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LARGE DEVIATIONS AND SUPPORT RESULTS FOR NONLINEAR
SCHRÖDINGER EQUATIONS WITH ADDITIVE NOISE AND APPLICATIONS
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Abstract. Sample path large deviations for the laws of the solutions of stochastic nonlinear
Schrödinger equations when the noise converges to zero are presented. The noise is a complex ad-
ditive Gaussian noise. It is white in time and colored in space. The solutions may be global or blow-up
in finite time, the two cases are distinguished. The results are stated in trajectory spaces endowed with
topologies analogue to projective limit topologies. In this setting, the support of the law of the solution
is also characterized. As a consequence, results on the law of the blow-up time and asymptotics when
the noise converges to zero are obtained. An application to the transmission of solitary waves in fiber
optics is also given.

Mathematics Subject Classification. 35Q51, 35Q55, 60F10, 60H15.

Received May 25, 2004. Revised December 15, 2004.

1. Introduction

In the present article, the stochastic nonlinear Schrödinger (NLS) equation with a power law nonlinearity
and an additive noise is studied. The deterministic equation occurs as a basic model in many areas of physics:
hydrodynamics, plasma physics, nonlinear optics, molecular biology. It describes the propagation of waves in
media with both nonlinear and dispersive responses. It is an idealized model and does not take into account
many aspects such as inhomogeneities, high order terms, thermal fluctuations, external forces which may be
modeled as a random excitation (see [11,14,16,17,20,21]). Propagation in random media may also be considered.
The resulting re-scaled equation is a random perturbation of the dynamical system of the following form:

i
∂

∂t
ψ −

(
∆ψ + λ|ψ|2σψ

)
= ξ, x ∈ R

d, t ≥ 0, λ = ±1, (1.1)

where ξ is a complex valued space-time white noise with correlation function, following the notation used in
[16],

E
[
ξ(t1, x1)ξ̄(t2, x2)

]
= Dδt1−t2 ⊗ δx1−x2

Keywords and phrases. Large deviations, stochastic partial differential equations, nonlinear Schrödinger equations, white noise,
projective limit, support theorem, blow-up, solitary waves.

1 CREST-INSEE, URA D2200, 3 avenue Pierre Larousse, 92240 Malakoff, France.
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D is the noise intensity and δ denotes the Dirac mass. When λ = 1 the nonlinearity is called focusing, otherwise
it is defocusing.

With the notations of Section 2, the unbounded operator −i∆ on L2(Rd) with domain H2(Rd) is skew-adjoint.
Stone’s theorem gives thus that it generates a unitary group (S(t) = e−it∆)t∈R. The Fourier transform gives
that this group is also unitary on every Sobolev space based on L2(Rd). Consequently, there is no smoothing
effect in the Sobolev spaces. We are thus unable to treat the space-time white noise and will consider a complex
valued centered Gaussian noise, white in time and colored in space.

In the present article, the formalism of stochastic evolution equations in Banach spaces as presented in [6] is
adopted. This point of view is preferred to the field and martingale measure stochastic integral approach, see
[23], in order to use a particular property of the group, namely hyper-contractivity. The Strichartz estimates,
presented in the next section, show that some integrability property is gained through time integration and
“convolution” with the group. In this setting, the Gaussian noise is defined as the time derivative in the sense
of distributions of a Q-Wiener process (W (t))t∈[0,+∞) on H1(Rd). Here Q is the covariance operator of the
law of the H1(Rd)−random variable W (1), which is a centered Gaussian measure. With the Itô notations, the
stochastic evolution equation is written

i du− (∆u+ λ|u|2σu) dt = dW. (1.2)

The initial datum u0 is a function of H1(Rd). We will consider solutions of NLS that are weak solutions in the
sense used in the analysis of partial differential equations or equivalently mild solutions which satisfy

u(t) = S(t)u0 − iλ

∫ t

0

S(t− s)(|u(s)|2σu(s))ds− i

∫ t

0

S(t− s)dW (s). (1.3)

The well posedness of the Cauchy problem associated to (1.1) in the deterministic case depends on the size of σ.
If σ < 2

d , the nonlinearity is subcritical and the Cauchy problem is globally well posed in L2(Rd) or H1(Rd). If
σ = 2

d , critical nonlinearity, or 2
d < σ < 2

d−2 when d ≥ 3 or simply σ > 2
d otherwise, supercritical nonlinearity,

the Cauchy problem is locally well posed in H1(Rd), see [19]. In this latter case, if the nonlinearity is defocusing,
the solution is global. In the focusing case some initial data yield global solutions while it is known that other
initial data yield solutions which blow up in finite time, see [5, 22].

In [7], the H1(Rd) results have been generalized to the stochastic case and existence and uniqueness results
are obtained for the stochastic equation under the same conditions on σ. Continuity with respect to the initial
data and the perturbation is proved. It is shown that the proof of global existence for a defocusing nonlinearity
or for a focusing nonlinearity with a subcritical exponent, could be adapted in the stochastic case even if the
mass

M (u(t)) = ‖u(t)‖2
L2(Rd)

and Hamiltonian
H (u(t)) =

1
2

∫

Rd

|∇u(t)|2 dx− λ

2σ + 2

∫

Rd

|u(t)|2σ+2 dx

are no longer conserved. For a focusing nonlinearity and critical or supercritical exponents, the solution may
blow-up in finite time. The blow-up time is denoted by τ(ω). It satisfies either limt→τ(ω) ‖u(t)‖H1(Rd) = +∞
or τ(ω) = +∞, even if the solution is obtained by a fixed point argument in a ball of a space of more regular
functions than C([0, T ]; H1(Rd)).

In this article, we are interested in the law of the paths of the random solution. When the noise converges
to zero, continuity with respect to the perturbation gives that the law converges to the Dirac mass on the
deterministic solution. In the following, a large deviation result is shown. It gives the rate of convergence to
zero, on an exponential scale, of the probability that paths are in sets that do not contain the deterministic
solution. A general result is stated for the case where blow-up in finite time is possible and a second one for the
particular case where the solutions are global. Also, the stronger the topology, the sharper are the estimates.
We will therefore take advantage of the variety of spaces that can be considered for the fixed point argument,
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76 É. GAUTIER

due to the integrability property, and present the large deviation principles in trajectory spaces endowed with
projective limit topologies. A characterization of the support of the law of the solution in these trajectory
spaces is proved. The two results can be transferred to weaker topologies or more generally by any continuous
mapping. The first application is a proof that, for certain noises, with positive probability some solutions blow
up after any time T . Some estimates on the law of the blow-up time when the noise converges to zero are also
obtained. This study is yet another contribution to the study of the influence of a noise on the blow-up of
the solutions of the focusing supercritical NLS, see in the case of an additive noise [8, 9]. A second application
is given. It consists in obtaining similar results as in [16] with an approach based on large deviations. The
aim is to compute estimates of error probability in signal transmission in optical fibers when the medium is
random and nonlinear, for small noises. Uniform large deviations for small noise asymptotics when the noise
enters linearly as a random potential the NLS equation are studied in [18]. In that case we had to use a more
elaborate proof based on the Freidlin and Wentzell inequality and the continuity of the skeleton with respect
to the control on the level sets of the rate function of the initial Wiener process since in that case the Itô map
fails to be continuous at the level of paths for the topologies we consider.

Section 2 is devoted to notations and properties of the group, of the noise and of the stochastic convolution.
An extension of the result of continuity with respect to the stochastic convolution presented in [7] is also given.
In Section 3, the large deviation principles (LDP) is presented. Section 4 is devoted to the support result and
the two last sections to the applications.

2. Notations and preliminary results

Throughout the paper the following notations will be used.
The set of positive integers and positive real numbers are denoted respectively by N

∗ and R
∗
+, while the set

of real numbers different from 0 is denoted by R
∗.

For p in N
∗, Lp(Rd) is the classical Lebesgue space of complex valued functions and W1,p(Rd) is the associated

Sobolev space of Lp(Rd) functions with first order derivatives, in the sense of distributions, in Lp(Rd). When
p = 2, Hs(Rd) denotes the fractional Sobolev space of tempered distributions v ∈ S′(Rd) such that the Fourier
transform v̂ satisfies (1 + |ξ|2)s/2v̂ ∈ L2(Rd). The space L2(Rd) is endowed with the inner product defined by
(u, v)L2(Rd) = �

∫
Rd u(x)v(x)dx. Also, when it is clear that µ is a Borel measure on a specified Banach space,

we simply write L2(µ) and do not specify the Banach space and Borel σ-field.
If I is an interval of R, (E, ‖ · ‖E) a Banach space and r belongs to [1,+∞], then Lr(I;E) is the space of

strongly Lebesgue measurable functions f from I into E such that t→ ‖f(t)‖E is in Lr(I). Let Lr
loc(0,+∞;E)

be the respective spaces of locally integrable functions on (0,+∞). They are endowed with topologies of Fréchet
space. The spaces Lr(Ω;E) are defined similarly.

We recall that a pair (r, p) of positive numbers is called an admissible pair if p satisfies 2 ≤ p < 2d
d−2 when

d > 2 (2 ≤ p < +∞ when d = 2 and 2 ≤ p ≤ +∞ when d = 1) and r is such that 2
r = d

(
1
2 − 1

p

)
. For example

(+∞, 2) is an admissible pair.
When E is a Banach space, we will denote by E∗ its topological dual space. For x∗ ∈ E∗ and x ∈ E, the

duality will be denoted < x∗, x >E∗,E.
We recall that Φ is a Hilbert Schmidt operator from a Hilbert space H into a Hilbert space H̃ if it is a linear

continuous operator such that, given a complete orthonormal system (eH
j )j∈N of H ,

∑
j∈N ‖ΦeH

j ‖2
H̃
< +∞. We

will denote by L2(H, H̃) the space of Hilbert Schmidt operators from H into H̃ endowed with the norm

‖Φ‖L2(H,H̃) = tr (ΦΦ∗) =
∑

j∈N

‖ΦeH
j ‖2

H̃
,

where Φ∗ denotes the adjoint of Φ and tr the trace. We denote by Ls,r
2 the corresponding space for H = Hs(Rd)

and H̃ = Hr(Rd). In the introduction Φ has been taken in L0,1
2 .
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When A and B are two Banach spaces, A ∩B, where the norm of an element is defined as the maximum of
the norm in A and in B, is a Banach space. The following Banach spaces defined for the admissible pair (r(p), p)
and positive T by

X(T,p) = C
(
[0, T ]; H1(Rd)

)
∩ Lr(p)

(
0, T ; W1,p(Rd)

)

will be of particular interest.
The probability space will be denoted by (Ω,F ,P). Also, x ∧ y stands for the minimum of the two real

numbers x and y and x ∨ y for the maximum. We recall that a rate function I is a lower semicontinuous
function and that a good rate function I is a rate function such that for every c > 0, {x : I(x) ≤ c} is a compact
set. Finally, we will denote by supp µ the support of a probability measure µ on a topological vector space. It
is the complement of the largest open set of null measure.

2.1. Properties of the group

When the group acts on the Schwartz space S(Rd), the Fourier transform gives the following analytic ex-
pression

∀u0 ∈ S(Rd), ∀t �= 0, S(t)u0 =
1

(4iπt)
d
2

∫

Rd

e−i |x−y|2
4t u0(y)dy.

The Fourier transform also gives that the adjoint of S(t) in L2(Rd) and in every Sobolev space on L2(Rd) is
S(−t), the same bounded operator with time reversal.

The Strichartz estimates, see [19], are the following
i/ ∀u0 ∈ L2(Rd), ∀ (r, p) admissible pair,

t �→ S(t)u0 ∈ C(R; L2(Rd)) ∩ Lr(R; Lp(Rd)),

and there exists a positive constant c such that,

‖S(·)u0‖Lr(R;Lp(Rd)) ≤ c‖u0‖L2(Rd).

ii/ For T > 0, for all (r(p), p) and (r(q), q) two admissible pairs, if s and ρ are the conjugate exponents of r(q)
and q, i.e. 1

s + 1
r(q) = 1 and 1

q + 1
ρ = 1,

∀f ∈ Ls(0, T ; Lρ(Rd)), Λf ∈ C([0, T ]; L2(Rd)) ∩ Lr(p)(0, T ; Lp(Rd))

where Λ is defined by Λf =
∫ ·
0 S(·−s)f(s)ds. Moreover, Λ is a continuous linear operator from Ls(0, T ; Lρ(Rd))

into Lr(p)(0, T ; Lp(Rd)) with a norm that does not depend on T .

Remark 2.1. The first estimate gives the integrability property of the group, the second gives the integrability
of the convolution that allows to treat the nonlinearity.

2.2. Topology and trajectory spaces

Let us introduce a topological space that allows us to treat the subcritical case or the defocusing case. When
d > 2, we set

X∞ =
⋂

T∈R∗
+, 2≤p< 2d

d−2

X(T,p),

it is endowed with the projective limit topology, see [3, 13]. When d = 2 and d = 1 we write p ∈ [2,+∞).
The set of indices

(
R

∗
+ ×

[
2, 2

d−2

)
,≺
)

when d > 2 or
(
R

∗
+ × [2,+∞) ,≺

)
when d = 2 or d = 1, where

(T, p) ≺ (S, q) if T ≤ S and p ≤ q, is a partially ordered right-filtering set.

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2005005

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2005005


78 É. GAUTIER

If (T, p) ≺ (S, q) and u ∈ X(S,q), Hölder’s inequality gives that for α such that 1
p = α

q + 1−α
2 ,

‖u(t)‖Lp(Rd) ≤ ‖u(t)‖1−α
L2(Rd)

‖u(t)‖α
Lq(Rd).

Consequently,
‖u(t)‖W1,p(Rd) ≤ (d+ 1)‖u(t)‖1−α

H1(Rd)
‖u(t)‖α

W1,q(Rd).

By time integration, along with Hölder’s inequality, the fact that r(q) = αr(p) and that T ≤ S, we obtain that
u is a function of X(T,p) and

‖u‖X(T,p) ≤ (d+ 1)‖u‖X(S,q) . (2.1)

If we denote by p(T,p)
(S,q) the dense and continuous embeddings from X(S,q) into X(T,p), they satisfy the consistency

conditions
∀(T, p) ≺ (S, q) ≺ (R, r), p(T,p)

(R,r) = p
(S,q)
(R,r) ◦ p

(T,p)
(S,q) .

Consequently, the projective limit topology is well defined by the following neighborhood basis, given for ϕ1

in X∞ by

U(ϕ1; (T, p); ε) =





ϕ ∈

⋂

(T ′,p′)∈J

X(T ′,p′) : ‖ϕ− ϕ1‖X(T,p) < ε





.

It is the weakest topology on the intersection such that for every (T, p) ∈ J , the injection p(T,p) : X∞ → X(T,p)

is continuous. It is a standard fact, see [3], that X∞ is a Hausdorff topological space.
Following from (2.1), a countable neighborhood basis of ϕ1 is given by

(
U
(
ϕ1; (n, p(l)); 1

k

))
(n,k,l)∈(N∗)3

, where

p(l) = 2 + 4
d−2 − 1

l and l > d−2
4 if d > 2. If d = 2 and d = 1, we take p(l) = l.

Also it is convenient, for measurability issues, to note that X∞ can be turned into a complete separable
metric space, i.e. a Polish space, setting

∀(x, y) ∈ X 2
∞, d(x, y) =

∑

n> d−2
4

1
2n

(‖x− y‖X(n,p(n)) ∧ 1) .

It can be checked that it is also a locally convex Fréchet space.
The following spaces are introduced for the case where blow-up may occur. Adding a point ∆ to the

space H1(Rd) and adapting slightly the proof of Alexandroff’s compactification, it can be seen that the open
sets of H1(Rd) and the complement in H1(Rd) ∪ {∆} of the closed bounded sets of H1(Rd) define the open
sets of a topology on H1(Rd) ∪ {∆}. This topology induces on H1(Rd) the topology of H1(Rd). Also, with
such a topology H1(Rd) ∪ {∆} is a Hausdorff topological space. Note that in [1], where diffusions are studied,
the compactification of R

d is considered. Nonetheless, compactness is not an important feature and the above
construction is enough for the following.

The space C([0,+∞); H1(Rd) ∪ {∆}) is the space of continuous functions with value in H1(Rd)∪ {∆}. Also,
if f belongs to C([0,+∞); H1(Rd) ∪ {∆}) we denote the blow-up time by

T (f) = inf{t ∈ [0,+∞) : f(t) = ∆}.
As in [1], a space of exploding paths, where ∆ acts as a cemetery, is introduced. We set

E(H1(Rd)) =
{
f ∈ C([0,+∞); H1(Rd) ∪ {∆}) : f(t0) = ∆ ⇒ ∀t ≥ t0, f(t) = ∆

}
.

It is endowed with the topology defined by the following neighborhood basis given for ϕ1 in E(H1(Rd)) by

VT,ε(ϕ1) =
{
ϕ ∈ E(H1(Rd)) : T (ϕ) ≥ T, ‖ϕ1 − ϕ‖L∞([0,T ];H1(Rd)) ≤ ε

}
,

where T < T (ϕ1) and ε > 0.
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As a consequence of the topology of E(H1(Rd)), the function T : E(H1(Rd)) → [0,+∞] is sequentially lower
semicontinuous, this is to say that if a sequence of functions (fn)n∈N converges to f then limn→+∞T (fn) ≥ T (f).
Following from (2.1), the topology of E(H1(Rd)) is also defined by the countable neighborhood basis given for
ϕ1 ∈ E(H1(Rd)) by

(
VT (ϕ1)− 1

n , 1
k
(ϕ1)

)

(n,k)∈(N∗)2
. Therefore T is a lower semicontinuous mapping.

Note that, as topological spaces, the two following spaces satisfy the identity

{
f ∈ E(H1(Rd)) : T (f) = +∞

}
= C([0,+∞); H1(Rd)).

Finally, the analogue of the intersection in the subcritical case endowed with projective limit topology is defined,
when d > 2, by

E∞ =
{
f ∈ E(H1(Rd)) : ∀p ∈

[
2,

2d
d− 2

)
, ∀T ∈ [0, T (f)), f ∈ Lr(p)

(
0, T ; W1,p(Rd)

)
}
.

When d = 2 and d = 1 we write p ∈ [2,+∞). It is endowed with the topology defined for ϕ1 in E∞ by the
following neighborhood basis

WT,p,ε(ϕ1) = {ϕ ∈ E∞ : T (ϕ) ≥ T, ‖ϕ1 − ϕ‖X(T,p) ≤ ε} .

where T < T (ϕ1), p is as above and ε > 0. From the same arguments as for the space X∞, E∞ is a Hausdorff
topological space. Also, as previously, (2.1) gives that the topology can be defined for ϕ1 in E∞ by the countable
neighborhood basis

(
WT (ϕ1)− 1

n ,p(n), 1
k
(ϕ1)

)

(n,k)∈(N∗)2: n> d−2
4

.

If we denote again by T : E∞ → [0,+∞] the blow-up time, since E∞ is continuously embedded into E(H1(Rd)),
T is lower semicontinuous. Thus, since {[0, t], t ∈ [0,+∞]} is a π-system that generates the Borel σ-algebra of
[0,+∞], T is measurable. Note also that, as topological spaces, the following spaces are identical

{f ∈ E∞ : T (f) = +∞} = X∞.

2.3. Statistical properties of the noise

The Q-Wiener process W is such that its trajectories are in C([0,+∞); H1(Rd)). We assume in the following
that Q = ΦΦ∗ where Φ is a Hilbert-Schmidt operator from L2(Rd) into H1(Rd). The Wiener process can
therefore be written as W = ΦWc where Wc is a cylindrical Wiener process.

We recall that for any orthonormal basis (ej)j∈N of L2(Rd), there exists a sequence of real independent
Brownian motions (βj)j∈N such that Wc =

∑
j∈N βjej . The sum Wc =

∑
j∈N βjej is well defined in every

Hilbert space H such that L2(Rd) is embedded into H with a Hilbert Schmidt embedding. We say that it
is cylindrical because it is such that the decomposition of Wc(1) on cylinder sets (e1, ..., eN ) are the finite
dimensional centered Gaussian variables (β1(1), ..., βN (1)) with a covariance equal to the identity. The law
of W (1) is thus the direct image measure by the Hilbert-Schmidt mapping Φ of the natural extension of the
corresponding sequence of centered Gaussian measures in finite dimensions, with a covariance equal to identity.
In other words it is the bona-fide σ-additive direct image measure of a Gaussian cylindrical measure. Also,
formally, for T positive the coefficients of the series expansion of the derivative of Wc on the tensor product
of the complete orthonormal systems of L2(Rd) and of L2(0, T ), given for example by the time derivative of
the eigenvectors of the correlation operator of the law on C([0, T ]) of the Brownian motions, is a sequence of
independent real-valued standard normal random variables. It is thus a Gaussian white noise.

In reference [16] the authors define the correlation function by the quantity

E

[
∂

∂t
Wc(t+ s, x+ z)

∂

∂t
Wc(t, x)

]
,
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80 É. GAUTIER

writing down formally the series expansion we obtain in the case of the white noise 2δ0(s)⊗ δ0(z). In the case of
our space-colored noise, we obtain the multiplication of δ0(s) by the L2(Rd) function

∑
j∈N Φej(x + z)Φej(x),

where (ej)j∈N is a complete orthonormal system of L2(Rd). Also as the operator Φ belongs to L0,1
2 and thus

to L0,0
2 it may be defined through the kernel K(x, y) = 1

2

∑
j∈N Φej(x)ej(y) of L2(Rd × R

d), considering that
(ej)j∈N consists of (fj)j∈N a complete orthonormal system of L2(Rd,R) and of (ifj)j∈N. This means that for any
square integrable function u, Φu(x) =

∫
Rd K(x, y)u(y)dy. In that case we could write the correlation function

(
2
∫

Rd

K(x + z, u)K(x, u)du
)
δ0(s).

In the following we assume that the probability space is endowed with the filtration Ft = N ∪σ{Ws, 0 ≤ s ≤ t}
where N denotes the P-null sets.

2.4. The random perturbation

We define the stochastic convolution by Z(t) =
∫ t

0
S(t− s)dW (s) and the operator L on L2(0, T ; L2(Rd)) by

Lh(t) =
∫ t

0

I ◦ S(t− s)Φh(s)ds, h ∈ L2(0, T ; L2(Rd)),

where I is the injection of H1(Rd) into L2(Rd).

Proposition 2.2. The stochastic convolution defines a measurable mapping from (Ω,F) into
(
X∞,BX

)
,

where BX stands for the Borel σ-field. Its law is denoted by µZ .
The direct images µZ;(T,p) = p(T,p)∗µ

Z on the real Banach spaces X(T,p) are centered Gaussian measures of
reproducing kernel Hilbert space (RKHS) HµZ;(T,p) = im L with the norm of the image structure.

Proof. Setting F (t) =
∫ t

0 S(−u)dW (u), for t ∈ R
+, Z(t) = S(t)F (t) follows. Indeed, if (fj)j∈N is a complete

orthonormal system of H1(Rd), a straightforward calculation gives that (Z(t), fj)H1(Rd) = (S(t)F (t), fj)H1(Rd)

for every j in N. The continuity of the paths in H1(Rd) follows from the construction of the stochastic integral
with respect to the Wiener process since the deterministic operator integrand satisfies

∫ T

0
‖S(−u)Φ‖2

L0,1
2
< +∞

and from the strong continuity of the group.

Step 1. We claim that the mapping Z is measurable from (Ω,F) into
(
X(T,p),B(T,p)

)
, where B(T,p) denotes

the associated Borel σ-field.
Since X(T,p) is a Polish space, every open set is a countable union of open balls and consequently B(T,p) is

generated by open balls. Note that the event {ω ∈ Ω : ‖Z(ω) − x‖X(T,p) ≤ r} is equal to



⋂

s∈Q∩[0,T ]

{
ω ∈ Ω : ‖Z(s)(ω) − x‖H1(Rd) ≤ r

}



⋂{

ω ∈ Ω : ‖Z(ω) − x‖Lr(p)(0,T ;W1,p(Rd)) ≤ r
}
.

Also, note that, since (Z(t))t∈R+ is a collection of H1(Rd) random variables, the first part is a countable inter-
section of elements of F . Consequently, it suffices to show that : ω �→ (t �→ Z(t)) defines a Lr(p)(0, T ; W1,p(Rd))
random variable.

Consider (Φn)n∈N a sequence of operators of L0,2
2 converging to Φ for the topology of L0,1

2 and Zn the asso-
ciated stochastic convolutions. The Sobolev injections along with Hölder’s inequality give that when d > 2 and
2 ≤ p ≤ 2d

d−2 , H1(Rd) is continuously embedded in Lp(Rd). It also gives that, when d = 2, H1(Rd) is continu-
ously embedded in every Lp(Rd) for every p ∈ [2,+∞) and for every p ∈ [2,+∞] when d = 1. Consequently,
for every n in N, Zn defines a C([0, T ]; H2(Rd)) random variable and therefore a Lr(p)

(
0, T ; W1,p(Rd)

)
random

variable for the corresponding values of p.
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Revisiting the proof of Proposition 3.1 in reference [7] and letting 2σ + 2 be replaced by any of the previous
values of p besides p = +∞ when d = 1, the necessary measurability issues to apply the Fubini’s theorem are
satisfied. Also, one gets the same estimates and that there exists a constant C(d, p) such that for every n and
m in N,

E

[
‖Zn+m(ω) − Zn(ω)‖r

Lr(p)(0,T ;W1,p(Rd))

]
≤ C(d, p)T

r
2−1‖Φn+m − Φn‖r

L0,1
2
.

The sequence (Zn)n∈N is thus a Cauchy sequence of the Banach space Lr
(
Ω; Lr

(
0, T ; W1,p(Rd)

))
and converges

to Z̃. The previous calculation also gives that

E

[
‖Zn(ω) − Z(ω)‖r

Lr(p)(0,T ;Lp(Rd))

]
≤ C(d, p)T

r
2−1‖Φn − Φ‖r

L0,1
2
.

Therefore Z̃ = Z, Z belongs to Lr(p)
(
0, T ; W1,p(Rd)

)
and it defines a measurable mapping as expected.

Note that in X∞, to simplify the notations, we did not write the cases p = +∞ when d = 1 or p = 2d
d−2 when

d > 2. We are indeed interested in results on the laws of the solutions of stochastic NLS and not really on the
stochastic convolution. Also, the result of continuity in the next section shows that we necessarily lose on p in
order to interpolate with 2 < p < p′ and have a nonzero exponent on the L2(Rd)−norm. Therefore, even if it
seems at first glance that we lose on the Sobolev’s injections, it is not a restriction.

Step 2. We show that the mapping Z is measurable with values in X∞ with the Borel σ-field BX∞.
From step 1, given x ∈ X∞, for every n in N

∗ such that n > d−2
4 the mapping ω �→ ‖Z(ω)− x‖X(n,p(n)) from

(Ω,F) into (R+,B(R+)), where B(R+) stands for the Borel σ-field of R
+, is measurable. Thus

ω �→ d(Z(ω), x) = lim
N→+∞

N∑

n=1

1
2n

(‖Z(ω) − x‖X(n,p(n)) ∧ 1)

is measurable. Consequently, for every r in R
+, {ω ∈ Ω : d(Z(ω), x) < r} belongs to F .

Note that the law µZ;X∞ of Z on the metric space X∞, which is a positive Borel measure, is therefore also
regular and consequently it is a Radon measure.

Step 3 (statements on the measures µZ;(T,p)). For (T, p) in R
∗
+×
[
2, 2

d−2

)
when d > 2 or R

∗
+×[2,+∞) when d = 2

or d = 1, let i(T,p) denote the continuous injections fromX(T,p) into L2(0, T ; L2(Rd)) and µZ;L = (i(T,p))∗µZ;(T,p).
The σ-field on L2(0, T ; L2(Rd)) is the Borel σ-field. Let h ∈ L2(0, T ;L2(Rd)), then

(
h, i(T,p)(Z)

)
L2(0,T ;L2(Rd))

=
∫ T

0

+∞∑

i,j=1

∫ t

0

(ej , S(t− s)Φei)L2(Rd)dβi(s)(h(t), ej)L2(Rd)

and from classical computation it is the almost sure limit of a sum of independent centered Gaussian random
variables, thus µZ;L is a centered Gaussian measure.

Every linear continuous functional on L2(0, T ; L2(Rd)) defines by restriction a linear continuous functional
on X(T,p). Thus, L2(0, T ; L2(Rd))∗ could be thought of as a subset of

(
X(T,p)

)∗
. Since i(T,p) is a continuous

injection, L2(0, T ; L2(Rd))∗ is dense in
(
X(T,p)

)∗
for the weak∗ topology σ

((
X(T,p)

)∗
, X(T,p)

)
. This means

that, given x∗ ∈
(
X(T,p)

)∗
, there exists a sequence (hn)n∈N of elements of L2(0, T ; L2(Rd)) such that for every

x ∈ X(T,p),
lim

n→+∞

(
hn, i(T,p)(x)

)
L2(0,T ;L2(Rd))

= 〈x∗, x〉(X(T,p))∗,X(T,p) .

In other words, the random variable 〈x∗, ·〉(X(T,p))∗,X(T,p) is a pointwise limit of
(
hn, i(T,p)(·)

)
L2(0,T ;L2(Rd))

which

are, from the above, centered Gaussian random variables. As a consequence, µZ;(T,p) is a centered Gaussian
measure.
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Recall that the RKHSHµZ;L of µZ;L is im RL whereRL is the mapping fromH∗
µZ;L = L2(0, T ; L2(Rd))∗

L2(µZ;L)

with the inner product derived from the one in L2(µZ;L) into L2(0, T ; L2(Rd)) defined for ϕ in H∗
µZ,L by

RL(ϕ) =
∫

L2(0,T ;L2(Rd))

xϕ(x)µZ;L(dx).

The same is true for HµZ;(T,p) replacing L2(0, T ; L2(Rd)) by X(T,p) and µZ;L by µZ;(T,p).
Since µZ;L is the image of µZ;(T,p), taking x∗ ∈ L2(0, T ; L2(Rd))∗, we obtain that

‖x∗‖L2(µZ;L) =
∫

L2(0,T ;L2(Rd))

< x∗, x >2
L2(0,T ;L2(Rd))∗,L2(0,T ;L2(Rd)) µ

Z;L(dx)

=
∫

X(T,p)
< x∗, x >2

L2(0,T ;L2(Rd))∗,L2(0,T ;L2(Rd)) µ
Z;(T,p)(dx)

=
∫

X(T,p)
< x∗, x >2

(X(T,p))∗,X(T,p) µ
Z;(T,p)(dx) = ‖x∗‖L2(µZ;(T,p)).

Therefore, from Lebesgue’s dominated convergence theorem, we obtain that

(
X(T,p)

)∗
= L2(0, T ; L2(Rd))∗

σ((X(T,p))∗
,X(T,p)) ⊂ L2(0, T ; L2(Rd))∗

L2(µZ;(T,p))
= H∗

µZ;L .

It follows that H∗
µZ;(T,p) ⊂ H∗

µZ;L .

The reverse inclusion follows from the fact that L2(0, T ; L2(Rd))∗ ⊂
(
X(T,p)

)∗
.

The conclusion follows from the quite standard fact that the RKHS of µZ;L, which is a centered Gaussian
measure on a Hilbert space, is equal to im Q 1

2 , with the norm of the image structure. Q denotes the covariance
operator of the centered Gaussian measure, it is given, see [6], for h ∈ L2(0, T ; L2(Rd)), by

Qh(v) =
∫ T

0

∫ u∧v

0

IS(v − s)ΦΦ∗S(s− u)I∗h(u)dsdu.

Corollary B.5 of reference [6] finally gives that im L = im Q 1
2 . �

2.5. Continuity with respect to the perturbation

Recall that the mild solution of stochastic NLS (1.3) could be written as a function of the perturbation.
Let v(x) denotes the solution of





i
d
dt
v − (∆v + |v − ix|2σ(v − ix)) = 0,

v(0) = u0,
(2.2)

or equivalently a fixed point of the functional

Fx(v)(t) = S(t)u0 − iλ

∫ t

0

S(t− s)(|(v − ix)(s)|2σ(v − ix)(s))ds,

where x is an element of X(T,p), p is such that p ≥ 2σ+2 and (T, p) is an arbitrary pair in R
∗
+ ×

[
2, 2

d−2

)
when

d > 2 or R
∗
+ × [2,+∞) when d = 2 or d = 1.
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If u is such that u = v(Z) − iZ where Z is the stochastic convolution, note that its regularity is given
in the previous section, then u is a solution of (1.3). Consequently, if G denotes the mapping that satisfies
G(x) = v(x) − ix we obtain that u = G(Z).

The local existence follows from the fact that for R > 0 and r > 0 fixed, taking ‖x‖X(T,2σ+2) ≤ R and
‖u0‖H1(Rd) ≤ r, there exists a sufficiently small T ∗

2σ+2 such that the closed ball centered at 0 of radius 2r is
invariant and Fx is a contraction for the topology of L∞([0, T ∗

2σ+2]; L2(Rd))∩Lr(0, T ∗
2σ+2; Lp(Rd)). Note that a

closed ball of X(T∗
2σ+2,2σ+2) is complete for the topology of L∞([0, T ∗

2σ+2]; L
2(Rd)) ∩ Lr(0, T ∗

2σ+2; L
p(Rd)). The

proof uses extensively the Strichartz’ estimates, see [7] for a detailed proof. The same fixed point argument can
be used for ‖x‖X(T,p) ≤ R in a closed ball of radius 2r in X(T∗

p ,p) for every T ∗
p sufficiently small and p ≥ 2σ + 2

such that (T ∗
p , p) ∈ J . From (2.1), there exists a unique maximal solution v(x) that belongs to E∞.

It could be deduced from Proposition 3.5 of [7], that the mapping G from X∞ into E∞ is a continuous mapping
from

⋂
T∈R∗

+
X(T,2σ+2) with the projective limit topology into E(H1(Rd)). The result can be strengthened as

follows.

Proposition 2.3. The mapping G from X∞ into E∞ is continuous.

Proof. Let x̃ be a function of X∞ and T < T (Z̃). Revisiting the proof of Proposition 3.5 of [7] and taking
ε > 0, p′ ≥ 2σ+ 2, R = 1 + ‖x̃‖X(T,p′) , r = 1 + ‖v(x̃)‖C([0,T ];H1(Rd)), and 2 < p < p′, there exists η > 0 satisfying
η < ε

2(d+1) ∧ 1 such that

∀x ∈ X∞ : ‖x− x̃‖X(T,p′) ≤ η, ‖v(x) − v(x̃)‖C([0,T ];H1(Rd)) ≤
(

ε

2(d+ 1)(4r)α

) 1
1−α

∧ 1.

The constant α is the one that appears in the application of Hölder’s inequality before (2.1). Consequently,
since v(x) and v(x̃) are functions of the closed ball centered at 0 and of radius 2r in X(T,p), the triangle inequality
gives that

‖v(x) − v(x̃)‖X(T,p′) ≤ 4r.

The application of both Hölder’s inequality and the triangle inequality allow to conclude that

∀x ∈ X∞ : ‖x− x̃‖X(T,p′) ≤ η, ‖G(x) − G(x̃)‖X(T,p) ≤ ε

which, from the definition of the neighborhood basis of E∞, gives the continuity. �

The following corollary is a consequence of the last statement of Section 2.2.

Corollary 2.4. In the focusing subcritical case or in the defocusing case, G is a continuous mapping from X∞
into X∞.

The continuity allows us to define the law of the solutions of the stochastic NLS equations on E∞ and in the
cases of global existence in X∞ as the direct image µu = G∗µ

Z , the same notation will be used in both cases.
Let consider the solutions of

i duε − (∆uε + λ|uε|2σuε) dt =
√
εdW, (2.3)

where ε ≥ 0. The laws of the solutions uε in the corresponding trajectory spaces are denoted by µuε , or
equivalently G∗µ

Zε where µZε is the direct image of µZ under the transformation x �→
√
εx on X∞. The

continuity also gives that the family converges weakly to the Dirac mass on the deterministic solution ud as ε
converges to zero. Next section is devoted to the study of the convergence towards 0 of rare events or tail events
of the law of the solution uε, namely large deviations. It allows to describe more precisely the convergence
towards the deterministic measure.
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3. Sample path large deviations

Theorem 3.1. The family of probability measures (µuε)ε≥0 on E∞ satisfies a LDP of speed ε and good rate
function

I(u) =
1
2

inf
h∈L2(0,+∞;L2(Rd)):S(h)=u

{
‖h‖2

L2(0,+∞;L2(Rd))

}
,

where inf ∅ = +∞ and S(h), called the skeleton, is the unique mild solution of the following control problem:





i
d
dt
u = ∆u+ λ|u|2σu+ Φh,

u(0) = u0 ∈ H1(Rd).

This is to say that for every Borel set A of E∞,

− inf
u∈Å

I(u) ≤ limε→0ε logµuε(A) ≤ limε→0ε logµuε(A) ≤ − inf
u∈A

I(u).

The same result holds in X∞ for the family of laws of the solutions in the cases of global existence.

Proof. The general LDP for centered Gaussian measures on real Banach spaces, see [12], gives that for a given
pair (T, p) in R

∗
+ ×

[
2, 2

d−2

)
when d > 2 or R

∗
+ × [2,+∞) when d = 2 or d = 1, the family

(
p(T,p)∗µ

Zε
)
ε≥0

satisfies a LDP on X(T,p) of speed ε and good rate function defined for x ∈ X(T,p) by,

IZ;(T,p)(x) =






1
2
‖x‖2

H
µZ;(T,p)

, if x ∈ HµZ;(T,p) ,

+∞, otherwise,

which, using Proposition 2.2, is equal to

IZ;(T,p)(x) =






1
2
‖x‖2

im L, if x ∈ im L,
+∞, otherwise.

Dawson-Gärtner’s theorem, see [13], along with the monotone convergence theorem, allows us to deduce that
the family

(
µZε
)
ε≥0

satisfies the LDP with the good rate function defined for x ∈ X∞ by

IZ(x) = sup
(T,p)∈J

{
IZ;(T,p)(x)

}

=






sup
(T,p)∈J

{
1
2
‖
(
Φ| ker Φ⊥

)−1
(

d
dt
x+ i∆x

)
‖2
L2(0,T ;L2(Rd))

}

+∞ if
d
dt
x+ i∆x /∈ im Φ

=
1
2

inf
h∈L2(0,+∞;L2(Rd)):L(h)=x

{
‖h‖2

L2(0,+∞;L2(Rd))

}
.

It has been shown in Sections 2.2 and 2.5 that G is a continuous function from a Hausdorff topological space into
another Hausdorff topological space. Consequently, both results follow from Varadhan’s contraction principle
along with the fact that if G ◦ L(h) = x then x is the unique mild solution of the control problem (i.e.
x = S(h)). �
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Remark 3.2. The rate function can be written

I(u) =






1
2

∫ T (u)

0

∥∥
∥
∥
(
Φ| ker Φ⊥

)−1
(
i
d
dt
u− ∆u − λ|u|2σu

)
(s)
∥∥
∥
∥

L2(Rd)

ds, if i
d
dt
u− ∆u− λ|u|2σu ∈ im Φ,

+∞, otherwise.

Remark 3.3. In the cases where blow-up may occur, the argument that will follow allows us to prove the
weaker result that, given an (T, p) in R

∗
+ ×

[
2, 2

d−2

)
when d > 2 or R

∗
+ × [2,+∞) when d = 2 or d = 1 and

I(T,p)(u) =
1
2

inf
h∈L2(0,T ;L2(Rd)):S(h)=u

{
‖h‖2

L2(0,T ;L2(Rd))

}
,

then for every bounded Borel set A of X(T,p)

− inf
u∈Å

I(T,p)(u) ≤ limε→0ε log P (uε ∈ A) ≤ limε→0ε log P (uε ∈ A) ≤ − inf
u∈A

I(T,p)(u). (3.1)

Indeed, if uε belongs to A, there exists a constant R such that ‖uε‖X(T,p) ≤ R. Denoting by uR
ε the solution of

the following fixed point problem

uR
ε (t) = S(t)u0 − iλ

∫ t

0

S(t− s)(|(uR
ε − i

√
εZ)(s)|2σ(uR

ε − i
√
εZ)(s))1l‖uR

ε ‖
X(s,p)≤Rds,

the arguments used previously allow to show that
√
εZ → uR

ε is a continuous mapping from every X(T,p′)

into X(T,p) for p′ > p. The result (3.1) with uR
ε follows from Varadhan’s contraction principle replacing S(h)

by SR(h) with the truncation in front of the nonlinearity. Finally, the statement follows from the fact that
‖uε‖X(T,p) ≤ R implies that uR

ε = uε and that

inf
h∈L2(0,T ;L2(Rd)):SR(h)∈A

{‖h‖2
L2(0,T ;L2(Rd))} = inf

h∈L2(0,T ;L2(Rd)):S(h)∈A
{‖h‖2

L2(0,T ;L2(Rd))}.

Note that writing ∂
∂th instead of h in the optimal control problem leads to a rate function consisting in the

minimisation of 1
2‖h‖2

H1
0(0,+∞;L2(Rd))

. This space is somehow the equivalent of the Cameron-Martin space for

the Brownian motion. Specifying only the law µ of W (1) on H1(Rd) and dropping Φ in the control problem
would lead to a rate function consisting in the minimisation of 1

2‖h‖2
H1

0(0,+∞;Hµ)
, where Hµ stands for the RKHS

of µ.
The formalism of a LDP stated in the intersection space with a projective limit topology allows, for example,

to deduce by contraction, when there is no blow-up in finite time, a variety of sample path LDP on every X(T,p).
The rate function could be interpreted as the minimal energy to implement control.

LDP for the family of laws of uε(T ), for a fixed T , could be deduced by contraction in the cases of global
existence. The rate function is then the minimal energy needed to transfer u0 to x from 0 to T . An application
of this type will be given in Section 6.

Next section gives a characterization of the support of the law of the solution in our setting. Section 5
is devoted to some consequences of these results on the blow-up time. Finally, in Section 6, applications in
nonlinear optics are given.

4. The support of the law of the solution

Theorem 4.1 (the support theorem). The support of the law of the solution is characterized by

supp µu = im S
E∞
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and in the cases of global existence by

supp µu = im S
X∞

.

Proof.
Step 1. From Proposition 2.3, given (T, p) in R

∗
+ ×

[
2, 2

d−2

)
when d > 2 or R

∗
+ × [2,+∞) when d = 2 or d = 1,

µZ;(T,p) is a Gaussian measure on a Banach space and its RKHS is im L. Consequently, see [2] Theorem (IX,2;1),

its support is im LX(T,p)

. Also, from the definition of the image measure we have that

µZ

(
p−1
(T,p)

(
im LX(T,p)

))
= µZ;(T,p)

(
im LX(T,p)

)
= 1.

As a consequence the first inclusion follows

supp µZ ⊂
⋂

(T,p)

p−1
(T,p)

(
im LX(T,p)

)
= im LX∞

.

It then suffices to show that im L ⊂ supp µZ . Suppose that x /∈ supp µZ , then there exists a neighborhood V
of x in X∞, satisfying V =

⋂n
i=1 V

(Ti,pi) where V (Ti,pi) is a neighborhood of x in X(Ti,pi), n is a finite integer

and (Ti, pi) a finite sequence of elements of R
∗
+ ×

[
2, 2

d−2

)
when d > 2 or R

∗
+ × [2,+∞) when d = 2 or d = 1,

such that µZ(V ) = 0. It can be shown that
⋂n

i=1X
(Ti,pi) is still a separable Banach space. It is such that X∞ is

continuously embedded into it, and such that the Borel direct image probability measure is a Gaussian measure
of RKHS im L. The support of this measure is then the closure of im L for the topology defined by the maximum
of the norms on each factor. Thus, V ∩ im L = ∅ and x /∈ im L.

Step 2. We conclude using the continuity of G.
Indeed since G(im L) ⊂ G(im L)

E∞ , im L ⊂ G−1
(
G(im L)

E∞
)
. Since G is continuous, the right side is a

closed set of X∞ and from step 1,

supp µZ ⊂ G−1
(
im (G ◦ L)

E∞
)
,

and

µZ
(
G−1

(
im S

E∞
))

= 1,

thus

supp µu ⊂ im S
E∞
.

Suppose that x /∈ supp µu, there exists a neighborhood V of x in E∞ such that µu(V ) = µZ
(
G−1(V )

)
= 0,

consequently G−1(V )
⋂

im L = ∅ and x /∈ im S. This gives reverse inclusion.
The same arguments hold replacing E∞ by X∞. �

Note that the result of step 2 is general and gives that the support of the direct images µE of the law µu by
any continuous mapping f from either E∞ or X∞ into a topological vector space E is im (f ◦ S)

E
. For example,

in the cases of global existence, given a positive T , the support of the law in H1(Rd) of u(T ) is im S(T )
H1(Rd)

.

Remark 4.2. Remark that the LDP and support theorem may be proved for more general driving noises
provided that the stochastic convolution remains a Gaussian process. The case of a noise derived from a
fractional Wiener process which is a one parameter generalization of the usual Wiener process has been studied.
The results will appear elsewhere.
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5. Applications to the blow-up time

In this section the equation with a focusing nonlinearity, i.e. λ = 1, is considered. In this case, it is
known that some solutions of the deterministic equation blow up in finite time for a critical or subcritical
nonlinearity. It has been proved in Section 2.2 that T is a measurable mapping from E∞ to [0,+∞], both spaces
are equipped with their Borel σ-fields. Incidentally, T (u) is a Ft-stopping time. Also, if B is a Borel set of
[0,+∞], P (T (u) ∈ B) = µu

(
T −1(B)

)
.

The support theorem allows us to determine whether an open or a closed set of the form T −1(B) is such
that µu

(
T −1(B)

)
> 0 or µu

(
T −1(B)

)
< 1 respectively. An application of this fact is given in Proposition 5.1.

For a Borel set B such that
{
Int
(
T −1(B)

)}
∩ im S

E∞ is nonempty, where Int
(
T −1(B)

)
stands for the interior

set of T −1(B), P(T (u) ∈ B) > 0 holds.
Also, T is not continuous and Varadhan’s contraction principle does not allow to obtain a LDP for the law

of the blow-up time. Nonetheless, the LDP for the family (µuε)ε>0 gives the interesting result that

− inf
u∈Int(T −1(B))

I(u) ≤ limε→0ε log P (T (uε) ∈ B) ≤ limε→0ε log P (T (uε) ∈ B) ≤ − inf
u∈T −1(B)

I(u).

Note also that the interior or the closure of sets in E∞ are difficult to characterize. In that respect, the
semicontinuity of T makes the sets (T,+∞] and [0, T ] particularly interesting.

5.1. Probability of blow-up after time T

Proposition 5.1. If u0 ∈ H3(Rd) and the range of Φ is dense then for every positive T ,

P(T (u) > T ) > 0.

Proof. Since T is lower semicontinuous, T −1((T,+∞]) is an open set.
Consider H = −∆u0 − |u0|2σu0 which satisfies G ◦ Λ(H) = u0, where Λ has been defined in Section 2.1,

then T (S(H)) = +∞. Also, using Φ one defines, in a natural way, an operator from L2
loc(0,+∞; L2(Rd)) into

L2
loc(0,+∞; H1(Rd)) and it can be shown, that it still has a dense range. Consequently, there exists a sequence

(hn)n∈N of L2
loc(0,+∞; L2(Rd)) functions such that (Φ(hn))n∈N converges to H in L2

loc(0,+∞; H1(Rd)).
Using the semicontinuity of T , the continuity of G, the fact that S = G ◦Λ ◦Φ, the following lemma and the

fact that L2
loc(0,+∞; H1(Rd)) is continuously embedded in L1

loc(0,+∞; H1(Rd)), limn→∞T (S(hn)) ≥ +∞, i.e.
limn→∞ T (S(hn)) = +∞, follows. Therefore T (S(hn)) > T for n large enough and T −1((T,+∞]) ∩ (im S) is
nonempty.

The conclusion follows then from the support theorem. �

As a corollary, taking the complement of T −1((T,+∞]), P(T (u) ≤ T ) < 1 follows. This is related to the
results of [8] where it is proved that for every positive T , P(T (u) < T ) > 0 and to the graphs in Section 4 of
[10].

Lemma 5.2. The operator Λ, defined in Section 2.1, is continuous from L1
loc(0,+∞; H1(Rd)) into X∞.

Proof. The result follows from ii/ of the Strichartz estimates when s = 1 and ρ = 2, the fact that the partial
derivatives with respect to one space variable commutes with both the integral and the group and the definition
of the projective limit topology. �

The following result holds when the intensity of the noise converges to zero.

Proposition 5.3. If u0 ∈ H3(Rd), the range of Φ is dense and T ≥ T (ud), where ud is the solution of the
deterministic NLS equation with initial datum u0, there exists c in [0,+∞) such that

limε→0ε log P (T (uε) > T ) ≥ −c.
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Proof. Define

L(T,+∞] =
1
2

inf
h∈L2(0,+∞;L2(Rd)):T (S(h))>T

{
‖h‖2

L2(0,+∞;L2(Rd))

}
.

The result follows then from
−L(T,+∞] ≤ limε→0ε log P (T (uε) > T )

and that, from the arguments of the proof of Proposition 5.1, for every T such that T ≥ T (ud) the set
{h ∈ L2(0,+∞; L2(Rd)) : T (S(h)) > T } is nonempty. �

Remark 5.4. The assumption that u0 ∈ H3(Rd) could be dropped using similar arguments as in Proposition 3.3
of [8].

Note that the LDP does not give interesting information on the upper bound even if the bounds have been
sharpened using the rather strong projective limit topology. It is zero since h = 0 belongs to T −1((T,+∞])
as for every T > 0, T −1((T,+∞]) = E∞. Indeed, if a function f of E∞ is given and blows up at a particular
time T (f) such that T > T (f), it is possible to build a sequence (fn)n∈N of functions of E∞ equal to f on[
0, T (f) − 1

n

]
and such that T (fn) > T . The same problem will appear in the next section where the LDP

gives a lower bound equal to −∞. Indeed, Int
(
T −1([0, T ])

)
is the complement of the above and thus an empty

set. To overcome this problem the approximate blow-up time is introduced. Note also that it is possible that
L(T,+∞] = 0.

Also, the case T < T (ud) has not been treated. Indeed, the associated event is not a large deviation event
and the LDP only gives that limε→0 ε log P (T (uε) > T ) = 0.

5.2. Probability of blow-up before time T

In that case we obtain

−∞ ≤ limε→0ε log P (T (uε) ≤ T ) ≤ limε→0ε log P (T (uε) ≤ T ) ≤ −U [0,T ]

where U [0,T ] = 1
2 infh∈L2(0,+∞;L2(Rd)):T (S(h))≤T

{
‖h‖2

L2(0,+∞;L2(Rd))

}
.

Proposition 5.5. If T < T (ud),

limε→0ε log P (T (uε) ≤ T ) ≤ −U [0,T ] < 0.

Proof. Let (hn)n∈N be a sequence of L2(0,+∞; L2(Rd)) functions converging to zero. It follows from Lemma 5.2
and the fact that L2(0,+∞; H1(Rd)) is continuously embedded into L1

loc(0,+∞; H1(Rd)) that S = G ◦ Λ ◦ Φ is
continuous from L2(0,+∞; L2(Rd)) into E∞. Also, from the semicontinuity of T , limn→+∞T (S(hn)) ≥ T (ud).
Thus there exists N large enough such that for every n ≥ N , T (S(hn)) > T . As a consequence we obtain that
necessarily U [0,T ] > 0. �

When T ≥ T (ud), the probability is not supposed to tend to zero. Also, as h = 0 is a solution, the upper
bound is zero and none of the bounds are interesting.

5.3. Bounds for the approximate blow-up time

To overcome the limitation that T −1((T,+∞]) = E∞, which does not allow to have two interesting bounds
simultaneously, we introduce for every positive R the mappings TR defined for f ∈ E∞ by

TR(f) = inf{t ∈ [0,+∞) : ‖f(t)‖H1(Rd) ≥ R}.

It corresponds to the approximation of the blow-up time used in [10]. We obtain the following bounds.
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Proposition 5.6. When T ≥ TR(ud), the following inequality holds

−c < −L(T,+∞]
R ≤ limε→0ε log P (TR(uε) > T ) ≤ limε→0ε log P (TR(uε) > T ) ≤ − sup

α>0
L

(T,+∞]
R+α .

Also, when T < TR(ud), we have that

− inf
α>0

U
[0,T ]
R+α ≤ limε→0ε log P (TR(uε) ≤ T ) ≤ limε→0ε log P (TR(uε) ≤ T ) ≤ −U [0,T ]

R < 0.

In the above c is nonnegative and the numbers L(T,+∞]
R and U [0,T ]

R are defined as L(T,+∞] and U [0,T ] replacing T
by TR.

Proof. The result follows from the facts that TR, which is not continuous, is lower semicontinuous, that for
every α > 0, T −1

R ((T,+∞]) ⊂ T −1
R+α((T,+∞]), thus T −1

R+α([0, T ]) ⊂ Int
(
T −1

R ([0, T ])
)

and from the arguments
used in the proofs of the last two propositions. �

We also obtain the following estimates of other large deviation events.

Corollary 5.7. If S, T < TR(ud), for every c > 0, there exists ε0 > 0 such that if ε ≤ ε0,

exp

(

−
infα>0 U

[0,T ]
R+α + c

ε

)(

1 − exp

(

−
U

[0,S]
R − infα>0 U

[0,T ]
R+α

ε

))

≤ P (S < TR(uε) ≤ T )

and

P (S < TR(uε) ≤ T ) ≤ exp

(

−U
[0,T ]
R − c

ε

)(

1 − exp

(

−
infα>0 U

[0,S]
R+α − U

[0,T ]
R

ε

))

·

If S, T > TR(ud), for every positive c, there exists a positive ε0 such that if ε ≤ ε0,

exp

(

−L
(S,+∞]
R + c

ε

)(

1 − exp

(

−
supα>0 L

(T,+∞]
R+α − L

(T,+∞]
R

ε

))

≤ P (S < TR(uε) ≤ T )

and

P (S < TR(uε) ≤ T ) ≤ exp

(

−
supα>0 L

(S,+∞]
R+α − c

ε

)(

1 − exp

(

−
L

(T,+∞]
R − supα>0 L

(S,+∞]
R+α

ε

))

·

Proof. When S, T < TR(ud), the result follows from the inequalities and from the fact that

P (S < TR(uε) ≤ T ) = P ({TR(uε) ≤ T } \ {TR(uε) ≤ S}) = P (TR(uε) ≤ T )
(

1 − P (TR(uε) ≤ S)
P (TR(uε) ≤ T )

)
·

When S, T > TR(ud), we use

P (S < TR(uε) ≤ T ) = P ({TR(uε) > S} \ {TR(uε) > T }) = P (TR(uε) > S)
(

1 − P (TR(uε) > T )
P (TR(uε) > S)

)
· �
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6. Applications to nonlinear optics

The NLS equation when d = λ = σ = 1 is called the noisy cubic focusing nonlinear Schrödinger equation. It
is a model used in nonlinear optics. Recall that for the above values of the parameters the solutions are global.
The variable t stands for the one dimensional space coordinate and x for the time. The deterministic equation
is such that there exists a particular class of solutions, which are localized in space (here time), that propagate
at a finite constant velocity and keep the same shape. These solutions are called solitons or solitary waves. The
functions

Ψη(t, x) =
√

2η exp
(
−iη2t

)
sech(ηx), η > 0,

form a family of solitons. They are used in optical fibers as information carriers to transmit the datum 0 or 1
at high bit rates over long distances. The noise stands for the noise produced by in-line amplifiers.

Let uε denotes the solution with u0(·) = Ψ1(0, ·) as initial datum and ε as noise intensity like in Section 3
and un

ε denotes the solution with null initial datum and the same noise intensity. The mass of u0 is 4.
At a particular coordinate T of the fiber, when a window [−l, l] is given, the square of the L2(−l, l)−norm, or

measured mass, is recorded. It is close to the mass in the deterministic case for sufficiently high l since the wave
is localized. A decision criterium is to accept that we have 1 if the measured mass is above a certain threshold
and 0 otherwise. We set a threshold of the form 4(1 − γ), where γ is a real number in [0, 1].

As the soliton is progressively distorted by the noise, it is possible either to wrongly decide that the source
has emitted a 1, or to wrongly discard a 1. The two error probabilities consist of

P
|0
ε = P

(∫ l

−l

|un
ε (T, x)|2dx ≥ 4(1 − γ)

)

and

P
|1
ε = P

(∫ l

−l

|uε(T, x)|2dx < 4(1 − γ)

)

.

In modern communication systems the error rate is less than 10−9 which is beyond the scope of statistics,
moreover due to the nonlinearity of the system the measured mass does not have a gaussian law. This justifies
that we use theoretical arguments to characterize these error probabilities. We show in this section how the
LDP applies to this problem.

We obtain similar results, in the case of an unbounded window, as in reference [16] for the first error
probability and as [17] for the second error probability. In these articles the heuristic argument of the collective
coordinates is used. This is a physical argument which unables to reduce the problem to a finite dimensional
system involving modulated parameters. In [16], the authors explain what the leading parameters are and reduce
the problem to a three dimensional problem, that the fluctuations of the parameters are described by SDEs
where the noises are some spatial integrals of the initial noise and that the averaging over the initial noise is
equivalent to averaging over new noises with zero cross correlations. They explain that a decrease in the soliton

power Qε = M(uε(T ))2

4 and a timing jitter Tε =
∫ +∞
−∞ x|uε(T,x)|2dx

M(uε(T ))2 , which characterizes the shifts in the arrival
time of the pulse, are mainly responsible for the loss of the pulse. Thus they write down the probability density
function of the joint law of the two processes, using a formalism called the instanton formalism, as a quantity
which is the averaging over the noise of the path integral over arbitrary functions for the modulated parameters,
taking into account the finite dimensional evolution, of the exponential of an integral over t in [0, T ] of the so
called effective Lagrangian. Finally they compute the path integral using a saddle-point approximation with
boundary conditions and obtain an expression of the probability density function in the small noise asymptotic.
Details on the calculation are given in [17]. The overall argument seems very difficult to justify rigorously. In
particular, the reduction to a three dimensional problem is obtained by minimizing the Lagrangian on a small
space of curves whereas NLS is obtained by minimizing over all paths. Note that they recover analytically the
empirical Gordon-Haus effect that the dispersion in timing is much larger than that of the mass. The authors
also explain that, for the first error probability, the optimal way to create a large signal is to grow a soliton
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and obtain a small noise asymptotic expression of the probability density function of the amplitude at the
coordinate T of the solution with null initial datum.

In the following we make the assumption that im Φ has a dense range. Indeed, from the arguments used in
the proof of Proposition 5.3, it is needed for controllability issues to guarantee that the infima are not taken
over empty sets. Also T is fixed, γ0 ∈

(
0, 1

2

)
is fixed and the size l of the window is such that

∫ l

−l

|ud(T, x)|2dx ∧
∫ l

−l

|Ψ1(0, x)|2dx > 4
(
1 − γ0

2

)
·

We finally stress that for the events we study in dimension d = 1 we could consider a L2(R) setting instead of
a H1(R) setting. However we chose to work in H1(R) to keep the coherence of the article. The H1(R) setting is
necessary when we consider higher dimensions or larger powers of nonlinearities and study events like

{∫ l

−l

|un
ε (T, x)|2dx ≥ 4 − γ, T (un

ε ) > T

}

or

{∫ l

−l

|uε(T, x)|2dx < 4 − γ, T (uε) > T

}

.

The LDP proved herein allows to state the following proposition.

Proposition 6.1. For every γ in [γ0, 1−γ0] besides an at most countable set of points, the following equivalents
for the probabilities of error hold

lim
ε→0

ε log P
|0
ε = −1

2
inf

h∈L2(0,+∞;L2(R)):
∫ l
−l

|S̃(h)(T,x)|2dx≥4(1−γ)

{
‖h‖2

L2(0,+∞;L2(R))

}

lim
ε→0

ε log P
|1
ε = −1

2
inf

h∈L2(0,+∞;L2(R)):
∫ l
−l

|S(h)(T,x)|2dx<4(1−γ)

{
‖h‖2

L2(0,+∞;L2(R))

}

where S(h) and S̃(h) correspond to the usual skeleton with respectively a soliton and a null initial datum.
Moreover, both infima are positive numbers.

Proof. The mapping ϕ from X∞ into R
+ such that ϕ(f) =

∫ l

−l
|f(T, x)|2dx is continuous. Therefore, the direct

image measures (ϕ∗µ
uε)ε≥0 and

(
ϕ∗µ

un
ε

)
ε≥0

satisfy LDP of speed ε and good rate functions respectively

IT (y) =
1
2

inf
h∈L2(0,+∞;L2(R)):

∫
l
−l

|S(h)(T,x)|2dx=y

{
‖h‖2

L2(0,+∞;L2(R))

}

and JT where S is replaced by S̃. Consequently,

∀i ∈ {0, 1}, −Li(γ) ≤ limε→0ε log P
|i
ε ≤ limε→0ε log P

|i
ε ≤ −U i(γ)

where

L0(γ) = inf
y∈(4(1−γ),+∞)

JT (y), U0(γ) = inf
y∈[4(1−γ),+∞)

JT (y),

L1(γ) = inf
y∈[0,4(1−γ))

IT (y), U1(γ) = inf
y∈[0,4(1−γ)]

IT (y).

For every δ > 0, U0(γ) ≤ L0(γ) ≤ U0(γ − δ) and U1(γ) ≤ L1(γ) ≤ U1(γ + δ) hold.
The function γ �→ U0(γ) is positive and decreasing. Also, since the range of Φ is dense, there exists a sequence

(h0
n)n∈N of functions of L2(0,+∞; L2(R)) so that Φhn converges to

H0(t) = i
d
dt
u0 − ∆u0 − λ|u0|2σu0
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where

u0(t) = 1lt≤T
t

T
Ψ1(0, ·)

and by the continuity proved in Section 5.1
(
ϕ ◦ S̃(h0

n)
)

n∈N
converges to ϕ ◦ S̃(H0) > 4

(
1 − γ0

2

)
> 4(1 − γ0).

Consequently, h0
n belongs to the minimizing set for n large enough. Thus, U0(γ0) < +∞ follows. Consequently,

the function γ �→ U0(γ) possesses an at most countable set of points of discontinuity.
Similarly, the function γ �→ U1(γ) is a bounded increasing function. Also, if (h1

n)n∈N and H1(t) are defined
as previously replacing u0(t) by

u1(t) = 1lt≤T

(
1 −

(
1 −

√
γ0

2

)
t

T

)
Ψ1(0, ·),

the sequence (ϕ ◦ S(h1
n))n∈N converges to ϕ ◦ S(H1) ≤ 2γ0 = 4

(
1 −

(
1 − γ0

2

))
. Thus, for n large enough h1

n

belongs to the minimizing set. Consequently, the function γ �→ U1(γ) has an at most countable set of points of
discontinuity. Thus, for a well chosen γ, letting δ converge to zero, we obtain for i ∈ {0, 1} that Li(γ) = U i(γ)
and the equivalents follow.

From the arguments used in the proof of Proposition 5.5, S̃ is a continuous mapping from L2(0,+∞; H1(R))
into X∞. Since ϕ is continuous, if (Hn)n∈N is a sequence of functions converging to zero in L2(0,+∞; H1(R))
then (ϕ◦ S̃(Hn))n∈N converges to ϕ◦ S̃(0) = 0. Similarly we obtain that (ϕ ◦ S(Hn))n∈N converges to ϕ◦S(0) >
4
(
1 − γ0

2

)
. We have now proved the last point of our result that is both infima are positive. �

In the two following sections we concentrate on the mass, we take l = +∞ as if the window were not bounded.
Somehow, if we forget the coefficient, we concentrate on the tails of the marginal law of the soliton power when
the initial datum is a soliton or the tails of the amplitude of the solution with null initial datum as ε converges
to zero. We recall, it has been pointed out in the introduction, that the mass is no longer preserved in the
stochastic case and is such that its expected value increases.

6.1. Upper bounds

The norm of the linear continuous operator Φ of L2(R) is thereafter denoted by ‖Φ‖c.

Proposition 6.2. For every positive T , γ in [0, 1], and every operator Φ in L2(L2(R),H1(R)), the inequalities

limε→0ε log P
|0
ε ≤ − 1 − γ

2T ‖Φ‖2
c

and

limε→0ε log P
|1
ε ≤ − γ2

2T ‖Φ‖2
c(1 + γ)2

hold.

Proof. Multiplying by −iu the equation

i
d
dt
u− ∆u− λ|u|2σu = Φh,

integrating over time and space and taking the real part gives that

‖u(T )‖2
L2(R) − ‖u0‖2

L2(R) = 2�
(

−i
∫ T

0

∫

R

Φhu dxdt

)

.
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First bound: The boundary conditions ‖u(T )‖2
L2(R) ≥ 4(1 − γ) and u0 = 0 along with Cauchy Schwarz

inequality imply both that
4(1 − γ) ≤ 2‖Φ‖c‖h‖L2(0,T ;L2(R))‖u‖L2(0,T ;L2(R)),

and that
∫ T

0

‖u(t)‖2
L2(R)dt = 2

∫ T

0

�
(
−i
∫ t

0

Φhu dxds
)

dt

≤ 2T ‖Φ‖c‖h‖L2(0,T ;L2(R))‖u‖L2(0,T ;L2(R)),

thus,

‖h‖2
L2(0,+∞;L2(R)) ≥

1 − γ

T ‖Φ‖2
c

·

Second bound: The boundary conditions ‖u(T )‖2
L2(R) < 4(1−γ) and ‖u0‖2

L2(R) = 4 give both that along with
Cauchy Schwarz inequality

4γ < 2‖Φ‖c‖h‖L2(0,+∞;L2(R))‖u‖L2(0,T ;L2(R))

and also along with Cauchy Schwarz and integration over time

‖u‖2
L2(0,T ;L2(R)) − 4T ≤ 2T ‖Φ‖c‖h‖L2(0,+∞;L2(R))‖u‖L2(0,T ;L2(R)).

Consequently, it follows that

‖u‖L2(0,T ;L2(R)) ≤ T ‖Φ‖c‖h‖L2(0,T ;L2(R))

(

1 +

√

1 +
4

T ‖Φ‖2
c‖h‖2

L2(0,T ;L2(R))

)

.

Thus, we obtain
2γ

T ‖Φ‖2
c

< ‖h‖2
L2(0,+∞;L2(R))

(

1 +

√

1 +
4

T ‖Φ‖2
c‖h‖2

L2(0,T ;L2(R))

)

and since the function x→ x
(
1 +

√
1 + 4

x

)
is increasing on R

∗
+,

‖h‖2
L2(0,+∞;L2(R)) >

γ2

T ‖Φ‖2
c(1 + γ)2

·

The upper bound follows. �
Remark 6.3. The estimates used in the proof of the above result only use the fact that the nonlinearity acts
as a potential. Indeed the same result holds for any nonlinearity of this type.

6.2. Lower bounds

We prove the following lower bounds.

Proposition 6.4. For every positive T , γ ∈ (0, 1) and every sequence of operators (Φn)n∈N in L0,1
2 such that

for every h in

{
h ∈ L2

(
0, T ; L2(R)

)
: h(t, x) = i

η′(t)
η(t)

Ψη(t, x) − i
√

2η′(t) exp
(
−i
∫ t

0

η2(s)ds
)
η(t)x

sinh
cosh2 (η(t)x)

}

where

Ψη(t, x) =
√

2η(t) exp
(
−i
∫ t

0

η2(s)ds
)

sech(η(t)x) (6.1)
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and η is of the following parameterized form where γ̃ belongs to a countable dense subset of (0, 1)

ηγ̃,T (t) =
(
2 − γ̃ − 2

√
1 − γ̃

)( t

T

)2

+ 2
(
−1 +

√
1 − γ̃

) t

T
+ 1,

for almost every t ∈ [0, T ], Φnh(t) converges in H1(R) to h(t) and there exists C positive such that for almost
every t ∈ [0, T ], ‖Φnh(t)‖H1(R) ≤ C‖h(t)‖H1(R), we obtain the following inequalities where the n in the error
probabilities is there to recall that Φ is replaced by Φn

limn→∞,ε→0ε log P
|0
ε,n ≥ −2(1 − γ)(12 + π2)

9T

and

limn→∞,ε→0ε log P
|1
ε,n ≥ −2(2 − γ − 2

√
1 − γ)(12 + π2)
9T

·

Proof. Consider first that “Φ = I”, denote the corresponding skeletons by S̃WN when the initial datum is
0 and by SWN when it is Ψ(x) =

√
2sech(x), they are defined from the ii/ of the Strichartz estimates on

L1
loc

(
0,+∞; H1(R)

)
, suppose also that η is any function of C([0, T ]). Since the initial data 0 or Ψ belong to

H2(R), for h ∈ L2(R), SWN (h) and S̃WN (h) are functions of C([0, T ]; H2(R)) ∩ C1([0, T ]; L2(R)), consequently
t → η(t) = 1

4‖Ψη(t, ·)‖2
L2(R) is necessarily a function in C1([0, T ]). Also, for controls hη parameterized as in

the above assumptions, η is in C1([0, T ]), the controls belong to L1
loc

(
0,+∞; H1(R)

)
, the skeletons are the

prescribed paths Ψη and we obtain

inf
η∈ C1([0,T ]):‖S̃WN (hη)(T,·)‖2

L2(R)
≥4(1−γ)

{
‖hη‖2

L2(0,+∞;L2(R))

}
= inf

η∈ C1([0,T ]),b.c.

∫ T

0

F (η(t), η′(t)) dt, (6.2)

where the Lagrangian F is

F (z, p) =
1
9
(12 + π2)

p2

z
,

and b.c. stands for the boundary conditions η(0) = 0 and η(T ) ≥ 1 − γ. Indeed, since S̃WN (h)(T ) is a
function of (h(t))t∈[0,T ], the infimum could be taken on functions set to zero almost everywhere after T , thus
‖h‖2

L2(0,+∞;L2(R)) in the left hand side could be replaced by ‖h‖2
L2(0,T ;L2(R)). A scaling argument gives that the

terminal boundary condition is necessarily saturated.
Similarly, for the second error probability, S̃WN is replaced by SWN and b.c. is η(0) = 1 and η(T ) = 1 − γ.
The usual results of the indirect method do not apply to the problem of the calculus of variations, nonetheless
solutions of the boundary value problem associated to the Euler-Lagrange equation

2
η′′

η
=
(
η′

η

)2

provide upper bounds when we compute the integral of the Lagrangian. If we suppose that η is in C3([0, T ])
and that it is positive on (0, T ), we obtain by derivation of the ODE that on (0, T ),

η′′′ = 0.

Also, looking for solutions of the form at2 + bt+ c, we obtain that necessarily b2 = 4ac. Thus C3([0, T ]) positive
solutions are necessarily of the form a

(
t− b

2a

)2
. From the boundary conditions, we obtain that for the first

error probability the function defined by

η0(t) = (1 − γ)
(
t

T

)2
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is a solution of the boundary value problem. For the second error probability, the boundary conditions imply
that the two following functions defined by

η1,1(t) =
(
2 − γ + 2

√
1 − γ

)( t

T

)2

+ 2
(
−1 −

√
1 − γ

) t

T
+ 1

and

η1,2(t) =
(
2 − γ − 2

√
1 − γ

)( t

T

)2

+ 2
(
−1 +

√
1 − γ

) t

T
+ 1

are solutions of the boundary value problem. The second function gives the smallest value when we compute
the integral of the Lagrangian.
From the assumptions on the operators Φn and Lebesgue’s dominated convergence theorem along with Hölder’s
inequality and Lemma 5.2, for functions h of the assumptions of the proposition, (G ◦ Λ ◦ Φn)h converges to
(G ◦ Λ)h = S̃WN (h) in C

(
[0, T ]; L2(R)

)
. In the above G is the mapping defined in Section 2.5 with null initial

datum. Thus ‖S̃n(h)(T, .)‖2
L2(R) converges to ‖S̃WN (h)(T, .)‖2

L2(R). As a consequence, for h in the particular
parameterized set of controls where γ̃ = γ + δ and δ > 0, there exists N0 large enough such that for any
n ≥ N0, ‖S̃WN (h)(T, .)‖2

L2(R) ≥ 4(1 − γ + δ) implies that ‖S̃n(h)(T, .)‖2
L2(R) > 4(1 − γ). Thus the infimum

in the rate for a fixed γ is smaller than the infimum on the smallest particular set of controls h, which is
itself smaller than the square of the L2-norm of the control h corresponding to ηγ,T . Indeed h is such that
‖S̃WN (h)(T, .)‖2

L2(R) ≥ 4(1 − γ + δ), for n large enough, which implies the expected boundary condition. We
conclude from the upper bound obtained in the previous study of the problem of calculus of the variation by
guessing the likeliest path, by taking the limit inf in n of the opposite and from the fact that δ is then arbitrary.
The end of the proof of the lower bound for the second error probability is the same. �

We have finally obtained upper and lower bounds that agree up to constants in their behavior in large T for
the two error probabilities. In the case of the first error probability they also agree in their behavior in γ for γ
near 1, it is not quite the case for the second error probability and γ near zero. The bounds for the first error
probability are of the same order as the one we could obtain from the results of [16]. Indeed, with a slightly
different normalization on the NLS equation and when the noise is the ideal white noise and thus ‖Φ‖c = 1, a
result of [16] is that the probability density function of the mass of the pulse at the coordinate T of the fiber
when the initial datum is null is asymptotically that of an exponential law of parameter εT

2 . Integrating the
density over [2(1−γ),+∞), we obtain that limε→0 ε log P

|0
ε = − 4(1−γ)

T which is indeed in between the two bounds
and very close to the lower bound though obtained with a more general parametrization. Also in Section 6
of [17], the authors study numerically the second error probability by integrating the joint probability density
function over a domain for the soliton power and timing jitter which depends on the size of the window and the
threshold. They also consider the unrealistic case where the size of the window is large and of the order of the
coordinate T of the location of the receiver in the fiber. The effect of the timing jitter could then be neglected
and they obtain an error probability given by limε→0 ε log P

|1
ε = − c(γ)

T , with a constant c(γ) which is a function
of the threshold. It indeed exhibits the same behavior in T as the one obtained in our previous calculations.

Remark 6.5. In the proposition we would like to impose that the operator Φ is acting as the identity map
on span

{
1

cosh(ax) , x
sinh
cosh2 (ax); a ∈ [0, 1]

}
but it seems too strong to be compatible with the Hilbert-Schmidt

assumption. On the other hand, we may check that the assumptions made here can easily be fulfilled. Also,
under these assumptions, the noise is as close as possible to the space-time white noise considered in [16, 17]
that we are not able to treat mathematically.

Remark 6.6. Note that it is natural to obtain that the opposite of the error probabilities are decreasing
functions of T . Indeed, the higher is T , the less energy is needed to form a signal which mass gets above a fixed
threshold at the coordinate T . Replacing above by under, we obtain the same result in the case of a soliton
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as initial datum. Consequently, the higher is T the higher the error probabilities get. Also, in the case of the
first error probability, both upper and lower bounds in Propositions 6.2 and 6.4 are increasing functions of γ.
Similarly, in the case of the second error probability, the bounds are decreasing functions of γ. This could be
interpreted as the higher is the threshold, the more energy is needed to form a signal which mass gets above
the threshold at the coordinate T and conversely in the case of a soliton as initial datum.

Remark 6.7. The results obtained numerically for a parametrization by the amplitude solely without mod-
ulating the phase and other shape parameters or of the phase η2(t)t instead of

∫ t

0
η2(s)ds in (6.1), gave less

interesting lower bounds that did not exhibit the desired properties in T .

Remark 6.8. In [16] the following parametrization

u(t, x) = Ψp(t, x) =
√

2η(t) exp (iβ(t)x + iα(t) + iτ(t)) [sech(η(t)(x − y(t))) + v(t, x)] , with τ ′(t) = η2(t)

is suggested. The authors give a physical justification of the fact that for large T the field v could be neglected.
This could be compared with the results on asymptotic stability for the deterministic nonlinear Schrödinger
equation. They also neglect the parameter α. This more complete parametrization has been used to obtain
lower bounds of the tails of the soliton center, which is the timing jitter times the mass, of the order of − 1

T 3 .
It did not require to let the amplitude η vary but required the parameters y, β and α. Upper bounds of the
same order in T have been obtained in the case of both an additive and a multiplicative noise considering an
equation for the evolution of the soliton center for the controlled equations. This proves that it is way more
likely to obtain a shift in the arrival time of the pulse than a decrease of its mass. This result could be restated
as the soliton center fluctuates more than the mass. If the law were Gaussian, the variance would be of the
order T 3. This is another theoretical proof of the Gordon-Haus effect. It will appear elsewhere.

Acknowledgements. The author is grateful to the anonymous referee for valuable comments that have led to an improve-
ment of the paper.

References
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