(X),T(A) =n}, neN* A e B(X). A measure p is called o-finite if it is finite on the elements of B(X),
and we denote by P(M (X)) the set of probability measures on M (X).

For all T' € M(X), P € P(M(X)) and A € o(X), we denote by 'y the projection of I" on A and P, the
projection of P on M(A). II* denotes the Poisson process on X with intensity p, a o-finite measure on X. In
the following, X will be either R or C, the set of continuous paths from [0, 1] to R? endowed with the uniform
norm.

In the case X = R%, we take B(RY) (respectively S(R?)) equal to the set of usual bounded of subsets of R¢
(respectively the set of single points of R?). Thus, M(R?) is the set of simple integer-valued measures on R,
Moreover, on R?, we substitute the notations X, T",II by z, v, 7 and we denote by A the Lebesgue measure on R?.
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In the case X = C, B(C) and S(C) are defined by the following sets:

B(C) = {B € o(C) such that {X(0): X € B} € B(RY)}-
S(C) = {B € (C) such that {X(0): X € B} € S(R)} -

M(C) is the set of integer-valued measures on C such that their projection at time 0 belong to M(R?). We note
@™ the Wiener measure on C with initial law a o-finite measure m on R? and we substitute @% by w?®.

For X € Cand IT" € M(C), we note pry(X) = X(0), pro(I') = I'(0) or pry(X,I') = (X(0),T°(0)) the projection
at time 0 of X,T" or (X,T) respectively on R? M(R?) or R? x M(R?). If for ¢t € [0,1], T'(t) € M(R?), this
allows to define a projection at time ¢ denoted by pr,. Finally, for P € P(M(C)), we note Py € P(M(R?))
(respectively PY € P(M(C))) the probability measure P o pry ! (respectively P(|T'(0) = v)).

(Ft)te[o,1] denotes the canonical filtration respectively on C, M(C) or C x M(C) generated by the appropriate
projections at time ¢ € [0, 1].

1.2.2. Point numerotation

To identify integer-valued measures on R (respectively on C) and sequences of distinct points on R?
(respectively on C), we introduce the maps (6;)ien+ and (0;);en+. Let < be the following total order on
R? — compatible with the partial order induced by the Euclidean norm — defined by: z < y if |z| < |y; if

|z| = |y|, we compare r7 and %, which belong to the unit sphere in R%. They might be represented by a sign

x
ee{-1,4+1}and d—1 langles a1, 0, ... aq-1 € [0,7[; so x <y, if the sign and the angles of = are lower than
the sign and the angles of y using the lexicographic order on {—1,+1} x [0, 7[¢~1.

This point numeration is a simple case of the numerotation introduced in [23] for general polish spaces. The
mesurability of such numerotation functions with respect to the natural o-fields is dealt in [23] (Lem. 5.1.5). In
our case, there is no problem.

So, for all v € M(R?), there exists a unique sequence of points (6;(7))ien- in R? such that

v = Z 86:(y) and (6; (7))ieN* is increasing in R? for the order — .
1EN*
In the same way, for I' € M(C), there exists a unique sequence (0;(I"));en~ in C such that
= Z d6,(v) and (ei(F)(O))ieN* is increasing in R? for the order < .
ieN~

We denote by # the map from M(R?) to (R?)N

*

6: M(RY) — (R
v (0i(7))iens,

and © the map from M(C) to CN°

1.2.3. Gibbs fields and canonical Gibbs fields
Definition 1.1. A local Hamiltonian H is a map from X x M(X) to R which satisfies

i) for every X € X, the map I' - H(X,T) is o(M(X))-measurable;
i) VX1, Xs € X,V T € M(X), H(X,,T) + H(X2,T +6x,) = H(Xs,T) + H(X1,T + 6x,).
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One often constructs local Hamiltonians by means of an interaction ¥, which is defined as a measurable map
from F(X), the set of finite subsets of X, to R. When ¥(K) = 0 for all £ € F(X) such that Card(K) # n,
then W is called a n-body interaction. If the following series converges, we construct the local Hamiltonian HY
derived from ¥ by the following formula

HY(X,T)= > W¥(KU{X}). (4)

KeF(X)
Kcr

We now define the finite volume Hamiltonian Hy, for any A in B(X). For I'y =Y | 0x,, let
HA(FA,FAc) = H(Xl,FAc) + H(XQ,FAc + 6X1) + ...+ H(Xn,FAc + (SX1 +.. '5Xn—1)'

If u is a o-finite measure on X and H a local Hamiltonian on X, we define

MH7M(X) = n {F S M(X)7/M(A) e_HA("FAC)dHX < +OO} (5)

AEB(X)

Now we are able to give the definition of Gibbs fields on X.

Definition 1.2. G(H, p), the set of Gibbs fields for the local Hamiltonian H and the reference measure II#,
is the set of probability measures P € P(M(X)) such that P(Mp (X)) = 1 and for all A € B(X), for P-a.e.
e,
1
p(dr ‘F D=
( APA ) Z(A,Tpe)

where Z(A,T'sc) is a finite normalization constant.

exp ( — HA(FA,FAc))HX(dFA),

It is often necessary to consider mixtures of Gibbs fields. For example in Part 3, we will need canonical
Gibbs fields, i.e. mixture of Gibbs fields obtained by randomizing their activity parameter. More precisely, a
canonical Gibbs field is a probability measure @ on M(X) verifying

Q= [ Pulde), (6)

where P? is a Gibbs field element of G(H, zu) and v a probability measure on RT. We give another definition
of canonical Gibbs fields, which is equivalent to the one given here (see [27]).
First, we denote by Mg, (X) the following configuration set:

Migue(®) = () {FeM(X% / e‘HA“’F“’Hx(drwr'(A)=n><+°°}' ™)
AEB(X) M(A)
neN

Definition 1.3. G.(H,u), the set of canonical Gibbs fields for the local Hamiltonian H and the reference
measure II*, is the set of probability measures P € P(M(X)) such that P(Mpg, (X)) = 1 and, for every
A e BX),neN* for P-a.e. [pe,

P(dI‘A|I‘Ac,F(A):n) -~ L

—HATaLae) [T (AT A IT(A) =
(A,n,FAc)e A( A| ( ) n)a

where Z(A,n,Txc) is a finite normalization constant.
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We refer to [16,27] for more details about Gibbs fields and canonical Gibbs fields theory.

There exists in the literature many characterizations of Gibbs fields (see for example [1,16,28,29]). In this
paper, we use a characterization based on the reduced Campbell measure. Let us recall that the reduced
Campbell measure C's associated to P € P(M(X)) is the unique measure on X x M(X) such that: for every
bounded measurable function from X x M(X) to R*

/ F(X, F)C}D(dX, dr) = / / F(X,T —6x)I'(dX)P(dD). (8)
Xx M(X) M(X) JX

We now generalize to canonical Gibbs fields the characterization of Gibbs fields given in [26].

Proposition 1.1. Let H be a local Hamiltonian on X and p a o-finite measure on X. Let P be a probability
measure in P(M(X)). If P(Mg,, (X)) =1 then P € G(H, ) if and only if P satisfies

Cl =exp(—H) @ P. 9)

More generally, if P(Mp,,.c(X)) = 1 then P € G.(H, ) if and only if there exists a measure @ on M(X)
such that

Cp = exp(—H) p® Q. (10)
Moreover, if there exists a measurable map H from X x M(X) to R such that P satisfies

Cp =exp(—H)p@ P,

then H is p ® P-a.s. equal to a local Hamiltonian and P € G(H, p).

Proof. The first equivalence is given in [26]. To prove the equivalence between P € G.(H, p) and (10), we use
the representation (6) of canonical Gibbs Fields and the characterization of canonical Gibbs fields proved by
Georgii in [17] (Th. 1). Finally, the last implication is proved in [18]. O

1.3. Framework

In this paper, the dimension of the space where the particles are living is equal to d < 3, except in Section 3.4
where we will present some remarks about the case d > 4.

We consider interacting Brownian particles where the interaction is induced by a symmetric pair potential ¢
with compact support, of class C3:

Vo € RY, o(z) = p(—2z) and IR > 0 such that ¢(z) = 0 for |z| > R.

Moreover, we suppose ¢ superstable in the following sense: there exist A > 0, B > 0 such that, for each finite
sequence of points x1, g, ..., x, in R,

nA—i—ZZ(p(ack—xj)ZBN, (11)

k=1 j#k

where N is the number of pairs {j, k} such that |z — z;| < R.
The potential ¢ induces a two-body interaction ¢({z,y}) = ¢(z —vy), and a local Hamiltonian denoted by h¥
and defined by:
WP () = h(x,7) = Y @ —y). (12)
yEY,yF#T
Then, the interacting Brownian particle system we consider is the diffusion solution of the infinite-dimensional
stochastic differential equation (1).
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If we note I' = ), .. 0x, and v = D, O, the system (1) can be written in the following way:

{ d6;(T)(t) = dW;(t) — %Vzh‘P (@i(I‘)(t), r(t))dt,\ﬁ e N* (13)

'(0) = .
Our paper is based on existence results proved in [12]. Fritz constructed a unique strong solution for the

system (13), when d < 4 and the deterministic initial condition « has a finite logarithmic fluctuation energy £(v).
More precisely, let v € M(R%),1 € Z¢, and p > 0. We introduce

Evlp =Y, 1+A+ > pla-y) |,
zEy:|lz—1|<p yEY—0z:|y—1[<p
where A is the superstability constant appearing in (11). Remark that £(v,[, p) is non negative and it is an
upper bound of the sum of the number of points of v in the ball B(l, p) and the energy of v in this same ball.

Introducing the function g(z) = (1 + In(1 4 z))4, we can define the logarithmic fluctuation energy &(v), which
has been introduced for the first time by Dobrushin and Fritz in [8]:

£(7) = sup sup [(rg<|z|>)‘d £ L, rg(ll)) + 1] (14)
lezd reN*

We introduce following notations:
Me(R?) = {’y € M(R?) such that £(v) < —l—oo},

Me(C)

{F € M(C) such that ||T'||¢ = sup ET'(¢)) < +oo} .
t€[0,1]

A probability measure p in P(M(R?)) (respectively P in P(M(C))) is called tempered if pu(Mg(R?)) = 1
(respectively P(Mg(C)) = 1).

Theorem 1.1 ([12], Th. 2). If d < 4, then for every configuration v € Mg(R?), there exists a unique strong
tempered solution to (13) with initial condition ~y.

Let us denote by QY € P(Mg(C)) the law of this solution. Q7 is also the unique weak solution with initial
law d, to the above system (15):

(om0 —e)0) + [ §9esriEmENIs)

are independant F;-Brownian motions in R? under Q7, (15)

where V¢ * I'(s)(0;(I')(s)) denotes the convolution of the function £V¢ by the measure I'(s), evaluated at
the point ©;(T")(s).

Obviously, the solution of the above system (15) is Markovian so that the probability measure Q* =
fMg(Rd) Q7 p(d7) is the unique solution of system (15) with initial law .

Systems with more general interaction ¢ have been considered for exemple in [11,33], but their construction
is always done in a stationary context.
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2. INTERACTING BROWNIAN PARTICLE SYSTEM AND ASSOCIATED GIBBS FIELDS ON C

In the following proposition, we recall an estimate due to Fritz on the logarithmic fluctuation of any solution
of system (15).

Proposition 2.1 ([12], Prop. 2). Let d < 3; then, for all e €]0, 1], there exist two strictly positive constants a
and b such that, for every v € Mg(R?) and u > 0, the following inequality holds:

Q"(IT|le > u) < aexp (—#ul_e) .

2.1. Regularity results for interacting Brownian particles

2.1.1. Uniform bound ( of the weighted fluctuation of each particle around its initial position

For T' € M(C), we denote X; = 0,(I') and z; = 0;(7). Let n €]0,1[ be fixed in this Section 2.1. We study
the following random variable
| Xk (t) — Xk (0)]

I') = sup sup —F——7--——"-
CT) = sup Su T X))

In [14], the author proved that Q7-a.s., ( < +00. We need here a more precise estimate of the law of (.

Proposition 2.2. For all ¢ > 0, there exist two strictly positive constants a; and by such that, for every
v € Mg(R?) and u > 0, the following inequality holds:

Q7 (€ > ) < arE ()2 exp <g(”7)u) . (16)

In particular, ¢ is finite Q7-almost surely and admits moments of all orders under Q7.
Proof. To begin, we enounce some easy properties of any point measures in Mg (C).

Lemma 2.1. Let T' € Mg(C); T satisfies both following inequalities:

Vn € N*, sup I'(t) (B(O,n)) < n"l||F||g7
te[0,1]

vte[0,1],Vk>2,  O.(T(t) > <%> "

For all ¢ € [0,1] and k € N*, we denote by N(t,k)(I') the random variable I'(t)(B(Xy(t), R)), that is the
cardinality of particles which are at time ¢ in the ball centered at X (t) with radius R; let also define

N(t, k)
N(I)=1+ sup sup ——————-
() =1+ sup S TF K@)

Lemma 2.2. For all ¢ €]0, 1], there exists two strictly positive constants as and by such that for all v € Mg(R%)
and u > 0, we have

Q7 (N > u) < agexp (—gé)s)Qule) .

In particular, N is finite Q7 -almost surely.

Proof. Let R' = e((RHVD)I-1) 1; so, for all z € R such that |z| > R/,

there exists | € Z¢ such that |z — | < v/2 and B(x, R) € B (l,¢(|l])). (17)



258 D. DEREUDRE

Let t € [0,1] and k € N*,
If | X5 (t)| < R, then B(Xy(t),R) C B(0, R’ + R). Using Lemma 2.1 we obtain

N(t,k) < |T|le(R + R+ 1)%

If | X, (t)] > R', then by (17) there exists a point | in Z? such that B(Xx(t),R) C B(l,g(|l|)) and, due to
Lemma 2.1, we deduce o

N(t, k) < gD e < g(|Xk(B)] + V2)!T e
So,

N <1+ |I'|l¢ sup sup max
keN* 0<t<1

<g<|Xk<t>| +v2)¢

(+ X)) ’(R'““”d);

d
the function % being bounded, and using also Proposition 2.1, we easily obtain the desired estimate for

the tail of the law of NV under Q7. O
We denote by (B )ren+ the processes defined by

BL(t) = Xu(0) ~ Xu(0) + 5 [ 3 VelXis) - Xi(s))ds.
(U

It is a family of independent Brownian motions under Q7.
For k € N*, we have

X))~ )] < [ 305 IVe(Xas) - Xi(s))ds + [Bu(o).
0 £k
So, .
| Xk(t) — X5(0)] < <%||W|oo+1> N/O (14 Xi(s))"ds + | Bi(t)].

Let us define X = supg<,<; [Xx(t) — Xx(0)[; then

X s&((1+|Xk(o)|)”+(1+Yk)"), (18)
where £ is the following random variable

1 | By (t)] )
= (2Velloo +1) (N + 1+ X007 )
¢ (2H oll )( e 0etey (1+ | Xx(0))7

Lemma 2.3. For all € > 0, there exists two strictly positive constants az and bz, such that for all v € Mg(R%)
and u > 0, the following inequality holds:

¥y b3 1—e ).
QV(€ > u) < as€(y)% exp ( etk ) ;

in particular, £ is finite Q7 —almost surely.

Proof. Due to Lemma 2.2, it is sufficient to control the tail of the law of the random variable

sup sup Bl
ken=0<t<1 (14 [Xx(0)])7
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Let ¢ > 0 and v € Mg (R%); since one knows explicitely the law of the supremum of the Brownian motion, there
exists a constant C7 > 0 such that, for all u > 1,

1

@ (s 110> a1+ X)) < G exp (= 10+ X007

0<t<1

Remark that Y, c. exp(—%(1 + |Xx(0)[)*7) is finite and let us compute an upper bound of this sum as a
function of £(7y): there exists a constant Cy > 0 such that, for all x > Cs, (1 + x)?" > 8dIn(x). So, using
Lemma 2.1, we obtain for k > ko = £(7)C¢ + 1

o (~ 2+ xon) < (521)

Thus, there exists a constant Cs > 0 such that

Sexp (— 20+ XO)?) < ENCE+ Y e (11 + X))

k>1 k>ko
< C3E(7)% (19)

So, there exists a constant Cy > 0 such that for all u > 0,

|Bi(t)] ) -
Tlsup sup —————=——>u | <C4& e iU -
¢ <k61$*0<t51 A+ xe 07 = ") =" ")

We can now complete the proof of Proposition 2.2. Consider the inequality (18)
X —€(1+X%)" < €(1+Xx(0)])".

To solve this inequality, we introduce the functions (h;),cp+ defined by h.(z) = 2 — 7(1 + 2)". A elementary
study of the function h,(z) — 32 proves that for all z > 0

1 1
hr(z) > 2%~ 1—Cs(n) 777, (20)
where C5(n) is a positive constant which depends only on 7. We deduce from (18) and (20) that there exists a
constant Cg(n) such that

Xy, < Com)ET (1 + | Xx(0)))". (21)

Therefore, let € > 0, v € Mg(R?) and 7’ a positive constant such that 7’ < min(e,n); on account of (21)
we have

| X5 (t) — Xi(0)] ) ( | Xk (t) — X (0)] )
~ 1Ak(t) = Ax(U)] ~ 1Ak(t) — ARV)]
“ (kséllg 0221 (14| X%(0))7 su) =@ ks;g) 0221 (14 [Xe(0)) =

@ (e (%)l‘"’)

b/ ’ ’
2 3 1—n')(1—¢
abE(y)? exp <_5(7)206(77’)(1_77')(1—5’) w(1=1)( )) :

IN

IN

where €’ > 0 is chosen such that (1 —#')(1 —¢’) = (1 — €) and af, b5 are the constants associated to ¢’ in
Lemma 2.3. Inequality (16) is thus proven. O
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2.1.2. Estimate of the number of particles interacting with a fized particle

We first give an estimate of the initial position of particles which, at some time ¢ € [0, 1], may come into the
ball B(Xj,(t),2R), where i is a integer, fixed along Section 2.1.2.

Lemma 2.4. One can construct two non decreasing functions Ki and Ko from RT to R such that, for every
T satisfying ((T') < 400, as soon as there exists i € N* and t € [0, 1] such that | X;(t) — X;, ()| < 2R, then

[ X (0)] < K (1 X0 |) + Ka(| X )¢ (22)
Proof. Let i € N* and ¢ € [0, 1] such that | X;(¢) — X, (¢)| < 2R; then

2| < [Xi(t) — @] 4+ | X () — Xig (8)| + [ Xio (£) — 2ig | + |4, |
< QLA+ i) 4 2R 4 C(1 + |24, )" + |24,
which implies that
|zi] — C(1+ |z:i[)7 < C(1 + |4 )" + 2R + |24 (23)

Using inequality (20), it is easy to deduce (22). O
Let 3 be the map from Rt x M(R?) x N* to N defined by

6(2,7,2’) = 7<B(0,K1(|xi|) + K2(|mz|)zlln))

For every T' such that {(T') < 400 and T'(0) = ~, 5({,7,40) is an upper bound of the number of particles
which could come at some time ¢ € [0, 1] at distance smaller than 2R from the particle ig. We now prove some
estimates for the random variable .

Lemma 2.5. There exists two functions K3 and K4 from Mg(Rd) x N* to Rt such that
V2 € RY, ¥y € Me(RY), Vi€ N*,  f(z,7,0) < Ks(y,1) + Ka(7,1)277.
Moreover, for all v,7' € Mg(R?) such that £(y) < E(v') and for some i € RT |0:(7)| < 6:(7")| then

KB(’YJ) < KB(’ylai) and K4(77Z) < K4(’Ylai)'

Proof. By Lemma 2.1, for every v € Mg(R?), the number of particles in the ball B(O, Kq(Jzs)) +K2(|:cl|)zﬁ)
is bounded by (K1 (|z;|) + K2(|:Ei|)zﬁ)d€(fy). So, using Lemma 2.4, we easily prove the estimates for 8. 0O

2.2. Interacting Brownian particles as Gibbs fields on C

The aim of this section is to prove that solutions of system (15) with a tempered Gibbs field as initial law,
are Gibbs fields on C (¢f. Th. 2.1). In the following proposition, we exhibit a large set of tempered Gibbs fields
on R? by providing an estimate for the law of the logarithmic fluctuation energy under these Gibbs fields. For
a related result, see [13] too. It will be used in Section 2.3.

Proposition 2.3. Let p be a Gibbs field in G(h¥,\) where v is a multi-body superstable and lower reqular
interaction. Then there exists two strictly positive constants as and by such that for all u > 0

u(é‘('y) > u) < aqe bt

In particular, p is tempered.

For the exact definition of multi-body superstable and lower regular interaction, we refer to [32] (p. 128).



INTERACTING BROWNIAN PARTICLES AND GIBBS FIELDS ON PATHSPACES 261

Proof. For k = (k,...,ka) € Z¢, we denote by Dy, the following cube in R?, k1 — 3, k1 + 1] x .. Jka— 5, ka+ 3].
For every | € Z* and p > 1, E; , is the minimal subset of Z? such that

B(l,p)c |J D&

keEy

By definition of £(7,l,p) and using the fact that ¢ has a compact support, we deduce that there exists a
constant Cy such that

E(lp) <Co Y A(Dy).

k‘GElwp

By Corollary 2.8 in [32], there exists two constants C7 and Cy such that, for all u > 0,

Now, let us analyse the tail of the law of £(7).

£(7) = sup sup ((rg<|l|>)‘d £ L rg(1]) + 1)

€74 reN*

= sup (p;d Ey Ly ) + 1)
neN*

where the sequence (I, pr)nen+ is constructed in such a way that the following sets coincide

{B(Z,rg(|l|)), lezd re N*} - {B(ln,pn),n c N*}

and (pp)nen+ is increasing.
Let us compute a lower bound for p,. Let n € N*, we have

{B(l,rg(|l|)),l € Z% r € N* such that rg(|l]) < pn} c U {B(l,rg(|l|)),l € Z¢ such that |I| < g*(pn)},

1<r<pn

where g* is the inverse function of g. So there exists C3 > 0 such that, for every n € N*
Card{B(l,rg(|l|)),l € Z% r € N* such that rg(|l]) < pn} < Cs3g* ().

Since C3g*(pn)?T! is greater than n there exists some constants Cy > 0 and Cs > 0 such that

pn > CyIn(Csn)d. (25)
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From (24) and (25), we deduce that for u > g—f + 01205

ZM(E(V,/iZ,Pn) Zu) < Z C2—Cru Z O n(Csn)(Ca—Cru)
n>1 n 1§n§cL5 n> [%5]4_1
< ﬁefcuur Z (C n)cj(crclu)
= 5
> [aln
Co C{(C2—Chu) -2
e n
< e+ Cs(|=—| +1 )
Cs < g+ 2 ([CLS]H)
nz [ ]+
S a4e—b4u’
where a4 > 0 and by > 0 are constants. Therefore, for u sufficiently large, u(£(y) > u) < ase™"*%; adjusting

the constants a4 and b4 this inequality holds also for all u > 0. O
Coming back to the aim of this section, let us define a functional which will be the local dynamical Hamiltonian
on the pathspace in the main Theorem 2.1. For X € C and T' € M(C),

HD) =5 Y (X - Y1) - 9(X(0) - ()

Yer\x

- [ (20 31veR)x(0) - Vs )

+i Z /0 (V(p(X(s) =Y (5)).Vo(X(s) — Z(s))

{Y,Z}CcI\X

+Ve(Y(s) = X(5))-Ve(Y(s) - Z(s))

LV 2(s) — X(5)).VplZ(s) — Y<s>>)ds. (26)

Remark that H® is associated to the following two-body and three-body interaction ®:

PV = 3 (X () - V(1) - 9(X(0) - Y(0)

- [ @p - §veR)cx ) - Yo )

o((xv.2p) = 1 [ [7o0x() - Y)9e0x() - 265)
TV () ~ X(9).VeV (5) - Z(5)
FTRZ(6) ~ X(6)-Tel2(5) - ¥ (o)) as.
B(K) = if Card(K) ¢ {2,3}-
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Furthermore, H®(X,T') is not defined for all X € C and I' € M(C), but due to Lemma 2.4 the formula (26) has
a sense Q7-almost surely (the sums are finite Q7-a.s.).

Theorem 2.1. Let h be a local Hamiltonian on R? and m a o-finite measure on R%; then the following
assertions hold:

for each tempered p € G(h,m), Q" € G(hopry + H®, @w™),
for each tempered p € Go(h,m), Q" € G.(hopry + H®,@w™).

Before giving the proof of the above theorem, let us show that in the following sense:

Lemma 2.6. Let v € Mg(RY); for any io € N* and all measurable bounded functional F' from C x M(C) to R
we have

/ exp (H(I)(@ig (D), F))F(@io (I),T = de,,r)Q"(dI') = / / F(X,T)Q" %™ @ ™ (dTl, dX).
M(©) Mo Je

Proof. Another way to write H® is the following:

H®(X,,,T) = % Z (@(Xi (1) = X5(1)) — ¢(Xi, (0) — Xi(0)) — / Ap(Xi,(s) — Xi(s))ds)
i#ig 0
1! 1
S35 | T~ Xi(s): 3 5 Velils) - X, (5)ds
izio ~ 0 i
+%/0 i ; V(X (s) — Xi(s))| ds
_% 3 /O ﬂw(xio(s) — xi(s))| ds. (27)

i£ig

Since the process

(Xi(t) — X;(0) + /Ot % > Ve(Xils) - Xj(S))dS)ieN*

J#

which we denote by (B;)iec,. is an infinite family of independent Brownian motions under @7, we can use Ito’s
formula to obtain for each i # ig
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Thus, together with Lemma 2.5 this implies that

2
ds

1
1
THXD) =[5 3 TelXils) = Xi)dBy o)
i#i
1§iSﬁ(Coy%io)
1 (1
Sl X el - i)
0 iio
1<i<B(¢,5i0)
1
1
Y[ TR () - Xio)BiG)
iio 0
1<i<B(¢,74i0)
1 1
> /O—ch(XiO(s)in(s)) ds.
1<i<B(¢,7yi0)

Therefore exp (H (X, I‘)) is equal to an exponential local martingale evaluated at time 1:

exp (H‘P(XiO,F)) = exp (Jio /01 Ai(s)dB;(s) — %/01 |Ai(5)|2d5) ,

where

2 VeXi(s) = X;(s)) sii=io
JFb
Ai(s) =4 1528 0) (28)

%ch(Xi(s) — X, (9)) si i # io.

Thanks to Proposition 2.2, ¢ is Q7-almost surely finite and then it is Qvﬂs% ® wvio-almost surely finite too;
this implies

1
Z/ |A; (t)]?dt < 400 Q" %0 ® w0 — p.s.
— Jo
K2

From the uniqueness of tempered solutions of system (15) for y = ¢, and p = 57—5% we deduce the absolute

continuity of nyzs% ®w®io with respect to Q7 (it is a consequence of aninfinite-dimensional version of Ths. 12.57
and 12.73 in [20]); the density process is equal to the martingale

+oo .1 1
exp <Z/O Ai(s)dB;(s) — %/O |Ai(s)|2ds).

This proves the lemma. O
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Coming back to the proof of Theorem 2.1, let 1 € G(h, m); for all bounded positive measurable function F
from C x M(C) to R we have

Chy <exp (h(X(O), 1(0)) + H*(X, F))F(X, r))

- / YOI XD pY, T — 5 )T(dX)Q (dl)u(d)
M(RE)x M(C)xC

= Z eh(97,(v)ﬁ)/ eH‘?(@i(F)aF)F(@i(F)’F — do,r)) Q7 (AD) u(d).
M(R?) SN M(C)

By Lemma 2.6, this is also equal to
> e / F(X,D)Q" %0 (dI') @ " 0(dX ()

/M@W) iEN* M(C)xc
=Cy | e / / F(X,T)Q"(dl) @ =*(dX) |.
M(C) JC

Using Proposition 1.1, it is also equal to

/M(Rd) /Rd </M<c)/cF(X’ NE™(dr) wz(dX)> p(dy) ® m(dzr) = /M(C)/CF(X, T)Q*(dl') ® w™(dX).

Therefore, thanks to the last implication of Proposition 1.1, we obtain that Q* is a Gibbs field in G(h o pr,
+H,@w™).

When g is no more Gibbs but only canonical Gibbs, i.e. p € G.(h,m), then p is a mixture of Gibbs fields in
(G(h,zm)),er+ (6). So, Q" is a mixture of elements in (G(h o pry + H, 2w™)),ecr+ which means exactly that
Q* € G.(hopry + H,@™). O

In the following lemma we prove that the projection at time ¢ of a Gibbs field on C is a Gibbs field on R<.

Lemma 2.7. Let m be a o-finite reference measure on R, H a local Hamiltonian on C, P a Gibbs field in
G(H,w™) and t € [0,1]. Let us assume that the measure m; = w™ o pr; * is o-finite; if we denote by hy(x,7)
the following expression:

ha(w,7) = log Ch (#XD)|X (1) = 2,T(t) = )
= —log /C /M(C) e HED o™ (AX|X (1) = 2) ® P(AT|T(t) = 7) (29)

then the probability measure P o prt_1 is a Gibbs field which belongs to G(ht,my).

Proof. Let P € G(H,w™); using the characterization of Gibbs fields of Proposition 1.1, by projection at time
t € [0,1], we obtain

Ch (e XD X (1) = 2, T(t) = 7) Ch, (d(w,7) = me ® Py (d(w,7)

where P := P o pr, 1 Thanks to the last implication of Proposition 1.1, this proves that P, is a Gibbs field
in g(ht, mt). O
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Remark. Let u be a Gibbs field on R? with respect to any reference measure m. Then, for each t €]0, 1],
Q" o pr, is a Gibbs field on R? with respect to the reference measure m;, which is absolutely continuous with
respect to the Lebesgue measure. This is a regularization property for the solution of system (13).

The above lemma has the following consequence for finite volume:

Lemma 2.8. Let i be in P(Mg(R?)); then, for all t €]0,1] and A € B(R?),

QY (d’YA "}’AC) < m (d’yA) QY -a.s.

Proof. 1t is sufficient to prove this lemma for p = é,/, since the absolute continuity property remains true by
randomizing the initial condition. Let 7/ € Mg(R?), ¢ €]0,1], A € B(R?) and A C M(A) such that w3 (A) = 0.

For Qzl—almost every e,

QI (e A‘7A0> =3 > Q(TOM) =n X (1), X, (6) € AJD(B)re = e

n€N {i1,i0,...,in FCN*

« QY (5&1(” +oF0x ) € ATBae = vae, TEA) =1, Xy (8),..., X, (1) € A).

But by Lemma 2.6,

Q" < QV'*‘Seil(w’)*m*‘sein(w @) . @wlnt),
so, the law of (X;, (¢),...,X;, (t)) is absolutely continuous with respect to A®" under Q7 ([T(t)ac = 7ae,
I't)(A) =n, X;, (t),..., X, (t) € A) which implies that

Q7' (v € A ) = 0. 0

2.3. Gibbs fields on C as laws of interacting Brownian particles

In the following theorem we prove that Gibbs fields associated to the local Hamiltonian h o pry + H?® are
weak solutions of system (13) with initial law a h-Gibbs field.

Theorem 2.2. Let m be a o-finite reference measure on R? and P a tempered canonical Gibbs field
mn gc(h opry + H‘p,wm), where h is any local Hamiltonian on R?; if there exists n €]0,1[ such that the
random variable X(t) - X(0)|

ST T X
has a moment of order % under P, then P is equal to the law Q" of the weak solution of (15), with an initial dis-
tribution p = Py being a canonical Gibbs field in Ge(h,m). Moreover, if P € G(H®(X,T') + h(X(0),1'(0)),=@™),
then Py € G(h,m).

(30)

The following lemma explains why we choose a moment assumption on ¢ in the Theorem 2.2.

Lemma 2.9. Let v be a multibody superstable and lower regular interaction, and p € G.(h¥,m) be a Gibbs
field on R for the local Hamiltonian h¥; then, for every n €]0,1[, the variable ¢ defined in (30) admits finite
moments of any order under Q".

Proof. To prove this lemma, let us show an estimate for the tail of the law of ( under Q*. Using Propositions 2.2
and 2.3 with ¢ = %, we obtain

Q“(¢zu) <@ (¢ 2w ETO) ub) +Q(¢ = u,E(T(0)) = u?)

< alu% exp ( - blul% + aq exp(fb4u%). O

N—
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Proof of Theorem 2.2. Let P be a tempered canonical Gibbs field; we write P = P(.|T'(0) = 7) and P =

P7 007! where O is defined in (3). Since we would like to use known results about the lattice case, we are
now studying the probability measure P¥ on CN".

Lemma 2.10. For Py-almost all v, P is a Gibbs measure on CN" associated to the Hamiltonian H defined,
for every v € N*, by

gy () = 5 3 () = w3 (0)) ~ pl0:(0) = wy0)

J#i

A(A¢+%Wﬂﬁww@wng§
- Z i/o [Vg@(wi(S) —w;(s)).Vo(w;(s) — wi(s))

<k, j#ik#i
+Vo(w;(s) — wi(s)).Vo(w;(s) — wk(s))
+V(wi(s) — wi(s)).Ve(wr(s) — wj(S))} ds, (31)

where w = (w;)jen+ is the canonical variable on CY" and the reference measure is the infinite product of Wiener
measures Qen-w? () on CV .

Proof. Since the measure P on M(C) satisfies the equations given in Definition 1.2, it is easy to see that the
so-called DLR equations are satisfied by PY on CN". (]

Now, we would like to use Theorem 4.9 in [3], which proves that every Gibbs measure on CN" associated to
the Hamiltonian (ﬁ{i})ieN* is a gradient diffusion as soon as certain assumptions are fullfilled. Let us verify
that these assumptions are indeed satisfied in our situation.

Lemma 2.11. For P-almost all v, P7 satisfies

wtel0,1], VieN, Ep (jwi(t)]) < +oo, (32)
and
1
Ep | Yo | IV Viki(w(t))]dt | < +o0, (33)
JjEN*
where

hi((z5);) = Y olai — x;), (x;); € RDY,

and V]-Viizi is the second derivative of h; with respect to the variables x; and x;. Moreover, the function ﬁ{i}
is L*(@;en-w? ) -differentiable and we have

1
Ep, </ |DiH{i}|dr> < +00. (34)
0

Proof. Remark that (32) (respectively (33)) corresponds to the property (2.12) (respectively (4.10)) in [3].
We denote by ¢ the following function from CV" to R

Cw) = sup e T T @)
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For all i € N* and all ¢ € [0, 1]
Jwi(#)] < [wi(0)] + {(w)(1 + |wi(0)[)",

implies

! ~ 1
S [V Vikiwo)Pd = Y / TV o (8) — s (6) Pt
i< "
< [IVVel% B 7:9)
< VYl (Ka(r, 1) + Kalr,){77 ),

where K3 and K4 are the functions introduced in Lemma 2.5. Since (f admits a moment of order % > 1

under P?, equations (32) and (33) are proved.
Hy;y is obviously L2(®ieN*wem(”))—differentiable, and there exists a constant Cy such that

L - - 2
/ DL Hy lar < C1B(C7,1) < Cr (Ka(3,1) + Ka(1,1)(77 ) O
0

Thanks to (32-34), we can apply Theorem 4.9 in [3] to conclude that P7 is a weak solution of system (15) with
initial condition p = 6,. Therefore, P is a weak solution at (15) with initial law g = Py which we have to
identify.

If P is a Gibbs field on C, then by Lemma 2.7, Py is a Gibbs field on R? with reference measure m and local
Hamiltonian % given by: Vo € R? vy € M(R?) such that y(z) = 0,

h(z,7y) = logC}g<exp (h o prg + H‘I’) ‘I’(O) =~,X(0) = x)

Let ¢ € N* such that = 6;(y + d,), then

e ) = tog Ep  exp (H(OUD).T = 0o, ) + (o) [1(0) =)
= h(z,7) + log Ep- (exp (H®(©(I), r\@i(r)))).

As in the proof of Lemma 2.6, exp (H*(0;(T"),I'\©;(T")) is a Q7-exponential martingale evaluated at time 1.
Since PY = Q", h(x,v) = h(x,7) and Py € G(h, m).

Now, if P is not Gibbs but only canonical Gibbs, i.e. a mixture of Gibbs fields, we can easily deduce that
Py € G.(h,m). O

3. SOME APPLICATIONS AND GENERALIZATIONS

We now apply our results to the problem of time reversal. We also generalize Theorem 2.2 to general Gibbs
fields. To this end, we need some new tools presented in the following Section 3.1.

3.1. Integration by parts formulae under Campbell measures

Let E denote the set of step-functions from [0, 1] to R? and F}, the set of bounded functions from R¢ x M (R9)
to R which vanish for |z| and £(v) sufficiently large and with bounded derivatives with respect to the vari-
able z. W denotes the set of following functionals from C to R: f(X(0), X (t1),...,X(tn)), where f is a
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continuously differentiable function with compact support. Similarly, W is the set of following function-
als from C x M(C) to R: f(X(0),X(t1),...,X(tn),I') where f is a bounded function which vanishes for
| X (0)], | X (t1)], .-, | X (tn)]|, E(T(0)) sufficiently large and with bounded derivatives with respect to the n + 1
first variables. D is the Malliavin derivation operator on C and D, the derivation in the direction g € E.

We now exhibit in the next Propositions 3.1 and 3.2 an integration by parts formula for canonical Gibbs
fields on R? and C. For the proofs, we refer to [5].

Proposition 3.1. Let h be a local Hamiltonian on R¢ which is differentiable with respect the first variable for
each (z,7) such that E(y) < +oo. Let u € P(Mg(R?)) satisfying u(Mpa.(RY)) =1 and, such that for every
M >0,

€4 (14 ) (14 h(ar 1)) T ans (. £(7))) < +ocs
then p € G.(h, \) if and only if
VfEF,,  Cu(Vaf)=Cu(fVih). (35)

Proposition 3.2. Let H be a local Hamiltonian on C and P a tempered canonical Gibbs field in G(H,w™);
we suppose H D-differentiable with respect the first variable for P-almost all T'; if the following integrability
property holds: VM > 0, Vt € [0, 1]

1
Ch (X1 + [ 10108 T (X0 £00))) < +2x (36)
then P satisfies the following equation: Vg € E, VF € W,

cl, <F(X, I) /0 1 g(s)dX(s)> = (DgF(X, I) — F(X,T)D,H(X, r)). (37)

Remark. The duality equation (37) is based on the famous integration by parts formula on C which characterizes
the Wiener measure, ¢f. [15]. Later, it has been generalize in [30] to characterize the Gibbs fields on C. The
Proposition 3.2 is another generalization to canonical Gibbs fields on C. Equation (37) is in fact satisfied for
a larger class of probability measures on M(C). For example, in the following proposition we prove that it is
satisfied for H = H® and P = Q", where y is any probability measure on Mg (R?) (not necessarily a Gibbs
field).

Proposition 3.3. Let € P(Mg(R?)); then for every g € E and F € W, the following duality equation holds:
! ! !
Chy <F(X,F) / g(s)dX(s)> — Ch. (DgF(X, I) - F(X,T)D,H®(X, r)). (38)
0

Proof. Let g € E and F € W:

g(s) = ulﬂ[wl[(s) + UQI[[tht?[(S) + .. .unﬂ[tnfljtn[(s),
F(X,T) = F(X(0), X (t1), -, X (t2), 7)o ar (E(T(0))).

We note X; = 0;(T"), z; = X;(0). First, let us prove that all the terms in (38) are well defined.
Choose | € R such that F(X,T') = 0 as soon as |X(0)| > I; then, for all ¢ € [0,1] and ¢ € N* such that
X;(0) € B(0,1), we have | X (i)(t)| < 14 ¢(141)2, where ¢ is defined in (30) and 1 = 1. From Lemma 2.1 which
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controls the number of points of I" in B(0,[) we deduce

1
Ch. <|F<X,r> / g(s)dX(s>|> < /m (X 00) = XN -+ funl | () = X t-0)])
X|F(X,T = 6x) 10,1 (€(T(0)))D(dX) Q" (dT)
< / 2| F o max(fual, . .., [un|) (1 + C(1+1)2) MI%To ) (E(1(0))) Q" (dI).
M(C)
Thanks to Proposition 2.2 the variable (M 5(E(T'(0))) has a finite Q-moment, so that the left term in

equation (38) is well defined. There is no problem for the term C”QM (DXF(X,TI)) because DXF(X,T) is

bounded. About the last term, we remarked in Lemma 2.11, that DgH‘I) (X;,T) is well defined and that there
exists a constant C7 such that

|DyH®(X;,T)| < C1B8(¢,7,0)2

By Lemma 2.5, there exists two constants Cy, C3 such that

Cor (IDH*X.DF(XD) < [ MLACH(Co+ Cag™)1Fllx o (E(T(0)Q"(AT)

which is also finite since (g 2s(E(I'(0))) has a finite moment of order 4d under @Q*. Now, we can do the
following computations: due to Lemma 2.6, we have

Chy (F(X,F) /O 1g(s)dX(s)) - /M(MZ /M(C) (F(Xz-,l“féxi) /O 1g(s)dXi(s))Q7(dF)u(dfy).

_ exo (— P - 1 . .
- /M(Rd)zi:/M(C)( p(-H*X,D)FX,T 5X)/O g(s)dX( ))
X" ® Q7% (dX, dI) u(dv).

Using the integration by parts formula under w?®: and localizing the L?-derivation, the last expression equals

- ¢ exp (— H® _
/M(Rd)zi:/M(C)( DyH*(X, T exp ( ~ H¥(X, 1)) F(X,T ~ bx)
+ Dy F(X,T = 6X)exp (— HY(X, F)))wzi ® Q70 (dX, dI)pu(dy)
_ P L o i
/M(Rd)z;/M(c)< D H®(X;,T)F(X;,T — 6x,) + Dy F(X;,T 6Xi))Q (dT)p(dy)
= Cou ( — DyH®(X,T)F(X,T) + DyF(X, r)), .

3.2. Application to reversible measures

A probability measure p € P(Mg(R?)) is called reversible under the dynamics of system (13) if for every
t € [0,1], the processes (I'(s))sejo,) and (I'(t — s))se[o,¢) have the same law under Q*.

In [22], Lang proved under strong assumptions that the reversible measures of system (13) are the canonical
Gibbs fields in G.(h?,\), where h¥ is defined in (12). We give here another proof of this result under much
weaker assumptions on the reversible measures. More precisely, Lang considered only tempered reversible
measures which are locally absolutely continuous with respect to the Poisson process with regular integrable
densities. In our context, we consider reversible measures which are only tempered a priori.
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Proposition 3.4. A probability measure u € P(Mg(R?)) is reversible for the dynamical system (13) if and
only if u € G.(h¥, ).

Proof. First, we introduce the following notations: for X € C, I' € M(C) and P € P(M(C)) we denote by X,
respectively I', the process (X (t))¢ejo,1] = (X (1 — ))se[o,1], respectively I'(.) = I'(1 — .), and by P the law of T’
under P.

We now prove that p is reversible if p € G.(h®, \).
Let 1 € G.(h?,\). By Proposition 2.3, y is tempered. Therefore, using Theorem 2.1, Q" € G.(h¥ o pr,

+H®, w’\). The local Hamiltonian h¥ o pr, + H? is invariant for time reversal, so Q" is a canonical Gibbs field
in G, (h‘/’ opry + H‘p,w/\) too. Thanks to Theorem 2.2, Q“ is a weak solution of system (15) with initial law
Q"o prfl. By uniqueness of the solutions of (15), it is then sufficient to prove that Q* o prf1 = u to conclude
that Q" = Q“. Let us denote by v the following probability measure:

v=Q"o pr;1 =Qro prgl.

Q" and Q" are Markovian solutions of (15), so Q*opry * is the law of I'(1) under Q and, similarly, p = Qropry!
is the law of F(%) under @Y. Therefore, u = Q" o prl_1 and Q" = Q~. Applying the same argument on each
interval [0,¢] instead of [0, 1], we prove that y is reversible.

We now prove that any tempered reversible measure y is a canonical Gibbs field. Let @ be a vector in R¢
and f a function in Fy,. Writing equality (38) for g(s) = —4 and F(X,T") = f(X(0),T'(0)), we obtain

Chy (#.(X(0) ~ X(W)F(X(0).7(0))) = Ch (DaH* (X, T)F(X(0), T(0))). (39)

Similarly, let us write (38) for g(s) = @ and F(X,T") = k(X (0)) f(X(1),T'(1))1, a1 (£(I'(0))), where k is regular
bounded function from R? to R with compact support:

Chy ((X (1) = X (0))£(X (1), D(L)A(X (0)) o ) (E(T(0)) )
= Cly (= DaH® (X, T) F(X (1), (1) k(X (0)) o g (E(L(0))
+ 8., f(X(1), T(1)k(X (0)) T a0 (E(D(0)))) .~ (40)

Now, by time reversal, letting K (respectively M) converge to 1 (respectively to +00), we obtain a new equality
which, together with (39), gives

Clyu ((DaH™* (X,T) + DY H(X, 1)) f(X(0).1(0))) = Che (@.9,f(X(0).T(0))). (41)

Let i be a fixed positive integer; using the expression (27) of H®(X;,,I'), we compute the term DgH®(X;,,T")

under Q7:

07?7

DgzH®*(X;,,T) = % Z (E.V@(Xio(l) - X;(1)) - /o su.VAp(X;,(s) — Xi(s))ds)

iio
_i ; /0 $(TVV(Xiq () = Xi(5)) ) g Voo (Xi(s) — X;(s))ds

+£/O s | D0 V(X () = Xi(s)) | - | D0 @VVe(Xi () - Xi(s)) | ds.

i#ig i#ig
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This implies that:

DzH®(X;,,T) + DzH®(X;,,T) = ; > (a‘.v@(xioa) — Xi(1)) + @.Vp(X;, (0) — Xi(O)))

’L;ﬁ’io
1 z/ 0V Ap(X (5) — Xi(s >>ds)
27520
Y[ (AT - X)X V() - o)
i#ig J#i
/ ZV@ i ($)—Xi(s)]. ZG.VV@(XiO(s)—Xi(s)) ds. (42)
i#£i0 i#£i0
But, for all i € N*, the process X;(t) — )+ 5 fo ki Vo(Xi(s) — X;(s))ds is a QV-Brownian motion; so,

by Ito formula, we obtain
o (f(Xio(O), r(0)( Da™ (X, 1) + Dt (5, F)))
= Lo (f(X’Lo ( > V(X4 (0) — X,(0))

i#i0

=3 / LYV (X (5) - X <))(dXz-<s>+%ZVso(Xxs)fXj(s))ds)

i i
4= ;/ @.VVp(Xi,(s) — Xi(s ))(dXiO(sH%];Ow(Xio(s)Xj(s))ds))>

~ By ( (.94 (X,, 0).(0)) £, (01.T0) ).
This computation, together with (41), implies that

Chye (LY (X (0),T(0) f(X(0),T(0))) = Chy (.9, F(X(0),1(0))).
Using Proposition 3.1, we conclude that y is a canonical Gibbs field associated to the local Hamiltonian h¥. [J

Remark. To prove that a reversible measure is a canonical Gibbs fields, we use only Q* = Q“ which is weaker
than the reversibility.

3.3. General Gibbs fields on C as Brownian diffusions; application to time reversal
in the non stationary case

Theorem 3.1 is a generalization of Theorem 2.2 when the local Hamiltonian H is general. First, we prove a
lemma which we will use later to identify diffusions.
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Lemma 3.1. Let (b)ep0,1] a family of Fi-adapted functionals from C 2 M(C) to R and P a probability measure
on M(C) such that C’}; is o-finite; then the following assertions are equivalent:

i) the process
t
Wi =:0;(I)(¢) — 0,;(I")(0) — / bs(0:(T), T — dg,(r))ds, forie N* tc0,1]
0

is an infinite family of (P, Ft)-Brownian motions starting from 0;
it) the process

t
W, == X(t) — X(0) 7/ b(X,T)ds,  forte[0,1]
0
is, for all M >0, a (M, (X(0))C%, F;)-Brownian motion starting from 0.

Proof. Let us first prove that i) implies 7). For every s € [0,1], every F,-measurable functional Fy in W, we
have for t > s

Cp (E.(X.T) (W, ~ W) = /

/ Fu(O4(T).T — So,ry)(Wir — Wi ) PT(AD)Po(dr).  (43)
M(RY) M(C)

i€EN*

Since for all i € N*, W; is a (P, F;)-Brownian motion under P, W; is independent from the o-algebra Fy and it
is a (P7, Fi-Brownian motion too). Therefore,

cL (FS(X, ) (W, — Ws)) —0,

and W; is an Fi-martingale under Mo pn(X (0))Ch. Similarly, we can prove that W72 — ¢ is an F;-martingale
under (g 57 (X(0))C}p which implies ).

Now let us prove that ii) implies i): let v € M(RY) and i € N*. W is an JF;-Brownian motion under
1}y, (X(0))Cp and independent from Fo. Thus, W is also an F;-Brownian motion under Ch( [X(0) =
0;(7),L(0) =~ — 0g,()). By the identification

Ch ((aX,dD)|X (0) = 6:(7),T(0) = 7 = 85,()) = P ((dO(T), d(T" ~ bo,19)) )

we deduce that W; is an F;-Brownian motion under P? and also under P. U
Remark. In the proposition 7) the family of Brownian motions is not supposed to be independent.

Theorem 3.1. Let P be a canonical Gibbs field on C in G.(H,w™), where m is o-finite measure on R? and H a
local Hamiltonian which is L?-differentiable with respect to the first variable and which satisfies the integrability
condition (36); then, denoting by X;(i € N*) the random variable ©;(T'), the process

X;(t) — X,(0) — /Ot bs(Xi, > 0x,)ds (44)

J#i ieN* te[0,1]

is a family of independent P-Brownian motions in R%, where (by(X, I'))tejo,1) s the adapted process from C x
M(C) to R defined for A-almost all t by

by(X,T) = —Ch (DtH(X, F)‘]-‘t).
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Proof. P is a canonical Gibbs field on C; therefore Proposition 1.1 implies that there exists a measure P e
P(M(C)) such that Ck is absolutely continuous with respect to @™ ® P. Consequently, the finite measure
T, A (X (0))C% is absolutely continuous with respect to @™ ® P too; this implies the existence of a process
(bt)ief0,1] on C ® M(C) such that

/ bs(X,T)d

is a F; Brownian motion starting from 0 under M 5 (| X (0 )|)C%, for every M > 0. From Lemma 3.1, we deduce
that, for each ¢ € N*,

Bi(.)::Xi(.)—Xi(O)—/ o XD ox, | ds
J#i

is an F;-Brownian motion with values in R? under P. We now prove that these Brownian motions are inde-
pendent, when ¢ varies. Using the same argument as in Lemma 2.10, we know that, for all finite subset A
in N*, PY0©~1 is absolutely continuous with respect to ( ®,;c, @) @(P70O©1)xe on C". So there exists

a process (bﬁt)ie,\ such that
(wz() —w;(0) — / bﬁs(w)ds)
0 i€EA

is a family of independent P7o©~!-Brownian motions, where w = (w;);jen- is the canonical variable in CN". Us-
ing the uniqueness of the semi-martingale decomposition of w, we deduce that (B;);ca is a family of independent
Brownian motions under P”.

Next we identify the process (bs(X,I"))c[0,1- Since X (t) fo (X,T')ds is a Brownian motion, it is
an Fi-martingale under Mo x(]X (0 )|)C’Q, therefore the followmg equahty holds

b (e - () - [ b06ran) <o (45)

for every 0 < s < t < 1, and every F,-measurable functional F, in W. This equation together with the
integration by parts formula (37) applied to g = 5,4 and Fy, implies that

Ch ( s(X,T) (/t b (X, T) + D,.H(X,I‘))) =0.
s
By classical approximation methods, we deduce easily that, for s € QN [0, 1] and for A-almost every r € [0, 1]
cl (]ISQFS(X, T)(b.(X,T) + D, H(X, r))) —0.
Letting s converge to 7, this implies that, for A-almost every r € [0, 1],
be(X,T) = ~Ch (D, H(X, F)‘}',.). O

In Theorem 3.2 which follows, we give an application to the time reversal in the non stationary case.
For simplicity, we denote by H(X,T') the local Hamiltonian H (X ,T").

Theorem 3.2. Let P be a Gibbs field on C in G(H,w?), where H is a local Hamiltonian such that H and H
are L2-differentiable with respect to the first variable and that they satisfy the following integrability condition:
VM >0, Vt € [0,1]

! ! 2 712 .
cp(<|X<t>|+ [ .+ 1.y )H[OM (1X(0 >|,e<r<o>>>) < foo; (46)
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then, if for every i € N* we denote by X; the variable ©;(T'), there ewist two adapted processes (bs)sejo,1] and
(63)56[0,1] from C x M(C) to R such that

X;(t) — X;(0) — /O t be | Xi, D> 0x, | ds (47)

el ieN*, te[0,1]

s a family of independent P-Brownian motions and

Xi(t)—Xi(O)—/()tés X,y Ox, | ds (48)

g7 ieN* te[0,1]

s a family of independent P-Brownian motions too.

The processes b and b are called forward and backward drifts associated to P; if we denote by hy the local
Hamiltonian associated to the Gibbs field P, = P o prt_l, we have for A-a.s. every t € [0,1], and P:-almost
every vy,

—Vohi(w,7) = Ch (bt(X, )+ b (X, D)X (1) = 2, D(¢) = 7) A—a.s., (49)

where V is the weak gradient operator in H'2(R% \). In the case d = 1, the equation (49) remains true by
substituting the weak gradient operator V by the ordinary gradient operator V.

Proof. Since P is a Gibbs field in G(H,w?") and &* = @ it is clear that P € G(H,w"). By Theorem 3.1, b,
and b, exist and satisfy (47) and (48).

On the other hand, Lemma 2.7 proves that P; is a Gibbs field in G(h¢, A), where h; is explicit.

Equality (37) applied to g = 154 and F(X,I") = f(X(t),I'(t)) implies

cl (f(X(l — 1), T =) (X(1—t) — X(1— s)))
= (t = 5)Ch (VS (X(0).T(®) = Ch(F(X(®),T) Dy, HX.T)).
Let us divide both sides by ¢ — s and let ¢ converge to s; in this way, we obtain for A-almost every ¢ € [0, 1],
—Cl (F(X(1 =), T(1 = )by (X, 1)) = Cp (Vo f(X(8),T(#)) + Ch (F(X (1), T(1)be(X. 1)),
which can be written as
~Ch, (Ve @) = O, (FlaMae,7)). (50)

where ¢ (z,7) = C} (lA)l,t(X',f) +b¢(X,T)|X(t) = 2, ['(t) = 7). By Lemma 9, C};t = e M\ ® P; therefore,
equation (50) becomes for P;-almost every ~y

/ Vo f (@, y)e VN (de) = _/ F@:7) g, 7)e DA (d). (51)
Rd R4

Thanks to (46), the function qt(.,7) is locally, for P;-almost every ~,
in L2(e~ (@Y \(dz)) and is equal to the logarithmic derivative of the measure e~ \(dz) (cf. [2]). Therefore,
—h¢(x,7) is for Pi-almost every v in HY2(R%, \) with derivative g;(z,7).
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If d = 1, equation (51) implies that, for P;-almost every v, —hi(x, ) is differentiable for A-almost every z
and admit g(x,~) as gradient function. O

Example. If b is a Markovian drift, then b is Markovian too:
be(X,T) = by (X (1), T(1), (X, T) = by(X(1),T(#))
and formula (49) becomes

761}%(1'7’7) = bt(m7’}/) + 81*t(m7’7)' (52)

In particular the assumptions of Theorem 3.2 are satisfied for the Gibbs field Q* in G(hopr,+ H?®, @) solutions
of system (15) with u a tempered Gibbs field associated to the local Hamiltonian h.

3.4. The case d > 4

Some results of this paper remain true in the case d > 4.

If d = 4, Theorems 2.1 and 2.2 are still true (¢f. [6] for the detailed proofs). But, we do not know how to
prove Lemma 2.9. So the moment assumption on ¢ in Theorem 2.2 remains unjustified. Similarly, the proof of
Proposition 3.4 is no more valid, because it uses moments of the function (.

If d > 4, there does not exist any proof for the existence of weak solution of system (15) except in the
stationary case dealt by Lang. In this case where h = h¥, Theorems 2.1 and 2.2 are still true. Nevertheless, the
proof of Lemma 2.9 is not correct in the stationary case.

Theorems 3.1 and 3.2 are obviously true for any d € N*; nevertheless the application to the system (13) is
no more possible since the assumptions of these theorems are satisfied by the law of system (13) only if d < 3.

The results presented in this paper are contained in my Ph.D. Thesis [6] written under the direction of Sylvie Reelly whom
the author thanks warmly for many advises and for her permanent support. The author also thanks the Laboratoire de
Statistique et Probabilités of University of Lille 1 for its welcome.
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