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ASYMPTOTICS FOR THE Lp-DEVIATION OF THE VARIANCE ESTIMATOR
UNDER DIFFUSION ∗

Paul Doukhan1 and José R. León2

Abstract. We consider a diffusion process Xt smoothed with (small) sampling parameter ε. As in
Berzin, León and Ortega (2001), we consider a kernel estimate α̂ε with window h(ε) of a function α
of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for
the Lp deviations such as
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1. Introduction and main results

Recently, the problem of statistical inference for integrated diffusions attracted a certain attention. This
type of situation appears, for example, when a realization of a process is observed after passage through an
electronic filter. Ditlevsen et al. [4] studied the ice core records from Greenland, which can also be modeled as an
integrated diffusion process. Gloter [9] considers the integrated Ornstein-Uhlenbeck process to make inference
about its parameters. Integrated processes are also important in the so-called realized volatility in finance. In
all these works the observations are assumed to be Yi =

∫ i∆

(i−1)∆ Xsϕ∆(s − (i − 1)∆) ds where Xs is a diffusion

process and ϕ∆ is a density in the interval [0, ∆]. Setting ϕ∆(s) = 1
∆ϕ( s

∆ ), we have Yi =
∫ 1

0 ϕ(s)Xs∆+(i−1)∆ ds.
In this work we observed a smoothed and continuous time process defined as

Xε
t =

1
ε

∫ ∞

−∞
ϕ

(
t − u

ε

)
Xu du =

∫ 1/2

−1/2

ϕ(s)Xt−εs ds, (1)

with Xt a diffusion process, ϕ is a density in [− 1
2 , 1

2 ] and ε is interpreted as a sampling parameter. Our goal is
to make non parametric inference for the diffusion coefficient. Let us briefly introduce our framework.
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Let (Wt)t≥0 be a standard Brownian motion, and Xt be defined by the equation

dXt = σ(t) dWt + b(Xt) dt, σ > 0. (2)

To assure the existence and uniqueness of the solution Xt, σ : IR → IR and b : IR → IR are assumed to satisfy
the assumptions (1) and (2) of Theorem 1 of [7] p. 40, adapted to our case, i.e.

|b(x) − b(y)| ≤ K|x − y| and |b(x)| + σ(x) ≤ K2
(
1 + |x|2) . (3)

Additional conditions concerning σ will be given later. This shows however that explosive variances cannot be
considered in the present work.

In this work we consider the estimation of the function σ(t). Process Xt is not directly available, we assume
that we observe Xε

t as defined in (1). The case in which function σ(·) only depends on Xt has been studied
previously by Perera and Wschebor in [12] and [13].

As in [2], we consider a function G ∈ L2(φ) with φ(x) = 1√
2π

e−x2/2 together with the continuous and

symmetric densities ϕ and K with support in [− 1
2 , 1

2 ]. If ϕ is a differentiable function we define Ẋε(t) = d
dtXε(t).

For any q ≥ 1, we define ‖f‖q =
(∫∞

−∞ |f(t)|q dt
) 1

q

. Let h = h(ε) → 0 as ε → 0 (the dependence of h on ε is
implicit throughout the paper) and we set

α̂ε(t) =
1
h

∫ ∞

−∞
K

(
t − u

h

)
G

( √
ε

‖ϕ‖2
Ẋε(u)

)
du. (4)

So α̂ε(t) is the non-parametric kernel estimate of the parameter

α(t) = IE[G(σ(t)Z)], t ∈ [0, 1] (5)

where Z ∼ N (0, 1) will denote a standard normal random variable throughout the paper. Berzin et al. [2] note
several interesting special cases:

• if G(x) = x2 then α(t) = σ2(t) (recall that IE|Z|2 = 1);

• if G(x) =
√

π
2 |x| then α(t) = σ(t) (recall that IE|Z| =

√
2
π );

• if G(x) = log |x| − 2γ then α(t) = log σ(t). For this, note that the constant γ can be written as
γ =

∫∞
0

log x φ(x) dx = 0.57721566 . . .

By using stable convergence, as in [2], we can deduce our results from the case b ≡ 0. In this particular case
our process is a time-changed Brownian motion.

Define
βε(t) =

√
h/ε(α̂ε(t) − IEα̂ε(t)). (6)

A pointwise central limit theorem (CLT)

βε(t)
D−→ε→0 N (

0, Σ2(t)
)

is proved in [2], where Σ2(t) is defined by equation (11). Alternative estimation techniques and some CLT are
proposed in Soulier [17], Genon-Catalot et al. [6] and in Brugière [3] under close settings.

Another expression will also be useful

β̂ε(t) =
√

h/ε(α̂ε(t) − α(t)). (7)

If α ∈ C2 (twice continuously differentiable) then the bias term verifies IE(α̂ε(t)) − α(t) = O(h2). In this case
the optimal window size is h = ε1/5. Replacing IE(α̂ε(t)) by α(t) in (6) we get again a CLT with no zero mean
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(resp. zero mean) in the optimal case (resp. in the non optimal case). In Proposition 1 below we will precise
the asymptotic bias behavior.

In the present paper, our aim is to provide global estimation results for parameter α in Lp for p ≥ 1. So, we
consider the Lp deviations

Dp,ε =
1√
h

(‖βε‖p
p − IE‖βε‖p

p

)
, and (8)

Dp,ε =
1√
h

(
‖β̂ε‖p

p − IE‖β̂ε‖p
p

)
. (9)

In Theorems 1 and 2 we show that both expressions are asymptotically normal. These results are used to
design global tests of hypotheses for the diffusion’s variance in the forthcoming section. That test appears
to be of special interest in problems in finance. Using a Poissonization argument, Beirlant and Mason [1]
obtained analogous results for the case of kernel density and regression estimates based on independent samples.
Soulier [17] proves a CLT for the case p = 2 for a wavelet-based estimator of the diffusion coefficient.

Remark. The asymptotic behavior of Dp,ε, more convenient for a test of hypothesis, is an easy consequence
of the behavior for Dp,ε in the sub optimal window case, nevertheless needs a more detailed analysis in the
optimal one (see remark and proof of Th. 2).

Let us expand the (even) function gt(x) = G(σ(t)x) in terms of Hermite polynomials

gt(x) =
∞∑

n=0

a2n(t)H2n(x), with a2n(t) =
1

(2n)!
IEG(σ(t)Z) · H2n(Z). (10)

We will often use Mehler’s formula: IE(Hn(X)Hm(Y )) = n!ρnδn,m, where (X, Y ) a two-dimensional standard
Gaussian vector having correlation ρ, which is a special case of the Diagram formula, see [11].

Let f 
 g stand for the convolution of f and g. For t ∈ [0, 1] and w ∈ [−1, 1], we define

Σ2(t) = ‖K‖2
2

∞∑
n=1

a2
2n(t) (2n)!

∫ 1

−1

(
ϕ 
 ϕ(z)
‖ϕ‖2

2

)2n

dz, and (11)

Γ(w) =
K 
 K(w)
‖K‖2

2

∈ [−1, 1]. (12)

Let (Z1, Z2) be a standard (0, I2) normal vector, so we define

Σ2
p =

∫ 1

−1

Cov
(∣∣∣√1 − Γ2(w)Z1 + Γ(w)Z2

∣∣∣p , |Z2|p
)

dw ·
∫ 1

0

Σ2p(t) dt. (13)

We have the following result

Theorem 1. Assume that the diffusion (2) is such as the function σ is continuous and σ > 0 over the compact
set [0, 1], there exists some q ≥ 4 such as IE|G(σ(t)Z)|pq < ∞ and lim

ε→0
h = lim

ε→0

ε

h2(1−1/q)
= 0. Then

Dp,ε
D−→ε→0 N (

0, Σ2
p

)
.

Remarks. Using Lemma 5 below proves that the same CLT holds for

D̃p,ε =
1√
h

(
‖βε‖p

p − IE|Z|p
∫ 1

0

(Σ(t))p dt

)
,

where Σ2(t) is defined in equation (11) and it is also the limiting variance in the CLT as proved in [2].
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Let b2k = 1
(2k)! IE|Z|pH2k(Z), then we write

Σ2
p =

∞∑
k=1

b2
2k (2k)!

∫
Γ2k(w) dw

∫
Σ2p(t) dt.

Inspired by Jacod [10], the proof of Theorem 1 is divided in two steps: first one assumes that b ≡ 0, which mean
that Xt is a time-changed Brownian motion, and shows stable convergence. Secondly, using Girsanov’s formula
we consider the case b 
= 0.

We first provide the asymptotic behaviour of the bias:

Proposition 1. Assume that the even function G is a.s. twice differentiable and assume that σ > 0 is a
C2−function. Let bε(t) = IEα̂ε(t) − α(t). and lim

ε→0
h = lim

ε→0

ε

h
= 0, then

lim
ε→0

h−2 sup
t∈[0,1]

∣∣∣∣bε(t) − h2

2
α′′(t)

∫
s2K(s) ds

∣∣∣∣ = 0.

Besides, lim
ε→0

ε2

h3
= 0 and the functions G, σ are C3, imply that the norming factor h−2 may be replaced by h−3.

Remark. As usual, the use of kernels K with higher order1 yields bε(t) = cα(r)(t)hr + o(hr) where o is uniform
with respect to t. Moreover the remainder term is O(hr+δ) if the more restrictive assumption |α(r)(s)−α(r)(t)| ≤
cδ|s − t|δ is assumed.

We now turn to the asymptotic behaviour of Dp,ε. Assuming that the functions σ, G are a.s. twice differen-
tiable, then the suboptimal window case, limε→0 h5/ε = 0 leads to the same result as Theorem 1.

Dp,ε
D−→ε→0 N (0, Σ2

p) if lim
ε→0

h5

ε
= 0. (14)

Examining the optimal window case h = λε
1
5 , we get:

Theorem 2. Assume that the function σ > 0 is C2 (twice continuously differentiable), and that G is a.s.
twice differentiable and has a second order bounded derivative set h = λε

1
5 for some constant λ > 0. If

IE|G(σ(t)Z)|2p < ∞ then

Dp,ε
D−→ε→0 N (0, τ2

p ),

where, as in Theorem 1,

τ2
p =

∫ ∫
Θ(w, t) Σ2p(t) dw dt and c(t) =

1
2
λ

5
2 α′′(t)

∫
s2K(s) ds,

Θ(w, t) = Cov
(∣∣∣√1 − Γ2(w)Z1 + Γ(w)Z2 + c(t)

∣∣∣p , |Z2 + c(t)|p
)

.

Remark. The statistic Dp,ε is not well adapted to make a hypothesis test. It can be modified as

Dp,ε,so =
1√
h

(
‖β̂ε‖p

p − IE|Z|p
∫ 1

0

(Σ(t))p dt

)
,

1This means that
∫

tkK(t) dt is 1 for k = 0, vanishes for 0 < k < r and is well defined for k = r; usually one considers
bounded and compactly supported kernels and a standard construction of such kernel consists to search polynomials P such as
those conditions hold for the kernel K = P · u where u denotes a bounded and compactly supported non-negative density.
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under the suboptimal window case and as

Dp,ε,o =
1√
h

(∥∥∥β̂ε

∥∥∥p

p
−
∫ 1

0

|Σ(t)Z + c(t)|p dt

)
,

if h = λε
1
5 . In Lemma 5 below we will show that these two statistics have the same asymptotic behaviour

that Dp,ε in each case.

Examples. In some special cases of interest, the function G is homogeneous G(σx) = σrG(x) for σ > 0, hence
Σ2(t) = Aσ2r(t) for a suitable constant A > 0 only depending on φ and on G and, this makes much simpler
the expressions of Σ2

p and τ2
p . Examples of these situations G(x) =

√
π
2 |x| and G(x) = x2 have already been

sketched.

Analogous considerations are valid for the function G(x) = log |x| − γ for which only a0(t) = log σ(t) − γ
really depends on t while a2n(t) = a2n = 1

(2n)! IE log |Z|H2n(Z) for n > 0, and Σ2(t) = Σ2
ϕ only depends on ϕ.

Note that Σ2
p does not depend on the function σ(·); this however does not hold for the companion variance τ2

p .
This paper is organized as follows, Section 1 introduces the problem and gives the main results. Section 2

is devoted to provide an explicit expression for a test of hypothesis useful for various applications. Section 3 is
devoted to a series of technical lemmas useful in the proof of the main results. The main results are proved in
Section 4, while the proof of the preliminary lemmas is given in Section 5.

2. Application to a test of hypothesis

Assume that we want to provide a test for hypothesis H0 : α = a against a family of contiguous alternatives
α = a + δεA where the functions a, A ∈ Lp are given, δε ↓ 0 as ε ↓ 0, and ‖A‖p > 0.

From the examples of functions G, it is clear that such tests can be transferred to σ, testing now σ = s against
σ = s+ δεS where a(t) = IEG(s(t)Z) and A(t) = S(t)IEG′(s(t)Z) in the case of a differentiable function G. The
interesting cases G(x) = x2 and

√
π
2 |x| are straightforward.

We now set

βa
ε (t) =

√
h

ε
(αε(t) − a(t)).

Under the null hypothesis, α = a the remark following Theorem 2 implies

Dp,ε,so =
1√
h

(
‖βa

ε ‖p
p − IE|Z|p

∫ 1

0

(Σ(t))p dt

)
→ N (

0, Σ2
p

)
,

if limε→0 h5/ε = 0. This gives a level for a test, provided we have estimated both expressions

Σ2
p,

∫ 1

0

Σp(t) dt

through empirical standard procedures. To this aim we only make use of the classical plug-in principle.
Passing now to the alternatives and setting

γε = δε

√
h

ε
, with δε =

( ε

h(1−1/p)

)1/2

.

We have βa
ε (t) = βε(t) + γεA(t) + OLp

(
h2
√

h
ε

)
and γε = h

1
2p . Obtaining

Dp,ε,so =
1√
h

(
‖βε‖p

p − IE|Z|p
∫ 1

0

(Σ(t))p dt

)
+ ‖A‖p

p +
1√
h

pγp−1
ε

∫
βε(t)|A(t)|p−1sign(A(t)) dt + o(1).
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We observe that
1√
ε

∫
(αε(t) − IEαε(t))|A(t)|p−1sign(A(t)) dt →ε→0 N (0, σ2

a,A),

for a suitable constant σ2
a,A > 0. All this entails

Dp,ε,so → N (‖A‖p
p , Σ2

p

)
,

as is usual under contiguous alternatives. This provides a control of the local power for this procedure.
Even in the case where one considers the optimal window h = λε

1
5 it is possible to work out a test of

hypothesis. In this particular case we must use Dp,ε,o instead of Dp,ε,so, obtaining a similar result. This is based
on Lemma 5 and the remark located after Theorem 2.

3. Collecting some facts in the case b ≡ 0

The following simple facts are essentially collected from [2]. Set

σ̇2
ε(t) = Var Ẋε(t). (15)

Lemma 1. We have

Cov (Ẋε(s), Ẋε(t)) =
1
ε2

∫
ϕ

(
s − u

ε

)
ϕ

(
t − u

ε

)
σ2(u) du

=
1
ε

∫
ϕ(x)ϕ

(
x +

t − s

ε

)
σ2(t − εx) dx.

This expression vanishes if |t−s| > 2ε and we have
√

εσ̇ε(t) → ‖ϕ‖2σ(t) as ε → 0 where the previous convergence
holds uniformly on [0, 1].

We often work with the following “almost” white noise process which we shall denote for simplicity’s sake

Zε(t) =
Ẋε(t)
σ̇ε(t)

∼ N (0, 1). (16)

Setting ρε(s, t) = Cov (Zε(s), Zε(t)), note that the previous lemma implies

ρε(s, t) =

∫
ϕ(x)ϕ

(
x + t−s

ε

)
σ2(t − εx) dx√∫

ϕ2(x)σ2(s − εx) dx
∫

ϕ2(x)σ2(t − εx) dx
,

which yields

IE(βε(t))2 ∼ h

ε

∫ ∫
K(u)K(v)Cov

(
G(σ(t)Zε(t − uh)), G(σ(t)Zε(t − vh))

)
du dv.

The above covariance is a function of t and of ρε(t − uh, t− vh). Using Mehler’s formula we prove that

IE(βε(t))2 ∼ h

ε

∫ ∫
K(u)K(v)

∞∑
n=1

a2n(t−uh)a2n(t−vh)(2n)!
(∫

ϕ(x)ϕ(x + h(v−u)
ε )σ2(t − uh− εx) dx∫

ϕ2(x)σ2(t − uh − εx)dx

)2n

du dv.

Finally, the change of variable z = h(v−u)
ε implies IE(βε(t))2 → Σ2(t) as ε → 0 where equation (11) defines Σ(t).

The process βε(t) is not Gaussian (even if asymptotically Gaussian) its Lp-norm cannot be computed using
Mehler’s formula. Another way to proceed is as used in Giné et al. [8] using a Gaussian approximation. We
first note that βε(t) may be rewritten as the partial sum of 1-dependent random variables.
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Lemma 2. Set N = 2
[

h
2ε

]
, then we have βε(t) =

N∑
k=1

ζk,ε(t) with

ζk,ε(t) =
∫ − 1

2+ k
N

− 1
2+ k−1

N

K(u)
(

G

(√
εσ̇ε(t − uh)

‖ϕ‖2
· Zε(t − uh)

)
− IEG

(√
εσ̇ε(t − uh)

‖ϕ‖2
· Zε(t − uh)

))
du,

and the N random variables ζk,ε(t) are 1-dependent for k = 1, . . . , N .

Given that the random variables Zε(t) and Zε(s) are independent when |s − t| > 2ε. We obtain this lemma
from relation h/N > ε, which also yields

Lemma 3. Set M =
[

1
2h

]
, then ‖βε‖p

p =
M∑

�=1

Y�,ε with

Y�,ε =
(

h

ε

)p/2 ∫ �/M

(�−1)/M

∣∣∣∣∫ K(u)
(

G

(√
εσ̇ε(t − uh)

‖ϕ‖2
· Zε(t − uh)

)
− IEG

(√
εσ̇ε(t − uh)

‖ϕ‖2
· Zε(t − uh)

))
du

∣∣∣∣p dt,

and the M random variables Y�,ε are 2-dependent for � = 1, . . . , M if we assume that h > 2ε.

Hence, the technique of proof of the main theorem will be based on a Lindeberg central limit theorem for
m-dependent random variables. The two first moments of the above random variable are difficult to calculate
directly. Thus, in order to avoid this problem we shall proceed as in Giné et al. [8]: by using a Gaussian
approximation of the previous sums βε(t).

The proof of the main theorem will be based on the following lemmas which will provide (in particular) the
asymptotic L2 behaviour of ‖βε‖p

p.

Lemma 4 (approximating expectations). Let d ∈ IN and x1,n, . . . , xn,n ∈ IRd be centered at expectation,
m-dependent for some integer m ≥ 0. Denoting by Var (

∑n
k=1 xk,n) the variance covariance matrix of the

vector
∑n

k=1 xk,n, supposing that for some definite d × d covariance matrix V we have

Var

(
n∑

k=1

xk,n

)
→n→∞ V, and

n∑
k=1

IE‖xk,n‖3∨(dpq) →n→∞ 0.

Denoting xj,n = (x(�)
j,n)1≤�≤d. Then, if Z = (Z(1), . . . , Z(d)) ∼ Nd(0, V ), there exists a constant c (only depending

on d and on the norm ‖ · ‖ on IRd) such as

∣∣∣∣∣IE
d∏

�=1

∣∣∣∣∣
n∑

k=1

x
(�)
k,n

∣∣∣∣∣
p

− IE
d∏

�=1

∣∣∣Z(�)
∣∣∣p∣∣∣∣∣ ≤ c

(
n∑

k=1

IE‖xk,n‖3

)δ

,

where δ = 1 − 1
q if d = 1 and δ = 1

4

(
1 − pd+d−1

pqd

)
if d ≥ 2.
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Lemma 5. Assume that lim
ε→0

h = lim
ε→0

ε

h2
= 0. Using notation (11), we have

IE‖βε‖p
p = IE|Z|p

∫ 1

0

(Σ(t))p dt + o

(
1√
h

)
, as ε → 0.

If we choose the optimal window h = λε
1
5 and considering ‖β̂ε‖p

p we have

IE‖β̂ε‖p
p =

∫ 1

0

|Σ(t)Z + c(t)|p dt + o

(
1√
h

)
, as ε → 0.

In order to provide the asymptotic variance of Dp,ε we precise the second order properties of the random process
(βε(t))t∈[0,1]. We set

β̃ε(t) =
βε(t)√

Varβε(t)
· (17)

To obtain the asymptotic behaviour of Var Dp,ε, we shall need the asymptotic behaviour of Cov (β̃ε(s), β̃ε(t)),
easily deduced from the following lemma.

Lemma 6. Assume that lim
ε→0

h = lim
ε→0

ε

h
= 0, then

Cov (βε(s), βε(t)) ∼
∫ 1

2

− 1
2

K(u)K
(

u +
t − s

h

)
du

×
∫ 1

−1

∞∑
n=1

a2n(s)a2n(t)(2n)!
(

σ(t)
σ(s)‖ϕ‖2

2

∫ 1

−1

ϕ(x)ϕ(x + z) dx

)2n

dz.

Mehler’s formula allows computing moments of non linear functionals of a Gaussian process. Hence if process βε

was Gaussian then we should be able to derive the asymptotic behaviour of Dp,ε, but this is not the case. Using
a Gaussian approximation of βε, the following lemma indicates what the asymptotic behaviour of Var Dp,ε

would be. Thus, we consider the centered Gaussian process (Bε(t))t∈[0,1], such as

Cov (Bε(s), Bε(t)) = Cov (βε(s), βε(t)), ∀s, t ∈ [0, 1].

Lemma 7. Using notations (11)–(12), we assume that lim
ε→0

h = lim
ε→0

ε

h
= 0.

Let b2k = 1
2k! IE|Z|pH2k(Z), then

Var‖Bε‖p
p ∼ h

∞∑
k=1

b2k (2k)!
∫

Γ2k(w) dw ·
∫

Σ2p(t) dt.

Remark. Let (Z1, Z2) be a standard (0, I2) normal vector, then the previous expression can be written as

Var‖Bε‖p
p ∼ h

∫
Cov

(∣∣∣√1 − Γ2(w)Z1 + Γ(w)Z2

∣∣∣p , |Z2|p
)

dw ·
∫

Σ2p(t) dt.

4. Proofs of the theorems

4.1. Proof of Theorem 1: case b ≡ 0

As quoted in Lemma 3, Dp,ε is a sum of the 2-dependent random variables (Yk,ε − IEYk,ε)1≤k≤M with
M = Mε =

[
1
2h

]
.
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Now let s, t ∈ [0, 1] be such as |s − t| ≤ 2ε, then it is simple to deduce from Lemma 2 that the random
variable (βε(s), βε(t)) ∈ IR2 can also be written as the sum of 4-dependent vectors, x1 + · · ·+xN . In case d = 2
Lemma 4 implies

|IE|βε(s)|p|βε(t)|p − IE|Bε(s)|p|Bε(t)|p| ≤
( ε

h

) δ
2 ·

Again applying Lemma 4 with d = 1 allows us to subtract expectations which finally yields

|Cov (|βε(s)|p, |βε(t)|p) − Cov (|Bε(s)|p, |Bε(t)|p)| ≤
( ε

h

) δ
2

+ o(1),

where δ is provided in Lemma 4, which is 1 for d = 2. In order to compute an approximation of Var Dp,ε we
first expand

Var Dp,ε =
1
h

∫ ∫
Cov (|βε(s)|p, |βε(t)|p) ds dt,

where s, t ∈ [0, 1] and using Lemma 3, we check that this is enough to assume |s − t| ≤ 2ε. We get the bound

∣∣Var Dp,ε − Σ2
p

∣∣ ≤√ ε

h
· o(1),

which is enough for our purpose.
If q > 1 + 1

2p , then Lemma 7 yields
Var (Dp,ε) −→ε→0 Σ2

p.

The CLT will follow from the Lindeberg condition

ηε =
Mε∑
k=1

IE
∣∣∣∣ 1√

h
(Yk,ε − IEYk,ε)

∣∣∣∣4 −→ε→0 0.

Using again Lemmas 4–6 we prove that if q ≥ 4

IE |Yk,ε − IEYk,ε|4 = O(h4),

because this is the expectation of a quadruple integral on a set with volume M−4
ε and the integrated function

has an expectation uniformly bounded by 24 supt∈[0,1] IEG4p(σ(t)Z). This yields

ηε = O (h−3 · h4
)
.

Remark. We set

Dp,ε,t =
1√
h

∫ t

0

(|βε(s)|p − IE|βε(s)|p) ds. (18)

The previous proof provides a Donsker type invariance principle (for m-dependent sequences, again). Sketching
the expression in Theorem 1, we set

Σ2
p(t) =

∫ 1

−1

Θ(w) dw ·
∫ t

0

Σ2p(s) ds,

and D̃p,t =
∫ t

0

Σp(s) dW̃s for a standard Brownian motion (W̃t)t∈[0,1], then

Dp,ε,t
D−→ε→0 D̃p,t, in the space C([0, 1]). (19)
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4.2. Proof of Theorem 1: the general case

Notations. To simplify the notation we add the drift parameter as an index in the underlying probability law
which we now denote IP(b) and expectations IE(b). Hence the expression relative to the time changed Brownian
motion (i.e. b ≡ 0) can be written as E

(0)
ε (t), and IE(0), respectively.

An essential lemma links the expectations relative to IE(b) and IE(0). Under the conditions Theorem 1 p. 40
of [7]: (3) we have

Lemma 8 (Girsanov formula, e.g., in [7] p. 90). Let H : IR → IR be continuous and bounded then:

IE(b)H(Dp,ε) = IE(0)

{
H(Dp,ε) exp

(∫ 1

0

b(Xs)
σ(s)

dXs − 1
2

∫ 1

0

b2(Xs)
σ2(s)

ds

)}
·

Remark. The conditions that must verify b are restrictive see (3), however if we deal only with weak solutions
we can weaken our assumptions and the Girsanov formula will still holds.

An independence argument called stable convergence, that was developed in [10], entails the convergence in
distribution of Dp,ε under the general law IP(b) with the help of the Cameron-Martin formula (see [7] p. 82),
which states that

IE(0) exp
(∫ 1

0

b(Xs)
σ(s)

dXs − 1
2

∫ 1

0

b2(Xs)
σ2(s)

ds

)
= 1.

We thus have to prove that the couple
(
(Xt)t∈[0,1], Dp,ε

)
converges in C([0, 1])× IR (under the distribution IP(0))

to
(
(X)t∈[0,1], ΣpZ

)
where the Brownian motion with a time change (X)t∈[0,1] is independent of the standard

normal Z.

From now, we will only work under the probability distribution IP(0). Thus the previous asymptotic indepen-
dence holds if the process

(Eε,t)t∈[0,1] ≡ (Xt, Dp,ε,t)t∈[0,1]

(with values in IR2) converges to a process (Et)t∈[0,1] ≡ (Xt, Dp,t)t∈[0,1] as ε → 0 such as (Xt)t∈[0,1] is indepen-
dent of Dp,1 (we shall prove it for (Dp,t)t∈[0,1]).

As the family of distributions (Dp,ε,t)t∈[0,1] converges under the probability distribution IP(0) as ε → 0, this
implies its tightness in C([0, 1]) hence the process (Eε,t)t∈[0,1] is also tight in C([0, 1], IR2). Let us consider
now any limit point (Et)t∈[0,1] ≡ (Xt, Dp,t)t∈[0,1] (in distribution) of this family, as ε → 0. The random vector
(Dp,ε,t − Dp,ε,s, Xt − Xs) is independent (always under IP(0)) from Dp,ε,t′ − Dp,ε,s′ (if s ≤ t ≤ s′ ≤ t′ satisfy
s′ − t′ > 2ε) and it is also independent of Xt′ − Xs′ because the intervals [s, t] and [s′, t′] do not overlap. This
implies that the process (Et)t∈[0,1] has independent increments. This process is also a second order process
because each of its coordinates has this property. Hence (Et)t∈[0,1] is a Gaussian process.

Independence of Et coordinates now relies on their orthogonality. The only point we need to prove is thus
that under the probability distribution IP(0), we have

Cov (Xs, Dp,ε,t) −→ε→0 0, ∀s, t ∈ [0, 1].

Note that
1√
h

Cov
(

Xs,

∫ t

0

|βε,u|p du

)
=

1√
h

∫ t

0

Cov (Xs, |βε,u|p) du. (20)

In order to proceed we first write Aε(s, u) = Cov (Xs, |βε,u|p) = 0 if u > s + ε. Now we deduce that
1√
h

∫ s+ε

s−2ε

Aε(s, u) du = O

(
ε√
h

)
from the relation supt∈[0,1] IE|βε(t)|2p < ∞.
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We thus only need to consider
1√
h

∫ s−2ε

0

Aε(s, u) du. Recall that

βε,u =

√
h

ε
(α̂ε(u) − E(α̂ε(u))),

where

α̂ε(u) =
∫ 1/2

−1/2

K(u)G
(√

εσ̇ε(u − vh)
||ϕ||2 · Zε(u − vh)

)
dv.

By making the change of variable v = ε
hw, we get

ε

h

∫ 1/2

−1/2

K
( ε

h
w
)

G

(√
εσ̇ε(u − εw)

||ϕ||2 · Zε(u − εw)
)

dw :=
ε

h
α̃ε(u).

Thus, we can write

βε,u =
√

ε

h
(α̃ε(u) − E(α̃ε(u))).

Conditioning w.r.t Xs = x we obtain:

Zε(t − εw) =
√

ενt,w,εx + Ht,w,ε,

for some uniformly bounded and deterministic νu,w,ε and some Gaussian Hu,w,ε, because Cov (Xs, Z(u−wh)) =
O(

√
ε).

We now define
˜̃α(u) =

∫ 1/2

−1/2

K
( ε

h
w
)

G

(√
εσ̇ε(u − εw)

||ϕ||2 · Hu,w,ε

)
dw,

and

β̃ε,u =
√

ε

h

( ˜̃αε(u) − E
( ˜̃αε(u)

))
.

We are interested in obtaining the asymptotic behavior of

1√
h

∣∣∣Cov (Xs, |βε,u|p) − Cov
(
Xs,

∣∣∣β̃ε,u

∣∣∣p)∣∣∣ ,
for t < s − 2ε. Note that the second term in the above difference is 0. Moreover

1√
h

∣∣∣Cov (Xs, |βε,u|p) − Cov
(
Xs,

∣∣∣β̃ε,u

∣∣∣p)∣∣∣ =
1√
h

∣∣∣E [Xs

(
|βε,u|p −

∣∣∣β̃ε,u

∣∣∣p)]∣∣∣ . (21)

The inequality ||x + y|p − |x|p| ≤ p|y|(|x|p−1 + |y|p−1), entails

(21) ≤ p√
h

E|Xs|
[∣∣∣βε,u − β̃ε,u

∣∣∣ (|βε,u|p−1 +
∣∣∣βε,u − β̃ε,u

∣∣∣p−1
)]

≤ p√
h

(
E|Xs|2

∣∣∣βε,u − β̃ε,u

∣∣∣2)1/2

O(1).

Hence we get

p√
h

(
E|Xs|2

∣∣∣βε,u − β̃ε,u

∣∣∣2)1/2

≤
√

2p√
h

( ε

h

)p/2
(

E
[
|Xs|2

∣∣α̃ε(u) − ˜̃αε(u)
∣∣2]+

(
E|Xs|2E

∣∣α̃ε(u) − ˜̃αε(u)
∣∣2)1/2

)
.



LP -DEVIATION FOR VARIANCE ESTIMATES UNDER DIFFUSION 143

But we have

α̃ε(u) − ˜̃αε(u) =
√

ε

∫ 1/2

−1/2

K
( ε

h
v
)

νu,v,εXsG
′ (λ1

√
ενu,v,εXs + λ2Hu,v,ε

)
dv.

This yields

E
[
|Xs|2

∣∣α̃ε(u) − ˜̃αε(u)
∣∣2] ≤ εO(1),

by using the assumption about G′(x). Therefore

1√
h

∣∣∣Cov (Xs, |βε,u|p) − Cov
(
Xs,

∣∣∣β̃ε,u

∣∣∣p)∣∣∣ ≤ ( ε

h

) p+1
2

O(1).

This last term tends to 0 when lim
ε→0

ε

h
= 0. All this implies

1√
h

∫ s−2ε

0

Aε(s, u) du → 0.

4.3. Proof of Proposition 1

We write

bε(t) =
∫

K(s)IEG

(√
εσ̇(t − hs)
‖ϕ‖2

Z

)
ds − α(t).

Using Lemma 1, setting θ = σ2, we obtain the following uniform estimates(√
εσ̇(t − hs)
‖ϕ‖2

)2

= θ(t) − shθ′(t) +
1
2
s2h2θ′′(t) + o

(
h2
)
.

Consider the function g(x) = G(
√|x|), thus g is also a.s. twice differentiable and

bε(t) =
∫

K(s)IEg

((√
εσ̇(t − hs)
‖ϕ‖2

)2

Z2

)
ds − IEg

(
θ(t)Z2

)
.

Use of Taylor formula yields

bε(t) = IE
∫

K(s)
((

−shθ′(t) +
1
2
s2h2θ′′(t)

)
Z2g′

(
θ(t)Z2

)
+

1
2
s2h2θ′2(t)Z4g′′

(
θ(t)Z2

))
ds + o(h2).

Using symmetries yields with the relation g(u) = G(u2),

bε(t) =
h2

2

∫
s2K(s) ds · IE (σ′′(t)ZG′(σ(t)Z) + σ′2(t)Z2G′′(σ(t)Z)

)
+ o
(
h2
)
.

The remark concerning the C3 case follows from careful statements of the above relation with the bound
ε2 = o(h3).

4.4. Proof of Theorem 2

As done previously, we make use of the stable convergence argument in order to deal only with the simpler
case b ≡ 0. We assume below that b ≡ 0.



144 P. DOUKHAN AND J.R. LEÓN

We write β̂ε(t) = βε(t) + cε(t), with

cε(t) =

√
h

ε
bε(t) =

√
h5

ε

(
a(t)

∫
s2K(s) ds + o(1)

)
. (22)

Thus

Dp,ε =
1√
h

∫ 1

0

(|βε(t) + cε(t)|p − IE |βε(t) + cε(t)|p) dt.

Proof of relation (14). Using the bound

∣∣∣|β + c|p − |β|p
∣∣∣ ≤ p|c| (|β|p−1 + |c|p−1

)
,

we write the following integral (still with |s − t| ≤ 2ε)

Var (Dp,ε − Dp,ε) ≤ 1
h

∫ ∫
IE
∣∣(|β̂ε(s)|p − |βε(s)|p)(|β̂ε(t)|p − |βε(t)|p)

∣∣ ds dt.

Assuming limε→0 h5/ε = 0 we obtain limε→0 Var (Dp,ε−Dp,ε) = 0. The following facts: sups∈[0,1] ‖βε(s)‖2p−1 ≤
sups∈[0,1] ‖βε(s)‖2p < ∞ and ε/h → 0, imply (14). �

Proof of Theorem 2. Replacing β by β + c and c by cε − c, we prove as above that

lim
ε→0

Var
(
Dp,ε − D̂p,ε

)
= 0,

where

D̂p,ε =
1√
h

∫ 1

0

(|βε(t) + c(t)|p − IE|βε(t) + c(t)|p) dt.

The proof of Theorem 2 follows the same lines as that of Theorem 1 up to very simple changes in Lemma 4.
This lemma was indeed dedicated to the approximation of IEf(x1 + · · · + xn) for m-dependent vector valued
sequences and for the special function f(x1, . . . , xd) =

∏d
�=1 |x�|p. Very small changes entail the same result

with f(x1, . . . , xd) =
∏d

�=1 |x� + c�|p for fixed real numbers c1, . . . , cd. Indeed, one may easily rewrite a version
of this lemma for which the measurable function f only satisfies |f(x1, . . . , xd)| ≤

∏d
�=1 |x�|p ∨ 1. �

5. Proofs of the lemmas in Section 3

5.1. Proof of Lemma 4

The proofs are different for d = 1 and d ≥ 2.

Case d = 1. . Shergin [16] (Th. 1) proved that

∆n = sup
x∈IR

∣∣∣∣∣IP
(

n∑
k=1

xk,n ≤ x

)
− IP(Z ≤ x)

∣∣∣∣∣ ≤ c

n∑
k=1

IE‖xk,n‖3.

Recall that the following relation holds for each random variable in Lp

IE|X |p = p

∫ ∞

0

xp−1IP(|X | > x) dx,
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hence the difference of expectations to approximate is an integral over IR = (−∞,∞). Divide it for |x| ≤ M ≡
∆

− 1
pq

n and |x| > M . Rosenthal inequality [15] up to order pq (this also holds with m-dependent sequences since
sums may be rewritten as m sum of independent variables) and Markov inequality provide a bound for the the
second term while the first one is bounded by using the previous result in [16].

Case d ≥ 2. In order to handle the same technique as above, we need to develop a bound analogue as that in
[16].

Lemma 9. Assuming the assumptions in Lemma 4, then

∆n = sup
x∈IR+

∣∣∣∣∣IP
(∥∥∥∥∥

n∑
k=1

xk,n

∥∥∥∥∥ ≤ x

)
− IP(‖Z‖ ≤ x)

∣∣∣∣∣ ≤ c

(
n∑

k=1

IE‖xk,n‖3

) 1
4

.

Notation. For simplicity’s sake, set

∆n(x) =

∣∣∣∣∣IP
(∥∥∥∥∥

n∑
k=1

xk,n

∥∥∥∥∥ ≤ x

)
− IP(‖Z‖ ≤ x)

∣∣∣∣∣ .
The proof of Lemma 4 now follows the same lines as for d = 1 up to the following expressions

IE|X1 · · ·Xd|p = pd

∫ ∞

0

· · ·
∫ ∞

0

|x1 · · ·xd|p−1 (1 − IP(X1 ≤ x1, . . . , Xd ≤ xd)) dx1 · · ·dxd.

For example using ‖(x1, . . . , xd)‖ = max{|x1|, . . . , |xd|} implies that the difference of product moments to bound
is bounded above by

cp

∫ ∞

0

xpd+d−1∆n(x) dx,

for a constant cp > 0 only depending on p. Using the same techniques as above, yields the result, by truncating
at a level M > 0 such as

M−4pqd =
n∑

k=1

IE‖xk,n‖3.

5.2. Proof of Lemma 9

The proof will use the following lemma which is an easy extension of [14] to a vector valued case.

Lemma 10 (Lindeberg-Rio for m-dependent sequences). Let d ∈ IN. Let x1, . . . , xn ∈ IRd be centered at expec-
tation, m-dependent and such as IE‖xk‖3 < ∞ for k = 1, . . . , n. Then there exists an independent succession
y1, . . . , yn of centered d-dimensional random vectors with the following property. Let f : IRd → IR be a C3-
function with bounded partial derivatives of order 3 (write ‖f ′′′‖∞ = sup{s,‖hi‖≤1;i=1,2,3} ‖f

′′′
(s)(h1, h2, h3)‖),

then if we consider
∆n(f) = IE(f(x1 + · · · + xn) − f(y1 + · · · + yn)),

there exists a constant c > 0 such as

|∆n(f)| ≤ c‖f ′′′‖∞
n∑

k=1

IE‖xk‖3.

Remarks. In view of the theorem relative to the equivalence of the norms in the d-dimensional space we may
choose any norm on IRd and the constant c only depends on this norm and on m.

A simple use of Taylor formula at the origin and with order 3 proves that expression ∆n(f) is well defined.
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With Lemma 10 we consider a C3-function gδ,u such as gδ,u(x) ∈ [0, 1] for each x ∈ IRd and gδ,u(x) = 1 if
‖x‖ ≤ u, gδ,u(x) = 0 if ‖x‖ ≥ u + δ. It is possible to construct such functions satisfying ‖g′′′δ,u‖∞ ≤ cδ−3. Now
let δ4 =

∑n
k=1 IE‖xk‖3, then the result follows in a standard way (see, e.g., [5]).

5.3. Proof of Lemma 10

Notations. The second derivative of f at point s is a (symmetric) bilinear form on IRd. It will also be considered
as a (symmetric) d × d matrix and we shall denote

f ′′(s) • v =
d∑

i,j=1

∂2

∂xi∂xj
f(s) · vi,j if v = (vi,j)1≤i,j≤d.

For simplicity we shall handle only the case m = 1. We construct independent Gaussian random variables
y1, . . . , yn independent of (x1, . . . , xn), such as yk ∼ N (0, vk) with vk = IExt

kxk + IExt
k−1xk + IExt

kxk−1 for
k = 1, . . . , n, where we set x0 = 0.

Remark. In order to complete the proof in the general m-dependent case we should define

vk = IExt
kxk +

m∑
�=1

(
IExt

k−�xk + IExt
kxk−�

)
,

for k = 1, . . . , n, where x0 = · · · = x1−m = 0.

Set sk = x1 + · · · + xk, tk = yk+1 + · · · + yn if k = 0, . . . , n, with s0 = 0, tn = 0.
As in [14] (Def. 3) we decompose

∆n(f) = IE(f(sn) − f(t0)) =
n∑

k=1

(∆1,k(fk) − ∆2,k(fk)) , with

∆1,k(g) = IEg(sk) − g(sk−1) − 1
2
g′′(sk−1) • vk, and

∆2,k(g) = IEg(sk−1 + yk) − g(sk−1) − 1
2
g′′(sk−1) • vk, where

fk(x) = IEf(x + tk), hence ‖f ′′′
k ‖∞ ≤ ‖f ′′′‖∞.

In the above display g : IRd → IR denotes any C3-function with third order bounded partial derivatives. The
bound

|∆2,k(g)| ≤ c‖g′′′‖∞
(
IE‖xk‖3 + ‖xk−1‖3

)
, (23)

follows from Taylor formula

‖g(s + y) − g(s) − g′(s)(y) − 1
2
g′′(s)(y, y)‖ ≤ 1

6
‖g′′′‖∞IE‖y‖3,

applied with s = sk−1 and y = yk and the independence properties of y1, . . . , yn, for a suitable constant c. In
order to let himself be persuaded, the reader may restate the formula

IEg′′(sk−1)(yk, yk) = IEg′′(sk−1) • vk.

The terms ∆1,k(g) are more delicate to expand. Again using the previous Taylor expansion (now y = xk) we
see that, up to a term bounded as in equation (23), we only need to consider the expectation of

g′(sk−1)(xk) +
1
2
g′′(sk−1)(xk, xk) − 1

2
g′′(sk−1) • vk = δ1 + δ2,
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with

δ1 = g′(sk−1)(xk) − 1
2
g′′(sk−1) •

(
IExt

k−1xk + IExt
kxk−1

)
,

δ2 = g′′(sk−1)(xk, xk) − 1
2
g′′(sk−1) • IExt

kxk.

Rewriting

δ2 =
1
2
(g′′(sk−1) − g′′(sk−2))(xk , xk) +

1
2
g′′(sk−2)(xk, xk) − 1

2
g′′(sk−1) • IExt

kxk.

As before using the independence of xk and sk−2, a first order Taylor expansion yields

IEδ2 =
1
2
(
IEg′′(sk−2)(xk, xk) − g′′(sk−1) • IExt

kxk

)
=

1
2

(IEg′′(sk−2) − g′′(sk−1)) • IExt
kxk.

The mean value theorem provides now the expected bound for IEδ2, analogous to that in equation (23).
The other term considered can be written

δ1 = g′′(sk−2)(xk−1, xk) − 1
2
g′′(sk−1) •

(
IExt

k−1xk + IExt
kxk−1

)
+ R

where |R| ≤ c‖g′′′‖IE‖xk‖‖xk−1‖2 is bounded as in the above equation (23). Hence, using again the mean value
theorem, we obtain Lemma 3.

5.4. Proof of Lemma 5

We set d = 1. Fix t ∈ [0, 1]. We apply the approximation Lemma 4 to the random variables xk = ζk,ε(t) for
1 ≤ k ≤ N ; for simplicity we also define x0 = xN+1 = 0. Then setting y1, . . . , yN , a sequence of independent
and centered random variables such as, IEy2

k = IExk−1xk + IEx2
k + IExkxk+1 we deduce, using Lemma 4 with

d = 1 and q = 2, that for a suitable constant c > 0,

∣∣IE|βε(t)|p − IE |Bε(t)|p
∣∣ ≤ c

( ε

h

) 1
2

. (24)

And since
ε

h2
→ 0, we also deduce from (11) that

1√
h

(
IE‖βε‖p

p − IE|Z|p
∫ 1

0

(Σ(t))p dt

)
→ε→0 0.

To proof the second statement of this lemma recall that β̂ε(t) = βε(t) + cε and let us consider that we use the
optimal window i.e. h = λε

1
5 . By using again Lemma 4 with d = 1 and q = 2, we obtain

|IE|βε(t) + cε(t)|p − IE |Bε(t) + cε(t)|p| ≤ c
( ε

h

) 1
2

. (25)

In order to obtain the result this computation leads to consider the following difference

1√
h

∣∣∣∣∫ 1

0

(IE |Bε(t) + cε(t)|p − IE |Σ(t)Z + c(t)|p) dt

∣∣∣∣ .
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By using the inequality ∣∣∣|β + c|p − |β|p
∣∣∣ ≤ p|c| (|β|p−1 + |c|p−1

)
,

it is enough to show that

|IE |Bε(t) + cε(t)| − IE |Σ(t)Z + c(t)| | = o

(
1√
h

)
,

which is a consequence of the definition of IE(βε(t))2 and a Taylor development of order two.

5.5. Proof of Lemma 6

Using Lemma 1 with Mehler’s formula yields

Cov (βε(s), βε(t)) ∼ h

ε

∫ ∫
K(u)K(v)

∞∑
n=1

a2n(s)a2n(t)(2n)! A2n
ε (s, t, u, v) du dv,

with

Aε(s, t, u, v) =
1

Σ(s − uh)Σ(t − vh)

∫
ϕ(x)ϕ

(
x +

t − s

ε
+ h

u − v

ε

)
σ2(t − vh) dx.

The change of variable v �→ z = t−s
ε + hu−v

ε yields the result using Lebesgue dominated theorem (the corre-
sponding integrals are uniformly convergent).

5.6. Proof of Lemma 7

Using again Mehler’s formula, we get

Var ‖Bε‖p
p =

∫ ∫ ∞∑
k=1

b2k (2k)! Cov2k(Bε(s), Bε(t))Σp(t)Σp(s) ds dt.

Now the change of variable s �→ w = t−s
h and a systematic use of Lebesgue convergence theorem yield the result.
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[3] P. Brugière, Théorème de limite centrale pour un estimateur non paramétrique de la variance d’un processus de diffusion
multidimensionnelle. Ann. Inst. Henri Poincaré, Probab. Stat. 29 (1993) 357–389.
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