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CONSTRAINTS ON DISTRIBUTIONS IMPOSED
BY PROPERTIES OF LINEAR FORMS ∗

Denis Belomestny1

Abstract. Let (X1, Y1), . . . , (Xm, Ym) be m independent identically distributed bivariate vectors and
L1 = β1X1 + . . . + βmXm, L2 = β1Y1 + . . . + βmYm are two linear forms with positive coefficients.
We study two problems: under what conditions does the equidistribution of L1 and L2 imply the
same property for X1 and Y1, and under what conditions does the independence of L1 and L2 entail
independence of X1 and Y1? Some analytical sufficient conditions are obtained and it is shown that in
general they can not be weakened.
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Introduction

While testing homogeneity or independence hypothesis it occurs sometimes that we have access to the trans-
formed random sample rather than to the original one. Scaling and superposition are among the most common
transformations. Typical examples are the mixtures of simultaneous speech signals that have been picked up
by several microphones, interfering radio signals arriving at a mobile phone, or parallel time series obtained
from some industrial process. Specifically, we consider here the following two setups and two corresponding
problems.

• Let us have two vectors of independent and identically distributed random variables X = (X1, . . . Xm)
and Y = (Y1, . . . , Ym). The problem consists in testing the hypothesis that the distributions of X and
Y are equal on the basis of two linear statistics:

LX = β1X1 + . . .+ βmXm,

LY = β1Y1 + . . .+ βmYm,

where {βi} are some positive real numbers.
• Let us have m independent identically distributed bivariate vectors

(X1, Y1), (X2, Y2), . . . , (Xm, Ym).
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The matter in question is how one can test the independence of X and Y having at hand LX and LY

only.

Regardless of the type of statistical inferences, the corresponding identifiability problems are of paramount
importance.

The problem of defining the distribution of X by means of LX for the case when all {βk} are equal has
been considered in [1] and [8]. We mention also that the first problem considered in our paper is different from
the phenomena investigated by Marcinkiewicz in 1938 (see [6]) and later by Linnik (see [5]). They dealt with
two identically distributed different linear forms in the same i.i.d. variables and tried to get the necessary and
sufficient conditions for the Gaussianity. We investigate the same identically distributed linear forms in possibly
different i.i.d. random variables and are interested in the conditions for the equidistribution of these variables.

1. The main results

Let us rewrite our linear statistics in the following form

LX = b1(X11 + . . .+X1k1) + . . .+ bn(Xn1 + . . .+Xnkn),

LY = b1(Y11 + . . .+ Y1k1 ) + . . .+ bn(Yn1 + . . .+ Ynkn),

where {ki} are natural numbers with k1 + . . .+ kn = m and {bi} satisfy the condition

b1 < . . . < bn. (1)

If n > 1, we set

qi =
ki

kn
, hi =

bi
bn
, i = 1, . . . , n− 1, (2)

τ(z) = 1 + q1h
z
1 + . . .+ qn−1h

z
n−1. (3)

By F1(x), f1(t) and F2(x), f2(t) we also denote the common distribution and the characteristic functions
corresponding to the samples X and Y and by F (x, y), f(x, y) the common distribution and the characteristic
functions of the pairs {(Xi, Yi), i = 1, . . . ,m}. Throughout the paper ∼= will stand for equality in law.

Theorem 1.1. I) Let two random samples X and Y be such that LX
∼= LY.

If one of the following conditions is fulfilled

(1) n = 1;
(2) n > 1, q1 + . . .+ qn−1 ≤ 1;
(3) n > 1, q1 + . . . + qn−1 > 1 and F1(x) possesses finite absolute moments of the order α, where α =

max{<z : τ(z) = 0} > 0,

then f1(t) = f2(t) for |t| < δ, where δ = min{t > 0 : |f1(t)| = 0}.
II) If conditions (1, 2) and (3) are violated then there exist two distribution functions F10(x) and F20(x)
possessing absolute moments of the order α − ε for any ε > 0 such that LX0

∼= LY0 and at the same time
f10(tn) 6= f20(tn) for some sequence tn tending to 0.

Corollary 1.2. Let the conditions of Theorem 1.1 be fulfilled. If f1(t) does not vanish on R, then F1(x) ≡ F2(x).

Corollary 1.3. Let the conditions of Theorem 1.1 be satisfied. If f1(t) has an unique extension from any
interval containing zero on R (see [2]), then F1(x) ≡ F2(x).
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Theorem 1.4. I) Let two random sample X and Y be such that LX and LY are independent. If one of the
following conditions is fulfilled

(1) n = 1;
(2) n > 1, q1 + . . .+ qn−1 ≤ 1;
(3) n > 1, q1 + . . .+ qn−1 > 1 and F (x, y) possesses all absolute moments of the order α:

∫ ∞

−∞
|x|α1 |y|α2 dF (x, y) <∞, α1 + α2 = α, α1, α2 > 0 (4)

where α = max{<z : τ(z) = 0} > 0,
then f(t, s) = f1(t)f2(s) for max{|t|, |s|} < δ, where δ = min{t, s > 0 : |f(t, s)| = 0}.
II) If conditions (1, 2) and (3) are violated, then there exists a distribution function F0(x, y) possessing all
absolute moments of the order α − ε for any ε > 0 such that LX0 and LY0 are independent, but f0(tn, sn) 6=
f10(tn)f20(sn) for some sequences tn and sn tending to zero.

Remark 1.5. The condition (4) is equivalent to the following one

∫ ∞

−∞
(|x|α + |y|α) dF (x, y) <∞.

Corollary 1.6. Let the conditions of Theorem 1.4 be fulfilled. If f(t, s) does not vanish on R2, then F (x, y) ≡
F1(x)F2(y).

Corollary 1.7. Let the conditions of Theorem 1.4 be fulfilled. If f(t, s) has an unique extension from any
square with the centre at zero on R

2, then F (x, y) ≡ F1(x)F2(y).

2. Auxiliary results

Lemma 2.1. Let X1, . . . , Xn be independent identically distributed random variables and

L = a1X1 + . . .+ anXn,

where a1, . . . , an are arbitrary finite real numbers. Then for any r > 0, the condition E|L|r < ∞ is equivalent
to E|X1|r <∞.

Proof. First of all we prove that
E|L|r <∞ =⇒ E|X1|r <∞.

Without loss of generality we assume that a1 6= 0. Let us set b = −m(a2X2 + . . .+ anXn), then

|a1X1 − b| ≤ max
1≤k≤n

|Sk −m(Sk − Sn)|,

where
Sk = a1X1 + . . .+ akXk, k = 1, . . . , n.

According to Levy inequality ([7], p. 51)

Pr[|a1X1 − b| ≥ x] ≤ Pr
[

max
1≤k≤n

|Sk −m(Sk − Sn)|
]
≤ 2Pr[|Sn| ≥ x],

that implies
E|a1X1 − b|r ≤ 2E|Sn|r = 2E|L|r.
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Further, if r ≤ 1
E|a1X1|r ≤ E|a1X1 − b|r + |b|r <∞,

and if r > 1
E|a1X1|r ≤ 2r−1E|a1X1 − b|r + 2r−1|b|r <∞.

In order to prove the inverse statement it is enough to notice that

E|L|r ≤ |a1|rE|X1|r + . . .+ |an|rE|Xn|r

for r ≤ 1 and
E|L|r ≤ nr (|a1|rE|X1|r + . . .+ |an|rE|Xn|r)

for r > 1. �
Lemma 2.2. Let X and Y be two random variables with the characteristic functions f(t) and g(t). If for some
natural number m, E|X |m <∞, E|Y |m <∞ and there exists tending to zero sequence tn such that

f(tn) = g(tn), n ∈ N, (5)

then
f (l)(0) = g(l)(0), l = 0, . . . ,m.

Proof. We notice that f(t) and g(t) are m times continuously differentiable on the real line. Applying consec-
utively the Rolle theorem to the functions

f (l)(t)− g(l)(t), l = 0, . . . ,m

and taking into account (5), we can find tending to zero sequences {tl,n, l = 1, . . . ,m, n ∈ N} such that

f (l)(tl,n) = g(l)(tl,n), n ∈ N. �

Lemma 2.3. For any characteristic function f(t) the following inequalities hold

|=f(t)| ≤
√

2(1−<f(t)),

|=f(at) + =f(bt) + =f(−(a+ b)t)| ≤ (1−<f(at)) + (1−<f(bt)) + (1−<f(−(a+ b)t)), a, b ∈ R.

Proof. The proof of the first inequality can be found in [9] (Chap. 2), of the second one in [5] (p. 230). �
Lemma 2.4. A distribution F (x) with characteristic function f(t) has finite absolute moment of 2k+ λ order,
where k ∈ N, 0 < λ < 2 if and only if for any finite δ > 0

∫ δ

0

t−λ−1

(
1−< f

(2k)(t)
f (2k)(0)

)
dt <∞.

Proof. Can be found in [3]. �
Proposition 2.5. Let continuous and bounded function w(x) satisfy the equation

q1w(x + γ1) + . . .+ qmw(x + γm) + w(x) = 0, x > 0 (6)

where qi and γi are positive numbers. Set

α = min{<z : τ(z) = 0},
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where τ(z) = 1 + q1eγ1z + . . .+ qmeγmz. If one of the following conditions is fulfilled,
(1) q1 + . . .+ qm < 1;
(2) q1 + . . .+ qm = 1, limx→∞ |w(x)| = 0;
(3)

∫∞
0 e−αx|w(x)| dx <∞,

then w(x) ≡ 0 for x > 0.

Proof. If q1 + . . .+ qm ≤ 1 then (6) after n iterations yields

w(x) = (−1)n
∑

n1+...+nm=n

n!
n1! . . . nm!

q1
n1 · . . . · qmnmw(x + n1γ1 + . . .+ nmγm),

hence
|w(x)| ≤ (q1 + . . .+ qm)n max

θ>nγ∗
|w(x + θ)| → 0, n→∞,

where γ∗ = min{γ1, . . . , γm} > 0.
Let condition (3) be fulfilled. Applying the Laplace transform to (6), we have

Φ(z)τ(z)−M(z) = 0, (7)

where

Φ(z) =
∫ ∞

0

e−zxw(x)dx

and

M(z) =
m∑

k=1

qkeγkz

∫ γk

0

e−zxw(x)dx. �

Lemma 2.6. 1. Φ(z) is analytic in the domain {<z ≥ α} and can be expressed there in the form

Φ(z) =
M(z)
τ(z)

·

2. M(z) is an entire function bounded by a constant B = B(c) in every half-plane <z ≤ c.
3. The function τ(z) has the following properties:

(a) τ(z) is an entire function, almost periodic on every line <z = const;
(b) τ(z) does not have zeros for <z < α;
(c) the number of zeros of τ(z) in any closed rectangle {a ≤ <z ≤ b, y ≤ =z ≤ y+ 1} is bounded above

by the number N(a, b), the latter being independent of y;
(d) if the distance between some point z0 and every zero of τ(z) is larger than ε > 0, then |τ(z0)| > A(ε).

Proof of Lemma 2.6. (1) follows from condition (2) of Proposition 2.5 and (7, 2) and (3)(a) arise from the
definition, (3)(b), (3)(d) are corollaries of the properties of almost-periodic functions and are proved, for example,
in [4] (Chap. 6, Sect. 2). �

Corollary 2.7. For any c > 0 there exists sequence Tk →∞ such that |τ(z)| > A for |=z| = Tk, k ∈ N,<z < c.

Proof of Corollary 2.7. It follows from (3)(c) that for any natural number k there exists ε > 0, not depending
on k and Tk ∈ [k, k + 1] such that all points of the segment {α ≤ <z ≤ c,=z = Tk} are at a distance greater
than ε from the zeros of τ(z). Since τ(z) 6= 0 for <z < α, the same holds for the half-line <z ≤ c. According
to (3)(d), |τ(z)| > A = A(ε) for all z from {<z ≤ c,=z = Tk}. All zeros of τ(z) can be split into pairs of
complex conjugates and therefore the same is true for the half-lines {<z ≤ c,=z = −Tk}.
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Using the formula of complex inversion for the Laplace transform, we have for u > 0

∫ u

0

w(x)dx = lim
T→∞

1
2πi

∫ c+iT

c−iT

euzΦ(z)
z

dz, c > 0.

The function M(z)
τ(z) is an entire function that is equal to Φ(z) when <z > α. Let h < α < 0, then, according to

the Cauchy theorem,

1
2πi

∫ c+iT

c−iT

euzM(z)
zτ(z)

dz =
1

2πi

[∫ c+iT

h+iT

−
∫ c−iT

h−iT

+
∫ h+iT

h−iT

euzM(z)
zτ(z)

dz

]
+ Φ(0).

Further, for any fixed k ∣∣∣∣∣
∫ h+iTk

h−iTk

euzM(z)
zτ(z)

dz

∣∣∣∣∣ ≤ 2(k + 1)B
|h|A(|h| − |α|) ehu → 0, h→ −∞

and ∣∣∣∣∣
∫ c+iTk

−∞+iTk

−
∫ c−iTk

−∞−iTk

euzM(z)
zτ(z)

dz

∣∣∣∣∣ ≤ B

A
euc 2√

c2 + T 2
k

→ 0, k→∞.

Taking into account that Φ(0) =
∫∞
0 w(x)dx, we finally get

∫ ∞

u

w(x)dx = 0, u > 0. �

Lemma 2.8. Let 0 < µ ≤ 2, λ ≥ µ, β be real numbers, then there exists a positive number A, a nonnegative
number D and a natural number m ≤ 2 such that the function

f(t) = exp
[
−|t|µ −A|t|λ

(
1 +Bei t

|t|β ln(|t|) +D lnm |t|
)]

is a characteristic function for any B that satisfies the condition

|B| < B(λ, β) =

{ | sin(λπ/2)| exp(−βπ/2), λ 6= 2k, k ∈ N,

exp(−βπ/2), λ = 2k, k ∈ N.
(8)

Proof. Let first A,B and D be less than 1 in absolute value. By virtue of the summability and the Hermitiance
of f(t) it is enough to prove that

p(x) =
1
π
<
∫ ∞

0

e−itxf(t)dt ≥ 0, x ∈ R.

Now in complex plane z = t + is we consider the rectangular contour generated by the intersection of the
coordinate axes and two lines s = −S, t = T . Since f(z) is analytic in the domain {<z > 0,=z < 0} and
continuous on its boundary, the Cauchy theorem implies

∫ T

0

e−itxf(t)dt = −i
∫ S

0

e−sxf(−is)ds+
∫ T

0

e−i(t−iS)xf(t− iS)dt+ i

∫ S

0

e−i(T−is)xf(T − is)ds. (9)

It is easy to check that uniformly in s

|f(T − is)| = O(e−T µ

), T →∞.
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Therefore, the third integral in (9) converges to 0 when T →∞ and the second one does not exceed in absolute
value

e−Sx

∫ T

0

|f(t− iS)|dt = O
(
e−Sx

)
.

Turn now to the first integral in (9). Since

−i
∫ S

0

e−sxf(−is)ds = −i
∫ ∞

0

e−sxf(−is)ds+ i

∫ ∞

S

e−sxf(−is)ds

and ∣∣∣∣
∫ ∞

S

e−sxf(−is)ds
∣∣∣∣ ≤ e−Sx/2

∫ ∞

S

e−sx/2|f(−is)|ds ≤ Ce−Sx/2,

we have with regard to (9)

<
∫ ∞

0

e−itxf(t)dt = <
(
−i
∫ ∞

0

e−sxf(−is)ds
)

+R(x), (10)

where
|R(x)| ≤ Ce−Sx/2.

Further, it can be shown that there exists a real number X not depending on λ, µ,A,B, such that for sufficiently
large S,x > X and for B satisfying (8), the right-hand side of (10) is nonnegative.

Let now x ≤ X . We have

∫ ∞

0

e−itx exp
[
−tµ −Atλ

(
1 +Beiβ ln(t) +D lnm(t)

)]
=
∫ ∞

0

exp (−itx− tµ) dt

+
∫ T

0

exp(−itx− tµ)
(
exp

[
−Atλ

(
1 +Beiβ ln(t) +D lnm(t)

)]
− 1
)

dt

+
∫ ∞

T

exp(−itx− tµ)
(
exp

[
−Atλ

(
1 +Beiβ ln(t) +D lnm(t)

)]
− 1
)

dt

= I1 + I2 + I3. (11)

Using the inequality |ez − 1| ≤ |z|e|z| that holds for any complex z, we obtain

|I2| ≤
∫ T

0

exp(−tµ) exp(Atλ(2 + ln2(t))Atλ(2 + ln2(t))dt ≤ AC4 exp(AT λ(2 + ln2(T ))

and
|I3| ≤ C5e−T µ/2

.

Making use of the fact that <I1(x) is positive function on the real line, one get <I1(x) > δ > 0 for x ≤ X .
Picking up T0 and A in a proper way, we conclude that the left-hand side (11) is positive. �
Lemma 2.9. Let 0 < µ ≤ 2, λ ≥ µ, β be some real numbers. Then there exist positive numbers A1, A2, B,
nonnegative numbers D1, D2 and a natural number m ≤ 2 such that function

f(t, s) = exp
[
− |t|µ −A1|t|λ(1 +D1 lnm |t|)− |s|µ −A2|s|λ(1 +D2 lnm |s|)

−B|t|λ/2|s|λ/2ei t
2|t|β ln(|t|)ei s

2|s|β ln(|s|)
]

is a characteristic function of some bivariate distribution.
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Proof. Is analogous to the one of Lemma 2.8. �

3. Proof of the main results

Theorem 3.1. Let f(t) and g(t) be two characteristic functions satisfying the equation

fk1(b1t) · . . . · fkn(bnt) = gk1(b1t) · . . . · gkn(bnt), t ∈ R. (12)

If one of the following conditions is fulfilled
1. n = 1;
2. n > 1, q1 + . . .+ qn−1 ≤ 1;
3. n > 1, q1 + . . .+ qn−1 > 1 and distribution function F (x) corresponding to f(t) possesses finite moment

of the order α, where α = max{<z : τ(z) = 0},
then f(t) = g(t) for |t| < δ, where δ = min{t > 0 : |f(t)| = 0}.
Proof. We see from (12) that g(t) 6= 0 for |t| < δ and therefore one can define the following functions

ζ(t) = ln f(t), ξ(t) = ln g(t), |t| < δ.

It follows from (12) that

k1ζ(b1t) + . . .+ knζ(bnt) = k1ξ(b1t) + . . .+ knξ(bnt), |t| < δ/bn.

Further, designating
∆(t) = ζ(t)− ξ(t),

we have
k1∆(b1t) + . . .+ kn∆(bnt) = 0, |t| < δ/bn. (13)

If n = 1, then
k1∆(t) = 0, |t| < δ

and Theorem 3.1 is proved. Let now n > 1 then with notations (2) the equation (13) can be rewritten in the
following way

q1∆(h1t) + . . .+ qn−1∆(hn−1t) + ∆(t) = 0, |t| < δ. (14)
Setting

S(u) = ∆(e−u),
we get from (14)

q1S(u+ γ1) + . . .+ qn−1S(u+ γn−1) + S(u) = 0, u ∈ (− ln(δ),∞).

If q1 + . . .+ qn−1 ≤ 1 then due to Proposition 2.5 S(u) = 0 for u > − ln(δ) and hence f(t) ≡ g(t) on (−δ, δ).
Let us turn now to the case q1 + . . .+ qn−1 > 1. We put

∆M (t) = <∆(t) = ln |f(t)| − ln |g(t)|,
∆A(t) = =∆(t) = arg f(t)− arg g(t).

The equation (14) is split now into two

q1∆M (h1t) + . . .+ qn−1∆M (hn−1t) + ∆M (t) = 0, |t| < δ,

q1∆A(h1t) + . . .+ qn−1∆A(hn−1t) + ∆A(t) = 0, |t| < δ. (15)
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Lemma 3.2. There exist sequences tn and sn tending to 0 as n→∞ such that

∆M (tn) = 0, ∆A(sn) = 0, n ∈ N.

Proof. Let us introduce the number λ as the real root of the equation

q1h
λ
1 + . . .+ qn−1h

λ
n−1 = 1,

then defining for t > 0 the functions

∆λ
M (t) =

∆M (t)
tλ

, ∆λ
A(t) =

∆A(t)
tλ

, (16)

one get

p1∆λ
M (h1t) + . . .+ pn−1∆λ

M (hn−1t) + ∆λ
M (t) = 0, 0 < t < δ (17)

p1∆λ
A(h1t) + . . .+ pn−1∆λ

A(hn−1t) + ∆λ
A(t) = 0, 0 < t < δ, (18)

where
∑n−1

k=1 pk = 1. Next, let us apply the first mean value theorem to (17) and (18)

∆λ
M (hM (t)t) + ∆λ

M (t) = 0, ∆λ
A(hA(t)t) + ∆λ

A(t) = 0, t ∈ (0, δ)

where h1 ≤ hA(t) ≤ hn−1 and h1 ≤ hM (t) ≤ hn−1. For any t > 0 there exist two sequences ak = ak(t) and
bk = bk(t) such that

hk
1 ≤ ak(t) ≤ hk

n−1, h
k
1 ≤ bk(t) ≤ hk

n−1

and
∆λ

M (ak(t)t) = (−1)k∆λ
M (t), ∆λ

A(bk(t)t) = (−1)k∆λ
A(t), t ∈ (0, δ)

for k ∈ N. Due to the continuity of ∆λ
A(t) and ∆λ

M (t) we conclude that there exist two sequences tk → 0 and
sk → 0 such that

∆λ
M (tk) = 0, ∆λ

A(sk) = 0, k ∈ N.

Recalling the definition of ∆λ
M (t) and ∆λ

A(t), and the fact that ∆M (0) = ∆A(0) = 0 we complete the proof. �

Let us consider two symmetric characteristic functions φ(t) = |f(t)|2 and ψ(t) = |g(t)|2 corresponding to
the distribution functions F (x) ∗ (1 − F (−x− 0)) and G(x) ∗ (1 −G(−x− 0)). According to Lemma 2.1 these
distributions have finite absolute moments of α order. We can represent the number α in the form 2k+λ, where
0 < λ < 2. Now Lemma 2.2 implies

φ(l)(0) = ψ(l)(0), l = 0, . . . , 2k. (19)

Further,
∆M (t)

2
= lnφ(t) − lnψ(t) = ln

(
1 +

φ(t) − ψ(t)
ψ(t)

)
and due to the continuity of φ(t) and ψ(t), we can find number δ > δ0 > 0 such that∣∣∣∣φ(t)− ψ(t)

ψ(t)

∣∣∣∣ < 1
4
, ψ(t) >

2
3

for |t| < δ0. Using the inequality
2/3|x| ≤ | ln(1− x)|, |x| < 1/4,
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we have for |t| < δ0

|∆M (t)| ≤ 4
3

∣∣∣∣φ(t)− ψ(t)
ψ(t)

∣∣∣∣ ≤ 2|φ(t)− ψ(t)|. (20)

Upon expanding the function φ(t) − ψ(t) into Taylor series with remainder term in an integral form and
taking (19) into account, one has

φ(t) − ψ(t) =
1

(2k − 1)!

∫ t

0

φ(2k)(t)(t− u)2k−1 du− 1
(2k − 1)!

∫ t

0

ψ(2k)(t)(t− u)2k−1 du.

Since φ(2k)(0) = ψ(2k)(0), φ(2k)(0) > φ(2k)(t) and ψ(2k)(0) > ψ(2k)(t),

|φ(t) − ψ(t)| ≤ 1
(2k − 1)!

∫ t

0

(
φ(2k)(0)− φ(2k)(t)

)
(t− u)2k−1 du

+
1

(2k − 1)!

∫ t

0

(
ψ(2k)(0)− ψ(2k)(t)

)
(t− u)2k−1 du. (21)

Our aim now is to prove that the integral ∫ δ0

0

t−α−1|∆M (t)| dt (22)

converges. To this end, we notice that by virtue of (20) and (21)

∫ δ0

0

t−α−1|∆M (t)| dt ≤ 2
(2k − 1)!

∫ δ0

0

tα−1

∫ t

0

(
φ(2k)(0)− φ(2k)(t)

)
(t− u)2k−1 du dt+

2
(2k − 1)!

∫ δ0

0

t−α−1

×
∫ t

0

(
ψ(2k)(0)− ψ(2k)(t)

)
(t− u)2k−1 du dt. (23)

Thus, it is sufficient to prove the convergence of two integrals on the right-hand side of (23). Let us prove this
fact, for example, for the first one. We have

∫ δ0

0

t−α−1

∫ t

0

(
φ(2k)(0)− φ(2k)(t)

)
(t− u)2k−1 du dt

≤
2k−1∑
l=0

Cl
2k−1

∫ δ0

0

tl−α−1

∫ t

0

u2k−1−l
(
φ(2k)(0)− φ(2k)(u)

)
du dt

=
2k−1∑
l=0

Cl
2k−1

(
tl−α

l − α

∫ t

0

u2k−1−l
(
φ(2k)(0)− φ(2k)(u)

)
du
∣∣∣∣
δ0

0

− 1
l− α

∫ δ0

0

t−1−λ
(
φ(2k)(0)− φ(2k)(t)

)
dt

)
.

Since the distribution corresponding to φ(t) possesses finite moment of α order and φ(t) is real-valued, we have
according to Lemma 2.4 ∫ δ0

0

u−1−λ
(
φ(2k)(0)− φ(2k)(u)

)
du <∞.

For the same reason

lim
t→0

tl−α

∫ t

0

u2k−1−l
(
φ(2k)(0)− φ(2k)(u)

)
du ≤ lim

t→0

∫ t

0

u−1−λ
(
φ(2k)(0)− φ(2k)(u)

)
du = 0.
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Thus, the integral (22) converges and

∫ δ0

0

t−α−1|∆M (t)| dt <∞. (24)

Next, we define the function
SM (u) = ∆M (e−u)

and rewrite (3) in the form

q1SM (u+ γ1) + . . .+ qn−1SM (u+ γn−1) + SM (u) = 0, u ∈ (− ln(δ),∞),

where
γi = − ln(hi) > 0, i = 1, . . . , n− 1.

Without loss of generality we assume that δ = 1.
It follows from (24) that ∫ ∞

0

|SM (u)|eαu du <∞
and Proposition 2.5 entails

SM (u) ≡ 0, u > − ln(δ).

Hence, ∆M (t) ≡ 0 that is |f(t)|2 = |g(t)|2 for t ∈ [0, δ). Again we derive from Lemma 3.2 that there exists
tending to zero sequence sn such that arg f(sn) = arg g(sn) for all n. Since |f(t)| and |g(t)| do not vanish for
|t| < δ and are equal there, we have

f(sn) = |f(sn)|ei arg f(sn) = |g(sn)|ei arg g(sn) = g(sn) (25)

for sufficiently large natural number n and Lemma 2.2 yields

f (l)(0) = g(l)(0), l = 0, . . . , 2k.

Let us choose δ > δ1 > 0 in such a way that

|f(t)− g(t)| < 1/4, |g(t)| > 1/2 (26)

for |t| < δ1. Expanding ln(x) in the Taylor series, we can write

∆(t) = f(t)− g(t) +
1− g(t)
g(t)

(f(t)− g(t))−
∞∑

j=2

(g(t)− f(t))j

jgj(t)
· (27)

The Cauchy–Schwarz–Bunyakovskii inequality and (26) imply

∫ δ1

0

t−λ−1

∣∣∣∣1− g(t)
g(t)

(f(t)− g(t))
t2k

∣∣∣∣ dt < 2

(∫ δ1

0

t−λ−1|1− g(t)|2 dt

)1/2(∫ δ1

0

t−λ−1

(
f(t)− g(t)

t2k

)2

dt

)1/2

.

(28)
Due to Lemma 2.3

|1− g(t)|2 = (1−<g(t))2 + (=g(t))2 ≤ (1−<g(t))2 + 2(1−<g(t)) ≤ 3(1−<g(t)),
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and using Lemma 2.4 one has (it should be taken into account that the distribution G(x) has finite absolute
moment of 2k + λ order)

∫ δ1

0

t−λ−1|1− g(t)|2 dt ≤ 3
∫ δ1

0

t−λ−1(1−<g(t)) dt <∞. (29)

Further,

f(t)−g(t) = − 1
(2k − 1)!

∫ t

0

(
f (2k)(0)− f (2k)(t)

)
(t−u)2k−1 du+

1
(2k − 1)!

∫ t

0

(
g(2k)(0)− g(2k)(t)

)
(t−u)2k−1 du

and

|f(t)− g(t)|2 ≤ 2t
(2k − 1)!

∫ t

0

∣∣∣f (2k)(0)− f (2k)(t)
∣∣∣2 (t− u)4k−2 du

+
2t

(2k−)!

∫ t

0

∣∣∣g(2k)(0)− g(2k)(t)
∣∣∣2 (t− u)4k−2 du. (30)

Making again use of the first inequality of Lemma 2.3 with regard to the fact that f(2k)(t)
f(2k)(0)

is characteristic
function, we have

∣∣∣f (2k)(0)− f (2k)(t)
∣∣∣2 = (f (2k)(0))2

∣∣∣∣1− f (2k)(t)
f (2k)(0)

∣∣∣∣
2

= (f (2k)(0))2
(

1−< f
(2k)(t)

f (2k)(0)

)2

+ (f (2k)(0))2
(
= f

(2k)(t)
f (2k)(0)

)2

≤ 3(f (2k)(0))2
(

1−< f
(2k)(t)

f (2k)(0)

)
· (31)

Analogously ∣∣∣g(2k)(0)− g(2k)(t)
∣∣∣2 ≤ 3(g(2k)(0))2

(
1−< g

(2k)(t)
g(2k)(0)

)
· (32)

According to Lemma 2.4 ∫ δ1

0

t−1−λ

(
1−< f

(2k)(t)
f (2k)(0)

)
dt <∞

and ∫ δ1

0

t−1−λ

(
1−< g

(2k)(t)
g(2k)(0)

)
dt <∞.

Combining two last inequalities with (30, 31) and (32), we derive

∫ δ1

0

t−λ−1

∣∣∣∣f(t)− g(t)
t2k

∣∣∣∣
2

dt <∞. (33)

Further, by virtue of (26)

∫ δ1

0

t−λ−1

∣∣∣∣f(t)− g(t)
g(t)

∣∣∣∣
j

dt ≤ 4
2j−2

∫ δ1

0

t−λ−1 |f(t)− g(t)|2 dt

and using (33), one get ∣∣∣∣∣∣
∫ δ1

0

∞∑
j=2

(g(t)− f(t))j

jgj(t)
dt

∣∣∣∣∣∣ ≤ C

∫ δ1

0

t−λ−1 |f(t)− g(t)|2 dt <∞.
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Upon setting

∆̃(t) =
∆(t)
t2k

, 0 < |t| < δ1,

we get from the last inequality and inequalities (27–29, 33)

∆̃(t) =
f(t)− g(t)

t2k
+R(t), 0 < |t| < δ1,

where ∫ δ1

0

t−λ−1 |R(t)| dt <∞.

Now the finiteness of the integral

∫ δ1

0

t−λ−1
∣∣∣∆̃(at) + ∆̃(bt) + ∆̃(−(a+ b)t)

∣∣∣ dt

for any 0 < a < 1 , 0 < b < 1 is equivalent to the finiteness of the integral

∫ δ1

0

t−2k−λ−1

∣∣∣∣∣f(at)− g(at)
a2k

+
f(bt)− g(bt)

b2k
+
f((a+ b)t)− g((a+ b)t)

(a+ b)2k

∣∣∣∣∣ dt

which, in its turn, is less than the sum of the two

∫ δ1

0

t−2k−λ−1 1
(2k − 1)!

∫ t

0

∣∣∣f (2k)(0)− f (2k)(at) + f (2k)(0)− f (2k)(bt)

+f (2k)(0)− f (2k)(−(a+ b)t)
∣∣∣ (t− u)2k−1 du

×
∫ δ1

0

t−2k−λ−1 1
(2k − 1)!

∫ t

0

∣∣∣g(2k)(0)− g(2k)(at) + g(2k)(0)− g(2k)(bt)

+g(2k)(0)− g(2k)(−(a+ b)t)
∣∣∣ (t− u)2k−1 du. (34)

Let us prove now that the both are finite. We have, for example, for the first one

∫ δ1

0

t−2k−λ−1 1
(2k − 1)!

∫ t

0

(
f (2k)(0)−<f (2k)(at) + f (2k)(0)

−<f (2k)(bt) + f (2k)(0)−<f (2k)(−(a+ b)t)
)

(t− u)2k−1 du

+
∫ δ1

0

t−2k−λ−1 1
(2k − 1)!

∫ t

0

∣∣∣=f (2k)(at) + =f (2k)(bt)

+=f (2k)(−(a+ b)t)
∣∣∣ (t− u)2k−1 du.

Lemma 2.3, being applied to the characteristic function f(2k)(t)
f(2k)(0)

, yields

∣∣∣=f (2k)(at) + =f (2k)(bt) + =f (2k)(−(a+ b)t)
∣∣∣

≤ f (2k)(0)−<f (2k)(at) + f (2k)(0)−<f (2k)(bt) + f (2k)(0)−<f (2k)(−(a+ b)t).
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Now the finiteness of the first integral in (34) follows from the finiteness of the integral

∫ δ1

0

t−2k−λ−1

∫ t

0

(
f (2k)(0)−<f (2k)(t)

)
(t− u)2k−1 du.

Finiteness of the second integral in (34) can be proved analogously. Thus, it is proved that

∫ δ1

0

t−λ−1
∣∣∣∆̃(at) + ∆̃(bt) + ∆̃(−(a+ b)t)

∣∣∣ dt <∞. (35)

Further, the real-valued characteristic function (as has been proved above <∆̃(t) = 0)

N(t) = −i(∆̃(at) + ∆̃(bt) + ∆̃(−(a+ b)t))

satisfies the equation

q1h
2k
1 N(h1t) + . . .+ qn−1h

2k
n−1N(hn−1t) +N(t) = 0, |t| < δ

for any 0 < a < 1 and 0 < b < 1. We also notice that λ = max{<z : τ̃(z) = 0}, where

τ̃(z) = 1 + q1h
2k+z
1 + . . .+ qn−1h

2k+z
n−1 .

Upon setting
S̃(u) = N

(
e−u

)
,

we see that S̃(u) satisfies the equation

q1S̃(u+ 2kγ1) + . . .+ qn−1S̃(u+ 2kγn−1) + S̃(u) = 0, u ∈ (− ln(δ),∞),

and (follows from (35)) ∫ ∞

0

eλu|S̃(u)| du <∞.

Proposition 2.5 implies that S̃(u) ≡ 0 and therefore N(t) = 0 for |t| < δ. Thus,

∆̃(at) + ∆̃(bt) + ∆̃(−(a+ b)t) = 0, 0 < |t| < δ, 0 < a, b < 1

and
∆̃(t) ≡ ct, c ∈ C,

that is
∆(t) ≡ ct2k+1

on (−δ, δ) and due to (25) c = 0. �

Proof of Theorem 1.1. The condition LX
∼= LY means in terms of f1(t) and f2(t), that

fk1
1 (b1t) · . . . · fkn

1 (bnt) = fk1
2 (b1t) · . . . · fkn

2 (bnt), t ∈ R. (36)

Letting f(t) = f1(t) and g(t) = f2(t), we come to (12) and Theorem 3.1 can be applied. Let us consider now
two functions

f10(t) = exp
[
−|t|µ − A|t|α

(
1 +B1e

i t
|t|β ln(|t|) +D lnm |t|

)]
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and
f20(t) = exp

[
−|t|µ −A|t|α

(
1−B2e

i t
|t|β ln(|t|) +D lnm |t|

)]
,

where z = α + iβ is one of the roots of τ(z) and µ is taken in the following way: if α ≤ 1 we set µ = α, if
α ≥ 2 then µ = 2. According to Lemma 2.8 these two functions are characteristic functions, A,D, m ≤ 2 being
appropriately chosen, for enough small B1, B2. If B1 6= B2, then for any sequence tk → 0 such that

cos(β ln(tk)) 6= 0, k ∈ N

one has
f10(tk) 6= f20(tk), k ∈ N.

It is not difficult to show that for any ε > 0 and finite δ > 0

∫ δ

0

t−λ−1+ε

(
1−< f

(2k)
0 (t)

f
(2k)
0 (0)

)
dt <∞,

∫ δ

0

t−λ−1+ε

(
1−< g

(2k)
0 (t)

g
(2k)
0 (0)

)
dt <∞.

According to Lemma 1.4, the corresponding distributions possess finite absolute moments of α − ε order for
0 < ε < α. Moreover f10(t) and f20(t) satisfy the equation (30) if α is chosen as described above. �
Proof of Theorem 1.4. The condition of independence of LX and LY can be expressed in terms of f(t, s), f1(t)
and f2(s) in such a way

fk1
1 (b1t) · . . . · fkn

1 (bnt)fk1
2 (b1s) · . . . · fkn

2 (bns) = fk1(b1t, b1s) · . . . · fkn(bnt, bns), t, s ∈ R. (37)

For any 0 < ρ ≤ 1 let us set f(t) = f(t, ρt) and g(t) = f1(t)f2(ρt).
Now we are going to prove that the distribution corresponding to f(t) (and also the one corresponding to g(t))

has finite absolute moment of the order m if F (x, y) has all absolute moments of the order m.
Indeed, for any two random variables X1 and X2 with the joint distribution function F (x, y) we have

E|X1 + ρX2|m ≤
m∑

k=0

Ck
mρ

m−kE|X1|k|X2|m−k <∞.

Theorem 3.1 entails
f(t, ρt) = f1(t)f2(ρt), |t| < δ, 0 < ρ ≤ 1

that means
f(t, s) = f1(t)f2(s), |s| ≤ |t| < δ.

One can prove in a similar way that

f(t, s) = f1(t)f2(s), |t| ≤ |s| < δ.

Thus,
f(t, s) = f1(t)f2(s), max{|t|, |s|} < δ.

Let us consider now the function

f0(t, s) = exp
[
− |t|µ −A1|t|α(1 +D1 lnm |t|)− |s|µ −A2|s|α(1 +D2 lnm |s|)

−B|t|α/2|s|α/2i t
2|t|β ln(|t|)ei s

2|s|β ln(|s|)
]
,
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where z = α+ iβ is one of the roots of τ(z) and µ is taken as follows: if α ≤ 1 we set µ = α,if α ≥ 2 then µ = 2.
According to Lemma 2.7 this function is a characteristic function, A,D, m ≤ 2 being appropriately chosen. If
B 6= 0, then for any sequences tk → 0 and sk → 0 such that

cos
(
β

2
ln(tk)

)
6= 0, cos

(
β

2
ln(sk)

)
6= 0, k ∈ N,

f0(tk, sk) 6= f10(tk)f20(sk), k ∈ N.

It is also not difficult to demonstrate that f0(t, s) satisfies the equation (31) under such choice of α. Moreover
the distribution corresponding to f0(t, s) has all absolute moments of α− ε order. Indeed, f0(t, 0) and f0(0, s)
satisfy the condition of Lemma 2.4 and therefore E|X |α−ε < ∞,E|Y |α−ε < ∞ for any ε > 0. According to
Holder’s inequality

E|X |α1−ε1 |Y |α2−ε2 ≤ (E|X |α−ε
)r (

E|Y |α−ε|)s <∞,

where
α1 + α2 = α, ε1 + ε2 = ε

and
r =

α1 − ε1
α− ε

, s =
α2 − ε2
α− ε

· �
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