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ADAPTIVE ESTIMATION OF A QUADRATIC FUNCTIONAL OF A DENSITY
BY MODEL SELECTION

Béatrice Laurent1

Abstract. We consider the problem of estimating the integral of the square of a density f from
the observation of a n sample. Our method to estimate

∫
R

f2(x)dx is based on model selection via
some penalized criterion. We prove that our estimator achieves the adaptive rates established by
Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential
inequality for U -statistics of order 2 due to Houdré and Reynaud.
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1. Introduction

Let X1, . . . , Xn be i.i.d. real random variables with common density f ∈ L
2(R). The aim of this paper is to

propose an adaptive estimator
∫

R
f2(x)dx.

Bickel and Ritov [1] and Laurent [16,17] have built estimators of
∫
f2 in a density model but these estimators

depend on some prior information on f . Bickel and Ritov [1] assumed that f belongs to some compact set
included in the class of Hölderian functions of order α. They built an estimator θ̂α of

∫
f2 that is efficient if

α > 1/4 and achieves the rate n−4α/(1+4α) if α ≤ 1/4. Moreover, they proved that this rate is optimal. Similar
results are also obtained in Laurent [16] with a simpler method of estimation based on projection estimators,
which allows to built efficient estimators of more general functionals of the form

∫
Φ(f) if α > 1/4. Birgé and

Massart [2] have established minimax lower bounds for the estimation of integral functionals of a density.
Several papers are devoted to the estimation of quadratic functionals in the Gaussian sequence model, that

is when one observes

Yλ = βλ +
1√
n
ελ, λ ∈ N

∗,

where (ελ, λ ∈ N
∗) is a sequence of i.i.d. standard Gaussian variables. This model can be derived from the

Gaussian white noise model:

Y (t) =
∫ t

0

f(u)du+
1√
n
W (t), t ∈ [0, 1]
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2 B. LAURENT

after some projection onto an orthonormal basis of L
2([0, 1]). The sequence (βλ, λ ∈ N

∗) corresponds to the
sequence of coefficients of the signal f onto this orthonormal basis. The quantity to be estimated here is
θ =

∑
λ∈N∗ β2

λ =
∫ 1

0 f
2.

Ibragimov, Nemirovskii and Hasminskii [14] considered the problem of estimating a general functional of the
signal f in the white noise model and established the conditions (in terms of regularity of the functional and of
the signal) under which the functional can be estimated efficiently.

Donoho and Nussbaum [6] proposed an estimator of
∑

λ∈N∗ β2
λ in the Gaussian sequence model, with the

prior information that the sequence (βλ, λ ∈ N
∗) belongs to some ellipsöıd.

Efroimovich and Low [8] were the first to propose adaptive estimators of quadratic functionals in the frame-
work of the Gaussian sequence model. The estimator θ̂n proposed by Efroimovich and Low is inspired by
Lepskii’s method of adaptation and it has the following adaptive properties: for any positive R and α, provided
that the sequence (βλ)λ≥1 satisfies to the condition β2

λλ
2α+1 ≤ R2 for all λ (which means that (βλ)λ≥1 belongs

to some hyperrectangle) one has

• E

[(
θ̂n − θ

)2]
≤ C (R,α)

(
n−2 log (n)

)4α/(1+4α), if α ≤ 1/4.

• θ̂n is asymptotically efficient if α > 1/4.
Efroimovich and Low also proved that this rate is optimal, which means that the logarithmic factor that appears
in the rates of convergence cannot be avoided if we do not know a priori to what hyperrectangle the sequence β
belongs.

Johnstone [15] proposed estimators of θ =
∑

λ∈N∗ β2
λ in the Gaussian sequence model which are based on

wavelet thresholding methods and proved that these estimators are adaptive on Hölder classes. Gayraud and
Tribouley [10] also proposed estimators based on wavelet thresholding methods and proved the adaptivity on
Besov balls. They also give asymptotic confidence intervals for θ.

Laurent and Massart [18] built adaptive estimators of quadratic functionals in a Gaussian framework covering
both the Gaussian sequence model and the finite dimensional Gaussian regression. These estimators are based
on model selection via some penalized criterion. In the framework of the Gaussian sequence model, the penalized
estimator is defined in the following way: one considers a collection M of subset of N

∗ and a penalty function
pen : M → R

+. The penalized estimator of θ =
∑

λ∈N∗ β2
λ is defined as

θ̂ = sup
m∈M

(
∑

λ∈m

Y 2
λ − pen(m)

)

.

For suitable choices of the set M and of the penalty function, this estimator is adaptive over more general
classes of sequences of coefficients (βλ)λ≥1 than the estimators proposed by the previous authors.

In this paper, we propose an adaptive estimator of
∫

R
f2(x)dx in a density model which is also based on

model selection via some penalized criterion. We show that this estimator achieves the minimax adaptive rate
established by Efroimovich and Low [7] over Besov bodies Bα,2,∞(R).

This paper is also motivated by applications to adaptive goodness-of-fit tests in a density model that are
proposed in Fromont and Laurent [9].

A crucial point in the proof of our results is an exponential inequality for U -statistics of order 2 due to
Houdré and Reynaud [13].

The paper is organized as follows: in Section 2, we recall some results concerning the estimation of
∫

R
f2(x)dx

and we introduce the estimation via model selection. In Section 3, we give our main results. Section 4 contains
the main tool for the proof of Theorem 1. Section 5 is devoted to the proofs.

2. Estimation VIA model selection

Let X1, . . . , Xn be i.i.d. random variables with common density f belonging to L
2(R). Our aim is to estimate∫

R
f2(x)dx. To do this, we consider the orthogonal projection of f onto the Haar basis. We first introduce some
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QUADRATIC FUNCTIONALS OF A DENSITY 3

notations. Let
φ(x) = 1I[0,1](x), ψ(x) = 1I[0,1/2[(x) − 1I[1/2,1[(x),

and for any k ∈ Z and j ∈ N, let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

The functions (φ0,k, ψj,k, j ∈ N, k ∈ Z) form the Haar basis of L
2(R). The decomposition of f onto this basis

may be written as: ∑

k∈Z

α0,k(f)φ0,k +
∑

j≥0

∑

k∈Z

βj,k(f)ψj,k

where αj,k(f) =
∫
fφj,k and βj,k(f) =

∫
fψj,k. For any J ∈ N, this decomposition is also equal to

∑

k∈Z

αJ,k(f)φJ,k +
∑

j≥J

∑

k∈Z

βj,k(f)ψj,k.

We set β(f) = (βj,k(f))j≥0,k∈Z.
We define the function fJ by

fJ =
∑

k∈Z

αJ,k(f)φJ,k.

For any J ∈ N, we consider the unbiased estimator of
∫
f2

J =
∑

k∈Z
α2

J,k defined by

θ̂J =
1

n(n− 1)

∑

k∈Z

n∑

l �=l′=1

φJ,k(Xl)φJ,k(Xl′). (1)

In order to evaluate the quadratic risk of this estimator, we use the decomposition

E

[
(θ̂J − θ)2

]
= Bias2(θ̂J) + Var(θ̂J ).

Since the expectation of θ̂J equals
∫
f2

J , |Bias(θ̂J)| =
∫

(f − fJ)2. Assuming that ‖f‖∞ is finite, one can easily
show that

Var(θ̂J ) ≤ C(‖f‖∞)
(

2J

n2
+

1
n

)

where C(‖f‖∞) is a constant depending on ‖f‖∞.
Let us assume that we have some prior information on f , for example that the sequence β(f) belongs to the

Besov body Bα,2,∞(R) defined by

Bα,2,∞(R) =

{

β = (βj,k)j≥0,k∈Z, ∀j ≥ 0
∑

k∈Z

β2
j,k ≤ R22−2jα

}

.

This implies that for all J ∈ N,
∫

R

(f − fJ)2 =
∑

j≥J

∑

k∈Z

β2
j,k ≤ C(α)R22−2Jα,

where C(α) is a constant depending on α. Choosing J in such a way that

2J

n2
≈ R42−4Jα,
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4 B. LAURENT

we obtain that

E

[
(θ̂J − θ)2

]
≤ C(‖f‖∞)

(

R4/1+4αn−8α/1+4α +
1
n

)

·

The rate obtained here corresponds to the minimax rate for estimating θ over Hölderian balls with index α and
radius R as it is proved by Bickel and Ritov [1] and Birgé and Massart [2].

Since our choice of J depends on the unknown parameters α and R, this is not satisfactory. We shall now
present some heuristics of the adaptive procedure via model selection.

Adaptive estimation of
∫
f2.

We have seen that the “ideal” choice of J minimizes the quantity

∫
(f − fJ)2 +

2J/2

n
=

∫
f2 −

∫
f2

J +
2J/2

n
·

Since
∫
f2 does not depend on J , this is equivalent to maximize the quantity

∫
f2

J − 2J/2/n.
∫
f2

J is estimated
without bias by θ̂J , hence we set

Ĵ = argmaxJ∈J
[
θ̂J − pen(J)

]

and

θ̂ = θ̂Ĵ − pen(Ĵ) = sup
J∈J

[
θ̂J − pen(J)

]
, (2)

where J is some subset of N and pen(J) is non-negative quantity that we shall specify in the following.

3. Main results

In Theorem 1, we consider the classes of functions f which are uniformly bounded and for which the sequence
of coefficients onto the Haar basis belongs to some Besov body.

We show that for a suitable choice of the penalty term pen(J) appearing in the definition of the estimator θ̂
given by (2), the estimator θ̂ is adaptive over these classes.

Theorem 1. Let X1, . . . , Xn be i.i.d. real random variables with common density f belonging to L∞(R). Let
θ =

∫
R
f2(x)dx.

Let J =
{
J ∈ N, 2J ≤ n2/log3(n)

}
. For all J ∈ N, let θ̂J be defined by (1).

There exists some absolute constant κ > 0 such that if we set for all J ∈ J

pen(J) =
κ

n

[√
(θ̂J + 1)2J log(2J + 1)

]

,

then the estimator θ̂ defined by (2) has the following properties:
For any α > 0, R > 0 and M > 0, there exists some integer n0(α,R,M) depending on α, R and M such

that the following inequality holds for all n ≥ n0(α,R,M) :

sup
f,β(f)∈Bα,2,∞(R),‖f‖∞≤M

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤ C(α)(R(M + 1)α)
4

1+4α

(√
log(nR2)
n

) 8α
1+4α

·

This leads to
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QUADRATIC FUNCTIONALS OF A DENSITY 5

• for all α > 1
4 , R > 0, and M > 0, there exists some integer n1(α,R,M) such that the following

inequality holds for all n ≥ n1(α,R,M) :

sup
f,β(f)∈Bα,2,∞(R),‖f‖∞≤M

E

[(
θ̂ − θ

)2
]

≤ C(α)
M2

n
; (3)

• for all α ≤ 1
4 , R > 0, and M > 0, there exists some integer n2(α,R,M) such that the following

inequality holds for all n ≥ n2(α,R,M) :

sup
f,β(f)∈Bα,2,∞(R),‖f‖∞≤M

E

[(
θ̂ − θ

)2
]

≤ C(α)(R(M + 1)α)
4

1+4α

(√
log(nR2)
n

) 8α
1+4α

· (4)

If f ∈ L∞(R) and β(f) ∈ Bα,2,∞(R) for some α > 1/4 and R > 0, then

√
n(θ̂ − θ) D→ N (0, Var(2f(X1))) as n→ ∞ (5)

nE

[
(θ̂ − θ)2

]
n→∞→ Var(2f(X1)). (6)

Comments:

1) We derive from (5) that if β(f) ∈ Bα,2,∞(R) for some α > 1/4, then θ̂ is an efficient estimator of θ (see
Laurent [16]).

2) If α ≤ 1/4, we obtain the rate (
√

log(n)/n)4α/(1+4α).

Let Hα(R) denote the Hölderian ball defined by

Hα(R) = {f : [0, 1] → R, ∀x, y ∈ [0, 1], |f(x) − f(y)| ≤ R|x− y|α} . (7)

The minimax rate for estimating
∫

R
f2 over Hα(R) if α ≤ 1/4 is n−4α/(1+4α) (see Birgé and Massart [2]).

Efroimovich and Low [7] proved that the logarithmic loss with respect to the minimax rate that appears in
the adaptive lower bounds for estimating

∫
f2 is unavoidable. This is the purpose of the following proposition:

Proposition 1 (Efroimovich and Low [7]). Suppose that θ̂n is an estimator of θ based on the n sample
X1, . . . , Xn. If, for some α > 1/4,

lim
n→∞ sup

f∈Hα(R)

nE

[(
θ̂n − θ

)2
]

<∞,

then for every α < 1/4,

lim
n→∞ sup

f∈Hα(R)

(
n2

log(n)

) 4α
1+4α

E

[(
θ̂n − θ

)2
]

> 0.

Since Hα(R) ⊂ {f, β(f) ∈ Bα,2,∞(R)} this proves that the rate of convergence obtained in Theorem 1 corre-
sponds to the minimax adaptive rate for estimating θ over the set {f, β(f) ∈ Bα,2,∞(R)}.

3) If the sequence β(f) belongs to Bα,2,∞(R) for some R > 0 et α > 1/2, then f is uniformly bounded (see
inequality (8.15) of Proposition (8.3) in Har̈dle et al. [12]). Therefore, the assumption of boundedness
on f is only a restriction if α ≤ 1/2. In all cases, assuming that ‖f‖∞ ≤M , we provide an upper bound
for the quadratic risk, where the dependency with respect to M is given.

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005001

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005001


6 B. LAURENT

4. An oracle inequality

The result stated in this section is the main tool for the proof of Theorem 1. It provides a non asymptotic
bound for the risk of the penalized estimator θ̂ defined by (2).

Proposition 2. Let X1, . . . , Xn be i.i.d. real random variables with common density f belonging to L∞(R).
Let θ =

∫
R
f2(x)dx. Let Jn be a subset of

{
J ∈ N, 2J ≤ n2

log3(n)

}
. There exists some absolute constant κ0 such

that if we set for all J ∈ Jn

pen(J) =
κ

n

[√
(θ̂J + 1)2J log(2J + 1)

]

with κ ≥ κ0, then the estimator θ̂ defined by (2) satisfies the following inequality for all n ≥ 2 provided that
‖f‖∞ ≤M :

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤ C inf
J∈Jn

[

‖fJ − f‖4
2 +

2J(M + 1) log(2J + 1)
n2

]

+
C(M)
n2

·

C is an absolute constant and C(M) is some constant depending on M only.

Comments.
1) One can derive from Proposition 2 an upper bound for the quadratic risk of θ̂, indeed

E

[(
θ̂ − θ

)2
]

≤ 2E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 + 2E





(
2
n

n∑

i=1

(f(Xi) − θ)

)2




and

E





(
2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤ 4
n

∫
f3.

2) One can also deduce from Proposition 2 that if

inf
J∈Jn

[

‖fJ − f‖4
2 +

2J(M + 1) log(2J + 1)
n2

]

= o(1/n),

then
√
n
(
θ̂ − θ − 2

∑n
i=1(f(Xi) − θ)/n

)
tends to zero in probability, which implies that

√
n(θ̂ − θ) D→ N (0, Var(2f(X1))) .

In this situation θ̂ is an efficient estimator of θ (see Laurent [16]).
3) In order to prove Proposition 2, we use an exponential inequality with explicit constants for U -statistics

of order 2 due to Houdré and Reynaud [13]. It is worth mentioning the paper by Giné, Latala
and Zinn [11] where an exponential inequality for general U -statistics is given, and the paper by
Bretagnolle [5] where an exponential inequality for U -statistics of order 2 is also established.

4) We could derive from the explicit constants given in Houdré and Reynaud’s inequality an upper bound
for κ0, but this upper bound would be very large. A simulation study would be necessary to know how
to calibrate κ0 in practice. Such a simulation study was carried out by Birgé and Rozenholc [4] in the
case of density estimation with histograms.
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QUADRATIC FUNCTIONALS OF A DENSITY 7

5. Proofs

In the sequel, we denote by C some absolute constant whose value may vary from one line to another. We
always mention the dependency of a constant with respect to some parameters: for example C(α,R) stands for
a constant depending on α and R.

Before proving Proposition 2, we prove the following Proposition, where an upper bound for ‖f‖∞ is assumed
to be known.

Proposition 3. Let X1, . . . , Xn be i.i.d. real random variables with common density f belonging to L∞(R).
We assume that ‖f‖∞ ≤ M where M is known. Let θ =

∫
R
f2(x)dx. Let J be a subset of N. For all J ∈ J ,

let θ̂J be defined by (1). There exists some constant κ0 > 0 such that if we set for all J ∈ J

npen(J) = κ

[√
M2J log(2J + 1) +M log(2J + 1) +

2J log2(2J + 1)
n

]

with κ ≥ κ0 and
θ̂ = sup

J∈J

(
θ̂J − pen(J)

)
,

then the following inequality holds for all n ≥ 2:

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤ C inf
J∈J

[‖fJ − f‖4
2 + pen2(J)

]

where C is some absolute constant.

5.1. Proof of Proposition 3

We use the canonical decomposition of the U -statistics θ̂J . We denote by Un the process defined by Un(H) =
(1/n(n− 1))

∑n
l �=l′=1H(Xl, Xl′) and we denote by Pn the empirical measure Pn(h) = (1/n)

∑n
i=1 h(Xi)−

∫
hf .

We set αJ,k =
∫
fφJ,k,

HJ(x, y) =
∑

k∈Z

(φJ,k(x) − αJ,k) (φJ,k(y) − αJ,k)

and
hJ = 2(fJ − f).

The following decomposition holds:

θ̂J − θ − 2
n

n∑

i=1

(f(Xi) − θ) = Un(HJ) + Pn(hJ) − ‖f − fJ‖2
2. (8)

Let us denote by VJ the variable

VJ = Un(HJ ) + Pn(hJ) − ‖f − fJ‖2
2 − pen(J).

By definition of θ̂, and by (8),

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ) = sup
J∈J

(VJ ) .

Moreover, since

| sup
J∈J

VJ | =
[

sup
J∈J

(VJ )+

]

∨
[

inf
J∈J

(VJ )−

]

,
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8 B. LAURENT

we obtain that

E

[(

sup
J∈J

VJ

)2
]

≤
∑

J∈J
E

[
(VJ )2+

]
+ inf

J∈J
E

[
(VJ )2−

]
.

We first control E

[
(VJ)2+

]
. To do this, we use an exponential inequality for U -statistics of order 2 due to Houdré

and Reynaud [13] in order to control the term Un(HJ ). In order to control the term Pn(hJ) − ‖f − fJ‖2
2, we

use Bernstein’s inequality.
Control of Un(HJ ).
We shall use the following Lemma that is a consequence of Houdré and Reynaud’s exponential inequality for
U -statistics of order 2:

Lemma 1. Let X1, . . . , Xn be i.i.d. with common density f ∈ L∞(R). Let for all J ∈ N and k ∈ Z, let
αJ,k =

∫
fφJ,k, and θJ =

∑
k∈Z

α2
J,k. Let

HJ (x, y) =
∑

k∈Z

(φJ,k(x) − αJ,k)(φJ,k(y) − αJ,k)

and

Un(HJ ) =
1

n(n− 1)

n∑

l �=l′=1

HJ(Xl, Xl′).

There exists some absolute constant C0 > 0 such that for all J ∈ N, for all t > 0,

P

(

|Un(HJ )| > C0

n− 1

(√
2JθJ t+ ‖f‖∞t+

2J t2

n

))

≤ 5.6 exp(−t).

The proof of the lemma is postponed to the Appendix.
We set for all t > 0

uJ(t) =
C0

n− 1

(√
2JθJ t+ ‖f‖∞t+

2J t2

n

)

· (9)

We derive from Lemma 1 that for all t ≥ 0,

P (|Un(HJ)| > uJ(t)) ≤ 5.6 exp(−t). (10)

Noticing that for all t1 > 0 and all t2 > 0

uJ

(
t1 + t2√

2

)

≤ uJ(t1) + uJ(t2),

we derive from (10) that for all t ≥ 0 and yJ ≥ 0,

P

(
|Un(HJ )| > uJ(

√
2yJ) + uJ(

√
2t)

)
≤ 5.6 exp− (t+ yJ) . (11)

Control of Pn(hJ) − ‖f − fJ‖2
2.

We use the following lemma due to Birgé and Massart [3] which provides a special version of Bernstein’s
inequality.

Lemma 2. Let U1, . . . , Un be independent random variables such that for all i ∈ {1, . . . , n}, |Ui| ≤ b and
E(U2

i ) ≤ δ2. Then for all t > 0

P

(
1
n

n∑

i=1

(Ui − E(Ui)) >
δ
√

2t√
n

+
bt

3n

)

≤ exp(−t).
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QUADRATIC FUNCTIONALS OF A DENSITY 9

We apply Lemma 2 with Ui = 2(fJ − f)(Xi) for all i = 1, . . . , n. Note that

|Ui| ≤ 2‖fJ − f‖∞ ≤ 4‖f‖∞
since ‖fJ‖∞ ≤ ‖f‖∞. Moreover,

E(U2
i ) = 4

∫
(fJ − f)2f ≤ 4‖f‖∞‖fJ − f‖2

2.

We deduce from Lemma 2 that for all t > 0,

P

(

Pn(hJ) > 2
√

2‖f‖∞‖fJ − f‖2

√
t√
n

+
4‖f‖∞t

3n

)

≤ exp(−t).

Using the inequality 2ab ≤ a2 + b2, one obtains for all t > 0,

P

(

Pn(hJ) − ‖f − fJ‖2
2 >

10‖f‖∞t
3n

)

≤ exp(−t), (12)

which implies that for all t ≥ 0 and yJ ≥ 0

P

(

Pn(hJ ) − ‖f − fJ‖2
2 >

10‖f‖∞yJ

3n
+

10‖f‖∞t
3n

)

≤ exp−(t+ yJ). (13)

We now turn to the control of E
[
(VJ )2+

]
.

Noticing that

θJ =
∫
f2

J ≤
∫
f2 ≤ ‖f‖∞ ≤M

since
∫
f = 1, we obtain that for all J ∈ J ,

pen(J) ≥ κ

n

(√
θJ2J log(2J + 1) +M log(2J + 1) +

2J log2(2J + 1)
n

)

· (14)

Let for all J ∈ N, yJ = 3 log(2J + 1). Using the inequality 1/(n− 1) ≤ 2/n and setting

κ0 = max
(
36C0, 6

√
2C0 + 10

)
,

(14) implies that

pen(J) ≥ uJ(
√

2yJ) +
10‖f‖∞yJ

3n
· (15)

It follows from the definition of VJ and from (11), (13) and (15) that for all J ∈ J ,

P

(

VJ > uJ(t
√

2) +
10Mt

3n

)

≤ 6.6 exp−(t+ yJ). (16)

We now use the identity

E
[
(VJ )2+

]
= 2

∫ +∞

0

tP (VJ > t) dt.

This identity, together with (16) leads to

E
[
(VJ )2+

] ≤ C

{
2JM

n2
+
M2

n2
+

22J

n4

}

exp(−yJ).
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10 B. LAURENT

Recalling that J is a subset of N,
∑

J∈J 22J exp(−yJ) ≤ ∑
J≥0 2−J which implies that

∑

J∈J
E

(
(VJ )2+

) ≤ C

(
M2 +M

n2
+

1
n4

)

·

Let us now give an upper bound for E
[
(VJ )2−

]
. It follows from the definition of VJ that

E
[
(VJ )2−

] ≤ 4
{
E

[
U2

n(HJ)
]
+ E

[
P 2

n(hJ )
]
+ pen2(J) + ‖fJ − f‖4

2

}
.

We use the identity

E
(
X2

)
= 2

∫ ∞

0

tP (|X | > t) dt, (17)

which holds for any random variable X such that E(X2) < +∞.
We derive from (10) that

E
[
U2

n(HJ )
] ≤ C

(
2JM

n2
+
M2

n2
+

22J

n4

)

· (18)

Since

pen2(J) ≥ 2JM

n2
log(2) +

M2

n2
log2(2) +

22J

n4
log4(2),

this implies that
E
[
U2

n(HJ)
] ≤ Cpen2(J).

In order to give an upper bound for E(P 2
n(hJ)), we set

u(y) = 2
√

2y‖f‖∞‖fJ − f‖2√
n

+
4
3
‖f‖∞ y

n
·

We deduce from Lemma 2 that for any y > 0,

P (|Pn(hJ )| > u(y)) ≤ 2 exp(−y).

Using (17), this leads to

E
[
P 2

n(hJ)
] ≤ C

(
M‖fJ − f‖2

2

n
+
M2

n2

)

·
Using the inequality 2ab ≤ a2 + b2, one obtains that

E
[
P 2

n(hJ )
] ≤ C

(

‖fJ − f‖4
2 +

M2

n2

)

· (19)

Collecting these evaluations,
E
[
(VJ )2−

] ≤ C
(‖fJ − f‖4

2 + pen2(J)
)
.

This concludes the proof of Proposition 3.

5.2. Proof of Proposition 2

Let A denote the event
{
∀J ∈ Jn, θ̂J + 1

2 ≥ θJ

}
. We first give an upper bound for

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2

1IA



 .
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Using the same notations as in the proof of Proposition 3,

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2

1IA



 ≤
∑

J∈Jn

E

[
(VJ )2+ 1IA

]
+ inf

J∈Jn

E

[
(VJ )2−

]
.

Let C0(M) = inf
{
J ∈ N, 2J

log(2J+1) ≥M2
}

. We first show that for all J ∈ Jn such that 2J ≥ C0(M),

E

[
(VJ )2+ 1IA

]
≤ C(M)

n2
22J exp(−yJ).

To prove this result, we use the identity

E

[
(VJ)2+ 1IA

]
= 2

∫ ∞

0

tP (VJ > t ∩A) dt.

We set yJ = 3 log(2J + 1). We derive from (11) and (13) that if, on the event A,

pen(J) ≥ uJ(
√

2yJ) +
10MyJ

3n
, (20)

(where uJ is defined by (9)), then we have that

P

((

VJ > uJ(t
√

2) +
10
3
M

t

n

)

∩A
)

≤ 6.6 exp−(t+ yJ).

This implies that

E

[
(VJ )2+ 1IA

]
≤ C(M)

n2
22J exp(−yJ).

Let us show that (20) holds for all J ∈ Jn such that J ≥ C0(M). Setting xJ = log(2J + 1), on the event A, for
all J ∈ Jn such that J ≥ C0(M),

npen(J) ≥ κ
√

(θJ + 1/2)2JxJ

≥ κ√
2

√
θJ2JxJ +

κ

2

√
2JxJ

≥ κ√
2

√
θJ2JxJ +

κ

4
MxJ +

κ

4

√
2JxJ .

Since for all J ∈ Jn, 2J ≤ n2/log3(n),

1
√

2JxJ

2Jx2
J

n
≤ log3/2(n2 + 1)

log3/2(n)
≤ C′

1

where C′
1 is some positive constant.

This implies that, on the event A, for all J ∈ Jn such that 2J ≥ C0(M),

npen(J) ≥ κ√
2

√
θJ2JxJ +

κ

4
MxJ +

κ

4C′
1

2Jx2
J

n
·

By definition of uJ given in (9), we obtain that if κ′0 ≥ max(32
√

2C0 + 54.256C′
1C0), then, on the event A, for

all J ∈ Jn such that 2J ≥ C0(M), (20) holds.
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12 B. LAURENT

If 2J ≤ C0(M), by using the inequalities (12) and (18), one obtains

E
(
(VJ )2+ 1IA

) ≤ E
(
(VJ )2+

)

≤ 2
{

E
[
U2

n(HJ )
]
+ E

[(
Pn(hJ ) − ‖f − fJ‖2

2

)2

+

]}

≤ C(M)
(

2J

n2
+

22J

n4

)

≤ C(M)
1
n2

possibly enlarging C(M) since 2J ≤ C0(M). Collecting these evaluations, one obtains that

∑

J∈Jn

E
(
(VJ )2+ 1IA

) ≤ C(M)
1
n2

(21)

since
∑

J∈Jn
22J exp(−yJ) ≤ ∑

J≥0 2−J .
We now give an upper bound for E

[
(VJ )2−

]
.

E
[
(VJ )2−

] ≤ 4
{
E
[
U2

n(HJ)
]
+ E

[
P 2

n(hJ )
]
+ ‖fJ − f‖4

2 + E
[
pen2(J)

]}
.

We use inequalities (18) and (19) to control E
[
U2

n(HJ )
]

and E
[
P 2

n(hJ)
]
. Moreover, for all J ∈ Jn

pen2(J) =
κ2

n2
(θ̂J + 1)2JxJ ,

and since E(θ̂J ) = θJ ≤ ‖f‖∞ ≤M ,

E
[
pen2(J)

] ≤ C(M + 1)
2JxJ

n2
·

It follows that for all J ∈ Jn,

E
[
(VJ )2−

] ≤ C

(

‖fJ − f‖4
2 + (M + 1)

2JxJ

n2
+
M2

n2

)

· (22)

It remains to evaluate

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2

1IAC



 .

We first give an upper bound for P(AC). Note that

P(AC) ≤
∑

J∈Jn

P

(
θ̂J − θJ ≤ −1/2

)
≤

∑

J∈Jn

P

(
|θ̂J − θJ | > 1/2

)
.

Since
θ̂J − θJ = Un(HJ ) + Pn(2fJ),

P

(

|θ̂J − θJ | > 1
2

)

≤ P

(

|Un(HJ )| > 1
4

)

+ P

(

|Pn(2fJ)| > 1
4

)

·

Let us first give an upper bound for P
(|Un(HJ )| > 1

4

)
.
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Since ∀n ≥ 2, 1/(n− 1) ≤ 2/n, we deduce from (10) that

P

(

|Un(HJ)| > 2C0

n

(√
2JMt+Mt+

2Jt2

n

))

≤ 5.6 exp(−t).

Let

t0(n,M) = inf

{
log3(n)

(24C0)2M
,

n

24C0M
,
log3/2(n)√

24C0

}

.

Note that, since 2J ≤ n2/ log3(n),

2C0

n

(√
2JMt0(n,M) +Mt0(n,M) +

2J t20(n,M)
n

)

≤ 1
4
,

which implies that

P

(

|Un(HJ )| > 1
4

)

≤ 5.6 exp(−t0(n,M)) ≤ C(M)
n8

·

Let us now give an upper bound for P
(|Pn(2fJ)| > 1

4

)
. By Lemma 2,

P

(

|Pn(2fJ)| > 2M
√

2y√
n

+
2My

3n

)

≤ 2 exp(−y).

Let

y0(n,M) = inf
{

n

29M2
,

3
16

n

M

}

.

Since

2M

√
2y0(n,M)√

n
+

2My0(n,M)
3n

≤ 1
4
,

we obtain

P

(

|Pn(2fJ)| > 1
4

)

≤ 2 exp (−y0(n,M)) ≤ C(M)
n8

·

Since the cardinality of Jn is not larger that n2, we finally obtain that

P
(
AC

) ≤ C(M)
n6

·

It follows from the definition of θ̂J that 0 ≤ θ̂J ≤ 2J for all J ∈ N. This implies that for all J ∈ Jn

0 ≤ pen(J) ≤ Cn.

Hence,

|θ̂| =
∣
∣
∣
∣ sup
J∈Jn

(
θ̂J − pen(J)

)∣∣
∣
∣

≤ sup
J∈Jn

(
2J + Cn

)

≤ Cn2.
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14 B. LAURENT

Moreover, 0 ≤ θ =
∫
f2 ≤M and | 2n

∑n
i=1(f(Xi) − θ)| ≤ 4M. These evaluations imply that

(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2

≤ C(M)n4

and therefore,

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2

1ICA



 ≤ C(M)n4
P(AC) ≤ C(M)

n2
· (23)

Collecting (21), (22) and (23), we conclude the proof of Proposition 2.

5.3. Proof of Theorem 1

We now apply Proposition 2. We set

Jn =

[

log2

((
n2R4

(M + 1) log(nR2)

)1/(1+4α)
)]

+ 1

where [x] denotes the integer part of x.
Since α > 0, Jn ∈ Jn for n ≥ n0(α,R,M).
Note that

(
n2R4

(M + 1) log(nR2)

)1/(1+4α)

≤ 2Jn ≤ 2
(

n2R4

(M + 1) log(nR2)

)1/(1+4α)

and that there exists n0(α,R,M) such that for all n ≥ n0(α,R,M), Jn ≥ 0 and

log(2Jn + 1) ≤ C(α) log(nR2).

Noting that if f ∈ Bα,2,∞(R), for all J ∈ N

‖f − fJ‖2
2 =

∑

j≥J

∑

k∈Z

β2
j,k(f) ≤ C(α)R22−2Jα,

we derive from Proposition 2 that

sup
f,β(f)∈Bα,2,∞(R),‖f‖∞≤M

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤

C(α)
[

R42−4Jnα +
(M + 1)2Jn

n2
log(2Jn + 1)

]

+
C(M)
n2

·

By definition of Jn, possibly enlarging n0(α,R,M), for all n ≥ n0(α,R,M),

sup
f,β(f)∈Bα,2,∞(R),‖f‖∞≤M

E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤ C(α)(R(M + 1)α)
4

1+4α

(√
log(nR2)
n

) 8α
1+4α

·
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In order to prove (3) and (4), we use the inequality

E

[(
θ̂ − θ

)2
]

≤ 2E





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 + 2E





(
2
n

n∑

i=1

(f(Xi) − θ)

)2




together with the fact that

E





(
2
n

n∑

i=1

(f(Xi) − θ)

)2


 ≤ C
M2

n
·

Finally (5) and (6) derive from the fact that if α > 1/4, then

nE





(

θ̂ − θ − 2
n

n∑

i=1

(f(Xi) − θ)

)2


 n→∞→ 0,

and from the fact that
2√
n

n∑

i=1

(f(Xi) − θ) D→ N (0, Var(2f(X1)) .

6. Appendix

6.1. Proof of Lemma 1

We deduce from Theorem 3.4 in Houdré and Reynaud [13] that there exists some absolute constant C > 0
such that for all t > 0,

P





∣
∣
∣
∣
∣
∣

n∑

l �=l′=1

HJ(Xl, Xl′)

∣
∣
∣
∣
∣
∣
> C

(
A1

√
t+A2t+A3t

3/2 +A4t
2
)


 ≤ 5.6 exp(−t)

where

A2
1 = n(n− 1)E(H2

J (X1, X2)),

A2 = sup






∣
∣
∣
∣
∣
∣
E




n∑

i=1

i−1∑

j=1

HJ (X1, X2)ai(X1)bj(X2)





∣
∣
∣
∣
∣
∣
,E

(
n∑

i=1

a2
i (X1)

)

≤ 1,E




n∑

j=1

b2j(X1)



 ≤ 1





,

A2
3 = n sup

x

{
EX2(H

2
J (x,X2))

}
,

A4 = sup
x,y

|HJ (x, y)|.

Let us now evaluate A1, A2, A3 and A4.
Evaluation of A1.

H2
J(X1, X2) =

∑

k∈Z

(φJ,k(X1) − αJ,k)2 (φJ,k(X2) − αJ,k)2

+
∑

k �=k′∈Z

(φJ,k(X1) − αJ,k) (φJ,k′ (X1) − αJ,k′) (φJ,k(X2) − αJ,k) (φJ,k′(X2) − αJ,k′) .
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This implies that

E
(
H2

J(X1, X2

)
=

∑

k∈Z

[∫
(φJ,k(x) − αJ,k)2 f(x)dx

]2

+
∑

k �=k′∈Z

[∫
(φJ,k(x) − αJ,k) (φJ,k′(x) − αJ,k′) f(x)dx

]2

=
∑

k∈Z

[∫
φ2

J,kf − α2
J,k

]2

+
∑

k �=k′∈Z

α2
J,kα

2
J,k′

≤
∑

k∈Z

(∫
φ2

J,kf

)2

+

(
∑

k∈Z

α2
J,k

)2

≤ 2J
∑

k∈Z

α2
J,k +

(
∑

k∈Z

α2
J,k

)2

since φ2
J,k = 2J/2φJ,k

≤ 2J+1θJ

since
∑

k∈Z
α2

J,k = θJ and since, setting IJ,k =]k/2J , (k + 1)/2J ],

∑

k∈Z

α2
J,k = 2J

∑

k∈Z

∫

IJ,k

f

∫

IJ,k

f ≤ 2J
∑

k∈Z

∫

IJ,k

f ≤ 2J .

It follows that
A1 ≤

√
2n(n− 1)2JθJ .

Evaluation of A2.
Let (ai)1≤i≤n and (bj)1≤j≤n satisfy E(

∑n
i=1 a

2
i (X1)) ≤ 1 and E(

∑n
j=1 b

2
j(X1)) ≤ 1.

We recall that fJ =
∑

k∈Z
αJ,kφJ,k.

n∑

i=1

i−1∑

j=1

E (HJ(X1, X2)ai(X1)bj(X2)) =
n∑

i=1

i−1∑

j=1

∑

k∈Z

∫
(φJ,k − αJ,k) aif

∫
(φJ,k − αJ,k) bjf

=
n∑

i=1

i−1∑

j=1

∑

k∈Z

∫
φJ,kaif

∫
φJ,kbjf+

n∑

i=1

i−1∑

j=1

∑

k∈Z

α2
J,k

∫
aif

∫
bjf−

n∑

i=1

i−1∑

j=1

(∫
aif

∫
fJbjf +

∫
bjf

∫
fJaif

)

.

Using repeatedly the Cauchy-Schwarz inequality,

∣
∣
∣
∣
∣

∑

k∈Z

∫
φJ,kaif

∫
φJ,kbjf

∣
∣
∣
∣
∣
≤

[
∑

k∈Z

(∫
φJ,kaif

)2
]1/2 [

∑

k∈Z

(∫
φJ,kbjf

)2
]1/2

≤ 2J

[
∑

k∈Z

∫

IJ,k

a2
i f

∫

IJ,k

f

]1/2 [
∑

k∈Z

∫

IJ,k

b2jf

∫

IJ,k

f

]1/2

≤ 2J

(‖f‖∞
2J

∫
a2

i f

)1/2 (‖f‖∞
2J

∫
b2jf

)1/2

≤ ‖f‖∞
(∫

a2
i f

)1/2 (∫
b2jf

)1/2

.
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Therefore,

n∑

i=1

i−1∑

j=1

∣
∣
∣
∣
∣

∑

k∈Z

∫
φJ,kaif

∫
φJ,kbjf

∣
∣
∣
∣
∣
≤ ‖f‖∞

n∑

i=1

(∫
a2

i f

)1/2 n∑

j=1

(∫
b2jf

)1/2

≤ ‖f‖∞n



n∑

i=1

∫
a2

i f

n∑

j=1

∫
b2jf





1/2

≤ n‖f‖∞
since by assumption

∑n
i=1

∫
a2

i f ≤ 1 and
∑n

j=1

∫
b2jf ≤ 1.

Moreover, still using repeatedly the Cauchy-Schwarz inequality, the assumption on the ai’s and bj’s, together
with the fact that

∑
k∈Z

α2
J,k ≤ ∫

f2 ≤ ‖f‖∞ since
∫
f = 1, one obtains

n∑

i=1

i−1∑

j=1

∑

k∈Z

α2
J,k

∣
∣
∣
∣

∫
aif

∫
bjf

∣
∣
∣
∣ ≤

∫
f2

n∑

i=1

∫
|aif |

n∑

j=1

∫
|bjf |

≤ ‖f‖∞
n∑

i=1

(∫
a2

i f

∫
f

)1/2 n∑

j=1

(∫
b2jf

∫
f

)1/2

≤ ‖f‖∞n.

Finally, using that ‖fJ‖∞ ≤ ‖f‖∞,

n∑

i=1

n∑

j=1

∣
∣
∣
∣

∫
aif

∫
fJbjf

∣
∣
∣
∣ ≤

n∑

i=1

n∑

j=1

∫
|fJbj|f

∫
|ai|f ≤ ‖f‖∞n.

∑n
i=1

∑n
j=1 |

∫
bjf

∫
fJaif | is also controlled by ‖f‖∞n. We finally obtain that

A2 ≤ 4n‖f‖∞.

Evaluation of A3.

EX2(H
2
J (x,X2)) =

∑

k∈Z

(∫
(φJ,k − αJ,k)2f

)

(φJ,k(x) − αJ,k)2

+
∑

k �=k′∈Z

(∫
(φJ,k − αJ,k) (φJ,k′ − αJ,k′ ) f

)

(φJ,k(x) − αJ,k) (φJ,k′ (x) − αJ,k′ )

=
∑

k∈Z

∫
φ2

J,kf(φJ,k(x) − αJ,k)2 −
(
∑

k∈Z

αJ,k(φJ,k(x) − αJ,k)

)2

≤ ‖f‖∞
∑

k∈Z

(
φ2

J,k(x) + α2
J,k

)

since
∫
φ2

J,k = 1. Noticing that
∑

k∈Z
φ2

J,k(x) = 2J and that
∑

k∈Z
α2

J,k ≤ 2J ,

sup
x

EX2 (H
2
J(x,X2))‖∞ ≤ 2J+1‖f‖∞.
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Therefore
A3 ≤

√
2J+1n‖f‖∞.

Evaluation of A4.
It is easy to see that

A4 ≤ 2J+2.

We now derive from Houdré and Reynaud’s inequality that there exists C > 0 such that for all t > 0,

P



 1
n(n− 1)

∣
∣
∣
∣
∣
∣

n∑

l �=l′=1

HJ(Xl, Xl′)

∣
∣
∣
∣
∣
∣
>

C

n− 1

{√
2JθJ t+ ‖f‖∞t+

√
2J‖f‖∞ t3/2

√
n

+
2J t2

n

}


 ≤ 5.6 exp(−t).

Since 2ab ≤ a2 + b2,

2
√

2J‖f‖∞ t3/2

√
n

≤ ‖f‖∞t+
2J t2

n
·

This concludes the proof of the lemma.
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