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ON THE BOUNDED LAWS OF ITERATED LOGARITHM IN BANACH SPACE

DIANLIANG DENG!

Abstract. In the present paper, by using the inequality due to Talagrand’s isoperimetric method,
several versions of the bounded law of iterated logarithm for a sequence of independent Banach space
valued random variables are developed and the upper limits for the non-random constant are given.
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1. INTRODUCTION

Let B be a real separable Banach space with ||-|| and topological dual B*. For a B-valued random variable X
and some p € [1,2], we write X € WM} if for all f € B*, we have Ef(X) =0 and E|f(X)|? < co. Throughout
{X,,n > 1} is a sequence of independent B-valued random variables defined on a probability space (2, F, P)
and {e,,n > 1} is an independent Rademacher series supported on the same probability space (€, F', P) and
independent of {X,,n > 1}. For each n > 1, put S, = Y1 | X;, Wy, = Squer(Z?zl |F(X)P)P, 80 =
supfer(Z?zl E|f(X;)[P)Y/? where B} is the unit ball of B*. As usual, Loz denotes the function
loglog max{e®, z}.

Griffin and Kuelbs [10, 11] established some extensions of the law of iterated logarithm (LIL) wvia self-
normalizations for independent real valued random variables both in the symmetric and non-symmetric cases.
However, many of these results require a symmetry assumption. Afterwards, Godbole [9] discussed the self-
normalized bounded law of iterated logarithm (SNBLIL) for B-valued random variables and gave the following
definition for SNBLIL: {X,,,n > 1} will be said to satisfy the SNBLIL ({X,} € SNBLIL) if there exists a
non-random constant 0 < M < oo such that for some p € [1,2] and r > 0,

: 1225 Xill
limsup — 1= - =M
oo (3oimy [1XGlIP)V/P(La 350 (1] [P)

Godbole [9] proved that under some conditions, {X,,n > 1} € SNBLIL for r = 1 and r = E The
advantage of SNBLIL is to drop the standard bounded assumption for the random variables {X,,,n > 1}. But
these theorems do not give the accurate value for the non-random constant M and deeply depend on the type
of Banach spaces. In the case of real symmetric random variables, Marcinkiewicz proved that M < 1 for p = 2

a.s. (1.1)
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20 D. DENG

and 7 = 1 (see [11] for a simple proof of Marcinkiewicz’s result). Therefore it was of interest to ask whether

M < 1 for B-valued symmetric random variables or to give the accurate estimate for M. By replacing the
self-normalizer (3277, [|G][P)/7 (L2 320, [ XGl[P)" by (supgepy S2imy [f(Xa)[P)VP(Lasupsepy Yoy [F(X0)P)T,
Deng [6] proved the following results.

Theorem 1.1. Let {X,,n > 1} be a sequence of independent symmetric B-valued random variables. Suppose
that for some p € [1,2], the following conditions hold:

lim W,’L’,p — 400 a.s. (1.2)

n—oo

supsep |f(Xn)[(LaWE )/

— 0 a.s. 1.3
Wy (1.3)
Sn/(2W§7pL2W£7p)1/2 — 0 in probability. (1.4)
Then
: ||:S |
1 <1 a.s.
e G, v <L
In particular, if (1.2), (1.3) and (1.4) hold for p = 2, then
Sn,
limsup [15n =1 a.s.

n—00 (2W§,2L2W3,2)1/2

Theorem 1.2. Let {X,,n > 1} be a sequence of independent symmetric B-valued random variables. Suppose
that for some p € [1,2], the following conditions hold:

lim WP = +oo a.s.
n—00 P

ya

b1
suprep |f(Xn)[(L2WF )7
Whp

— 0 a.s.

Sn/VVmg(LQVV,’;J,)pi'%1 — 0 in probability.

Then
3 p=1
: |15l p
limsup T <GP 1<p<2 as
n—co 2W, (LaWE )5 % b
2 =

Now it is of concern that the equation (1.1) holds if the self-normalizers (37 || X;|[P)/P(La >0, |1 X|[P)"
and (0, [F(X)P)YP(La Y0 [f(X)|P)"  are  replaced by  the  nonrandom  normalizers
(S0 Bl P) 7 (La Y0y BIX|l7) and (S0, ELF(X0)[P)1?(La X1, BIf(X,)?)". Moreover, if (1.1) holds
for non-random normalizers, what the nonrandom constant M equals? or can the estimate of upper limit for
M be given?

The purpose of the present paper is to solve the above questions. In some sense, we generalize the bounded law
of iterated logarithm for B-valued random variables. In fact, the classical bounded law of iterated logarithm can
be obtained for p = 2. Our approach is mainly due to Ledoux and Talagrand [13]. In Ledoux and Talagrand [13],
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ON THE BOUNDED LIL IN BANACH SPACE 21

they developed the isoperimetric inequality and the finite dimensional approximation argument via some entropy
estimate which is based on the Sudakov type minoration. This approach is very effective for dealing with the
questions of strong limit theorems of B-valued random variables and plays an important role in the accurate
estimates of upper limits of BLIL in Banach space. The paper is organized as follows. In Section 2, we state
the main results. In Section 3, we develop a new inequality. The proofs of theorems are obtained by using an
entropy approach and the new inequality.

2. MAIN RESULTS

We start with introducing some notations. For a sequence of independent B-valued random variables
{Xp,n > 1}, put S, = >0, XiySnp = (Supye gy St L E|f(X)[P)YP for some p € [1,2], where Bj is the
unit ball of B*. Note that if D is a countable subset of the unit ball B} such that ||z|| = sup;cp |f(z)| for every
© € B, spnp = (SUPsep D iy E|f(X;)|P)}/?. By replacing the self-normalizer with Sn,p(Lash )", we may obtain
the results with respect to the BLIL. At first we discuss the case that r = % and state our main theorems.

Theorem 2.1. Let {X,,,n > 1} be a sequence of independent B-valued random variables with X, € WM} for
some p € [1,2]. Assuming that the following statements hold:

lim s} = +o0, (2.1)
n— 00 ’
1Xall < (Msnp)/(Lash )/ as. (2.2)
for some sequence of real number {n,} with 1 > n, — 0, and
Sn/(2si7pL28fl’p)1/2 — 0 in probability. (2.3)
Then
I [1Sn]] < 2P for1<p<?2
imsup ———————~ a.s.
n—>oop (2872’74,?‘[/28?’)147)1/2 - ]_ fOT’ p= 2
E||Xn|"

Note that the Wittmann’s LIL holds under the condition that > .., G2ias2y < T for r > 2 where

$2 =82, = SUP fe s S Ef?(X;) (see [3], Th. 2.1). Now one would like to know whether there is a similar

result if s, o is replaced by s, , for 1 < p < 2. Actually we have the following result.

Theorem 2.2. Let {X,,,n > 1} be a sequence of independent B-valued random variables with X,, € WME for
some p € [1,2]. If the following statements hold:

oo
Z(sim[]gsﬁm)_“mﬂ|Xn||"‘ < 400 for some o > p; (2.4)
n=1
Sp,p — 00. (2.5)
Then
S,
limsup 15wl <Tr a.s. for some T >0

nse (253, Lash )12 =

holds provided that Sn/(2s%7pLgsfl’p)1/2 is bounded in probability. In addition, if Sn/(QS%WLQSﬁ,p)l/Q — 0 in
probability,

: = 2P for 1 <p<2
limsup < a.s.

n— oo (25%,1)1125%’1))1/2 - 1 fO?” p= 2
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22 D. DENG

Now we discuss the result for i.i.d. B-valued random variables.

Theorem 2.3. Let {X,,,n > 1} be a sequence of i.i.d. B-valued random variables with X € WME for some
p € [1,2]. Let {cn,n > 1} be a sequence of positive numbers satisfying

en > 0P (Lyn)'/2. (2.6)
Then for some I" > 0,
limsup 15wl <T a.s.
n—oo  Cp
holds provided that
Sp/cn — 0 in probability, (2.7)
and -
> P([X1]] > en) < +o0. (2:8)
n=1
In particular,
_ [|Snl| 21+ /PG, for1<p<?2
limsup ———+= <
nooo (2n2/PLon)1/2 o9 forp=2
holds provided that
S,/ (2n%PLon)? =0 in probability, (2.9)
" X
1
——— < +009, 2.10
(AZE 210

where o, = sup e s (E|f(X)[P)1/7.
Next we state the results for r = é =2

Theorem 2.4. Let {X,,,n > 1} be a sequence of independent B-valued random variables with X, € WM} for
some p € [1,2]. Assuming the following statements hold:

lim s? = +o0, (2.11)

oo TP
IXnll < Nnsnp/(Lash )P aus., (2.12)
for some sequence of real number {n,} with 1 > n, — 0, and
Sn/(QS%’pL25£7p)1/q — 0 in probability. (2.13)
Then

limsu 1501
p

—— < A, as.
n—00 (25%,17[/25%,17)1/(1 P

where

0 forp=1
A, =< (16Ko)'/Pqt/e for 1 <p <2
1 forp=2

and Ky is a universal constant in isoperimetric inequality in Talagrand [12].

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005002



http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005002

ON THE BOUNDED LIL IN BANACH SPACE 23

Theorem 2.5. Let {X,,,n > 1} be a sequence of independent B-valued random variables with X,, € WME for
some p € [1,2]. Suppose that the following statements hold:

o0
Z(s%ngst’p)*a/qﬂ|Xn||a < 400 for some o > p; (2.14)
n=1
Sp,p — 00. (2.15)
Then
Sn
limsup [15nl <Tr a.s. for some I >0

q P =
n—oo (28%pLashp)/?

holds provided that Sn/(28%7pL25£,p)1/q is bounded in probability. In addition, if Sn/(28%7pL25£,p)1/q — 0 in
probability,

: |1l
1 —————— < A, as.
e (288 pLashp) /e = 00

where Ay, is the same as that in Theorem 2.4.
Similar to Theorem 2.3, we have the following result.

Theorem 2.6. Let {X,,n > 1} be a sequence of i.i.d. B-valued random variables with X € WM}Y for some
p € [1,2]. Let {cn,n > 1} be a sequence of positive numbers satisfying

Cn > nl/p(Lgn)l/q.

Then for some ' > 0,

Sn
limsup [15n1

n—o00 Cn

<T a.s.

holds provided that (2.7) and (2.8) hold. In particular,

liglnjllop (2n‘1|/|1:g+2|11)1/‘1 < Apoyp a.s.
holds provided that
S, /(2n9/P Lon)Y1 — 0 in probability,
and
BT
(Lo|[Xa )P~ ’

where 0 = Supjcp- (E|f(X)|P)Y/? and A, is the same as that in Theorem 2.4.

Remarks. (1) The above theorems answer the questions proposed in Section 1 for normalized constants

s,w,(Lgsfhp)l/2 and sn,p(Lgsfm,)pT?1 and, give an accurate estimate of the upper limit for the nonrandom con-
stant. In particular, for p = 2, Theorems 2.1 and 2.4 are versions of Kolmogorov’s BLIL, Theorems 2.2
and 2.5 are the versions of Wittmann’s BLIL for B-valued random variables and Theorems 2.3 and 2.6 is
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24 D. DENG

the versions of BLIL for i.i.d. B-valued random variables. In that sense, our results are the extensions of
the BLIL for B-valued random variables. Also, some results are new even for real valued random vari-
ables. Since s,, < (31, E||X;|[’)/?, the similar results may be obtained for the normalizer constant
(i BIXlP) VP (Lo 320, BIIXG[[P)'2.

(2) In Theorems 2.2 and 2.5, the assumptions that Conditions (2.4) and (2.14) holds “for some « > p” can not
be strengthened to say “for some oo > p”. In fact (2.4) and (2.14) fail for s, , when o = p. Indeed, if (2.4) holds
with a = p, that is,

3y Lash ) PEIXP < o

then defining ny to be the smallest positive integer satisfying that s, > p*, k> 1, where p > 1, we have that

(s%k+l7pLgslel,p) /2(s2 Spppl2sh, 57 P2 p, and Shop ™ o
Hence, setting v; = sup{k : ¢ > ni},
> ok > > 1
Zl oy pLgs L ;EHXin ; [| X:||P k_Z% = pLQSn )P
= = 1
< g E||X;|P kZW' GRS )

oo

_BIXI
( 2 LQS p/2 Z

_pﬂg

1

J
- B
-1
zjl 3 Lgs )p/2<+oo.
]:

On the other hand,

e

v

nk pLQS"k P)

N
7 2 EIXP
=1

= (
(oo} ny 00 o

| |P p — -1
Z P Lgs ZE ZEHXzH > Z Lash, ) Z log(klogp))™" = 400,
k=1 k’p Ng,p P P P

which results in a contradiction.

(3) Obviously, for 1 < p < 2, the upper limits in the above theorems are not best and perhaps can be improved.
On the other hand, the lower limits for the nonrandom constants do not be given and it is unknown whether
the lower limits are greater than zero or not.

(4) Furthermore, from Theorem 2.6, the law of large number is obtained for p = 1 and the LIL is obtained for
p = 2. The conjecture is that there exists an continuous increasing function A(p) such that A(0) =0, A(2) =1
and for i.i.d. B-valued random variables such that

limsup ||Sn||/(2nQ/pL2n)1/q = A(p) a.s.
n—oo

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005002


http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005002

ON THE BOUNDED LIL IN BANACH SPACE 25

3. THE PROOFS OF THEOREMS

Now we first prove Theorem 2.1.
The proof of Theorem 2.1.
By the Hoffmann-Jgrgensen inequality and the standard method of symmetrization, it is easy to prove that (2.2)
and (2.3) imply that
E||S E|IS " eX;
tim Sl oy, Ell2im Xl =0, (3.1)
n— oo Sn,ptn n— oo Sn,ptn
where t, = (2L25§’17p)1/2 and {en,n > 1} is a Rademacher sequence which is independent of {X,,,n > 1}.
For p > 1, let ny = min{n; s, , > p*}. Then, s,, , ~ p*, and Snyi1.p/ Snwp ~ p- To the claim of Theorem 2.1,
it will be sufficient to show that for every € > 0 and some p > 1,

o0
ST PS> 2P 4 )5y play } < +oc. (3.2)
k=1

Let now € > 0 and p > 1 be fixed. For f,g € D and every k, set

Snk,p i=1

ne 1/2
d5(fg) = — (ZE(f—gf(Xi))
and

Nk
B = B> eXill/ (S ptny)-

i=1

By (3.1), By — 0 as k — oo.

Let N(D,d5,¢) denote the entropy, that is, N(D,d%, €) is the minimal number of elements g in D such that
for every f € D there exists such a g with d5(f,g) < e. By Theorem 2 in Chow and Teicher [5] and von
Bahr-Esseen’s inequality (see von Bahr and Esseen [2], Th. 4), we have that for every f € By,

97 1/2
< A{'E

n

> F(X)

i=1

n

Zf(Xi)

i=1

1/2
ZEf%Xi)] = |E

n 1/p n 1/p
< AT (2”_1 ZEIf(Xi)I”> < 2t (Z Elf(Xi)I”>
i=1

i=1
and thus,
n 1/2
Oy = (sup ZEfQ(Xi)> < 21+1/psn,p. (3.3)

By using Proposition 4.13 in Ledoux and Talagrand [14], the argument like the proof of Lemma 8.3 in Ledoux
and Talagrand [14] and (3.3), one may prove that

N(Da d§7 6) < eXp(ﬁkt%k)' (34)

Now we establish (3.2). According to (3.4), we denote, for each k (large enough) and f in D, by g (f) an element
of D such that d5(f,g) < € in such a way that set Dy of all gi(f)’s has a cardinality less than exp(ﬂkt%k).
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26 D. DENG

Then we have that

ng Nk Nk
ZXi < sup Zg(XZ) + sup Zh(Xl)
i=1 9€Dk |27 heD; =1

where D}, = {f — gx(f) : f € D}. The main observation concerning Dj, is that

sup (3 EIHCG) )2 < o
heD; i

In order that (3.2) holds, it is sufficient to show that for some constant

ZP{sup Zh )| > Mesn, ptn }<oo (3.5)
heD;
and
ZP sup Zg > (2MYP L )5, ptn, ¢ < 00 (3.6)
9€Dy |75

To prove (3.5), replacing {XZ} by {X; — X!} where {X/} is an independent copy of the sequence {X;} and
noting that

n 1/p
p—1
Sn,p S SUP <ZE|f(Xz - me) <25 sy,

feb \;5

we can assume the symmetrization of random variables. By taking ¢ = 2Ky, k = [tik] + 1,5 = 265y, ptn,,t =
M'esy,, ptn, and using proposition 1.1 in Ledoux and Talagrand [13], we have that

sup
heD;,

2
(12, 1+1

2
1 tnk %
> Mesp, ptn } < <§) + P Z || Xl|" > 2€sn, ptn,

i=1

+ 4exp {—(Mlesnk’ptnk)Q } +4dexp { (M'esn ptni )t }

Zh

128Koo? T68My28n, ptn,
where
ne 1/2 ne 1/2
o = sup | Y ER*(XI{]|Xi|| < s/k}) < sup | Y ERA(X)) < €Sy p
heD;, i=1 heD;, i=1
and

My _ Bl XI{IXll < s/RY| _ B T_

0.
Noting that for large k,
[t )41
o Xl <]+ 1) max [[X|| < ([£5,] 4+ Desnsp/tn. < 2€5n,pbns

i=1
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ON THE BOUNDED LIL IN BANACH SPACE 27

we have that

2
(12, 141

Pq Y IXill* > 2esp, pta, o =0.

i=1

Thus, we have that for M (M’) large enough,

.2 M?eEs2 M2
su h >Mes <2 "mk +4ex ——1 +4ex -t
heg |; ol netn P 128Kz, . P 1536 — "

5 M/2 M12
<27t 44 - t2 4 - t2
=2 eXp{ 128K, ”k} * eXp{ 1536 ™
< 272L20"" | Sexp {—2log, p"*}.

This completes the proof of (3.5). In order to prove (3.6), by using Lemma 1.6 in Ledoux and Talagrand [14]
and noting 02 < 22+2/1’3%,p, for all large enough k’s

(s

(21+1/p + 6)2 %k pt%k (21+1/;D + E)Snkmtnk nnkt:nk,p
< 2exp 5 . 2 —exp k
20‘nk 0'2

< 2ex _ (21+1/p + 6)2 " 2L2S£Lk7p 9 _ ex (21+1/p + E)Unk Sni,p
> 2€xp 23+2/p52 eXp 92+2/p g2
Nk ,P Ng,p

< 2exp{— (1 + i) log, snkp}

21+1/p + €)Sny, plng }

Hence for kg large enough,

Z P{ sup |Zg D> 27YP £ s, ptay ) < Z 2 card(Dy) exp{—(1 + - )1og2 shpt

k>ko €Dk k>ko
€
< Z 2 exp{2ﬂk 10g2 Snk p} exp{ ( Z) 1Og2 szk,p}
k>ko
<2 Z exp{—(1+ < )logQSnk Py < Foo.
k>ko
The proof of Theorem 2.1 is complete. ([l

Now we are in the position to prove Theorem 2.2. In order to establish this theorem, we need the following
proposition.
Proposition 3.1. Let {X,,,n > 1} be a sequence of independent B-valued random variables. Suppose that for a
positive sequence of real numbers {an,,n > 1} with a, T +00 and a real number o > 1, the following statements
hold

Z a, “E|| X,||* < oo, (3.7)
n=1

limsup apn41/an < +00. (3.8)
n—oo
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28 D. DENG

(1) For 1 <a <2 and X, € WM§,

0
li Sh n = a.s. 3.9
gnj;lop [15all/a {F for some T’ >0, (39)
if and only if
0
li S, = j babilit 3.10
ffllopn nll/an {M for some M > 0, T proBanity ( )

respectively.
(2) Assume, moreover, that there is some (3 > 0 such that for any n > 1

1 <any1/an < (5n+1,p/5n,p)ﬁ (3.11)

and for some 1 <p <2, X,, € WM} and

limsup(siprgsﬁyp)lm/an < 4o00. (3.12)
n—oo
Then for a > 2,
limsup [|Sy[|/an < 400 a.s. (3.13)
n—oo
if and only if
limsup ||Sp||/an < +o0 in probability. (3.14)
n—oo
In addition, assume that
limsup(s%’pLgsﬁ’p)l/Q/an = 0. (3.15)
Then,
limsup ||Sy||/an =0 a.s. (3.16)
if and only if
limsup ||Sy||/an = 0 in probability. (3.17)

Proof. We only prove that under the Conditions (3.7) and (3.8), (3.10) implies (3.9). As in the proof of
Theorem 2.1, it can be shown that (3.10) implies that

=0
limsup E||S,||/an 3.18
wsup B[S,/ {<+oo (3.18)

Set p > D = limsup,, .. Gnt1/a,. For k > 1, let n;, be the smallest positive integer satisfying that a, > p*. it
is easy to see that
Any ~ P and ank+1/ank ~ p.

By the standard argument, in order to prove that limsup,, . || Y i, Xil|/an = 0(=T') a.s., it is sufficient to
prove that for Ve > 0 (or for some € > 0),

[e’e] Nk41
ZP{ Z X; Zeank+l}<+oo.
k=1 i=np+1
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ON THE BOUNDED LIL IN BANACH SPACE 29

By (3.18), for k large enough, E|| Y/ | Xil|/an, ., < €/2. Thus, by de Acosta’s inequality (see de Acosta [1]),
for sufficiently large k,

Np41 Nk41 MNEk+1 €
1=ni+1 1=ni+1 1=ni+1
9o MNk+1 9o MNg+41 BlIX; ||
<o Y Alxpe <L > HEE
€A, €= G
Therefore,
oo N
ZP{ ZXZ- Zeank+1}<+oo.
k=1 1=1

The proof of Part (1) is complete.

Now we are in the position to prove Part (2). We only prove that under the Conditions (3.7), (3.11)
and (3.15), (3.17) implies (3.16). Now, by Lemma 3.3 in Wittmann [15], for any M > 1, there exists a strictly
increasing subsequence of positive integers such

Mank S a”nk+1 S M3ank+1~ (3-19)

From Proposition 2 of Chen [3], it is sufficient to show that

> Sa?
g exp {— ok } < 400 for every § > 0 (3.20)
o
k=1 k

where o} = supseg- % Ef?(X;)(k > 1). Now from (3.11), sn,, 1 p/Snpp ~ M'/8 and from which, (3.15) and
(3.3), it is easy to see that for sufficiently large &,
(Sa/nk > 5182 12123;0

22 "k”;k “P > 5" Losh, |, > 2log(klog M/F).

Hence (3.9) holds. This completes the proof of Proposition 3.1. (I
The proof of Theorem 2.2

The theorem follows from Proposition 3.1 for 1 < p < a < 2 and from Wittmann’s LIL (see Chen [3])
for @« > p = 2, respectively. We only prove that for p < 2 < «, under the Conditions (2.4) and (2.5),
Sn/(253’1)[/255’1710)1/2 — 0 in probability implies that

, |15l 14+1/p

For this purpose, define

X5 = Xol{||Xall < (257 , Lash, )2},
Xy = XoI{[|Xal| > (257, ,L2sh ,)' /%) = X0 — X,
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By (2.4),
2 PUK 2 (26, Lt ) 1%) < D267 Lash )" PEIIX < +oo
n=1 n=1

By the Borel-Cantelli Lemma,

lim_ (257 ,Last )~ '/? Z X/'=0 a.s. (3.22)
and for n > 1,
X/"|| = sup Ef(X!)
feB;y ;
/P /o 2=t
< fsug (ZELf Dl ) (Z P(|X;]| > (23?’pL23f’p)1/2)> < Kspp—00 (n— 00)
€81 \i=1 i=1
where K = (Zzl P(|X;]| = (25?@[]252 )1/2)) . Thus,
120 BV (o), (323)

(257 pLash.p)'/?

Since Y14 Xi/(2s% ,Lash ,)Y/? — 0 in probability, by (3.22) and (3.23), we may obtain that

> (X! - EX])/(2s} ,Lash ,)"/> = 0 in probability. (3.24)

=1

Again by (3.22) and (3.23), in order to prove the theorem, it is sufficient to show that

IS, (X = BXDI _

liTILnjBOp CEN A a.s. (3.25)
By (2.4) and Kronecker Lemma, we have that
n
(255 ,Lash )" *? Y E|IXi||* >0 (n— o0). (3.26)

i=1

Hence by the boundedness of {X] — EX/} and (3.24), applying the standard method of symmetrization and
Lemma 7.2 of Ledoux and Talagrand [14], we may obtain that

BN (X XD
n—oo (QS%J)LQSZ@)I/Q

= 0. (3.27)

By Lemma 3.3 of Wittmann [15], for any M > 1, there exists a subsequence of positive integers {nj} with
My p < Sppirp < M3Sp, 11,5 Thus, by the standard argument, to prove (3.25), it is enough to show that for

M >1,
ZP{ Z — EX))

i=1

> (21717 4 4e) (252 Last, p)l/Q} < +o0. (3.28)
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Now for « satisfying (2.4) and y; = inf{k : j < ny}, we have that

ki;l (253, L2S p)/? ZEHX 1" < ZE”X I i (QS%k lesﬁk,p)ah
Ji—o;EHXj”aki (25%W pLQSn_YJi))a/2M(k_’Yj)T
< o b & 3
s .

It is obvious that (2.4) implies the finiteness of the right side. Thus we have proved that

o

1 (a7
> TR a/2ZE||X|| < +o0. (3.29)

k=1 j=1

By (3.29), one can find a sequence {7} of positive numbers tending to zero such that
(o]
Z(nk "k pL2sh, ) 1/2 ZEHX [|* < +o0. (3.30)
k=1 j=1

For i < ny, define

- x! / Mk Sy ,p _ v . Mk Sy ,p
b = NI < 5 | = X1 <

Nk Sny,, NkSny,
zz-kxgz{nxgnz%}xiz{( ey

P < ||X|| < (282 Los? )Y2 4
TR ST <Xl < (252, Las?,)

Thus to prove (3.28), it sufficient to show that

ZP { Z — EY)|| > (27 4 3¢)(252, ,Last, p)1/2} < 400 (3.31)
1=1
and
ZP{ Z ik — EZi)|| > €(2s2, ,Lash, p)1/2} < +00. (3.32)
=1

Now we first prove (3.32). By Lemma 2.5 of Gine and Zinn [8], it is enough to show that for each € > 0,

o

1

Nk

S ez

=1

> ¢(2s2, ,Lost, p)l/Q} < +o0. (3.33)

This is equivalent to showing, by the Hoffmann-Jergensen’s inequality (Ledoux and Talagrand [12] Prop. 2.1),
that for Ve > 0,

o0
> P {I-EaXIIZikII > €257, pLosh, p>1/2} < 400 (3.34)
1 TSNk

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005002



http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005002

32 D. DENG

(]

It is easy to see that (3.29) implies (3.34). Thus, to prove (3.35), by taking ¢ = [2Ko] + 1,my; = [5;%]
(where 6 = ()" (257, pLQSZ‘Zk 0 /TS B||X||, s = = k(2% ,Losh, p)l/2 and t = §(2s7, ,Losh p)1/2

and applying Proposition 1.1 in Ledoux and Talagrand [13], we have that for some § > 0,

{ ZG’L ik
< (L mk+P Z||Z4k||*>77k(2s2 Lysk )1/?
-~ 2 2 ng,p Ng,p

i=1

£ Los £)22mys2  LosP
+4exp{( ) nkp 2 nk‘ip}+4exp{ (3) kong,p2°n,,p }

and
ng

Y ez

=1

2
> e(2s%, ,Last, p)1/2}> < 4o0. (3.35)

+ 2ni) (252, ,Last, )2+ 8qu}

64([2Ko] + 1)02 T68 My (257, ,Lash, p)'/?

Nk,P
< <1>mk mpE maxicp, || Zik||* + dexp{— 0%(2s,, pLash, p)}
—\2 ne (282, pLQS?’)Ik )2 o
8°my (282 LosP )1/2
+ 4exp Ng,P nk,P ,
{ Ming
where
M, = Zel lk1{||zlk|| < n(2s2, ,Last, 1/2/mk} ‘
i=1
o = sup ZE Zie) I{|| Zik| < me(282, ,Lash, )2 /mi}].
€by =1

By (3.27) and Levy’s inequality, we have

My,

lim =0
2 p 1/2 :
k—oo 28nk,pL28nkap) /

Thus for k large enough,
Nk ) 2 1 2my ) 252(12
1 n
P i_g 1 €2k o pL2S£Lk p) / <C <§> + 0 + exp (7(5 mk) + exp < U% k)

1 2my 52a%k 252@3%
<C - + 0 + 2—|—exp 5 <CR6+exp|— 5
2 my, Ok Ok

where C' is the constant independent of k£ and varies from line to line, and the second inequality follows from
the fact that

> €252

1
exp(—x) < CQF Vz > 1 and for some constant Cs.
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By (3.30), in order to show (3.35), it is sufficient to prove that
- 2092 p 2
Zexp(—% (255, pLash, )/ o)) < +oo.

2
Mk (Sny,p k(255 pL2sh, »
(2Lash, )17 "

1 1/2
Let Ny = {k € N,2Lash, , < my = [0, *]}. For any k € N; = 1, we have U

Thus by the definition of {Z;;}, M = 0 and o), = 0. Hence,

252 n LQSn ) 2(52( Sh LQSn )
Z exp { kU:DQ kP _ Z exp{ — kU:DQ kP )
k k

keN kKEN\N,

By the argument like the proof of Theorem 2.1, we have that o5 < 21+%snk,p. Therefore,

26%(252  LosP ) 262
Z exp{ nko-;z]% Nk ,P — Z exp{ 21+1/p2L2 ng, }

kEN kEN\N,
1 o0
<c Y <C Y =<0 6 <o
kEN\N1 2L28""’p) KeN\N, |k k=1

(3.35) is proved.
Similar to the proof of Theorem 2.1, we easily show that for Ve > 0,

> {50 i

i=1
Therefore we have actually proved that

> (2P 4 36)ank} < +o00.

" (X! - EX!
hmsup || Zl:l( T ’L)|| § 21+1/p a.s.

n—o00 (79}

This completes the proof of Theorem 2.2. O
In order to prove Theorem 2.3, we need the following lemma (see Lem. 5 in Einmahl [7]).

Lemma 3.2. Let £ : Q — [0,00) be a random variable such that

(oo}
Z P{{>cn} < 400,
n=1

where {c,} is a sequence satisfying for some a > 0,

en/n” is nondecreasing.

Then we have that

(o)
(a) Z E¢I{¢ <cp}/ch < +oo  provided that > o™,

n=1

b) Z P& > ecp) <+oo  for any e > 0.
=1

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005002



http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005002

34 D. DENG

The proof of Theorem 2.3.
For each i > 1, define

Xi=Xil{l|Xi|| < en},  XTI{IXill > ei} = X; — X

Then similar to the proof of Theorem 2.2, we easily obtain that

"o " _
lim Z (X!'—EX!))en =0 as. (3.36)
and thus, by (2.7) we also have that
n
> (X - EX])/en — 0 in probability. (3.37)
=1

Now by using Lemma 3.2, (2.6) and (2.8) imply that for r > p = =1,

ZE”X"' ZEHX PIIX < eab/el = 3 BIXIPIIXI < e}/ < 400 (338)

n=1 n=1

Hence the conditions in Proposition 3.1 are obtained from (3.37) and (3.38). Therefore, there exists some I" > 0
such that

" (X' - EX!
1imsup || Zz:l( 7 z)”

n—oo cn

<T.

Again by (3.36), limsup,,_, . ||Sn||/cn < T. In particular, if ¢, = o,n'/?(2Lan)'/2, the conclusion follows from
Theorem 2.2.

Finally we give the proof of Theorem 2.3. We first give a proposition which seems to be an extension of
Proposition 1.1 in Ledoux and Talagrand [13]. By using Proposition 3.1 in Deng [6] and Theorem 4.12 in Ledoux
and Talagrand [14], the proof may follow from the similar argument like the proof of Proposition 1.1 in Ledoux
and Talagrand [13] or Theorem 6.17 in Ledoux and Talagrand [14] and thus is omitted.

Proposition 3.3. Let {X;,n > 1} be a sequence of independent symmetric B-valued random variables. For
any integer k > w and positive numbers s and t, we have that,

o3

i=1
Ko\* b ta
< | — P X 4 —
- ( w > + {ZH "> S} + exp{ 2qq(4w<ﬂ’+24pM(s/k)l’—1)<I/p}

=1

>t+23+8wM}

where p € (1,2],q = ﬁ7

N
D ui
i=1

u; = XoI{|| X6l < s/k}(i < N), {||X:]|*,i < N} is the nondecreasing rearrangement of the sequence {||X;||,i <
N}, and Ky is a universal constant.

o= s (3o,

fGB* i=1
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The proof of Theorem 2.4.

We first prove Theorem 2.4 for p = 1. In view of (2.11), for p > 1, and each k, let ny = min{n : s,,1 > p*}.
Then,

k
Sng,1 ~ P, Snk+1,1/snk71 ~ p.

Set I(k) = {ny + 1,...,nk41}. From Corollary 7.3 in Ledoux and Talagrand [14], it is sufficient to prove that
lmsupy, oo || 22570y Xill/8ni,1 = 0. Now, set g = [2Ko] + 1,5 = [2Lasp, 1] and for integer r, set X}Ti) = || X;]]
whenever ||X;]|| is the r-th maximum of the sample {||X;||,% € I(k)}. On account of (2.12), for all ¢ > 0 and for
large £,

[2L25n,,,1]
Z XI(k) 2L23nk l]nnksnk,l/LQSnk 1 < €Sny,15

My = E|| Y XiI(jx,||1<esny 1 /2Lasn, 3 = EIl Y Xill,
i€l (k) icl(k)

op = sup > EFAXil{ x| <esn, 1 /2Lasn, 21}) | = sup > EfA(X))
FEBT \ict(k) FEBT \icr(k)

< sup Z E|f(Xi)nisi/Lasia Ssik,1nnk/L28nk,1
FEeBT \icr(n)

and thus for a large kg,

Z eXp(7€28ik71/0'12€) < Z exp(—€Lasp, 1/Mn,) < C Z exp{—2(log klog p)} < +o0.
k>k k>ko k>k,

From Theorem 7.5 in Ledoux and Talagrand [14], it follows that limsup,,_,., Sn/Sn.1 = 0.
Next by Borel-Cantelli Lemma and Levy’s inequality, in order to establish the theorem for p € (1,2), it
suffices to show that for all € > 0,

> P{ISn ]l > (A +3€) (252, Lash, )"/} < +o00 (3.39)
k=1
where {ny} is the same as above. Taking w = 2Ko,k = [2Lash, ],s = €(2s8, ,Losh, /9.t = (A, +
€)(2sf, ,Lash. p)l/q and applying Proposition 3.3, it is easy to see that

P{||Sn,|| >t + 25+ 8wMy}

[2L2s7, L]

1 [2L25nk1)]
<(3) Terl T o

i=1

Ng,pP

+4exp | —
’ ( 20q(4wo] + 24pMy[e(25%, p Lok, )11/ (RLash, )P~ 1)1/7

[(A+€)(2s2 LQSgkyp)l/q]q )
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where

Nk
My, = E||Y XiIgx,j<s/ky ||

i=1
ng

o = sup ZE|f(Xi)I{||XiH§s/k}|p
feBr \i=1

and thus My, = ||Sy, ||, of = s, , for sufficiently large k since || X;|| < 771'51‘7;,;/(L25£p)1/p < e(2s, ,Lash, )1/

(2LosP ) < s/k. Again, by using the standard method, it is easy to see that (2.13) implies that lim,, e ax =

Nk,pP

limy o0 E[Sal/ (252 ,Lash, ,)"/% = 0. Now note that for sufficiently large k,

[QLQSﬁkYP]
S XL < L2, i Sm (LasT, )P < 5,
i=1

24p My [e(2s8, ,Lash, )9/ (12Lash, D7~

< 24pep71Mksfl;; (2L25£k7p)1/q

< 24pe? sl 1S, 1/(288, pL2sn ) < Cagsh, .

Therefore, for k large enough,

P{||Sn, ]l > (Ap +3€)28n, p(Lash, )"/}

Nk,p
< P{||Snypll >t + 25+ 8wy}
[(16K0)'/Pq!/7 4 €]925%  Losth,
29q(4w + ag) sk, p
(850)' /g7 +¢/27)
q(SKO +Oék;)q/p g2 Nk,P
< 9 2log(pklogp) | 4 exp {—(1 + %) log, s? } ,

Ng,p

1
§(§)2log2p”k+4exp —

< 27 2log(pklogpr) 4 fexp {_

from which, (3.10) follows. For p = 2 the result follows from Kolmogorov’s LIL (see Chen [4]). The proof of
Theorem 2.4 is complete. i
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