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ADAPTIVE ESTIMATION OF A QUADRATIC FUNCTIONAL OF A DENSITY
BY MODEL SELECTION

BEATRICE LAURENT!

Abstract. We consider the problem of estimating the integral of the square of a density f from
the observation of a n sample. Our method to estimate fR f?(x)dz is based on model selection wvia
some penalized criterion. We prove that our estimator achieves the adaptive rates established by
Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential
inequality for U-statistics of order 2 due to Houdré and Reynaud.
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1. INTRODUCTION

Let X1,..., X, be ii.d. real random variables with common density f € L?(R). The aim of this paper is to
propose an adaptive estimator [, f?(x)da.

Bickel and Ritov [1] and Laurent [16,17] have built estimators of [ f2 in a density model but these estimators
depend on some prior information on f. Bickel and Ritov [1] assumed that f belongs to some compact set
included in the class of Holderian functions of order a. They built an estimator é\a of [ f? that is efficient if
a > 1/4 and achieves the rate p 4/ (t4e) if o < 1/4. Moreover, they proved that this rate is optimal. Similar
results are also obtained in Laurent [16] with a simpler method of estimation based on projection estimators,
which allows to built efficient estimators of more general functionals of the form [ ®(f) if a > 1/4. Birgé and
Massart [2] have established minimax lower bounds for the estimation of integral functionals of a density.

Several papers are devoted to the estimation of quadratic functionals in the Gaussian sequence model, that
is when one observes

Yy =0+ %6,\, A e N*
where (ex, A € N*) is a sequence of i.i.d. standard Gaussian variables. This model can be derived from the
Gaussian white noise model:

Y(t):/o Fw)du + %W(t), te[0,1]
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2 B. LAURENT

after some projection onto an orthonormal basis of .2([0,1]). The sequence (8x, A € N*) corresponds to the
sequence of coefficients of the signal f onto this orthonormal basis. The quantity to be estimated here is
0= ZAGN* 63\ = fol 12

Ibragimov, Nemirovskii and Hasminskii [14] considered the problem of estimating a general functional of the
signal f in the white noise model and established the conditions (in terms of regularity of the functional and of
the signal) under which the functional can be estimated efficiently.

Donoho and Nussbaum [6] proposed an estimator of > AEN* ﬁf\ in the Gaussian sequence model, with the
prior information that the sequence (8x, A € N*) belongs to some ellipsoid.

Efroimovich and Low [8] were the first to propose adaptive estimators of quadratic functionals in the frame-
work of the Gaussian sequence model. The estimator gn proposed by Efroimovich and Low is inspired by
Lepskii’s method of adaptation and it has the following adaptive properties: for any positive R and «, provided
that the sequence (3)),>, satisfies to the condition #3A?**1 < R? for all A (which means that (3)),~, belongs
to some hyperrectangle)_one has -

N 2 le% e
. E{(@n - 9) ] < C(R,a)(n?log (n))4 A ), if « <1/4.
) §n is asymptotically efficient if o > 1/4.

Efroimovich and Low also proved that this rate is optimal, which means that the logarithmic factor that appears
in the rates of convergence cannot be avoided if we do not know a priori to what hyperrectangle the sequence 3
belongs.

Johnstone [15] proposed estimators of § = 3°, . 63 in the Gaussian sequence model which are based on
wavelet thresholding methods and proved that these estimators are adaptive on Holder classes. Gayraud and
Tribouley [10] also proposed estimators based on wavelet thresholding methods and proved the adaptivity on
Besov balls. They also give asymptotic confidence intervals for 6.

Laurent and Massart [18] built adaptive estimators of quadratic functionals in a Gaussian framework covering
both the Gaussian sequence model and the finite dimensional Gaussian regression. These estimators are based
on model selection via some penalized criterion. In the framework of the Gaussian sequence model, the penalized
estimator is defined in the following way: one considers a collection M of subset of N* and a penalty function
pen : M — RT. The penalized estimator of § = D o ren- (3% is defined as

6= sup (Z YE — pen(m)) .

meM Aem

For suitable choices of the set M and of the penalty function, this estimator is adaptive over more general
classes of sequences of coefficients (8x)a>1 than the estimators proposed by the previous authors.

In this paper, we propose an adaptive estimator of f]R f%(z)dx in a density model which is also based on
model selection via some penalized criterion. We show that this estimator achieves the minimax adaptive rate
established by Efroimovich and Low [7] over Besov bodies By 2.00(R).

This paper is also motivated by applications to adaptive goodness-of-fit tests in a density model that are
proposed in Fromont and Laurent [9].

A crucial point in the proof of our results is an exponential inequality for U-statistics of order 2 due to
Houdré and Reynaud [13].

The paper is organized as follows: in Section 2, we recall some results concerning the estimation of f]R f?(x)dz
and we introduce the estimation via model selection. In Section 3, we give our main results. Section 4 contains
the main tool for the proof of Theorem 1. Section 5 is devoted to the proofs.

2. ESTIMATION ViA MODEL SELECTION

Let X1,...,X, beii.d. random variables with common density f belonging to IL?(R). Our aim is to estimate
f]R f%(z)dx. To do this, we consider the orthogonal projection of f onto the Haar basis. We first introduce some
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QUADRATIC FUNCTIONALS OF A DENSITY 3

notations. Let
P(x) = ]I[O,l] (), ¢(x)= 1[0,1/2[(@ - ][[1/2,1[(93)7
and for any k € Z and j € N, let
Gk(x) =290 — k), n(e) =222 — k).
The functions (¢o.k, ¥k, 7 € N,k € Z) form the Haar basis of L?(R). The decomposition of f onto this basis
may be written as:
S aon(Nbon + DD Biwl )

kEZ Jj>0 keZ
where o (f) = [ fé;r and Bk (f) = | f; k. For any J € N, this decomposition is also equal to

S ank(B)bak+ DD Bik(F)bjk-

kEZ i>J kEZ

We set 3(f) = (8),k(f))jz0,kez-
We define the function f; by

fr=> as(f)osx.

kEZ
For any J € N, we consider the unbiased estimator of [ f% = Y okez 042,, i defined by

0= Z Z Grk(X1)osr(Xv). (1)

keZ £l =1

In order to evaluate the quadratic risk of this estimator, we use the decomposition
E [((TJ - 9)2} = Bias?(8) + Var(d)).

Since the expectation of 6 equals [ f2, |Bias(§,;)| = [(f — fs)?. Assuming that || f||~ is finite, one can easily
show that

J
Var(@) < (1) (2 + 1)

where C(]| f]loo) is a constant depending on || f||co-
Let us assume that we have some prior information on f, for example that the sequence 3(f) belongs to the
Besov body Bg 2,00 (R) defined by

Ba,Q,oo(R) = {6 = (6j,k)j20,k€Zavj 2 OZﬂik S R222ja} .
kezZ
This implies that for all J € N,
[U=127 = XS < R,
j>J kEZ

where C'(«) is a constant depending on «. Choosing J in such a way that

2J 4o—4.J
~ - (e
S ~ Rl2~1e,
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4 B. LAURENT

we obtain that

r —ox {7 1
E [(9] o 9)2} < C(Hf”oo) <R4/1+4an 8a/1+4 + E) .

The rate obtained here corresponds to the minimax rate for estimating 6 over Holderian balls with index o and
radius R as it is proved by Bickel and Ritov [1] and Birgé and Massart [2].

Since our choice of J depends on the unknown parameters « and R, this is not satisfactory. We shall now
present some heuristics of the adaptive procedure via model selection.

Adaptive estimation of [ f2.

We have seen that the “ideal” choice of J minimizes the quantity

[y R R

Since [ f? does not depend on J, this is equivalent to maximize the quantity [ f% — 2772 /. [ % is estimated
without bias by 6, hence we set

~

J = argmax ;. s {é\] - pen(J)}
and

0 =05 —pen(J) = sup [@r - pen(J)} , @
JeJ

where J is some subset of N and pen(.J) is non-negative quantity that we shall specify in the following.

3. MAIN RESULTS

In Theorem 1, we consider the classes of functions f which are uniformly bounded and for which the sequence
of coefficients onto the Haar basis belongs to some Besov body.

We show that for a suitable choice of the penalty term pen(.J) appearing in the definition of the estimator 0
given by (2), the estimator 9 is adaptive over these classes.

Theorem 1. Let Xi,..., X, be i.i.d. real random variables with common density f belonging to Loo(R). Let
0= [ f*(x)dx.

Let 7 = {J eN,2/ < n2/10g3(n)}. For all J €N, let 6 be defined by (1).

There exists some absolute constant k > 0 such that if we set for all J € J

pen(J) = g {\/(a] +1)27 log(27 + 1)} ,

then the estimator 0 defined by (2) has the following properties:
For any o > 0, R > 0 and M > 0, there exists some integer no(«, R, M) depending on o, R and M such
that the following inequality holds for all n > ng(a, Ry M) :

n

Y E (5_ 0 = Z(f(Xi) - 0)) < C()(R(M + 1)) 775 (M) o .

FBF)EBa 2,00 (R), || fll oo <M n i n

This leads to
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QUADRATIC FUNCTIONALS OF A DENSITY )

e for all a > i, R > 0, and M > 0, there exists some integer nq(a, R, M) such that the following

inequality holds for all n > nq(a, R, M) :

—~ 2 M?
sup E [(9 - 9) ] < O(a)—; (3)
faﬁ(f)EBa,Zoe(R)vl‘f”oogM n

e for all a < i, R > 0, and M > 0, there exists some integer na(a, R, M) such that the following

inequality holds for all n > na(a, R, M) :

8a

sup E [(5— 9)2] < C(a)(R(M + 1)0‘)1+44a <7vlog(nR2)> o ) (4)

FB(F)EBa,2,00(R), || flloo <M n

If f € Loo(R) and B(f) € Ba,2.00(R) for some a > 1/4 and R > 0, then

V(@ —0) B N (0, Var(2f(X1))) asn — oo (5)
nE [(5— 9)2} "2 Var(2f(X1)). (6)

Comments:

1) We derive from (5) that if 8(f) € Ba,2,00(R) for some o > 1/4, then § is an efficient estimator of § (see
Laurent [16]).
2) If o < 1/4, we obtain the rate (y/log(n)/n)%e/(1+4a),

Let Hq(R) denote the Holderian ball defined by

Ha(R) = {f:[0,1] = R,Va,y € [0,1], |f(z) = f(y)| < Rlz —y["}. (7)

The minimax rate for estimating [, f2 over Ho(R) if v < 1/4 is n=4e/(1+49) (see Birgé and Massart [2]).
Efroimovich and Low [7] proved that the logarithmic loss with respect to the minimax rate that appears in
the adaptive lower bounds for estimating [ f? is unavoidable. This is the purpose of the following proposition:

Proposition 1 (Efroimovich and Low [7]). Suppose that 8, is an estimator of 6 based on the n sample
X1,...,Xn. If, for some a > 1/4,

. 2
lim sup nE {(Hn - 9) } < 00,
T feHa(R)

then for every a < 1/4,

Tl2 1iia R 2
lim  sup <—) E [(971 — 9) ] > 0.
n—oo fEHA(R) 1og(n)

Since Ho(R) C {f,B(f) € Ba,2,00(R)} this proves that the rate of convergence obtained in Theorem 1 corre-
sponds to the minimax adaptive rate for estimating 6 over the set {f, 5(f) € Ba,2,00(R)}.

3) If the sequence S(f) belongs to By 2 o0 (R) for some R > 0 et o > 1/2, then f is uniformly bounded (see
inequality (8.15) of Proposition (8.3) in Hafdle et al. [12]). Therefore, the assumption of boundedness
on f is only a restriction if a < 1/2. In all cases, assuming that || f||cc < M, we provide an upper bound
for the quadratic risk, where the dependency with respect to M is given.
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6 B. LAURENT

4. AN ORACLE INEQUALITY

The result stated in this section is the main tool for the proof of Theorem 1. It provides a non asymptotic
bound for the risk of the penalized estimator 6 defined by (2).

Proposition 2. Let Xi,...,X,, be i.i.d. real random variables with common density f belonging to L. (R).
2

Let 6 = fR f?(x)dx. Let J,, be a subset of {J €N, 2/ < logﬁ,m} There exists some absolute constant ko such
that if we set for all J € Ty,

pen(J) = g |:\/(§J +1)27 log(27 + 1)J

with Kk > Ko, then the estimator 0 defined by (2) satisfies the following inequality for all n > 2 provided that
[ flloo < M:

—~ n ? J oo (27
E (9—9—320(&)—9)) <o jut Iy pig ¢ ZEELRE T D) CCD,

n n2

i=1
C' is an absolute constant and C(M) is some constant depending on M only.

Comments.

1) One can derive from Proposition 2 an upper bound for the quadratic risk of (’9\, indeed
n 2 n 2
E|(0-0) |<2m|(0-0-23(rx)-0)) | +28 | 23 (0x) - 0)
B i "ia
and
2 14
E||l= X;)—6 <— [ f3
(n;w ) >> <> s
2) One can also deduce from Proposition 2 that if

J(M 1 J
ng (15— g+ ZEELEEE D o),

then /n (5— 6—25"  (f(Xs)— 9)/n> tends to zero in probability, which implies that

V(@ —0) B N (0, Var(2£(X1))).

In this situation @ is an efficient estimator of # (see Laurent [16]).

3) In order to prove Proposition 2, we use an exponential inequality with explicit constants for U-statistics
of order 2 due to Houdré and Reynaud [13]. It is worth mentioning the paper by Giné, Latala
and Zinn [11] where an exponential inequality for general U-statistics is given, and the paper by
Bretagnolle [5] where an exponential inequality for U-statistics of order 2 is also established.

4) We could derive from the explicit constants given in Houdré and Reynaud’s inequality an upper bound
for kg, but this upper bound would be very large. A simulation study would be necessary to know how
to calibrate k¢ in practice. Such a simulation study was carried out by Birgé and Rozenholc [4] in the
case of density estimation with histograms.
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5. PROOFS

In the sequel, we denote by C' some absolute constant whose value may vary from one line to another. We
always mention the dependency of a constant with respect to some parameters: for example C'(«, R) stands for
a constant depending on « and R.

Before proving Proposition 2, we prove the following Proposition, where an upper bound for || f||~ is assumed
to be known.

Proposition 3. Let Xi1,...,X,, be i.i.d. real random variables with common density f belonging to L. (R).
We assume that || f||ec < M where M is known. Let 6 = [, f?(x)dz. Let J be a subset of N. For all J € J,

let §J be defined by (1). There exists some constant ko > 0 such that if we set for all J € T

27 1og?(27 + 1
npen(J) = & [\ /M2 108(27 + 1) + Mlog(2” +1) + 2108 2"+ 1)
n

6= sup (ét; - pen(J)) ,
JeJg
then the following inequality holds for all n > 2:

with kK > kg and

2
—~ 2
E (995;@(&)0)) < C inf [Ifs = fI} + pen®(J)]

where C is some absolute constant.

5.1. Proof of Proposition 3
We use the canonical decomposition of the U-statistics 6. We denote by U,, the process defined by U,(H) =
(1/n(n —1)) 3210y H(X;, Xiv) and we denote by P, the empirical measure P, (h) = (1/n) 37, h(X;) — [ hf.
We set oz = [ fdsk,
Hy(z,y) =Y (bsn(@) = aup) (Gsr(y) — asr)

keZ
and
hy=2(fr—f)
The following decomposition holds:
~ 2 &
00 =0 =% (F(X:) = 0) = Un(Hy) + Pu(hy) = If = 11113 (8)

i=1
Let us denote by V; the variable
Vi = Un(Hy) + Po(hy) = |f = f15 = pen(J).

By definition of 8, and by (8),

n

70— 23 (7(%:) ~ ) = sup (V).

i—1 JeJg
Moreover, since

sup Vy| = [sup (V. V | inf (V. ,
vl = [ 0] [ 00
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2
(sup VJ)
JeJg

We first control E |:(V])3_:| . To do this, we use an exponential inequality for U-statistics of order 2 due to Houdré
and Reynaud [13] in order to control the term U, (H,). In order to control the term P,(hy) — ||f — fs||3, we
use Bernstein’s inequality.

Control of U, (Hy).

We shall use the following Lemma that is a consequence of Houdré and Reynaud’s exponential inequality for
U-statistics of order 2:

Lemma 1. Let Xi,...,X, be i.i.d. with common density f € Loo(R). Let for all J € N and k € Z, let
agk = [ fork and 05 =3 507, Let

we obtain that

E < E[v)?] + il E (Vo]

JeJ

Hy(z,y) =Y (¢sx(@) = asr)(bsr(y) — asr)

keZ
and
1 n
Upn(Hyj) = —= Hy; (X, Xp).

(Hy) ”(”_1)17;1 (X1, Xir)
There exists some absolute constant Cy > 0 such that for all J € N, for all t > 0,

C, 2712

P <|Un(HJ)| > jl (\/ 290 5t + || fll oot + T)) < 5.6 exp(—t).

The proof of the lemma, is postponed to the Appendix.

We set for all t >0
Jt2

wrl®) = - (VI et + 25 ) )

We derive from Lemma 1 that for all ¢ > 0,

P(|Un(Hy)| > u(t)) < 5.6 exp(—t). (10)

Noticing that for all t; > 0 and all ¢35 > 0

Uy (tl\}L;Q) <uy(th) +ug(ta),

we derive from (10) that for all ¢ > 0 and y; > 0,
P ([U(H)| > ws(V2y5) +us (V1)) < 5.6exp— (1 + 1), (11)

Control of P, (hs) — ||f — 7|3

We use the following lemma due to Birgé and Massart [3] which provides a special version of Bernstein’s
inequality.

Lemma 2. Let Uy,...,U, be independent random wvariables such that for all i € {1,...,n}, |U;|] < b and
E(U?) < 62, Then for allt >0

P (% ZZ:; (Us — E(U:)) > 6—\/\/? + %) < exp(—t).
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QUADRATIC FUNCTIONALS OF A DENSITY
We apply Lemma 2 with U; = 2(f; — f)(X;) for all i = 1,...,n. Note that
Uil <2(1f5 = fllso < 4llflloo
since || f7]loo < || f]loo. Moreover,
BUZ) =4 [ (£ = 171 < alflllf - 113

We deduce from Lemma 2 that for all ¢ > 0,

 (a(h) > 2y BTl — 1Y + L) < gy,

vn
Using the inequality 2ab < a? + b2, one obtains for all ¢ > 0,
10|| f |0t
P (P = 17 = £l > ) < exp(),

which implies that for all ¢t > 0 and y; > 0

10]lfllocys 200 flloct

P (Pn(hJ) —f = fs15> 3n 3n

) <exp—(t+ys).

We now turn to the control of E [(V;)4].
Noticing that

0= [ i< [ £ <flezn
since [ f =1, we obtain that for all J € J,

27 log?(27 + 1
pen(J) > g ( 6,27 log(27 + 1) + M log(2” + 1) + M) ,

n

Let for all J € N, y; = 3log(27 + 1). Using the inequality 1/(n — 1) < 2/n and setting
Ko = max (3600, 6v2C, + 10) ,

(14) implies that
10{ fllocy.
pen(J) > uy(V2ys) + W

It follows from the definition of V; and from (11), (13) and (15) that for all J € J,

10Mt¢
P <VJ > U.I(t\/§) + W) < 6.66Xp7(t+ yJ).

We now use the identity
+oo
E[(V))3] = 2/ tP(Vy > t)dt.
0
This identity, together with (16) leads to

27M Mm% 22
E[(V)i]<C {7 +—+ F} exp(—ys).

n
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10 B. LAURENT

Recalling that J is a subset of N, » ;- 227 exp(—ys) < ZJzo 2~/ which implies that

ZE((VJ)i)SC(M+ 1).

n?2 n*
JeJg
Let us now give an upper bound for F [(Vj)2_:| It follows from the definition of V; that

E[(V))2] <4{E[U:(H)] + E [Pi(hy)] +pen®(J) + s = fl2} -

We use the identity
o0
E(X?) = 2/ tP (|1 X| > t)dt, (17)
0

which holds for any random variable X such that F(X?) < +oo0.
We derive from (10) that

2/M M?* 2%
2
E[Un(Hl)] §C< 2 JFFJFF) . (18)
Since ; ) 0
27 M M 2
pen’(J) > 2 log(2) + ey log®(2) + gy log*(2),
this implies that
E [U2(H,)] < Cpen?(J).
In order to give an upper bound for E(P2(h)), we set
Ifr—fllz , 4 y
=2./2 Wr—Jhz, = Z.
uly) = 2T 2 4 2 o
We deduce from Lemma 2 that for any y > 0,
P (IPu(hs)l > u(y)) < 2exp(—y).
Using (17), this leads to
M| fr—fl3 | M?
2 2
Using the inequality 2ab < a? + b2, one obtains that
2 g M2
E [P?(hJ)] §C<||f.1f||2+ﬁ> : (19)

Collecting these evaluations,
E[(Vo)2] <C(Ifs— flI5+ pen®(J)).

This concludes the proof of Proposition 3.

5.2. Proof of Proposition 2

Let A denote the event {VJ € JIn, é] + % > 9]}. We first give an upper bound for

E (f?eii(f(me)) 14

i=1
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Using the same notations as in the proof of Proposition 3,

n
i=1 JGJn

Let Co(M) = inf {J eN > M2 } We first show that for all J € J, such that 27 > Co(M),

’ log(2J+1)

C(M
%22‘] exp(—yJ)-

E [(VJ)i ]IA] <

To prove this result, we use the identity
[(VJ) ]IA} - 2/ tP(Vy > tn A)dt.
0

We set y; = 3log(2”7 + 1). We derive from (11) and (13) that if, on the event A,

].OMy]

pen(J) = us (V) + —5 L2,

(where u is defined by (9)), then we have that
10 ¢t
P ((VJ > uy(tV2) + ?ME) N A) <6.6exp—(t +y).
This implies that

[(VJ) ]IA} < %2” exp(—y.).

Let us show that (20) holds for all J € 7, such that J > Cy(M). Setting z; = log(27 + 1), on the event A, for
all J € 7, such that J > Co(M),

npen(J) > ky/ (05 +1/2)27x;

K K

—\05272 5+ =27z,

SVl Ty 7

> %\/ 0527xy + EJWIEJ + g\/ 27y,

4

v

V

Since for all J € J,,, 27 < n?/log®(n),

T2 3/2(, 2
1 2acJ<log (n +1)<C’{

V27z; n T log*?(n)

where C is some positive constant.
This implies that, on the event A, for all J € 7, such that 27 > Co(M),

2J
npen(J >—\/9J2ij+ MIJ+4Z/ L.
n

By definition of uy given in (9), we obtain that if x{, > max(32v/2Cy + 54.256CCy), then, on the event A, for
all J € J, such that 27 > Cy(M), (20) holds.
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12 B. LAURENT
If 27 < Cy(M), by using the inequalities (12) and (18), one obtains

E (V)2 14) <E((V5)2)
2 [ [U2(H )] +E[(Palh) ~ 1~ £213)2]}

IN

2J 22]
= o) <n— * F)
1
< C(M)ﬁ

possibly enlarging C(M) since 27 < Co(M). Collecting these evaluations, one obtains that
1
ST E((V)? L) <OM)— (21)

2
n
JETn

since 3 ;7 227 exp(—ys) < 30,5027
We now give an upper bound for E [(V})Q_]

E[(V))2] <4{E[UZ(H;)] +E[P(hs)] +|Ifs — fli3 + E [pen®(J)] } .

We use inequalities (18) and (19) to control E [U2(H ;)] and E [P2(h;)]. Moreover, for all J € 7,

2 o~
pen2(J) = %(QJ + 1)2JxJ,

and since ]E((%) =05 <|[|flloc <M,

2J
E [pen®(J)] < C(M +1) nﬁ‘].
It follows that for all J € J,,,
27 M?
B[] <o (Ifs - A3+ 00+ 022 + 17 (22)

It remains to evaluate

We first give an upper bound for P(A®). Note that
P(A%) < Y P(a, —9, < —1/2> <X P(|§J — 0y > 1/2) .
JE€Tn JeTn

Since R
07 —0;=Un(Hy)+ Pu(2f7),

p(10-0,1> 3 ) <® (joaen) > 1) + 2 (IR0 > 1)

Let us first give an upper bound for P (|U,(H;)| > ).
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QUADRATIC FUNCTIONALS OF A DENSITY

Since ¥n > 2, 1/(n — 1) < 2/n, we deduce from (10) that

2Cy 2742
P (U (Hj)| > =2 (V2IMt + Mt +=— ) ) < 5.6exp(—t).

n n

Let

to(n, M) = inf { log’(n) n_log"(n) } :

(24C0)2M ' 24Co M’ /240,

Note that, since 27 < n?/log®(n),

20 2742(n, M 1
t (1/2JMt0(n,M) + Mto(n, M) + %) < T
n

which implies that

1 C(M
P <|Un(HJ)| > Z) < 5.6exp(—to(n,M)) < ;8 ).
Let us now give an upper bound for P (|Pn 2f7) > i) . By Lemma 2,
V2y | 2My
P |Pn(2 2M—= + —= ) <2 —1).
(121> 232+ ) < 2exp(y)
Let
(n, M) =infd " 31
ol )= 2902 16 M
Since
oA 2yo(n, M) n 2Myo(n, M) < 1,
vn 3n 4
we obtain
1 C(M
P (1Paernl> ) < 2o (ol 30 < S50

Since the cardinality of 7, is not larger that n?, we finally obtain that

cuM)

p(4%) < 90

It follows from the definition of 8 that 0 < §; < 27 for all J € N. This implies that for all J € J,,
0 < pen(J) < Chn.

Hence,

6] = | sup (§J - pen(J))‘
JeTn
< sup (2‘]+C’n)
JETn
< Cn?.
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14 B. LAURENT

Moreover, 0 < 0 = [ f2 < M and |2 3", (f(X;) — 0)| < 4M. These evaluations imply that

n 2
(5— 02> (1) - 9)) < c(n

and therefore,

n

E <9A—9—%Z(f(Xi)—9)> 15| < C(M)n*P(A°) <

i=1

C(M) |
n2

(23)

Collecting (21), (22) and (23), we conclude the proof of Proposition 2.

5.3. Proof of Theorem 1
We now apply Proposition 2. We set

n2R4 1/(1+4a)
In = |0 <<M+1>1og<nR2>>

where [z] denotes the integer part of x.
Since a > 0, J,, € T, for n > ng(a, R, M).

Note that
n2R4 1/(1+4a) n2R4 1/(1+4a)
< 2Jn <2
(M + 1) log(nR?) (M + 1) log(nR?)

and that there exists ng(a, R, M) such that for all n > ng(e, R, M), J,, > 0 and

+1

log(27" + 1) < C(a) log(nR?).
Noting that if f € By,2,00(R), for all J € N

If = £03 =D 874(f) < Cla)R?272,

i>J keZ
we derive from Proposition 2 that
~ 22 ?
sup E[(0-0-=(f(X)-0)] | <
fvﬁ(f)ega,z,oo(R)f”fHOOSM n =1

M +1)27» M
C(Oé) |:R424J"a + ( +2) lOg(QJ" + 1):| + C( > )
n n

By definition of J,,, possibly enlarging ng(a, R, M), for all n > ng(«, R, M),

n

sup E (5 —0- 23 (X - 9)) < C(a)(R(M + 1)) (

F,B8(F)EBa,2,00 (R) || flloo <M i=1

n

log(nR?) > T
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QUADRATIC FUNCTIONALS OF A DENSITY 15

In order to prove (3) and (4), we use the inequality

E{(@—G)Tgm (5-9-%%@(&)—9))2 4R (%i(f()@-@))

i=1

together with the fact that
2
2 M?
E — X;)—80 <C—-
(23ue-0) | <cX

Finally (5) and (6) derive from the fact that if o > 1/4, then

n-
=1

n 2
nE (5 o2 S (F(X) - 9)) "0,
and from the fact that
% SO(F(X:) = 0) 2 N (0, Var(2f(X1).
=1

6. APPENDIX

6.1. Proof of Lemma 1

We deduce from Theorem 3.4 in Houdré and Reynaud [13] that there exists some absolute constant C' > 0
such that for all £ > 0,

n
P Z H; (X, Xp)|>C (Al\/i + Aot + Agt®/? + A4t2> < 5.6 exp(—t)
1#£1'=1

where

A} = n(n - DE(HS (X1, X2)),

n 1—1 n n
Ay =sup [E [ D73 Hy (X1, Xa)ai(X1)b;(X2) ,E(Zﬁ()@) SLE[Y 03(Xy) | <1y,
=1 j=1 i=1 j=1

A% = nsup {EX2 (Hg(vaQ))} )

Ay = sup |H;(z,y)|.
zfy

Let us now evaluate A;, As, A3z and Ajy.

Evaluation of A;.

H3(X1,X2) =Y (¢uk(X1) — as)? (fuk(X2) — )’
kEZ

+ Z (Dar(X1) = agp) (dap (X1) — agp) (Prr(X2) — agr) (dow (X2) —agw) -

k#k! €T
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16 B. LAURENT

This implies that

E(H3(X1,X2) = [/ (Gak(@) — )’ f(ﬂc)dx}2

kEZ
2
+ > {/ (@) — agr) (Pow () — agw) flz)dz
ktk' €T
2
=y [/ ¢3,kfa3,k] + Y ajpady
kez kK €L
) 2
<X (fetur) + (o)
kEZ kEZ
2
<2’} ol + (Z a?l,’“) since ¢, = 2776,
kEZ kEZ
< 2J+19J

since Y,z 0% ), = 05 and since, setting Iy =]k/27, (k +1)/27],

Za%yk:Z]Z/ f fF<2ly <2’
Ik Ik

kezZ kezZ kez” Lk

Ay <4/2n(n—1)276;.
Evaluation of A,.

Let (ai)lgign and (bj)lgjgn satisfy E(Z?:l a%(Xl)) <1 and E(Z?:l b?(Xl)) <1.
We recall that f; = Zkez T EPT k-

It follows that

n i—1 n i—1
>3 B (0 X)Xt (X)) = 333 [ (e~ an)aif [ (6as— s by
i=1 j=1 i=1 j=1keZ
n 1—1 n i—1 n i—1
- bonaif [ Goibif+ o2y [aif [b;f- ( aif [ fabsf+ [ b faz-f)~
3.3 [ound [outit+ 33 Sois s [rr-35 ( [us [ s+ [t [ 5
Using repeatedly the Cauchy-Schwarz inequality,
97 1/2 971/2
bunaif mwgl ( ¢,aif)1 l ( ¢,b‘f)]
k%/ﬂc /Jk] k%/ﬂc %/ka
1/2 1/2
J 2 2
§2 [;Z/Ij,kaif/lj,k f‘| [;Z/Ijkbjf IJ’k f‘|
1/2 1/2
§2J<||€!m/a$f) <|f2|Joo/b§f>

<l ( [ a?f>1/2 (/ b?f)m.
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QUADRATIC FUNCTIONALS OF A DENSITY 17

Therefore,
n i—1 n 1/2 n 1/2
bunaif | darbif] < I fllso ( ?f) ( bzf)
n " 1/2
< N fllo ’f vif
< 1l flloo

since by assumption Y ., [a?f <1 and > Jor<i
Moreover, still using repeatedly the Cauchy-Schwarz inequality, the assumption on the a;’s and b;’s, together
with the fact that -, ., a3, < [ f? <|/flls since [ f =1, one obtains

z:;%a%k /aif/bjf‘ < /f2;/|aif|jz:/|bjf|

< |f|m§ (/f/f)/; (/b?f/f)m
< | flloom.

Finally, using that || f]lee < || ]l

éé /aif/fijf

Sy 2g=1 | Jbif [ fraif] is also controlled by || f|lecn. We finally obtain that

<35 [1sils [laids < fn

i=1 j=1

Az < 4An|floe-
Evaluation of As.

Ex,(Hj(z, X2)) = ) (/(%k = aJ,k)Qf) (a(x) — asp)®

keZ

+ > (/ (Dsk — cyp) (dap — arpr) f) (Pak(@) = k) (B (@) — o)

k#k'€Z
2
=Y / O7 il (Prp(@) — asp)? — (Z ask(dsk(@) — OéJ,k)>
keZ kEZ
< flloe Y (@5,4(2) + @F )
kEZ

since [ qﬁk = 1. Noticing that }, d)?,,k(:c) =27 and that Y, ., a?,jk <27,

sup Ex, (H3 (2, X2)) oo < 277 flc0-
x
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18 B. LAURENT

As <1/2710] |l o

Therefore

Evaluation of A4.

It is easy to see that
A4 S 2J+2.

We now derive from Houdré and Reynaud’s inequality that there exists C' > 0 such that for all ¢ > 0,

1 - C 32 9J2
Pl ——— Hj;(X;, Xy - 270 ;¢ ot 9J - <5 .
| X X0 > VT It 4 2+ 5 | < 50l

1£1'=1

Since 2ab < a® + b?,

£3/2 9742
22 flloo e < Wt + =

This concludes the proof of the lemma.
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